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Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy
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We consider the Bennett-Brassard cryptographic scheme, which uses two conjugate quantum bases. An
eavesdropper who attempts to obtain information on qubits sent in one of the bases causes a disturbance to
qubits sent in the other basis. We derive an upper bound to the accessible information in one basis, for a given
error rate in the conjugate basis. Independently fixing the error rates in the conjugate bases, we show that both
bounds can be attained simultaneously by an optimal eavesdropping probe. The probe interaction and its
subsequent measurement are described explicitly. These results are combined to give an expression for the
optimal information an eavesdropper can obtain for a given average disturbance when her interaction and
measurements are performed signal by signal. Finally, the relation between quantum cryptography and viola-
tions of Bell's inequalities is discussefd51050-294®@7)01708-3

PACS numbd(s): 03.65—w, 42.79.Sz, 89.76:c

I. INTRODUCTION There are many possible strategies for eavesdropping,
some of which have been analyzed by other authors. Ekert
In quantum cryptography, individual quanta are preparednd Huttner [4] examined a simple “intercept-resend”
in nonorthogonal quantum states to encode and carry informethod, where Eve performs standard von Neumann mea-
mation about cryptographic keys. In this way, an eavesdropsurements. Likenhaus[5] considered the use of positive
per can acquire information about the key only at the risk ofoperator-valued measuréBOVM) [6] under the restriction
causing a detectable disturbance. The oldest and best knowimat Eve performs her measurements before Alice reveals the
cryptographic scheme BB84 is due to Bennett and Brassardasis. Recently, Gisin and Huttngf] investigated an im-
[1]: the information sender, called Alice, encodes each logiproved strategy for an eavesdropper restricted to a two-
cal bit, 0 or 1, into the linear polarization of a single photon,dimensional probda single qubit interacting on line with
along one of two conjugate bases of her choice, as shown igach transmitted signal; in this case, the probe is measured
Fig. 1. The receiver, Bob, measures the polarization of thafter the basis is revealetNote, the result in Ref.7] turns
photon in one of the two bases, eithey or u-v, randomly  out not to be optimal, because only real values of certain
chosen by him. Only after that does Alice reveal to him theparameters were employé8l.) These results, along with the
basis she used. This information is sent on a public channglptimal ones obtained in the present paper, are plotted in Fig.
that can be monitored, but not modified, by anyone else. BoB.
then likewise tells Alice whether he used the correct basis. If
he did, Alice and Bob know one bit, that no one else ought to y
know. Ar
After this protocol has been repeated many times, Alice
and Bob sacrifice some of these secret bits by publicly com- u
paring their values. This gives them an estimate of the noise
on the channel, which may be due to either natural causes or
to the presence of an eavesdropfieve). In the latter case,
the maximal amount of information that Eve could have
gathered is, in principle, fixed by the laws of quantum me-
chanics. If Eve’s information is small enough compared to
the noise she has induced, Alice and Bob may still be able to > X
useclassicalmethods of privacy amplificatiof2,3] in order
to reduce Eve’s information to an arbitrarily small level. It is
therefore important to estimate the maximal amount of infor-
mation that Eve may have acquired, for a given error rate
observed by Bob.

v

*Permanent address: Department of Physics, Technion—Israel In- FIG. 1. The orthogonal basesy andu-v, that satisfy Eq(2),
stitute of Technology, 32 000 Haifa, Israel. are calledconjugateto each other.
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best achievable information an eavesdropper can obtain
about a single qubit, for a given average error rate caused to
the signals. In both these tasks, we again work within the
paradigm cited above. Namely, we assume that Eve may
interact with only one signal at a time and may only make
measurements on each individual probe. Furthermore, she
may do this after Alice announces her basis, but before the
execution of any error testing or privacy amplification pro-
tocols.

From the point of view of ultimate security in cryptogra-
phy, these restrictions may be severe. On the other hand,
with respect to experimental science, these assumptions are
hardly limiting at all. Indeed it is only now becoming pos-
sible to make two qubits interact with one another in a con-
trolled fashion[9], and it will be some time before the el-
ementary quantum circuit$8,10] needed to realize the
optimal strategy described here can actually be constructed.
Finally, though an expression for the trade-off between in-
formation and disturbance in a less restrictive scenario may
be eminently important for cryptography, such a relation—
because of its dependence on the details of privacy
amplification—lies somewhat beyond the scope of basic
physics. For detailed discussions of quantum cryptographic
security in the presence of collective attacks and privacy am-

0 . . plification, see Refd11-14.
' ' The plan of our paper is as follows. In Sec. Il, we derive
0 0.1 02 D N S
a general bound that refers to the accessible information in
] one basis, corresponding to a given error rate indbeju-
""""" intercept-resend strategy [4] gate basis. This is obtained without using any particular
_____ optimum without waiting for basis [5] model for the eavesdropping interaction; the latter is as-
. . . sumed only to be unitary. It had been previously known that
T lmProved 2-dimensional probe [7] a four-dimensional probéhat is, one consisting of two in-
———-— optimal eavesdropping: Eq. (65) teracting qubitsis the largest needed for achieving the opti-
IAB: Eq. (74) mal detection of signals emitted in a two-dimensional space

[15]. There are, however, some cases for which a two-
dimensional probe is sufficiefit5]. In Sec. Il we present an
optimal strategy for BB84 using a four-dimensional probe of
two qubits, which allows independent error rates in each ba-
The common feature of all these strategies is that they argis, and simultaneously achieves both bounds. A quantum
restricted to interactions and measurements on each indtomputational circuit representing the optimal strategy is de-
vidual signal sent from Alice to Bob; there are no “collec- scribed in the following papef10]. Recently it has been
tive” interactions or measurements on strings of signals, ashown that there is an optimal strategy using only a two-
might be the case if Eve were able perform quantum meadimensional prob¢8].
surements on systems of an arbitrary size. Furthermore, none Finally, in Sec. IV, we address issues directly relevant to
of the strategies allow Eve to delay her measurements untijuantum cryptography by constructing the optimal trade-off
the completion of Alice and Bob’s privacy amplification, and relation for Eve’s overall accessible information in terms of
none take into account the information leaked to her duringhe average error rate for both bases. This is obtained by two
the public communication phase of the protocol. The lattemethods. The first relies on the work of the previous two
kind of information depends upon which bits are ultimately sections; the second incorporates an argument based on a
discarded and upon the specific algorithm used in the privacgymmetrization technique. Note that both Secs. Il and Il
amplification process. Finally, even within the restrictions seconcern fundamental physical questions. The “practically
by this paradigm, none of the schemes can claim optimalityninded” cryptographer need only browse through them, and
in the sense of specifying the best possible ratio betweemay then proceed directly to Sec. IV to find results relevant
Eve’s information gain and her induced disturbance. to privacy amplification2]. In the concluding remarks we
The purpose of this paper is twofold. The first is to give areturn to fundamental physics by outlining an intriguing con-
guantitative statement of the physical principle responsiblaection between the optimal information-disturbance trade-
for the operation of the BB84 protocol: an eavesdropper whaff and a violation of Bell's inequality in the Bennett-
attempts to obtain information in one basis causes a distuBrassard-Mermin modification of the BB84 protoddl6].
bance to the conjugate basis. The second—more relevant this confirms an idea first expressed by EKdif] and re-
practical quantum cryptography—is to derive the absolutecently made quantitative by Gisin and Huttj&t.

FIG. 2. Information vs disturbance for various eavesdropping
methods.
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[l. INFORMATION AND DISTURBANCE particular, there is nothing counterfactual about comparing
IN CONJUGATE BASES the information in one basis with the error rate in the other
basis.
If Eve performs standarvon Neumann typemeasure- Let us now set about our task. If Alice sent a Sigb@t
ments in thex-y basis, she does not disturb signals sent inthe probability that Eve detects outcorres
that basjs, but she completely r_'cmdom_izes.tho.se sent in the P, =(X|1® E,|X), (4)
u-v basis, and vice versa. In this section, it will be shown
that, quite generally, Eve’s ability to obtain partial informa- and likewise for the other signals. Herg,is the identity
tion on the signals sent in one of the bases is related to theperator for Alice and Bob’s qubit. Lg%, be the prior prob-
disturbance caused to the signals sent in the other basis. Thaility that Alice sends signal The probability that Eve gets
is relevant to eavesdropping on the BB84 protocol because @gutcome\ when Alice uses the&-y basis is thus
is the raw physical fact that allows its operation.
We take the framework for our problem directly from O = PaxPxt PryPy - ®)

quantum cryptography. In order to take advantage of Alice’'st gye observes outcomi when she tests her probe, the

delayed information on the basis that was used, Eve's optizssterior probability(or likelinood) Eve assigns signal s,
mal strategy is the following: she lets a probe, initially in by Bayes’ theorem

some standard stafe),), interact unitarily with the qubit
sent by Alice.(There is no loss of generality in this, because Qin=Pyipi/dy - (6)
any physical nonunitary interaction is equivalent to a unitary
one with a higher dimensional probeézve’s probe is then
stored until Alice announces the basis that was used, a
only after that is it measured by Eve.

In a convenient notation, if Alice sends stdt®, the re-
sult may be written as

How can Eve make use of this result? One possibility is to
rﬂ'mply assume that the larger QX,, andQ,, indicates the
signal that was actually sent by Alice. Then, the smaller of
Qx andQy, is Eve’s expected error rate. A convenient mea-
sure of her information gain igl8]

zelex_Qyﬂ- (7)
)@ o) —1X), @) _ _ _
For example, this expression would be Eve’s expected in-

where|X) is an entangled state of the probe and the photof°Me: if_she were earning one QOIIar for each correct guess,
that Alice sent to Bob. Likewise, for the other signals that2nd paying one dollar for each incorrect guess. This expres-

Alice may send, the results of Eve’s intervention are enSion is also related in a simple way to Eve’s expected error
tangled states}Y), |U), and |V). Since the interaction is rate [18] in her interpretation of the resulk, which is

1
unitary, it follows from i(1-Gy)). ) . o
On average, Eve’s information gafim bits) is

)= (lu)+[0))/ V2,
2 G =2 [Pupy Paypyl. ®)
[y)=(u)=lo)/2. el

If the two signals are equiprobable, Eve’s average gain is
that 1
G= EE |P>\x_ P)\yli (9)
X)=(U)+|V)/2, *
and her expected average error ratg (& — G).
1Y)=(|U)—|V))/ 2. (3) A more sophisticated data processing by Eve is to keep
track of all theqg, andQ;, of her observations. These may
Eve’s measurement on the probe may be of the standard tygen be used to compute hewtual informationon Alice’s
(an orthogonal projection valued measuce, more gener- message6]. With equiprobable signals, this is givein
ally, it may be of the POVM typd6], where the various nats by
outcomes correspond to a set of positive semidefinite opera-
tors that sum to the identity operator on the probe’s Hilbert =12+, 0,2, Qi,\InQ;,. (10)
space. Since Eve waits until Alice reveals her basis, she may A i
choose a POVME,} when thex-y basis is sent, and a
different POVM{F,} when theu-v basis is sent.
Note that the interaction of Eve’s probe with the qubit
sent by Alice to Bob completely determines the mean erro
rate for signals sent in the-y basis and those in the-v

Ea3|s. It_alslo. dfetermt!ne? E\t/)e,t?] ?ccess?le_ |nf(|)rm_|§1§|cm,_ Let us first consider the case where Alice announced that
ér maximal informa ionfor both types o signais. The aiM gpe had sent a signal in they basis, and Eve observed
of this section is to show that the accessible information for

) o outcomel. We then have, from Eq$6) and(7),
X-y signals is simply related to the mean error rate der
signals, and vice versa. These mean values are well defined g, G, = 3|Pyx— Py,|= z[(X|1& E,|X) —(Y|1® E,|Y)|.
regardless of which signal is sent in any single instance. In

This measure of Eve’s information is the main concern of
this paper. However, in the following, we shall consider first
the simple “information gain” expressiof9), for which a
bound is easier to find. This result will then be used to bound
the mutual information.
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This can also be written, thanks to Eg), as It follows that Eve’s information gain averaged over all out-
comes is bounded by the expression
Gy = [(U|18E,\|V)+(VI18E,|U)],

G= G, =<2 dy(1—d,)]"2 21
=|Re(U|B,®E,|V) + Rg(U|B,® E, V)], 2 G=22 a\[dy(1-dy)] @)
<KUxul Vo)l + (U Vi), (12 Since the functiofix(1—x)]*? is concave, we havgl9]
whereB,=|u)(u| andB,=|v){v| are projectors onto Bob’s 12 12
stategu) and|v), so that ; LA (1=d) T <[D(1=D)]™ (22
B,+B,=1, (13)  whereD=3q,d, is Bob's observable error rate, i.e., the one

averaged over all of Eve’s outcomes. Equality holds only if
all thed, are equal td. Thus, finally,

Uno) =Bu®VE\[U),  [Vy,)=B,® VE,\|V) Gyy=2[Dyy(1-Dy,)1¥2 23
|Uy,)=B,@VE,\|U), |V,,)=B,®VE,|V). (14  where the indices have been introduced to emphasize that

_ _ _ _ - Eve’s information gain refers to signals sent in #ig basis,
Note that VE, is well defined, sinceE, is a positive and Bob’s error rate refers to signals sent in the basis.

and

semidefinite operator. Of coursgE, can be replaced by In exactly the same fashion as above, we can derive a
E, whenE, is a projector. bound on the information gain with respect to thg basis
The Schwarz inequality implies that in terms of the disturbance inflicted upon they basis
KUrl VA ISH{ULI U (Vi Vi 1Y% (29) Guy=2[Dyy(1-Dyy)]*2 (24
with equality if and only if{U,,) and|V,,) are parallel. The Equations(23) and (24) tell us that Eve's maximal infor-

physical meaning of the expressi¢W,|V,,) is that, if in-  mation gain, for the given error rate caused to Bob in the
stead of the scenario considered here, Alice had actually senbnjugate basis, is bounded in a simple way. The main goal
signal|v), Eve would get resulh and Bob would getu) of this section, however, is in finding an analogous bound on
(that is, a wrong resyltwith a probability equal to that ex- the mutual informatiort, defined by Eq(10). The latter can

pression. Therefore, we shall write be expressed more simply by writing
(Vaul Vaw) =ProOro s Qu=(1+r\)/2 and Qy=(1-r))/2, (29
(Vyo| Vi) =Py, (1—d,,), (16)  since these two expressions sum to unity. We then have
whereP, , is defined as in Eq4), andd,, is the probability |=1 14ron(l+rI)+(1=roIn(l—r
that Bob gets a wrong resubnditioned uporAlice sending 2; e Mt M Wi VI
|v) and Eve measuriny. The other terms in Eq12) can be (26)
handled in the same way, and we finally obtain
Note that
<\P,,P 1—dy,)+ 1- :
0r\Gr= VP Pro[ Vdy, (1= dyy) +Vdyy(1-dy,)] an r=Qu—Qn="=G,, 27)
Let us develop the bound in E€L7) further. By the geomet- Y Virtue of Eq.(7). We can therefore write, instead of Eq.
ric mean-arithmetic mean inequality, we have (26),
1 _1 _ _
(PyuPy,) < 5Pt Pr) =0y (19) | = 2; a\[(1+Gy)IN(1+Gy) +(1-G,)In(1-G,)].
(28)
where the first equality holds #®,,=P,,, and where Eq. , o i ,
(5) was used. Let us now defing andw by To obtain a bound of, it is convenient to define a func-
tion

du=ditw and dy,=d,~w. (19 d(2)=(1+2)In(1+2)+(1-2)In(1—-2). (29

The square bracket in E@L7) is easily seen to be an even , _ .

function ofw, which has its maximum value =0, thatis, >nc€#'(2)=In[(1+2)/(1-2)] is positive for O<z<1, we
whend,,=d,,=d, . That is to say, the bound reaches g See that the right-hand side Qf E@8) will increase if we .
maximum when the probability of a detectable disturbance i§€P/aC€G) by a larger expression, such as the right-hand side
identical for each of the conjugate basis vectors. We thuSf E: (20). Therefore,

have
ls%; ap[24/dy(1—d))]. (30)

Gy=2[d\(1-d\)]"% (20
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In Appendix A, it is shown that[ 2/x(1—Xx)] is a concave
function of x. It follows, just as in Eq(22), that

Ixy$%¢[2 \/DUU(l_ DUU)]’

where subscripts have been added, as in(E8), to empha-

(31)

size that the information gain and error rate refer to signals

sent in two different bases. Likewise

IUU$%¢[2 \/ny(l_ ny)]

is the counterpart of Eq24).
Necessary and sufficient conditions for E@&l) and(32)

(32

to hold as equalities are derived easily by tracing back
through the chain of inequalities that brought them about.

Let us focus on Eq(31). To begin with, the concavity of
¢[2yx(1—x)] is strict, so all thed,’s must be equal; thus,
in view of the remark following Eq(19), we have

d)\U:d)\v:d)\: DUU . (33)
Similarly, Eq.(18) can be a strict equality only if
Pxu=Pr,=0x- (34

Equality in Eg. (12 means that both(U,,|V,,) and
(Uy,|V,,) are real and have the same sign

o= sgr((U,u[Vyu) + (U, V),

= sgn(Pyx— P)\y): Sgr(Qx)\_Qy)\)-
(39

Finally, equality in Eq.(15), and its analog withu replaced
by v, means thatU, ) is a multiple of|V, ), and|U,,) is a
multiple of |V,,). Thus
<V)\U|V)\U>:M2<U)\U|U)\U>l (36)
and
<U)\v|U)\v>: V2<V)\U|V)\U>’ (37)

for some real numbera andv.
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and

ny 1/2

[Xny) = h(l_—DXy> [Yay)s (41)

with
Y= SO Pyy—Py,) = sgnQux—Qu»)» (42

and

X =By@ VR [X),  [Yr0=Bx@F|Y),

Xay)=By@\F\X),  [Ya)=By@Fy|Y). (43

In the cryptographic setting, the fact that Eve can adapt her
measurement to the basis that Alice reveals, leads one to
question whether there may be a single interaction between
Eve's probe and Alice’s qubit that saturates both E{)

and Eqg.(32). We address the achievement of these bounds in
Sec. lll.

Ill. ATTAINABILITY OF BOTH CONJUGATE-BASIS
BOUNDS

In this section, we show how Eve can optimize her strat-
egy to attain the bounds in Eq&1) and (32) with both
D,y andD,, fixed independently. The train of thought that
led to the present solution is a long and complex one. First,
we performed a “brute force” numerical optimization, simi-
lar to the one in Ref{15]. The result was found to saturate
the bound on Eve’s overall information about both bases
(still to be derived in Sec. IV This led us to look for an
exact analytic solution satisfying Eq&8)—(41), first with
equal error rates, and then with independent error rates. The
one described below, for independent error rates, was ob-
tained with a certain amount of guesswork. For the case of
equal error rates, as in Sec. IV, there is a symmetrization
procedure that leads directly to a solution. It is easy to check
that the solution here is correct, but the extent to which it is
unique (aside from trivial changes of basis and of phase
remains unknown. A quantum circuit embodying the optimal

Combining these results gives the necessary and sufficiestrategy is described in the following pafédo].

conditions for equality in Eq(31): for every\,

|V>\u>:€>\(—Duv >1/2|U>\ ) (38
1-Dy, u
and
|Uy )fo(—Duv )1/2|Vx ) (39
W=\ 10D, Vel

wheree, =+ 1.
The corresponding conditions for equality in €§2) are

derived in an analogous way. Namely, if Eve uses a POVM

{F,} for gaining information about tha-v basis—which is
different from the POVM(E, } used for thex-y basis—then
the conditions that must be satisfied are

( ny ) 1/2
Y, )= X 40
| )\x> 2N 1— ny | )\x> (40)

Let us fix bothD,, andD,,. A natural ansatz for an
optimal interaction on Eve’s part is that when Alice sends a
signal in thex-y basis, Bob receives a simple mixture of the
same two basis vectors; when Alice sends a signal in the
u-v basis, Bob receives a simple mixture of these two basis
vectors. That is, Bob’s density matrix is always diagonal in
the basis chosen by Alice. Then, owing to Eg§3) and the
analogous condition for thg-y basis, the Schmidt decom-
positions for the postinteraction states must be of the form

|X>= Vl_ny|X>|§x>+ \/D_xy|y>|gx>!

|Y>:Vl_ny|y>|§y>+\/D_xy|X>|§y>- (44)
and

|U)=1=Dy,|u)| &)+ VD, )|,

[V)=V1-Dy,|v)[ &)+ Dy u)|e,), (45)
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where each pait&) and |¢;) are normalized vectors that
are orthogonal to each othe(é,|¢,)=(&,|Zy)=(&ullu)

=(£&£,)=0.

The remaining relations between thg) and|{;) cannot
be chosen arbitrarily. For instance, the orthogonality>of
and|Y) requires that

(&d&y) +(4d &y)=0.
Moreover, Egs(2) and(3) imply that

2\/1_Duv|§u>: Vl_ny(|§x>+|§y>)+\/D_xy(|§x>+|§y>),
2\/D_uv|§u>: Vl_ny(|§x>_|§y>)+ \/D_xy(|§y>_|§x>)('47)

(46)

and similar relations fof¢,) and|¢,). These in turn, through
<§u|§u>:<§v|§u>:01 lead to

Rd<§x|§y>_<gx|§y>)zor (48)
and

(1_ny) lm(<§y|§x>)+nyIm(<§x|§y>)zo- (49

FUCHS, GISIN, GRIFFITHS, NIU, AND PERES
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|§u>: Vl_DXy|q)LJJrv>+\/D_Xy|CI)Jv>’
|§v>: Vl_nylchv>_\/D_xy|(bu_v>’
|§U>: vl_ny|\P:u>_\/D_xy|wJu>’

The second set of vectors is, of course, related to the
first—as it must be by unitarity—through relations such as in
Eqg. (47). Note that neither collection of relative states is
orthonormal. Hence the set of density operators available to
Eve after the probe’s interaction—i.e., the set of quantum
states from which she gains information about Alice’s
signal—is a noncommuting set.

To see that this interaction is optimal for Eve, we need
only find optimal POVMS(E, } and{F,}—one for each ba-
sisx-y andu-v—to use under these assumptions. Then the
optimality of the whole procedure can be checked either by
testing the validity of Eqs(38)—(41), or simply by checking
directly that the bound is attained. We opt for the former of
these here. In Sec. IV, we shall use a direct check for a
different set of| &) and|¢;).

Suppose Alice announces that a signal fromxhebasis
was sent to Bob. Then a natural choice for the observable

These requirements still leave us considerable freedom in thl?ve should measure is the one that minimizes her error in

choice of Eve’s interaction with Alice and Bob’s qubit. For

simplicity we shall assume that all inner products betwee

the various|¢;) and|{;) are real numbers. Then Eqgl6)
and (48, when combined, indicate that<§X|§y>

:<§x|§y>:0'

uessing Alice’s signal, i.e., the one that maximizZem Eq.
9). The corresponding basis is well knof21,18: it simply
is the one that diagonalizes the Hermitian operator

nysz_Py1 (53

A particular choice for Eve’s interaction that is adequate
for our needs can now be specified. Recall that Eve’s probehere
never need have more than a four-dimensional Hilbert space.
That is to say, Eve’s probe may be taken to be two qubits. It 2x= Traiice(| X){(X]) = (1= Dyy) [ £ x|+ Dy £ (&l
is therefore convenient to introduce the same bases for each (54)

of Eve’s qubits that we introduced for Alice’s qubit, namely,

x-y andu-v. In terms of these basis vectors, we may further.

construct two standar@maximally) entangled bases for the
two qubits: a Bell basi$20] with respect taxy

| D5y = (X)) = [y)y»/V2,
W)= (1Y) = [y)[x))/42, (50)

and similarly a Bell basis with respect to consisting of
|®,) and[¥,).

and likewise forp,. The corresponding eigenprojectors of

I',, are then given by

Ex=IEEA (59
where
[Eoy=D)x),  [Ex)=1y)Ix)
[E2)=[¥ly),  [Eg)=Iy)ly). (56)

Arbitrary values, 0...,3, have been assigned here to the

In terms of the Bell basis vectors for Eve’s probe, we Mayj pel x

choose the interaction in such a way that

|0 =1 Dy, |05) + Dy, | Dyy),
€)= V1= Dy, |®5) — VD, | Dyy),
|£0=V1=Du|¥5) = VD W5,
|£)=V1=Dy| W5+ VDo | W)

With respect to the conjugate inputs, the interaction takes
similar form:

(51)

Similarly, we make the analogous guess for Eve’s mea-
surement in the case that Alice reveals tihe basis; namely,
we use the eigenprojectors

Fr=IFO(F\l (57)

of the operator

1—‘uv:pu_pv! (58)
where the density operatogg, and p, are partial traces of
HJ) and|V), respectively. Again, it is easily verified that the
appropriate eigenvectors are
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[Foy=|udu), |F)=]|v)|u), conjugate basjsreveals that such a binned measurement is
also sufficient for maximizing Eve’s mutual information.
IFo)=|uwv), [Fa)=|v)|v). (590  Moreover, this fact has another remarkable consequence: re-

gardless of which basis Alice used, after Eve’s interaction,

It should be noted that the measurement optimal for minishe can completely ignore the first qubit of her probe. All the
mizing the error in a guess of the state’s identity is generallyaccessible information about Alice’s signal is contained in
notthe same as the measurement for maximizing the mutuahe second qubit. Thus, while there are two qubits in the
information about the sta2]. Thus there is no automatic particular probe we constructed for Eve, only one qubit plays
guarantee that, even with the optimal interaction for Eve’sg role in the final information-gathering process. Also see the
probe, the measurements listed above will be adequate fefiscussions in the following pap€t0] and Ref.[8].
achieving the maximum possible mutual information. Never-
theless, for the case at hand, as will be seen shortly, circum- IV. OPTIMAL EAVESDROPPING STRATEGY
stances have worked out in our favor.

With all the pieces in place, checking the optimality of the ~ We are finally in a position to describe the eavesdropping
interaction given by Eqg44) and(51) and the measurement Strategy that is most relevant to quantum cryptography with
given by Eq.(56), is just a question of checking that Egs. the BB84 protocol. Namely, we should like to know Eve’s
(38)—(41) are satisfied. We start by examining the vectorsbestaveragemutual information for a fixeciveragedistur-
defined in Eq.(14) using the projectors onto the vectors of bance across the two basesy andu-v. This is given by
Egs.(56). Note that in this casgE, =E, is a matrix of rank  combining the two results of Eq§31) and (32). Fixing the
1. Therefore B,® E, projects onto a one-dimensional sub- average disturbance to be
space of the qubit-probe Hilbert space, so that,) and

1

|U,,) are parallel. LikewisgV,,) and |U,,) are parallel. D=2(DxyTDuw), (62)

Working out the scaling factors between the parallel vectorsgq defining

is a matter of applying the projectors to the expressions in

Eq. (45). For example, G=3(Gyy+Gy,) andl=2(ly,+1y,) (63
|U1) =By®E |U)=+1-D(E4q|&,)|U)| Eq), for the average information gain and mutual information,

respectively, we can again use the concavity of the functions

=V1-D, VD |U)|E1)/V2, [x(1—x)]¥2 and ¢[2yX(1—X)] to obtain
(60)

G=2[D(1-D)]*? (64)
and |V,,) is given by the same expression except that
J1-D,, is replaced by/D,. Hence Eq(38) is satisfied for ~and
A=1 with e;=+1. One can work out the other cases in the |<1g[2D(1-D)].

same way, and show that (65)
co=+1, e=+1, e=-1 e=—1. 61) Equality can be achieved in either of these bounds only if
DXy:DUU:D' (66)

Consequently, the measurement corresponding to(H).

provides a mutual informatiofy, given by the right side of  The result is plotted in Fig. 3. As intuitively expected, the
Eq. (31). It is similarly straightforward to verify Eqs40)  average error is the same in both channels. If it were not so,
and (41) by applying projectors of the typ8,@F, and ifferent error rates for-y andu-v signals would be a tell-
By®F, to the expressions in E¢44), to form the quantities  taje indication that a clumsy eavesdropper is tampering with
defined in Eq.(43). the communication line.

Hence there exists a definite choice of qubit-probe inter- The derivation of Eq.(65), as given above, may seem
action, namely, Eq44)—(47), which, together with two dis-  |ong and arduous. This is due to the generality of the previ-
tinct measurement strategies, based upon B.and(S9)  ous sections: Sec. Il encompasses strategies that produce
according to the basis announced by Alice, allows Eve tysymmetric disturbances in the two conjugate bases and the
saturate the bounds in Eq81) and(32) simultaneously, for  pounding argument of Sec. Il can, with slight modification,
arbitrary choices oD, andD . _ be generalized to nonconjugate bases and unequal prior

As a final point, it is intriguing to note the following. If probabilities for those bases. To more firmly place the phys-
Eve’s concern were only to guess the state Alice preparedics of the optimal eavesdropping strategy in E&H) within
andnot maximize her mutual information—then, clearly, it is context, we now sketch an alternate derivation for it based on
enough for her to bin the outcomes of her measurement twg symmetrization argument.
by two. That is to say, if Alice sends a signal in the basis, The starting point of the new argument is to notice that
then Eve upon receiving either outcorig or E; should  for any eavesdropping procedure Eve chooses to use, there
guess that the stafg) was sent; upon receiving eithEp or  exists a symmetrized strategy leading to the same average
Es, she should guess that) was sent. These choices will information I, and the samer lesseraverage disturbance
minimize her probability of making an incorrect guess. Simi-p . For each one of the signals sent by Alice, the mixed states

larly, she should guess1) when she finds eitheff, or F1  Bob receives can be made to be of the form
and |[v) when she finds eithef, or Fs. Interestingly, Eq.

(61) along with Egs.(38) and (39) (and similarly for the Peob=(1—2D)ppjice+ D1, (67)
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1 . 1— cosw 70
"~ 2—cosx+cosB’ (70
0.8 - Let us consider the case where Alice announces that the
’ G x-y basis has been used. Then the two density operators that
Eve must distinguish are
0.6 pxz(l_D)|§x><§x|+D|§x><§x|v
I py=(1=D)[&/)(&,[+DI¢y) ¢yl (71)
0.4 - The optimal information gathering measurement for these

two states proceeds as follows: Eve first performs the pre-
liminary step of distinguishing the vectors—rather than the
density operators—by measuring the second qubit, because
0.2 - the set of|&;) are orthogonal to the set ¢f;). The set of
|&) will occur with probability (1-D); the set of|Z;) will
occur with probabilityD. Thereafter, distinguishing the den-
0 . . sity operatorg, andp, becomes a question of distinguishing
0 0.2 0.4 D the (equiprobablgpure states in the appropriate set. The op-
) ) timal information gathering measurement in either case is
FIG. 3. Eve’s information gail and mutual information (in ~ defined by the basis that straddles the two nonorthogonal
bits) as functions of Bob’s error rat. vectors that must be distinguishg2#]. In the two cases this
leads to an information gain on Eve’s part given[y,22]
as if Alice’s signals were merely diluted by mixing them N ) ) 1 ) )
with a random component. A formal proof of this result is '¢= 2(1FSin@)In(1+sina)+z(1-sina)in(1-sina),
given in Appendix B. N ) ) 1 . .
Therefore with no loss of generality we can obtain Eve's ¢=2(1+sinB)In(1+sing)+3(1-sinB)In(1-sinB).
ultimate bound on information versus disturbance by study- (72)

ing symmetric strategies. Note, however, that this may comey average, Eve’s information gain is given by
at the cost of adding extra degrees of freedom to Eve’s setup: '

without these, we would not be able to enact the required I=(1-D)lz+Dl,. (73
random orientation. For instance, if Eve's probe were re-
stricted to consist of a single qubit, as in RET), there Eve's optimal strategy is obtained with the values

would be no way to carry out this symmetrization. However,of « and 8 that maximizel when D is fixed. One can
by making noa priori restrictions on Eve’s probe, symme- readily check that this occurs whem=p, with
trized strategies can always be covered within our formaking=2,/D(1—D). By symmetry, the same result holds
framework. In particular, there must exist an optimal strategyyhen Alice reveals that the-v basis has been sefthough

on Eve's part that gives Eqgs(44) and (45 with  the detailed protocol for measuring the two qubits is slightly

Dyy=Dy,=D. _ ~different in that case We again find Eq(65) as the optimal
Again we use the notation of Eq#44) and (45) and, in  information-disturbance tradeoff.

accordance with the argument that follows these equations, For small values oD, the bound given in Eq(65) be-

we set comesl<2D. At the other extreme, the maximum value of
| is In2 (that is, one bit Eve can achieve this result simply
(&l Z0= (&4 =(&lLy) = (&1 L0 =0. (68)  hy keeping Alice’s qubit for herself, and sending to Bob a
) dummy qubit in a random state. She then has all the infor-
These requirements are enough to ensure that the set of rekation and Bob gets a 50% error rate. This state of affairs
evant|&y), [£x). |&y), and|y) can all be parameterized by ghouid be contrasted to optimal eavesdropping on the quan-
two real numbers. There are now many possmllltl_es OPeMym cryptographic protocol B92 of Bennd®23], that uses
Instead of Eq(51), we may try a solution that looks simpler, o1y two nonorthogonal quantum states. There one finds, for
such as small values ofD, thatle D [15]. This suggests that the
BB84 protocol is inherently more secure against eavesdrop-

&0 =1)1%), ping than the B92 scheme: for a given disturbance, Eve ob-
tains more information about the identity of Alice and Bob’s
120 =1 y), bit in B92 than in BB84.
To this point, we have hardly discussed what Alice and
|£,)=(cosa|x)+sinaly))|x), Bob can do with the knowledge of E¢5) and Eve’s opti-
mal strategy(given our restrictions to the problemGener-
|£y)=(cosB|x)+sinBly))|y). (69 ally, the users of the BB84 protocol will not have a noiseless

communication channel available for their use. If Alice and
It then follows from({,|{,) =1 that Bob use a noisy channel, the only truly safe way for them to
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proceed is to assume that all the noise is due to some Eweach 2/2 when there is no eavesdropping involved. The
using an optimal eavesdropping scheme. Then, if this Eveffect onS of our optimal eavesdropping strategy is equiva-
has not been too invasive, Alice and Bob may still be able tdent to the one caused by a data-flipping error with probabil-
recover a safe cryptographic key by methods of privacy amity D in one of the detector28]

plification.

As discussed in Refd3,25], a good indicator of Alice S=242(1-2D). (77)
and Bob’s capability of recovering a safe cryptographic key _ _ _
in the face of Eve’s presence can be formulated in terms off IS noteworthy that the CHSH inequality ceases to be vio-
various mutual informations. In particular, one must compardated, i.e.,.5<2, just whenD satisfies Eq(76). This con-
the mutual information ,5 between Alice and Bolfafter ~ firms the conjecture of Gisin and Huttng?] and to some
Eve’'s eavesdroppingto the mutual informationd 5z and e_xtent vmdlcate_s the |dea_qf E_kert. We_ believe this connec-
|5 between Alice and Eve and between Eve and Bob, retion bgltween privacy amplification requirements gnd Bell in-
spectively. If the natural noise in the channel is such thafdualities may have fundamental implications in quantum
| as<min{l xe,lcal, for any potential eavesdropper, then Al- information theory and is worthy of further investigation.
ice and Bob should consider the channel inappropriate for

quantum cryptographic key generation. They should either ACKNOWLEDGMENTS
move to another channel or give up their quest.
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and both are given by the right-hand side of E&f). On the  versity of California at Santa Barbatander NSF Grant No.
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action has merely produced a binary symmetric channel bgng executed. C.A.F. thanks G. Brassard for many discus-

tween them, with a data-flipping rai. Therefore[26] sions and acknowledges the support of the Lee A. DuBridge
Foundation and of DARPA through the Quantum Informa-
Iag=IN2+DIND+(1—-D)In(1-D)=3¢(1—2D). tion and ComputindQUIC) Institute administered by ARO.

(74 N.G. acknowledges financial support by the Swiss National

) _ ) _ Science Foundation and the European TMR Network on the
Comparing this expression to E¢65), we can find the ppygics of Quantum Information. R.B.G. and C.S.N. ac-
threshold noise level for a potentially safe channel; namelyknowledge the support of NSF and ARPA through Grant No.

it occurs when CCR-9633102.
1-2D|=2yD(1-D). (75 APPENDIX A: PROOF OF CONCAVITY
That is to say, when Consider the function
D=>1-1,2~0.146 447, (76) H(2)=(1+2)IN(1+2)+(1-2)In(1-2). (A1)
the phannel should be considered too risky for safe key gerlWe have
eralili?\g'lly, let us discuss an intriguing connection between ¢'(2)=In[(1+2)/(1-2)], (A2)

optimal eavesdropping and the violation of Bell inequalities. d

A slight modification of the BB84 protocol can be built upon

Alice and Bob sharing an entangled pair of quifgach as ¢"(2)=2/(1—-2?). (A3)
the singlet statg¥ ~)) rather than Alice physically sending a

qubit to Bob[16]. Alice and Bob simply randomly perform Now let

measurements in they andu-v bases, and announce their

measurement—though not their result—to each other. When- 2(x)=2[x(1-x)]"%, (Ad)
ever their measurement bases differ, they discard the biE\, ence

whenever the bases are the same, they know that they shoul

have opposite bits if there were no eavesdropping or noise on 7/ (X)=(1—2x)/[x(1—x)]"2, (A5)

the channel. An eavesdropper in this scenario might be imag-

ined to interact with one qubit of the entangled pair in anand

Eth}elz.mpt to gather information about Alice and Bob’s final 2/(%) = — Hx(1—x)]~32= — 473, (A6)
Ekert[17], in a related scheme, pointed out that an approyye have

priate test for eavesdropping might be a check on whether

the Bell inequalities are violated. This can be enacted in our d¢ do¢ dz

scenario by allowing Bob to rotate his measuring apparatus dx  dz dx’ (A7)

by 22.5°. Then Alice and Bob will be in position for testing

the standard Clauser-Horne-Shimony-H@&HSH) inequal-  whence

ity [27]. The correlation signaturg in that inequality cannot ) ) ) )

exceed 2 for theories based on local hidden variables. How- d°¢ d¢dz d ¢( dZ)

ever, in the modified BB84 protocol just discuss&ican O~ dz e T a2l dx (A8)
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Combining all these equations together, we obtain tion, the set of Bob’s states is now invariant under rotations
) of the Poincaresphere by 90°, 180°, and 270°. Therefore,
d_¢: i 27— InE (A9) the four points representing these states form a square, lying
dx*  z° 1-2z)° in a plane parallel to the equatorial plane. If the sides of that

square are not parallel to those of the square formed by Al-
ice’s states, they can be made parallel by a further rotation
around the polar axis. This does not change EVelaut this
reduces Bob'®, thus improving the eavesdropping method.
Moreover, the four points that represert,, can be made
to lie on the equatorial plane itself, not on a parallel plane
above or below it. If they are not on the equatorial plane, this
means that the eavesdropping interaction produces a circu-
The purpose of this appendix is to prove E67). Con- larly polarized component in the outgoing stdtecall that
sider the representation of Alice’s four states on a Poincaréhe poles of the Poincargphere represent pure circular po-
sphere. They lie on the equatorial plane, at the ends of twéarizations. This is indeed possible if the unitary interaction
perpendicular diameters. The states that Bob receives ard the probe involves complex coefficients. In that case, Eve
also represented by four points. The latter are locatsitle  ought to have two available probes, whose interactions are
the sphere, since these are mixed states. described by complex conjugate unitary matrices. The sec-
Eve proceeds as follows: before eavesdropping, she ramnd probe yields Bob’s states on the other side of the equa-
domly rotates Alice’s signal by 0°, 45°, 90°, or 135° in the torial plane. By randomly choosing one of the two probes,
plane of Fig. 1(that is, she rotates the Poincasghere by Eve can bring Bob’s states back to the equatorial plane
0°, 90°, 180°, or 270° around its polar axisAfter the  (where Alice’s states ajeThis changes neithdrnor D.
eavesdropping interaction, she rotates the signal back, and This argument proves that the result stated in(B@) can
then sends it to Bob. This causes no change toatrerage indeed be achieved by symmetrizing any eavesdropping
amount of information she gathers, but equalizes the disturstrategy. In particular, there must also be an optimal strategy
bances to Alice’s four states. By virtue of this symmetriza-giving rise to Eq.(67).

Recall that 6<z<<1. The parenthesis on the right-hand side
of Eg. (A9) vanishes forz=0, and its derivative is
2—-2/(1-27%), which is always negative. Therefore
(d2¢/dx?)<0, and it follows that the functioms[z(x)] is
concave.
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