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Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy
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We consider the Bennett-Brassard cryptographic scheme, which uses two conjugate quantum bases. An
eavesdropper who attempts to obtain information on qubits sent in one of the bases causes a disturbance to
qubits sent in the other basis. We derive an upper bound to the accessible information in one basis, for a given
error rate in the conjugate basis. Independently fixing the error rates in the conjugate bases, we show that both
bounds can be attained simultaneously by an optimal eavesdropping probe. The probe interaction and its
subsequent measurement are described explicitly. These results are combined to give an expression for the
optimal information an eavesdropper can obtain for a given average disturbance when her interaction and
measurements are performed signal by signal. Finally, the relation between quantum cryptography and viola-
tions of Bell’s inequalities is discussed.@S1050-2947~97!01708-3#

PACS number~s!: 03.65.2w, 42.79.Sz, 89.70.1c
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I. INTRODUCTION

In quantum cryptography, individual quanta are prepa
in nonorthogonal quantum states to encode and carry in
mation about cryptographic keys. In this way, an eavesdr
per can acquire information about the key only at the risk
causing a detectable disturbance. The oldest and best kn
cryptographic scheme BB84 is due to Bennett and Bras
@1#: the information sender, called Alice, encodes each lo
cal bit, 0 or 1, into the linear polarization of a single photo
along one of two conjugate bases of her choice, as show
Fig. 1. The receiver, Bob, measures the polarization of
photon in one of the two bases, eitherx-y or u-v, randomly
chosen by him. Only after that does Alice reveal to him t
basis she used. This information is sent on a public chan
that can be monitored, but not modified, by anyone else. B
then likewise tells Alice whether he used the correct basis
he did, Alice and Bob know one bit, that no one else ough
know.

After this protocol has been repeated many times, Al
and Bob sacrifice some of these secret bits by publicly co
paring their values. This gives them an estimate of the no
on the channel, which may be due to either natural cause
to the presence of an eavesdropper~Eve!. In the latter case
the maximal amount of information that Eve could ha
gathered is, in principle, fixed by the laws of quantum m
chanics. If Eve’s information is small enough compared
the noise she has induced, Alice and Bob may still be abl
useclassicalmethods of privacy amplification@2,3# in order
to reduce Eve’s information to an arbitrarily small level. It
therefore important to estimate the maximal amount of inf
mation that Eve may have acquired, for a given error r
observed by Bob.

*Permanent address: Department of Physics, Technion–Israe
stitute of Technology, 32 000 Haifa, Israel.
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There are many possible strategies for eavesdropp
some of which have been analyzed by other authors. E
and Huttner @4# examined a simple ‘‘intercept-resend
method, where Eve performs standard von Neumann m
surements. Lu¨tkenhaus@5# considered the use of positiv
operator-valued measures~POVM! @6# under the restriction
that Eve performs her measurements before Alice reveals
basis. Recently, Gisin and Huttner@7# investigated an im-
proved strategy for an eavesdropper restricted to a t
dimensional probe~a single qubit! interacting on line with
each transmitted signal; in this case, the probe is meas
after the basis is revealed.~Note, the result in Ref.@7# turns
out not to be optimal, because only real values of cert
parameters were employed@8#.! These results, along with th
optimal ones obtained in the present paper, are plotted in
2.

In- FIG. 1. The orthogonal basesx-y andu-v, that satisfy Eq.~2!,
are calledconjugateto each other.
1163 © 1997 The American Physical Society
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1164 56FUCHS, GISIN, GRIFFITHS, NIU, AND PERES
The common feature of all these strategies is that they
restricted to interactions and measurements on each
vidual signal sent from Alice to Bob; there are no ‘‘colle
tive’’ interactions or measurements on strings of signals
might be the case if Eve were able perform quantum m
surements on systems of an arbitrary size. Furthermore, n
of the strategies allow Eve to delay her measurements u
the completion of Alice and Bob’s privacy amplification, an
none take into account the information leaked to her dur
the public communication phase of the protocol. The la
kind of information depends upon which bits are ultimate
discarded and upon the specific algorithm used in the priv
amplification process. Finally, even within the restrictions
by this paradigm, none of the schemes can claim optima
in the sense of specifying the best possible ratio betw
Eve’s information gain and her induced disturbance.

The purpose of this paper is twofold. The first is to give
quantitative statement of the physical principle respons
for the operation of the BB84 protocol: an eavesdropper w
attempts to obtain information in one basis causes a dis
bance to the conjugate basis. The second—more releva
practical quantum cryptography—is to derive the absol

FIG. 2. Information vs disturbance for various eavesdropp
methods.
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best achievable information an eavesdropper can ob
about a single qubit, for a given average error rate cause
the signals. In both these tasks, we again work within
paradigm cited above. Namely, we assume that Eve m
interact with only one signal at a time and may only ma
measurements on each individual probe. Furthermore,
may do this after Alice announces her basis, but before
execution of any error testing or privacy amplification pr
tocols.

From the point of view of ultimate security in cryptogra
phy, these restrictions may be severe. On the other h
with respect to experimental science, these assumptions
hardly limiting at all. Indeed it is only now becoming pos
sible to make two qubits interact with one another in a co
trolled fashion@9#, and it will be some time before the e
ementary quantum circuits@8,10# needed to realize the
optimal strategy described here can actually be construc
Finally, though an expression for the trade-off between
formation and disturbance in a less restrictive scenario m
be eminently important for cryptography, such a relation
because of its dependence on the details of priv
amplification—lies somewhat beyond the scope of ba
physics. For detailed discussions of quantum cryptograp
security in the presence of collective attacks and privacy a
plification, see Refs.@11–14#.

The plan of our paper is as follows. In Sec. II, we deri
a general bound that refers to the accessible informatio
one basis, corresponding to a given error rate in theconju-
gate basis. This is obtained without using any particu
model for the eavesdropping interaction; the latter is
sumed only to be unitary. It had been previously known t
a four-dimensional probe~that is, one consisting of two in
teracting qubits! is the largest needed for achieving the op
mal detection of signals emitted in a two-dimensional sp
@15#. There are, however, some cases for which a tw
dimensional probe is sufficient@15#. In Sec. III we present an
optimal strategy for BB84 using a four-dimensional probe
two qubits, which allows independent error rates in each
sis, and simultaneously achieves both bounds. A quan
computational circuit representing the optimal strategy is
scribed in the following paper@10#. Recently it has been
shown that there is an optimal strategy using only a tw
dimensional probe@8#.

Finally, in Sec. IV, we address issues directly relevant
quantum cryptography by constructing the optimal trade-
relation for Eve’s overall accessible information in terms
the average error rate for both bases. This is obtained by
methods. The first relies on the work of the previous tw
sections; the second incorporates an argument based
symmetrization technique. Note that both Secs. II and
concern fundamental physical questions. The ‘‘practica
minded’’ cryptographer need only browse through them, a
may then proceed directly to Sec. IV to find results relev
to privacy amplification@2#. In the concluding remarks we
return to fundamental physics by outlining an intriguing co
nection between the optimal information-disturbance tra
off and a violation of Bell’s inequality in the Bennett
Brassard-Mermin modification of the BB84 protocol@16#.
This confirms an idea first expressed by Ekert@17# and re-
cently made quantitative by Gisin and Huttner@7#.

g



i
t
n

a-
t
T

se

m
e’
p
in

se
ar

a

to
a
n

ty

er
er
m

bit
rro

fo

fin
.

ing
er

e

to

of
a-

in-
ess,
res-
rror

s

eep
y

of
rst

nd

that
d

56 1165OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY . I. . . .
II. INFORMATION AND DISTURBANCE
IN CONJUGATE BASES

If Eve performs standard~von Neumann type! measure-
ments in thex-y basis, she does not disturb signals sent
that basis, but she completely randomizes those sent in
u-v basis, and vice versa. In this section, it will be show
that, quite generally, Eve’s ability to obtain partial inform
tion on the signals sent in one of the bases is related to
disturbance caused to the signals sent in the other basis.
is relevant to eavesdropping on the BB84 protocol becau
is the raw physical fact that allows its operation.

We take the framework for our problem directly fro
quantum cryptography. In order to take advantage of Alic
delayed information on the basis that was used, Eve’s o
mal strategy is the following: she lets a probe, initially
some standard stateuc0&, interact unitarily with the qubit
sent by Alice.~There is no loss of generality in this, becau
any physical nonunitary interaction is equivalent to a unit
one with a higher dimensional probe.! Eve’s probe is then
stored until Alice announces the basis that was used,
only after that is it measured by Eve.

In a convenient notation, if Alice sends stateux&, the re-
sult may be written as

ux& ^ uc0&→uX&, ~1!

whereuX& is an entangled state of the probe and the pho
that Alice sent to Bob. Likewise, for the other signals th
Alice may send, the results of Eve’s intervention are e
tangled states,uY&, uU&, and uV&. Since the interaction is
unitary, it follows from

ux&5~ uu&1uv&)/A2,

uy&5~ uu&2uv&)/A2, ~2!

that

uX&5~ uU&1uV&)/A2,

uY&5~ uU&2uV&)/A2. ~3!

Eve’s measurement on the probe may be of the standard
~an orthogonal projection valued measure! or, more gener-
ally, it may be of the POVM type@6#, where the various
outcomes correspond to a set of positive semidefinite op
tors that sum to the identity operator on the probe’s Hilb
space. Since Eve waits until Alice reveals her basis, she
choose a POVM$El% when thex-y basis is sent, and a
different POVM$Fl% when theu-v basis is sent.

Note that the interaction of Eve’s probe with the qu
sent by Alice to Bob completely determines the mean e
rate for signals sent in thex-y basis and those in theu-v
basis. It also determines Eve’s accessible information~i.e.,
her maximal information! for both types of signals. The aim
of this section is to show that the accessible information
x-y signals is simply related to the mean error rate foru-v
signals, and vice versa. These mean values are well de
regardless of which signal is sent in any single instance
n
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particular, there is nothing counterfactual about compar
the information in one basis with the error rate in the oth
basis.

Let us now set about our task. If Alice sent a signalux&,
the probability that Eve detects outcomel is

Plx5^Xu1^ EluX&, ~4!

and likewise for the other signals. Here,1 is the identity
operator for Alice and Bob’s qubit. Letpi be the prior prob-
ability that Alice sends signali . The probability that Eve gets
outcomel when Alice uses thex-y basis is thus

ql5Plxpx1Plypy . ~5!

If Eve observes outcomel when she tests her probe, th
posterior probability~or likelihood! Eve assigns signali is,
by Bayes’ theorem,

Qil5Pl i pi /ql . ~6!

How can Eve make use of this result? One possibility is
simply assume that the larger ofQxl andQyl indicates the
signal that was actually sent by Alice. Then, the smaller
Qxl andQyl is Eve’s expected error rate. A convenient me
sure of her information gain is@18#

Gl5uQxl2Qylu. ~7!

For example, this expression would be Eve’s expected
come, if she were earning one dollar for each correct gu
and paying one dollar for each incorrect guess. This exp
sion is also related in a simple way to Eve’s expected e
rate @18# in her interpretation of the resultl, which is
1
2(12Gl).

On average, Eve’s information gain~in bits! is

(
l

qlGl5(
l

uPlxpx2Plypyu. ~8!

If the two signals are equiprobable, Eve’s average gain i

G5
1

2(l
uPlx2Plyu, ~9!

and her expected average error rate is1
2 (12G).

A more sophisticated data processing by Eve is to k
track of all theql and Qil of her observations. These ma
then be used to compute hermutual informationon Alice’s
message@6#. With equiprobable signals, this is given~in
nats! by

I 5 ln21(
l

ql(
i

QillnQil . ~10!

This measure of Eve’s information is the main concern
this paper. However, in the following, we shall consider fi
the simple ‘‘information gain’’ expression~9!, for which a
bound is easier to find. This result will then be used to bou
the mutual information.

Let us first consider the case where Alice announced
she had sent a signal in thex-y basis, and Eve observe
outcomel. We then have, from Eqs.~6! and ~7!,

qlGl5 1
2 uPlx2Plyu5

1
2 z^Xu1^ EluX&2^Yu1^ EluY& z.

~11!
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1166 56FUCHS, GISIN, GRIFFITHS, NIU, AND PERES
This can also be written, thanks to Eq.~3!, as

qlGl5 1
2z^Uu1^ EluV&1^Vu1^ EluU& z,

5 zRê UuBu^ EluV&1Rê UuBv ^ EluV& z,

< z^UluuVlu&u1u^UlvuVlv& z, ~12!

whereBu5uu&^uu andBv5uv&^vu are projectors onto Bob’s
statesuu& and uv&, so that

Bu1Bv51, ~13!

and

uUlu&5Bu^AEluU&, uVlu&5Bu^AEluV&

uUlv&5Bv ^AEluU&, uVlv&5Bv ^AEluV&. ~14!

Note that AEl is well defined, sinceEl is a positive
semidefinite operator. Of course,AEl can be replaced by
El whenEl is a projector.

The Schwarz inequality implies that

z^UluuVlu& z<@^UluuUlu&^VluuVlu&#1/2, ~15!

with equality if and only ifuUlu& anduVlu& are parallel. The
physical meaning of the expression^VluuVlu& is that, if in-
stead of the scenario considered here, Alice had actually
signal uv&, Eve would get resultl and Bob would getuu&
~that is, a wrong result! with a probability equal to that ex
pression. Therefore, we shall write

^VluuVlu&5Plvdlv ,

^VlvuVlv&5Plv~12dlv!, ~16!

wherePlv is defined as in Eq.~4!, anddlv is the probability
that Bob gets a wrong resultconditioned uponAlice sending
uv& and Eve measuringl. The other terms in Eq.~12! can be
handled in the same way, and we finally obtain

qlGl<APluPlv@Adlv~12dlu!1Adlu~12dlv!#.
~17!

Let us develop the bound in Eq.~17! further. By the geomet-
ric mean-arithmetic mean inequality, we have

~PluPlv!1/2<
1

2
~Plu1Plv!5ql , ~18!

where the first equality holds ifPlu5Plv , and where Eq.
~5! was used. Let us now definedl andw by

dlu5dl1w and dlv5dl2w. ~19!

The square bracket in Eq.~17! is easily seen to be an eve
function ofw, which has its maximum value atw50, that is,
when dlu5dlv5dl . That is to say, the bound reaches
maximum when the probability of a detectable disturbanc
identical for each of the conjugate basis vectors. We t
have

Gl<2@dl~12dl!#1/2. ~20!
nt

is
s

It follows that Eve’s information gain averaged over all ou
comes is bounded by the expression

G5(
l

qlGl<2(
l

ql@dl~12dl!#1/2. ~21!

Since the function@x(12x)#1/2 is concave, we have@19#

(
l

ql@dl~12dl!#1/2<@D~12D !#1/2, ~22!

whereD5(qldl is Bob’s observable error rate, i.e., the o
averaged over all of Eve’s outcomes. Equality holds only
all the dl are equal toD. Thus, finally,

Gxy<2@Duv~12Duv!#1/2, ~23!

where the indices have been introduced to emphasize
Eve’s information gain refers to signals sent in thex-y basis,
and Bob’s error rate refers to signals sent in theu-v basis.

In exactly the same fashion as above, we can deriv
bound on the information gain with respect to thex-y basis
in terms of the disturbance inflicted upon theu-v basis

Guv<2@Dxy~12Dxy!#
1/2. ~24!

Equations~23! and~24! tell us that Eve’s maximal infor-
mation gain, for the given error rate caused to Bob in
conjugate basis, is bounded in a simple way. The main g
of this section, however, is in finding an analogous bound
the mutual informationI , defined by Eq.~10!. The latter can
be expressed more simply by writing

Qxl5~11r l!/2 and Qyl5~12r l!/2, ~25!

since these two expressions sum to unity. We then have

I 5 1
2 (

l
ql@~11r l!ln~11r l!1~12r l!ln~12r l!#.

~26!

Note that

r l5Qxl2Qyl56Gl , ~27!

by virtue of Eq.~7!. We can therefore write, instead of Eq
~26!,

I 5 1
2 (

l
ql@~11Gl!ln~11Gl!1~12Gl!ln~12Gl!#.

~28!

To obtain a bound onI , it is convenient to define a func
tion

f~z!5~11z!ln~11z!1~12z!ln~12z!. ~29!

Since f8(z)5 ln@(11z)/(12z)# is positive for 0,z,1, we
see that the right-hand side of Eq.~28! will increase if we
replaceGl by a larger expression, such as the right-hand s
of Eq. ~20!. Therefore,

I< 1
2 (

l
qlf@2Adl~12dl!#. ~30!
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56 1167OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY . I. . . .
In Appendix A, it is shown thatf@2Ax(12x)# is a concave
function of x. It follows, just as in Eq.~22!, that

I xy<
1
2 f@2ADuv~12Duv!#, ~31!

where subscripts have been added, as in Eq.~23!, to empha-
size that the information gain and error rate refer to sign
sent in two different bases. Likewise

I uv< 1
2 f@2ADxy~12Dxy!# ~32!

is the counterpart of Eq.~24!.
Necessary and sufficient conditions for Eqs.~31! and~32!

to hold as equalities are derived easily by tracing ba
through the chain of inequalities that brought them abo
Let us focus on Eq.~31!. To begin with, the concavity o
f@2Ax(12x)# is strict, so all thedl’s must be equal; thus
in view of the remark following Eq.~19!, we have

dlu5dlv5dl5Duv . ~33!

Similarly, Eq. ~18! can be a strict equality only if

Plu5Plv5ql . ~34!

Equality in Eq. ~12! means that both^UluuVlu& and
^UlvuVlv& are real and have the same sign

sl5 sgn~^UluuVlu&1^UlvuVlv&!,

5 sgn~Plx2Ply!5 sgn~Qxl2Qyl!.
~35!

Finally, equality in Eq.~15!, and its analog withu replaced
by v, means thatuUlu& is a multiple ofuVlu&, anduUlv& is a
multiple of uVlv&. Thus

^VluuVlu&5m2^UluuUlu&, ~36!

and

^UlvuUlv&5n2^VlvuVlv&, ~37!

for some real numbersm andn.
Combining these results gives the necessary and suffic

conditions for equality in Eq.~31!: for everyl,

uVlu&5elS Duv

12Duv
D 1/2

uUlu& ~38!

and

uUlv&5elS Duv

12Duv
D 1/2

uVlv&, ~39!

whereel561.
The corresponding conditions for equality in Eq.~32! are

derived in an analogous way. Namely, if Eve uses a PO
$Fl% for gaining information about theu-v basis—which is
different from the POVM$El% used for thex-y basis—then
the conditions that must be satisfied are

uYlx&5glS Dxy

12Dxy
D 1/2

uXlx& ~40!
ls

k
t.

nt

and

uXly&5glS Dxy

12Dxy
D 1/2

uYly&, ~41!

with

gl5 sgn~Plu2Plv!5 sgn~Qul2Qvl!, ~42!

and

uXlx&5Bx^AFluX&, uYlx&5Bx^AFluY&,

uXly&5By^AFluX&, uYly&5By^AFluY&. ~43!

In the cryptographic setting, the fact that Eve can adapt
measurement to the basis that Alice reveals, leads on
question whether there may be a single interaction betw
Eve’s probe and Alice’s qubit that saturates both Eq.~31!
and Eq.~32!. We address the achievement of these bound
Sec. III.

III. ATTAINABILITY OF BOTH CONJUGATE-BASIS
BOUNDS

In this section, we show how Eve can optimize her str
egy to attain the bounds in Eqs.~31! and ~32! with both
Dxy and Duv fixed independently. The train of thought th
led to the present solution is a long and complex one. F
we performed a ‘‘brute force’’ numerical optimization, sim
lar to the one in Ref.@15#. The result was found to saturat
the bound on Eve’s overall information about both bas
~still to be derived in Sec. IV!. This led us to look for an
exact analytic solution satisfying Eqs.~38!–~41!, first with
equal error rates, and then with independent error rates.
one described below, for independent error rates, was
tained with a certain amount of guesswork. For the case
equal error rates, as in Sec. IV, there is a symmetriza
procedure that leads directly to a solution. It is easy to ch
that the solution here is correct, but the extent to which i
unique ~aside from trivial changes of basis and of phas!
remains unknown. A quantum circuit embodying the optim
strategy is described in the following paper@10#.

Let us fix bothDxy and Duv . A natural ansatz for an
optimal interaction on Eve’s part is that when Alice send
signal in thex-y basis, Bob receives a simple mixture of th
same two basis vectors; when Alice sends a signal in
u-v basis, Bob receives a simple mixture of these two ba
vectors. That is, Bob’s density matrix is always diagonal
the basis chosen by Alice. Then, owing to Eq.~33! and the
analogous condition for thex-y basis, the Schmidt decom
positions for the postinteraction states must be of the for

uX&5A12Dxyux&ujx&1ADxyuy&uzx&,

uY&5A12Dxyuy&ujy&1ADxyux&uzy&, ~44!

and

uU&5A12Duvuu&uju&1ADuvuv&uzu&,

uV&5A12Duvuv&ujv&1ADuvuu&uzv&, ~45!
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1168 56FUCHS, GISIN, GRIFFITHS, NIU, AND PERES
where each pairuj i& and uz i& are normalized vectors tha
are orthogonal to each other:̂jxuzx&5^jyuzy&5^juuzu&
5^jvuzv&50.

The remaining relations between theuj i& and uz j& cannot
be chosen arbitrarily. For instance, the orthogonality ofuX&
and uY& requires that

^jxuzy&1^zxujy&50. ~46!

Moreover, Eqs.~2! and ~3! imply that

2A12Duvuju&5A12Dxy~ ujx&1ujy&)1ADxy~ uzx&1uzy&),

2ADuvuzu&5A12Dxy~ ujx&2ujy&)1ADxy~ uzy&2uzx&),
~47!

and similar relations forujv& anduzv&. These in turn, through
^juuzu&5^jvuzv&50, lead to

Re~^jxuzy&2^zxujy&!50, ~48!

and

~12Dxy! Im~^jyujx&!1Dxy Im~^zxuzy&!50. ~49!

These requirements still leave us considerable freedom in
choice of Eve’s interaction with Alice and Bob’s qubit. Fo
simplicity we shall assume that all inner products betwe
the variousuj i& and uz j& are real numbers. Then Eqs.~46!
and ~48!, when combined, indicate that^jxuzy&
5^zxujy&50.

A particular choice for Eve’s interaction that is adequa
for our needs can now be specified. Recall that Eve’s pr
never need have more than a four-dimensional Hilbert sp
That is to say, Eve’s probe may be taken to be two qubits
is therefore convenient to introduce the same bases for
of Eve’s qubits that we introduced for Alice’s qubit, name
x-y andu-v. In terms of these basis vectors, we may furth
construct two standard~maximally! entangled bases for th
two qubits: a Bell basis@20# with respect toxy

uFxy
6 &5~ ux&ux&6uy&uy&)/A2,

uCxy
6 &5~ ux&uy&6uy&ux&)/A2, ~50!

and similarly a Bell basis with respect touv consisting of
uFuv

6 & and uCuv
6 &.

In terms of the Bell basis vectors for Eve’s probe, we m
choose the interaction in such a way that

ujx&5A12DuvuFxy
1 &1ADuvuFxy

2 &,

ujy&5A12DuvuFxy
1 &2ADuvuFxy

2 &,

uzx&5A12DuvuCxy
1 &2ADuvuCxy

2 &,

uzy&5A12DuvuCxy
1 &1ADuvuCxy

2 &. ~51!

With respect to the conjugate inputs, the interaction take
similar form:
he

n

e
e.
It
ch

r

y

a

uju&5A12DxyuFuv
1 &1ADxyuFuv

2 &,

ujv&5A12DxyuFuv
1 &2ADxyuFuv

2 &,

uzu&5A12DxyuCuv
1 &2ADxyuCuv

2 &,

uzv&5A12DxyuCuv
1 &1ADxyuCuv

2 &. ~52!

The second set of vectors is, of course, related to
first—as it must be by unitarity—through relations such as
Eq. ~47!. Note that neither collection of relative states
orthonormal. Hence the set of density operators availabl
Eve after the probe’s interaction—i.e., the set of quant
states from which she gains information about Alice
signal—is a noncommuting set.

To see that this interaction is optimal for Eve, we ne
only find optimal POVMs$El% and$Fl%—one for each ba-
sis x-y andu-v—to use under these assumptions. Then
optimality of the whole procedure can be checked either
testing the validity of Eqs.~38!–~41!, or simply by checking
directly that the bound is attained. We opt for the former
these here. In Sec. IV, we shall use a direct check fo
different set ofuj i& and uz i&.

Suppose Alice announces that a signal from thex-y basis
was sent to Bob. Then a natural choice for the observa
Eve should measure is the one that minimizes her erro
guessing Alice’s signal, i.e., the one that maximizesG in Eq.
~9!. The corresponding basis is well known@21,18#: it simply
is the one that diagonalizes the Hermitian operator

Gxy5rx2ry , ~53!

where

rx5TrAlice~ uX&^Xu!5~12Dxy!ujx&^jxu1Dxyuzx&^zxu,
~54!

and likewise forry . The corresponding eigenprojectors
Gxy are then given by

El5uEl&^Elu, ~55!

where

uE0&5ux&ux&, uE1&5uy&ux&

uE2&5ux&uy&, uE3&5uy&uy&. ~56!

Arbitrary values, 0, . . . ,3, have been assigned here to t
label l.

Similarly, we make the analogous guess for Eve’s m
surement in the case that Alice reveals theu-v basis; namely,
we use the eigenprojectors

Fl5uFl&^Flu ~57!

of the operator

Guv5ru2rv , ~58!

where the density operatorsru and rv are partial traces of
uU& anduV&, respectively. Again, it is easily verified that th
appropriate eigenvectors are
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uF0&5uu&uu&, uF1&5uv&uu&,

uF2&5uu&uv&, uF3&5uv&uv&. ~59!

It should be noted that the measurement optimal for m
mizing the error in a guess of the state’s identity is gener
not the same as the measurement for maximizing the mu
information about the state@22#. Thus there is no automati
guarantee that, even with the optimal interaction for Ev
probe, the measurements listed above will be adequate
achieving the maximum possible mutual information. Nev
theless, for the case at hand, as will be seen shortly, circ
stances have worked out in our favor.

With all the pieces in place, checking the optimality of t
interaction given by Eqs.~44! and~51! and the measuremen
given by Eq.~56!, is just a question of checking that Eq
~38!–~41! are satisfied. We start by examining the vecto
defined in Eq.~14! using the projectors onto the vectors
Eqs.~56!. Note that in this caseAEl5El is a matrix of rank
1. Therefore,Bu^ El projects onto a one-dimensional su
space of the qubit-probe Hilbert space, so thatuVlu& and
uUlu& are parallel. LikewiseuVlv& and uUlv& are parallel.
Working out the scaling factors between the parallel vect
is a matter of applying the projectors to the expressions
Eq. ~45!. For example,

uU1u&5Bu^ E1uU&5A12Duv^E1uju&uu&uE1&,

5A12DuvADxyuu&uE1&/A2,
~60!

and uV1u& is given by the same expression except t
A12Duv is replaced byADuv. Hence Eq.~38! is satisfied for
l51 with e1511. One can work out the other cases in t
same way, and show that

e0511, e1511, e2521, e3521. ~61!

Consequently, the measurement corresponding to Eq.~56!
provides a mutual informationI xy given by the right side of
Eq. ~31!. It is similarly straightforward to verify Eqs.~40!
and ~41! by applying projectors of the typeBx^ Fl and
By^ Fl to the expressions in Eq.~44!, to form the quantities
defined in Eq.~43!.

Hence there exists a definite choice of qubit-probe in
action, namely, Eqs.~44!–~47!, which, together with two dis-
tinct measurement strategies, based upon Eqs.~56! and ~59!
according to the basis announced by Alice, allows Eve
saturate the bounds in Eqs.~31! and~32! simultaneously, for
arbitrary choices ofDuv andDxy .

As a final point, it is intriguing to note the following. I
Eve’s concern were only to guess the state Alice prepar
andnot maximize her mutual information–then, clearly, it
enough for her to bin the outcomes of her measurement
by two. That is to say, if Alice sends a signal in thex-y basis,
then Eve upon receiving either outcomeE0 or E1 should
guess that the stateux& was sent; upon receiving eitherE2 or
E3, she should guess thatuy& was sent. These choices wi
minimize her probability of making an incorrect guess. Sim
larly, she should guessuu& when she finds eitherF0 or F1
and uv& when she finds eitherF2 or F3. Interestingly, Eq.
~61! along with Eqs.~38! and ~39! ~and similarly for the
i-
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conjugate basis! reveals that such a binned measuremen
also sufficient for maximizing Eve’s mutual information
Moreover, this fact has another remarkable consequence
gardless of which basis Alice used, after Eve’s interacti
she can completely ignore the first qubit of her probe. All t
accessible information about Alice’s signal is contained
the second qubit. Thus, while there are two qubits in
particular probe we constructed for Eve, only one qubit pla
a role in the final information-gathering process. Also see
discussions in the following paper@10# and Ref.@8#.

IV. OPTIMAL EAVESDROPPING STRATEGY

We are finally in a position to describe the eavesdropp
strategy that is most relevant to quantum cryptography w
the BB84 protocol. Namely, we should like to know Eve
bestaveragemutual information for a fixedaveragedistur-
bance across the two basesx-y and u-v. This is given by
combining the two results of Eqs.~31! and ~32!. Fixing the
average disturbance to be

D5 1
2 ~Dxy1Duv!, ~62!

and defining

G5 1
2 ~Gxy1Guv! and I 5 1

2 ~ I xy1I uv! ~63!

for the average information gain and mutual informatio
respectively, we can again use the concavity of the functi
@x(12x)#1/2 andf@2Ax(12x)# to obtain

G<2@D~12D !#1/2, ~64!

and

I< 1
2 f@2AD~12D !#. ~65!

Equality can be achieved in either of these bounds onl

Dxy5Duv5D. ~66!

The result is plotted in Fig. 3. As intuitively expected, th
average error is the same in both channels. If it were not
different error rates forx-y andu-v signals would be a tell-
tale indication that a clumsy eavesdropper is tampering w
the communication line.

The derivation of Eq.~65!, as given above, may seem
long and arduous. This is due to the generality of the pre
ous sections: Sec. III encompasses strategies that pro
asymmetric disturbances in the two conjugate bases and
bounding argument of Sec. II can, with slight modificatio
be generalized to nonconjugate bases and unequal
probabilities for those bases. To more firmly place the ph
ics of the optimal eavesdropping strategy in Eq.~65! within
context, we now sketch an alternate derivation for it based
a symmetrization argument.

The starting point of the new argument is to notice th
for any eavesdropping procedure Eve chooses to use, t
exists a symmetrized strategy leading to the same ave
information I , and the sameor lesseraverage disturbance
D. For each one of the signals sent by Alice, the mixed sta
Bob receives can be made to be of the form

rBob5~122D !rAlice1D1, ~67!
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as if Alice’s signals were merely diluted by mixing the
with a random component. A formal proof of this result
given in Appendix B.

Therefore with no loss of generality we can obtain Ev
ultimate bound on information versus disturbance by stu
ing symmetric strategies. Note, however, that this may co
at the cost of adding extra degrees of freedom to Eve’s se
without these, we would not be able to enact the requi
random orientation. For instance, if Eve’s probe were
stricted to consist of a single qubit, as in Ref.@7#, there
would be no way to carry out this symmetrization. Howev
by making noa priori restrictions on Eve’s probe, symme
trized strategies can always be covered within our form
framework. In particular, there must exist an optimal strate
on Eve’s part that gives Eqs.~44! and ~45! with
Dxy5Duv5D.

Again we use the notation of Eqs.~44! and ~45! and, in
accordance with the argument that follows these equati
we set

^jxuzx&5^jyuzy&5^jxuzy&5^jyuzx&50. ~68!

These requirements are enough to ensure that the set o
evant ujx&, uzx&, ujy&, and uzy& can all be parameterized b
two real numbers. There are now many possibilities op
Instead of Eq.~51!, we may try a solution that looks simple
such as

ujx&5ux&ux&,

uzx&5ux&uy&,

ujy&5~cosaux&1sinauy&)ux&,

uzy&5~cosbux&1sinbuy&)uy&. ~69!

It then follows from^zuuzu&51 that

FIG. 3. Eve’s information gainG and mutual informationI ~in
bits! as functions of Bob’s error rateD.
-
e
p:
d
-

,

l
y

s,

rel-

n.

D5
12cosa

22cosa1cosb
. ~70!

Let us consider the case where Alice announces that
x-y basis has been used. Then the two density operators
Eve must distinguish are

rx5~12D !ujx&^jxu1Duzx&^zxu,

ry5~12D !ujy&^jyu1Duzy&^zyu. ~71!

The optimal information gathering measurement for the
two states proceeds as follows: Eve first performs the p
liminary step of distinguishing the vectors—rather than t
density operators—by measuring the second qubit, beca
the set ofuj i& are orthogonal to the set ofuz j&. The set of
uj i& will occur with probability (12D); the set ofuz j& will
occur with probabilityD. Thereafter, distinguishing the den
sity operatorsrx andry becomes a question of distinguishin
the ~equiprobable! pure states in the appropriate set. The o
timal information gathering measurement in either case
defined by the basis that straddles the two nonorthogo
vectors that must be distinguished@24#. In the two cases this
leads to an information gain on Eve’s part given by@24,22#

I j5 1
2 ~11sina!ln~11sina!1 1

2 ~12sina!ln~12sina!,

I z5 1
2 ~11sinb!ln~11sinb!1 1

2 ~12sinb!ln~12sinb!.
~72!

On average, Eve’s information gain is given by

I 5~12D !I j1DI z . ~73!

Eve’s optimal strategy is obtained with the valu
of a and b that maximizeI when D is fixed. One can
readily check that this occurs whena5b, with
sina52AD(12D). By symmetry, the same result hold
when Alice reveals that theu-v basis has been sent~though
the detailed protocol for measuring the two qubits is sligh
different in that case!. We again find Eq.~65! as the optimal
information-disturbance tradeoff.

For small values ofD, the bound given in Eq.~65! be-
comesI<2D. At the other extreme, the maximum value
I is ln2 ~that is, one bit!: Eve can achieve this result simpl
by keeping Alice’s qubit for herself, and sending to Bob
dummy qubit in a random state. She then has all the in
mation, and Bob gets a 50% error rate. This state of aff
should be contrasted to optimal eavesdropping on the qu
tum cryptographic protocol B92 of Bennett@23#, that uses
only two nonorthogonal quantum states. There one finds,
small values ofD, that I}AD @15#. This suggests that the
BB84 protocol is inherently more secure against eavesd
ping than the B92 scheme: for a given disturbance, Eve
tains more information about the identity of Alice and Bob
bit in B92 than in BB84.

To this point, we have hardly discussed what Alice a
Bob can do with the knowledge of Eq.~65! and Eve’s opti-
mal strategy~given our restrictions to the problem!. Gener-
ally, the users of the BB84 protocol will not have a noisele
communication channel available for their use. If Alice a
Bob use a noisy channel, the only truly safe way for them
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proceed is to assume that all the noise is due to some
using an optimal eavesdropping scheme. Then, if this
has not been too invasive, Alice and Bob may still be able
recover a safe cryptographic key by methods of privacy a
plification.

As discussed in Refs.@3,25#, a good indicator of Alice
and Bob’s capability of recovering a safe cryptographic k
in the face of Eve’s presence can be formulated in term
various mutual informations. In particular, one must comp
the mutual informationI AB between Alice and Bob~after
Eve’s eavesdropping! to the mutual informationsI AE and
I EB between Alice and Eve and between Eve and Bob,
spectively. If the natural noise in the channel is such t
I AB<min$IAE,IEB%, for any potential eavesdropper, then A
ice and Bob should consider the channel inappropriate
quantum cryptographic key generation. They should eit
move to another channel or give up their quest.

Note that for the optimal scheme derived hereI AE5I EB
and both are given by the right-hand side of Eq.~65!. On the
other hand, as far as Alice and Bob are concerned, E
action has merely produced a binary symmetric channel
tween them, with a data-flipping rateD. Therefore@26#

I AB5 ln21D lnD1~12D !ln~12D !5 1
2 f~122D !.

~74!

Comparing this expression to Eq.~65!, we can find the
threshold noise level for a potentially safe channel; nam
it occurs when

u122Du52AD~12D !. ~75!

That is to say, when

D> 1
2 2 1

4 A2'0.146 447, ~76!

the channel should be considered too risky for safe key g
eration.

Finally, let us discuss an intriguing connection betwe
optimal eavesdropping and the violation of Bell inequalitie
A slight modification of the BB84 protocol can be built upo
Alice and Bob sharing an entangled pair of qubits~such as
the singlet stateuC2&) rather than Alice physically sending
qubit to Bob@16#. Alice and Bob simply randomly perform
measurements in thex-y andu-v bases, and announce the
measurement—though not their result—to each other. Wh
ever their measurement bases differ, they discard the
whenever the bases are the same, they know that they sh
have opposite bits if there were no eavesdropping or nois
the channel. An eavesdropper in this scenario might be im
ined to interact with one qubit of the entangled pair in
attempt to gather information about Alice and Bob’s fin
key.

Ekert @17#, in a related scheme, pointed out that an app
priate test for eavesdropping might be a check on whe
the Bell inequalities are violated. This can be enacted in
scenario by allowing Bob to rotate his measuring appara
by 22.5°. Then Alice and Bob will be in position for testin
the standard Clauser-Horne-Shimony-Holt~CHSH! inequal-
ity @27#. The correlation signatureS in that inequality cannot
exceed 2 for theories based on local hidden variables. H
ever, in the modified BB84 protocol just discussed,S can
ve
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reach 2A2 when there is no eavesdropping involved. T
effect onS of our optimal eavesdropping strategy is equiv
lent to the one caused by a data-flipping error with proba
ity D in one of the detectors@28#

S52A2~122D !. ~77!

It is noteworthy that the CHSH inequality ceases to be v
lated, i.e.,S<2, just whenD satisfies Eq.~76!. This con-
firms the conjecture of Gisin and Huttner@7# and to some
extent vindicates the idea of Ekert. We believe this conn
tion between privacy amplification requirements and Bell
equalities may have fundamental implications in quant
information theory and is worthy of further investigation.
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APPENDIX A: PROOF OF CONCAVITY

Consider the function

f~z!5~11z!ln~11z!1~12z!ln~12z!. ~A1!

We have

f8~z!5 ln@~11z!/~12z!#, ~A2!

and

f9~z!52/~12z2!. ~A3!

Now let

z~x!52@x~12x!#1/2, ~A4!

whence

z8~x!5~122x!/@x~12x!#1/2, ~A5!

and

z9~x!52 1
2 @x~12x!#23/2524/z3. ~A6!

We have

df

dx
5

df

dz

dz

dx
, ~A7!

whence

d2f

dx2 5
df

dz

d2z

dx2 1
d2f

dz2 S dz

dxD
2

. ~A8!
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Combining all these equations together, we obtain

d2f

dx2 5
4

z3S 2z2 ln
11z

12zD . ~A9!

Recall that 0,z,1. The parenthesis on the right-hand si
of Eq. ~A9! vanishes for z50, and its derivative is
222/(12z2), which is always negative. Therefor
(d2f/dx2),0, and it follows that the functionf@z(x)# is
concave.

APPENDIX B: SYMMETRIZED EAVESDROPPING

The purpose of this appendix is to prove Eq.~67!. Con-
sider the representation of Alice’s four states on a Poinc´
sphere. They lie on the equatorial plane, at the ends of
perpendicular diameters. The states that Bob receives
also represented by four points. The latter are locatedinside
the sphere, since these are mixed states.

Eve proceeds as follows: before eavesdropping, she
domly rotates Alice’s signal by 0°, 45°, 90°, or 135° in th
plane of Fig. 1~that is, she rotates the Poincare´ sphere by
0°, 90°, 180°, or 270° around its polar axis!. After the
eavesdropping interaction, she rotates the signal back,
then sends it to Bob. This causes no change to theaverage
amount of information she gathers, but equalizes the dis
bances to Alice’s four states. By virtue of this symmetriz
n

n

ev
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c

10

e
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o
re

n-
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tion, the set of Bob’s states is now invariant under rotatio
of the Poincare´ sphere by 90°, 180°, and 270°. Therefor
the four points representing these states form a square, l
in a plane parallel to the equatorial plane. If the sides of t
square are not parallel to those of the square formed by
ice’s states, they can be made parallel by a further rota
around the polar axis. This does not change Eve’sI , but this
reduces Bob’sD, thus improving the eavesdropping metho

Moreover, the four points that representrBob can be made
to lie on the equatorial plane itself, not on a parallel pla
above or below it. If they are not on the equatorial plane, t
means that the eavesdropping interaction produces a c
larly polarized component in the outgoing state~recall that
the poles of the Poincare´ sphere represent pure circular p
larizations!. This is indeed possible if the unitary interactio
of the probe involves complex coefficients. In that case, E
ought to have two available probes, whose interactions
described by complex conjugate unitary matrices. The s
ond probe yields Bob’s states on the other side of the eq
torial plane. By randomly choosing one of the two prob
Eve can bring Bob’s states back to the equatorial pla
~where Alice’s states are!. This changes neitherI nor D.

This argument proves that the result stated in Eq.~67! can
indeed be achieved by symmetrizing any eavesdropp
strategy. In particular, there must also be an optimal strat
giving rise to Eq.~67!.
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