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Insecurity of quantum secure computations
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It had been widely claimed that quantum mechanics can protect private information during public decision
in, for example, the so-called two-party secure computation. If this were the case, quantum smart-cards, storing
confidential information accessible only to a proper reader, could prevent fake teller machines from learning
the PIN ~personal identification number! from the customers’ input. Although such optimism has been chal-
lenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the
security of quantum two-party computation itself remains unaddressed. Here I answer this question directly by
showing that allone-sidedtwo-party computations~which allow only one of the two parties to learn the result!
are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and
the so-called quantum one-out-of-two oblivious transfer are impossible. I also construct a class of functions
that cannot be computed securely in anytwo-sidedtwo-party computation. Nevertheless, quantum cryptogra-
phy remains useful in key distribution and can still provide partial security in ‘‘quantum money’’ proposed by
Wiesner.@S1050-2947~97!01508-4#

PACS number~s!: 03.65.Bz, 89.70.1c, 89.80.1h
-

g
ue
I

ri

er
ne

-

b
r

m

-

o-
-
ted
bit
r
to
the

-
e
he
to-
lly
any
s a
ure
ca-

of

83
ply
io
e

he
s
w

nd

d to

be
this
om-
se-
em
I. INTRODUCTION

Copying of an unknown quantum state~by, for example,
an eavesdropper! is strictly forbidden by the linearity of
quantum mechanics@1#. Consequently, quantum crypto
graphy1 ~or more precisely quantum key distribution@3–7#!
allows two users to share a common random secret strin
information which can then be used to make their subseq
communications totally unintelligible to an eavesdropper.
this paper I am, however, concerned with another class
applications of quantum cryptography—the protection of p
vate information during public decision@8,9#. For instance,
two millionaires may be interested in knowing who is rich
but neither wishes to disclose the precise amount of mo
that he or she has. More generally, in aone-sidedtwo-party
computation, Alice has a private inputi and Bob a private
input j . Alice would like to help Bob to compute a pre
scribed functionf ( i , j ) without revealing anything abouti
more than what is logically necessary.~For a precise defini-
tion of a one-sided two-party computation, see Sec. II.! In
classical cryptography, such two-party computations can
made secure only either~1! through trusted intermediaries o
~2! by accepting some unproven computational assu
tions.2 The impossibility ofunconditionallysecure two-party

*Electronic address: hkl@hplb.hpl.hp.com
1Quantum cryptography was first proposed by Wiesner@2# in

about 1970 in a manuscript that remained unpublished until 19
2In the first case, if both Alice and Bob trust Charles, they sim

tell him their private inputs and let Charles perform the computat
on their behalf and tell them the result afterwards. The problem h
is that Charles can cheat by telling either Alice or Bob the ot
party’s private input. In the second case, assumptions such a
hardness of factoring can be used. However, an adversary
561050-2947/97/56~2!/1154~9!/$10.00
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computation inclassicalcryptography had led to much inter
est in quantumcryptographic protocols@2,5,11–18# which
are supposed to be unconditionally secure@16–18#.

An important primitive in secure computation is the s
called bit commitment.3 The optimism in unconditionally se
cure quantum two-party computation was largely contribu
by well-known claims of unconditional secure quantum
commitment protocols@16# ~and also oblivious transfe
@17,18#!. However, such optimism has recently been put in
serious question due to the surprising demonstration of
insecurity of quantum bit commitment~against an@Einstein-
Podolsky-Rosen~EPR!#! type of attack with delayed mea
surements# by Mayers @20,21# and also by Chau and m
@22,23#. Yet an important question remains: Other than t
quantum key distribution, can quantum cryptographic pro
cols, in particular, two-party computation, be unconditiona
secure at all? This is an important question because, in m
cases, quantum bit commitment might be thought of a
means to an end—two-party secure computation. If sec
quantum two-party computation is possible, many appli
tions of quantum cryptography, such as the prevention
frauds due to typing the PIN~personal identification number!

.

n
re
r
the
ith

unlimited computing power~or with a quantum computer@10#! can
defeat such unproven computational assumptions.

3The basic idea of bit commitment is to conceal information a
to reveal it later. It might be useful to note that Yao@18# has shown
that any secure quantum bit commitment scheme can be use
implement secure quantum oblivious transfer whereas Kilian@19#
has shown that, in classical cryptography, oblivious transfer can
used to implement two-party secure computation. Therefore,
chain of argument appears to suggest that, with quantum bit c
mitment, quantum cryptography could achieve unconditionally
cure two-party computation, thus solving a long-standing probl
in cryptography.
1154 © 1997 The American Physical Society
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56 1155INSECURITY OF QUANTUM SECURE COMPUTATIONS
to a dishonest teller machine mentioned in the abstract,
still survive.

Amazingly, one possible viewpoint to take is that there
really nothing to prove because the standard reduc
theorems4 @19,24,25# in classical cryptography immediatel
imply that quantum one-sided two-party computation is i
possible: In classical cryptography, an example of one-si
two party computation is one-out-of-two oblivious transfe
which can be used to implement bit commitment. If bit co
mitment is impossible, one-sided two-party computatio
must also generally be impossible. Doubt has been expre
in the literature concerning the validity of this standard
duction in a quantum model@9#. Here I argue that by defini
tion the standard reduction must apply to quantum cryp
graphic protocols: Bit commitment, oblivious transfer, a
two-party computations are classical concepts whose s
rity requirements are defined in a classical probabilistic l
guage. If there is any sense at all in saying that a quan
protocol can achieve say two-party computation, it isa mat-
ter of definitionthat the quantum protocol has to satisfy t
classical probabilistic security requirements under all c
cumstances. In particular, one must be allowed to us
quantum cryptographic protocol as a ‘‘black box’’ primitiv
in building up more sophisticated protocols and to anal
the security of those new protocols withclassicalprobability
theory.5

By adopting this new and, in my opinion, more accura
definition of secure quantum protocols, one sees that the
possibility of quantum bit commitment immediately implie
the impossibility of quantum one-sided two-party compu
tions ~and one-out-of-two oblivious transfer as well
oblivious transfer! and this is the end of the story.

Yet such an ending is disappointing in two aspects. Wh
such a viewpoint is conceptually correct, it is a bit form
and nonconstructive. A constructive proof would ma
things more transparent and convincing. A perhaps more
rious objection is that while such an argument rules out o
out-of-two oblivious transfer and the two-party computati
of a general function, there remains the possibility thatsome
special class of functions~whose two-party computation
cannot be used to implement one-out-of-two oblivio
transfer6! might still be computed securely in one-sided tw
party computations. Here I investigate directly the security
one-sided two-party computation without using the form
standard reduction. My main result is that one-sided quan

4I thank G. Brassard for helpful discussions about those stan
reduction theorems.

5One may get the feeling from reading the literature that a qu
tum protocol should be regarded as secure if it appears to satis
security requirements when it is executedonly onceand in isola-
tion. This, however, doesnot guarantee that it satisfies the secur
requirements when it is used as a subroutine of a larger rou
because a cheater might defeat the security of the larger routin
performing coherent measurements. Therefore, I think that a m
accurate definition of a secure quantum protocol should be m
more stringent.

6According to Kilian, such functions do exist.
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two party secure computation is always impossible.7 ~For its
definition, see Sec. II.! That is, as far as one-sided two-par
computations are concerned, quantum cryptography is a
lutely useless. As a corollary, the so-called quantum one-
of-two oblivious transfer is also impossible. I also presen
class of functions thatcannotbe computed in anytwo-sided
two-party computation. Nevertheless, quantum cryptogra
remains useful for the key distribution and can still provi
partial security in ‘‘quantum money’’ proposed by Wiesne

II. IDEAL ONE-SIDED TWO-PARTY SECURE
COMPUTATION

A. Definition and security requirements

Suppose Alice has a private~i.e., secret! input i
P$1,2, . . . ,n% and Bob has a private inputj P$1,2, . . . ,m%.
An ideal one-sided two-party secure computation is defin
as follows: Alice helps Bob to compute a prescribed funct
f ( i , j )P$1,2, . . . ,p% in such a way that, at the end of th
protocol, ~a! Bob learns f ( i , j ) unambiguously,~b! Alice
learns nothing@about j or f ( i , j )#, and~c! Bob knows noth-
ing abouti more than what logically follows from the value
of j and f ( i , j ).

Notice that, for a one-sided two-party computation pro
col to be secure, Bob is supposed to input aparticular value
of j and to learn the value off ( i , j ) for that particular value
of j only. I will show that these three security requiremen
~a!, ~b!, and ~c! are incompatible in the following manne
Assuming that the first two security requirements~a! and~b!
are satisfied, I will work out a cheating strategy for Bo
which would allow him to learn the values off ( i , j ) for all
j ’s, thus violating security requirement~c!.8 I therefore con-
clude that ideal quantum one-sided two-party computati
are impossible. In Sec. IV, I will generalize this result
nonideal protocols@which may violate security requiremen
~a! and ~b! slightly#.

B. Bob’s cheating strategy

Consider the following cheating strategy by Bob who d
termines the values off ( i , j 1), f ( i , j 2), . . . ,f ( i , j m) succes-
sively: Bob first inputs a valuej 1 for j and goes through the
protocol. At the end of the protocol, he determines the va
of f ( i , j 1). He then applies a unitary transformation
change the value ofj from j 1 to j 2 and determinesf ( i , j 2).
After that, Bob applies a unitary transformation to changj
from j 2 to j 3 and determinesf ( i , j 3) and so on.

rd

-
its

e
by
re
ch

7Remarkably, an alternative proof of the impossibility ofideal
quantum one-sided two-party computation can be made by ge
alizing Wiesner’s@2# early insight on the impossibility of one-wa
scheme for so-called one-out-of-two oblivious transfer and comb
ing it with the idea of the proof of the impossibility of quantum b
commitment. I omit this alternative proof here because it is
transparent at all.

8In other words, instead of the ideal one-sided two-party sec
computation protocol, quantum cryptography gives only a proto
that allows Bob to learnf ( i , j ) for all j ’s. Such a protocol is unin-
teresting as it can be achieved in classical cryptography simply
having Alice tell Bob those values. Therefore, quantum cryptog
phy provides no real advantage in this ideal case.
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1156 56HOI-KWONG LO
C. Key points of the proof

The above cheating strategy by Bob works for two re
sons. First, using the insight gained from the impossibility
quantum bit commitment@20–23#, in Sec. III B I will prove
the following: The security requirement~b!—that Alice
knows nothing aboutj —implies that at the end of the proto
col, Bob can cheat by changing the value ofj from j 1 to j 2
by applying a unitary transformation to his own quantu
machine.9 Consequently, Bob can determine the value
f ( i , j 2) instead of f ( i , j 1), as long as he hasnot measured
f ( i , j 1) yet. Of course, Bob would like to learnf ( i , j 1) and
he does measuref ( i , j 1) before rotatingj 1 to j 2. At first
sight, this seems to be a problem because measuremen
quantum mechanics generally disturb a signal. Here co
the second point. Measurement off ( i , j 1) does not disturb
Bob’s state at all for the following reason. Since by the
curity requirement~a! of an ideal protocol Bob can inpu
j 5 j 1 and learn the value off ( i , j 1) unambiguously, the den
sity matrix that Bob has must be an eigenstate of the m
surement operator that he uses for determiningf ( i , j 1). Be-
ing an eigenstate, the density matrix is, therefo
undisturbed by Bob’s measurement. QED

In effect, I am arguing that the density matrix Bob has
a simultaneous eigenstate of the measurement oper
f ( i , j 1), f ( i , j 2), . . . ,f ( i , j m). See Sec. III B.

III. DETAILS OF THE PROOF

A. Unitary description

Let me present my result in more detail. It is convenie
to use a unitary description of two-party computati
@21,23#. Let HA (HB) denote the Hilbert space of Alice’
~Bob’s! quantum machine. Imagine a two-party computat
in which both Alice and Bob possess quantum compu
and quantum storage devices. By maintaining the quan
coherence of the composite quantum system,HA^ HB ~using
external control such as classical computers, assemblin
quantum gate arrays, quantum error correction, and fa
tolerant quantum computation!, one can avoid dealing with
the collapse of the wave function. Alice and Bob’s actions
their quantum machines can be summarized10 as an overall
unitary transformationU applied to the initial stateuu& in
PHA^ HB , i.e.,

uu&fin5Uuu& in . ~1!

The unitary transformationU is known to both Alice and

9The impossibility of quantum bit commitment@20–23# essen-
tially states that if Alice does not know something, then Bob c
change it. The commitment made by Bob is, therefore, fake.

10For the basic idea, see@21#. For detailed justification with a
concrete model~a variant of Yao’s model@18#!, see@23#. Of course,
in reality the execution of the protocol may not require quant
computers. This is, however, equivalent to a situation when
parties do not make full use of their quantum computers. If one
show that a cheater can cheat successfully against an honest
who has a quantum computer, clearly the cheater can cheat suc
fully against one without. Therefore, a unitary description is ve
useful for my purposes.
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Bob because they know the procedure of the protocol. W
both parties are honest,uuh& in5u i &A^ u j &B and

uuh&fin5uv i j &[U~ u i &A^ u j &B). ~2!

Therefore, the density matrix that Bob has at the end
protocol is simply

r i , j5TrAuv i j &^v i j u. ~3!

B. Changing j from j 1 to j 2

I asserted in the last section that, owing to the secu
requirement~b!, at the end of the protocol Bob can chan
the value ofj from j 1 to j 2 by applying a unitary transfor-
mation to the state of his quantum machine. Since the va
of Alice’s input i is unknown to Bob, for such a cheatin
strategy to work, I need to prove that this unitary transf
mation can be chosen to be independent of the value ofi .11

Assertion. Given j 1 , j 2P$1,2, . . . ,m%, there exists a uni-
tary transformationU j 1 , j 2 such that

U j 1 , j 2r i , j 1~U j 1 , j 2!215r i , j 2 ~4!

for all i .
Proof. Notice that Bob must allow Alice to choose th

value of her inputi randomly. But then a dishonest Alic
may try to learn aboutj by an EPR-type of attack; i.e., sh
entangles the state of her quantum machineA with her quan-
tum diceD and prepares the initial state

1

An
(

i
u i &D ^ u i &A . ~5!

~Recall thatn is the cardinality ofi .! Instead of measuring
the state of her quantum diceD honestly, she may keepD
for herself and use the second registerA to execute the two-
party protocol honestly from this point on. Suppose Bob
input is j 1. The initial state is, therefore,

uu8& in5
1

An
(

i
u i &D ^ u i &A^ u j 1&B . ~6!

At the end of the protocol, it follows from Eqs.~1! and ~6!
that the total wave function of the combined systemD, A,
andB is described by

uv j 1
&5

1

An
(

i
u i &D ^ U~ u i &A^ u j 1&B). ~7!

Similarly, if Bob’s input isj 2 instead, the total wave function
at the end of the protocol will ben

e
n

arty
ss-

11Using the idea of the impossibility of bit commitment@20–23#,
it is trivial to prove that, foreach i, a unitary transformationUi , j 1 , j 2

that rotatesj from j 1 to j 2 exists. What is less trivial to prove is th
existence of a unitary transformationU j 1 , j 2 which works forall i ’s
simultaneously. I thank D. Mayers for enlightening discussions. A
tually, Bob can choose his unitary transformation according to
outcome of his measurement. This observation will be usefu
later discussion just before corollary A in the next section.
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56 1157INSECURITY OF QUANTUM SECURE COMPUTATIONS
uv j 2
&5

1

An
(

i
u i &D ^ U~ u i &A^ u j 2&B). ~8!

An ideal protocol should prevent such a dishonest Alice fr
learning anything aboutj . Therefore, the reduced densi
matrices in Alice’s hand for the two casesj 5 j 1 and j 5 j 2
must be the same, i.e.,

r j 1

Alice5TrBuv j 1
&^v j 1

u5TrBuv j 2
&^v j 2

u5r j 2

Alice . ~9!

Equivalently, the two wave functionsuv j 1
& and uv j 2

& have
the same Schmidt decomposition@26#, i.e.,

uv j 1
&5(

k
akuak&AD^ ubk&B ~10!

and

uv j 2
&5(

k
akuak&AD^ ubk8&B . ~11!

Here uak&AD , ubk&B , andubk8&B are eigenvectors of the cor
responding density matrices and satisfy^ak8uak&AD5dk,k8,
etc. Notice that Eqs.~10! and ~11! contain the same coeffi
cientsak and statesuak&AD and the only difference lies in th
state of Bob’s quantum machineB. Now, consider the uni-
tary transformationU j 1 , j 2 that rotatesubk&B to ubk8&B . Notice
that it acts onHB alone and yet, as can be seen from Eq
~10! and ~11!, it rotatesuv j 1

& to uv j 2
&, i.e.,

uv j 2
&5U j 1 , j 2uv j 1

&. ~12!

Since

D^ i uv j&5
1

An
uv i j & ~13!

@see Eqs.~2!, ~7!, and~8!#, by multiplying Eq.~12! by D^ i u
on the left, one finds that

uv i j 2
&5U j 1 , j 2uv i j 1

&. ~14!

As one is interested in Bob’s reduced density matrix, o
takes the trace ofuv i j 2

&^v i j 2
u over HA and uses Eq.~14! to

obtain Eq.~4!. This completes the proof of my assertion, E
~4!.

The implication of Eq.~4! is profound. Independent of th
value of Alice’s private inputi , at the end of the protoco
Bob can change the value of his own inputj simply by
applying a unitary transformation to his own quantu
machine.12 Therefore, the indexj in Bob’s density matrix

12A similar idea is used in the proof of the impossibility of b
commitment@20–23#. That Alice knows nothing about Bob’s cho
sen bit automatically implies that Bob can cheat successfully
applying a unitary transformation to change the value of the
even after the completion of the commitment phase. Thus, the c
mitment is fake.
.

e

.

r i , j is redundant in the sense that different values ofj simply
correspond to representing the density matrixr i in different
bases.

With such a simplification, one can essentially argue t
r i is a simultaneous eigenstate off ( i , j 1), f ( i , j 2), . . . ,
f ( i , j m) in the following manner: With an inputj 1, Bob can
learn f ( i , j 1). This implies thatr i is an eigenstate off ( i , j 1).
But Bob can cheat by changing the value ofj from j 1 to j 2

in the last minute to learnf ( i , j 2) instead. This means thatr i

is also an eigenstate off ( i , j 2). By repeating this argument
one sees clearly thatr i is a simultaneous eigenstate of all th
measuring operators forf ( i , j 1), f ( i , j 2), . . . ,f ( i , j m). Conse-
quently, Bob can learn the values off ( i , j ) for all values ofj
simultaneously. This is why the cheating strategy that I
scribe in Sec. II B works. In the next section, I will genera
ize this attack to nonideal protocols.

IV. NONIDEAL PROTOCOLS

A general nonideal protocol may violate the security
quirements~a! and ~b! slightly. In relaxing ~b!, one would
expect that the unitary transformations that Bob uses
changingj from j i to j i 11 to be imperfect. In relaxing~a!,
the density matrix that Bob has at the end of the protocol w
now be slightly different from an eigenstate of the measu
ment operator that he uses.@This is because Bob will gener
ally be unable to determine the value off ( i , j 1) unambigu-
ously in nonideal protocols.# Nonetheless, as long as th
deviation from idealness is small, one would expect Bob
learn a substantial amount of information aboutf ( i , j 2) even
after his honest determination off ( i , j 1). That Bob can learn
something about bothf ( i , j 1) and f ( i , j 2) is already a serious
violation of the security requirement~c! and there is no need
for one to consider the security forf ( i , j 3), etc. In other
words, one would expect that, for essentially the same rea
as the ideal protocol, even nonideal quantum one-sided t
party computations are impossible. In what follows, I pro
that this is indeed the case. Readers who are unintereste
technical details may skip the following and go directly
Sec. IV A.

More concretely, let me relax security requirement~b! to
allow Alice to have a small probability to distinguish be
tween differentj ’s. I mimic the proof of Eq.~4!. As before,
consider a dishonest Alice who tries to learn aboutj by
preparing an illegal initial state (1/An)( i u i &D ^ u i &A wheren
is the cardinality ofi . She keeps the first registerD for
herself and uses the second registerA to execute the two-
party protocol honestly from this point on. Unlike the ide
case, Eq.~9! is violated for nonideal protocols, i.e.,r j 1

Alice

Þr j 2

Alice . Nonetheless, as long as the probability for Alice

distinguish successfully between the two cases rem
small, the two density matricesr j 1

Alice andr j 2

Alice must in some

sense be close to each other.
Mathematically, the closeness between two density ma

cesr andr8 of a systemS can be described by thefidelity
@27#. ~See also Ref.@28#.! Imagine another systemE attached
to a given systemS. There are many pure statesuc& anduc8&

y
it

-
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on the composite system that satisfy

TrE~ uc&^cu!5r and TrE~ uc8&^c8u!5r8. ~15!

The pure statesuc& and uc8& are called thepurificationsof
the density matricesr and r8. The fidelity F(r,r8) can be
defined as

F~r,r8!5maxz^cuc8& z, ~16!

where the maximization is over all possible purifications
remark that13 for any fixed purificationc of r, there exists a
maximally parallel purificationc8 of r8 that satisfies Eq.
~16!. Notice that 0<F<1 andF51 if and only if r5r8.

Returning to the discussion on nonideal protocols,
condition that the two density matricesr j 1

Alice and r j 2

Alice be

close to each other can be specified by the mathema
statement that the fidelityF(r j 1

Alice ,r j 2

Alice) is close to 1, say,

F~r j 1

Alice ,r j 2

Alice!.12d, ~17!

whered!1.14 It follows from the definition of fidelity in Eq.
~16! that there exists a unitary transformationU j 1 , j 2 acting
on HB alone15 such that

z^v j 2
uU j 1 , j 2uv j 1

& z.12d. ~18!

Since @from Eqs. ~2!, ~7!, and ~8!# uv j&5(1/An)( i u i &
^uv i j &,

z^v j 2
uU j 1 , j 2uv j 1

& z5
1

nU(i
^v i j 2

uU j 1 , j 2uv i j 1
&U.12d. ~19!

Now

1

n(i
z^v i j 2

uU j 1 , j 2uv i j 1
& z>

1

nU(i
^v i j 2

uU j 1 , j 2uv i j 1
&U.12d.

~20!

For a protocol to be one sided, one requiresd!1. Let me
consider the two cases~A! nd!1 and~B! d!1&nd sepa-
rately.

Case (A): nd!1. It is a common requirement in comput
science thatnd!1. In this case, for eachi ,

z^v i j 2
uU j 1 , j 2uv i j 1

& z.12nd ~21!

is still close to 1. I now come to the relaxation of secur
requirement~a!. Bob still chooses aj , say, j 1, and performs
a measurement on his quantum state in order to learn
value of f ( i , j 1). However, for a nonideal protocol, Bob’
measurement result will not give him full information o
f ( i , j 1). Nonetheless, for a protocol that is only slightly no

13I thank R. Jozsa for a discussion about this point.
14One might imagine a situation when Alice has been informed

her spy that Bob’s input is eitherj 1 or j 2. In this case, her task is to
distinguish between these two remaining possibilities. To prev
Alice from succeeding, it is crucial that Eq.~17! holds.

15A similar idea was used by Mayers@20# in the discussion of
nonideal bit commitment schemes. See also@21–23#.
I

e

al

he

ideal, one may demand that, for eachi , Bob’s ignorance
aboutf ( i , j i) after his measurement would be much less th
one bit. That is to say that Bob’s measurement can ext
the value of f ( i , j 1) from the density matrixr i , j 1 with a
probability close to 1. Therefore,r i , j 1 can be made to be
almost an eigenstate of Bob’s measurement and thus the
turbance caused by such measurement is small. Co
quently, one must have

F~r i , j 1,E~r i , j 1!!>12e, ~22!

wheree!1 andE is a linear operator~the so-called super
operator@29#! which represents the action of the~imperfect!
measurement off ( i , j 1) by Bob. Since fidelity is preserved
by unitary transformations, one finds that

F~U j 1 , j 2r i , j 1~U j 1 , j 2!21,U j 1 , j 2E~r i , j 1!~U j 1 , j 2!21!>12e.
~23!

From Eqs.~21! and ~23!, one deduces16 that

F~U j 1 , j 2E~r i , j 1!~U j 1 , j 2!21,r i , j 2!.12O~nd!2O~e!.
~24!

Now the high fidelity of Eq.~24! implies that Bob’s
cheating strategy—of determiningf ( i , j 1) approximately
first, applying a rotation to his state to changej from j 1 to j 2,
and then determiningf ( i , j 2)—will allow him to defeat the
security requirement~c! of the protocol by learning substan
tial information aboutf ( i , j 2). Therefore, even nonideal pro
tocols are unsafe ifnd!1.

Case (B):d!1&nd. I now separate the discussion fu
ther into two cases: ‘‘typical’’ and ‘‘atypical’’ functions. A
typical function f ( i , j ) is defined to be such that, even if th
value of f ( i , j 2) is determined inaccurately by Bob for
small fraction, say, 1/10 of thei ’s, Bob can still gain a con-
siderable amount of information about the valuei . With such
a definition, I now argue that, for a typical function, th
assumptiond!1 necessarily leads to a fatal violation of s
curity requirement~c!, thus showing the insecurity of non
ideal protocols. My point is the following: Since each of th
n termsu^v i j 2

uU j 1 , j 2uv i j 1
&u in Eq. ~20! has a value less tha

or equal to 1, Eq.~20! implies that, for at least nine out of te
of the i ’s, the following is true:

u^v i j 2
uU j 1 , j 2uv i j 1

&u.1210d. ~25!

Since I am interested in Bob’s density matrix, I take the tra
over Alice’s quantum machineA and find that for each of
thosei ’s,

F~U j 1 , j 2r i , j 1~U j 1 , j 2!21,r i j 2!.1210d. ~26!

In relaxing the security requirement~a!, Eqs. ~22! and
~23! are still valid. Combining Eqs.~23! with ~26!, one finds
that for at least nine out of ten of the possiblei ’s to be
chosen by Alice,

y

nt

16This follows from the fact that the fidelity is closely related@27#
to the Bures metric.
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F~U j 1 , j 2E~r i , j 1!~U j 1 , j 2!21,r i , j 2!.12O~10d!2O~e!.
~27!

Hence, Bob can determine the value off ( i , j 2) with high
accuracy at least nine out of ten times. Since the functio
assumed to be typical, this implies that Bob can get a s
stantial amount of information about the value ofi . Conse-
quently, the nonideal protocol is insecure.

What about the case of atypical functions? An example
atypical functions isf ( i , j )51 if i 5 j and f ( i , j )50 other-
wise ~as in quantum one-way oblivious identification in co
ollary 2 below!. For those functions, it might be fatal if ther
exists asingle i such thatz^v i j 2

uU j 1 , j 2uv i j 1
& z is close to 0. In

the above example, ifz^v i j 2
uU j 1 , j 2uv i j 1

& z50 for i 5 j 2, it
might be the case that a cheating Bob@after determining
f ( i , j 1) honestly# finds f ( i , j 2)50 for all values ofi . There-
fore, Bob gains no information about the value ofi despite
the high fidelity in Eq.~20!.

I now argue that even atypical functionscannotbe com-
puted securely in nonideal one-sided secure computat
wheneverd!1. It is easiest to understand my reasoning
working with an example.~I will present the general case i
two paragraphs below.! Consider a situation in which a
cheating Alice prepares an unequally weighted~i.e., non-
maximally entangled! state instead of an equally weighte
~i.e., maximally entangled! state in Eq.~5!. For the function
discussed above@ f ( i , j )51 if i 5 j and f ( i , j )50 otherwise#,
suppose a cheating Alice prepares the state

1

A2
u j 2&D ^ u j 2&A1

1

A2~n21!
(
iÞ j 2

u i &D ^ u i &A ~28!

in her EPR attack@instead of Eq.~5!#. Since Alice is not
supposed to learn much about Bob’s inputj , one must still
haveF(r j 1

Alice ,r j 2

Alice).12d. This now implies that

z^v j 2 j 2
uU j 1 , j 2uv j 2 j 1

& z.122d ~29!

and

1

n21 (
iÞ j 2

z^v i j 2
uU j 1 , j 2uv i j 1

& z.122d. ~30!

Notice that the variousi ’s fall into two classes@for i 5 j 2,
f ( i , j 2)51; for iÞ j 2, f ( i , j 2)50# which are to be distin-
guished by Bob. Equation~29! ensures that Bob will find the
value of f ( j 2 , j 2) to be 1 with high probability. Similarly,
Eq. ~30! ensures that Bob finds thatf ( i , j 2) to be zero with a
high probability wheneveriÞ j 2. Therefore, Bob can deter
mine with some confidence whetheri 5 j 2 and it is clear that,
for this particular example off ( i , j ), even a nonideal one
sided secure computation is impossible.

Are secure one-sided computations impossible forall
functions? I now prove rigorously that they are impossi
for the casee50 in Eq. ~22!. The discussion for the casee
Þ0 will be postponed to the very end of this paragrap
Whene50, Bob determines the value off ( i , j 1) accurately
is
b-

f

ns
y

.

with certainty. Suppose he findsf ( i , j 1) to be c. He can
restrict his attention to the setS of i ’s that satisfy this con-
straint. If, for all pairsi ,i 8PS, f ( i , j )5 f ( i 8, j ) for all j ’s,
then Bob has nothing to gain in learning the value off ( i , j 2).
Suppose the contrary. Then there exists aj , say,j 2, such that
f ( i , j 2) is not a constant function inS. Let me partition the
setS further into two or more subsetsSk’s according to the
value of f ( i , j 2). Imagine a cheating Alice prepares a stat

(
k

uSku21/2 (
i PSk

u i & ^ u i &. ~31!

Notice also that, with the above normalization fact
uSku21/2, eachset Sk in the partition is assigned equal weig
by Alice. ~Here we ignore the obvious overall normalizatio
factor.! Such an assignment of weights maximizes the inf
mation gain by Bob in performing his measurement. It
then easy to see that as long asd!1, Bob can determine
with some confidence to which setSk i belongs. This seri-
ously violates the security requirement~c!. In conclusion, I
have shown rigorously that secure one-sided computat
are always impossible forany function whene50. What
about the general case wheneÞ0? Since there is no obviou
singularity in the problem, provided thate is sufficiently
small, one-sided two-party secure computations should
main impossible.

Notice that in the above proof, I allow Bob’s choice of th
unitary transformation to be dependent on the valuef ( i , j 1)
that he has obtained. This is perfectly all right.

Finally, I remark that it is a matter of definition that
one-sidedprotocol must haved!1 in Eq. ~17!. This is be-
cause a protocol withd of order 1 in Eq.~17! is two sided
rather than one sided. For discussions on two-sided pr
cols, see the next section.

A. Corollaries

Definition. One-out-of-two oblivious transferis an ex-
ample of one-sided two-party secure computation in wh
the sender sends two messages and the receiver choos
receive either message but cannot read both. Besides
sender, Alice, should not learn which message is read by
receiver, Bob. More precisely, Alice’s inputi is a pair of
messages (m0 ,m1) and Bob’s inputj is a bit 0 or 1. At the
end of the protocol, Bob learns about the messagemj , but
not the other messagem j̄ , i.e., f (m0 ,m1 , j 50)5m0 and
f (m0 ,m1 , j 51)5m1.

Corollary 1. Quantum one-out-of-two oblivious transfe
is impossible.

Remark. As noted in the Introduction, one-out-of-tw
oblivious transfer is an important primitive for building u
secure computations. The impossibility of one-out-of-tw
oblivious transfer itself is a major setback to quantum cry
tography. Also, this corollary is a generalization
Wiesner’s insight@2# which showed that it is impossible t
achieveideal quantum one-out-of-two oblivious transfer u
ing only one-waycommunications.

Incidentally, there have been claims that quantum cr
tography is useful forone-way oblivious identification
@14,15#. Such a protocol would allow the first user Alice t
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identify herself in front of a second user, Bob, by means o
password, known only to both. The safety requirement is
somebody, ignorant of the password, impersonating B
shall not be able to obtain much information on the passw
from the identification process. One-way oblivious ident
cation is an example of one-sided two-party secure com
tation in which the prescribed functionf ( i , j )51 if i 5 j and
f ( i , j )50 otherwise. In other words,f ( i , j ) gives a yes or no
answer to the question whether the two persons have
same password. Such oblivious identification scheme
therefore, very useful for preventing frauds from typing
PIN ~personal identificaton number! to a dishonest teller ma
chine that steals passwords. Hruby´ is working on implement-
ing a quantum Smart-card for identification purposes@30#.

Corollary 2. Smart-card quantum one-way oblivious ide
tification is impossible.

Remark. This result applies only toone-sidedschemes for
quantum oblivious identification, a subject that earlier pap
@14,15# have focused on and wrongly claimed to achie
However, one should note that in practical applications,
sumption ~b! in Sec. II can be relaxed. For example, it
conceivable that one can allow the customer, Alice, to le
substantial information about the input of Bob~the cash ma-
chine!. When Bob finds out in the computation that someo
is disguising herself as Alice~the answer is ‘‘no’’ in the
computation!, he can cancel Alice’s password and ask Ali
to go to the bank in person to get a new password. Suc
protocol is much less powerful than what the original pro
cols intend to achieve, but it is still somewhat useful. Al
notice that the possibility oftwo-sidedschemes for oblivious
identification remains open. However, the following secti
shows that there exists a class of functions that canno
computed securely in any two-sided two-party secure co
putation.

V. SECURITY OF TWO-SIDED TWO-PARTY
COMPUTATIONS

Definition. Suppose Alice has a private inputi and Bob a
private inputj . A two-sided two-party secure computationof
a prescribed functionf ( i , j ) is a protocol such that, at th
end, ~a! both Alice and Bob learnf ( i , j ), ~b! Alice learns
nothing aboutj more than what logically follows fromf ( i , j )
and her private inputi , and ~c! Bob learns nothing abouti
more than what logically follows fromf ( i , j ) and his private
input j .

Notice that in classical cryptography, a one-sided tw
party computation of a functionf ( i , j ) can be reduced to a
two-sided two-party computation of a functionF( i , j ,r )
5f ~ i , j ! XOR r wherer is a random string of input chose
by Bob and theXOR ~exclusiveOR! is taken bitwise.17 At
the end of the protocol, both Alice and Bob learnF( i , j ,r ).
While Bob can invert the function to find
f ( i , j )5F( i , j ,r ) XOR r, Alice, being ignorant of Bob’s
input r , has absolutely no information aboutf ( i , j ).

Here I demonstrate explicitly that the quantum two-sid

17I thank R. Cleve for enlightening discussions about this poin
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two-party computation ofF( i , j ,r ) is insecure. Alice’s den-
sity matrix at the end of the protocol should only be a fun
tion of i and F( i , j ,r ). This is becauseF( i , j ,r ) is the only
piece of information that Alice is supposed to know abo
Bob’s inputsj andr . Let me therefore denote Alice’s densit
matrix by rAlice

i ,F( i , j ,r ) . Suppose a dishonest Bob inputs

u j 1& ^ 1 p21/2 (
r

ur&^ur&D ~32!

and keeps the systemD for himself. @Herep is the cardinal-
ity of f ( i , j ), as f ( i , j )P$1,2, . . . ,p%.# In other words, he
entangles the state ofr with a quantum diceD and performs
an EPR-type of cheating. Suppose further that an honest
ice inputsi . The density matrix that Alice has at the end
the protocol will simply be a normalized direct sum

1

p(r
rAlice

i ,F~ i , j 1 ,r !
~33!

of the individual density matrices. Foranyfixed but arbitrary
j , as r changes,F( i , j ,r ) runs over all the p values
$1,2, . . . ,p%. @Recall thatF( i , j ,r )5 f ( i , j ) XOR r.# Con-
sequently,

1

p(r
rAlice

i ,F~ i , j 1 ,r !
5

1

p (
r

rAlice
i ,F~ i , j 2 ,r ! ; ~34!

i.e., Alice’s density matrix isindependentof the value ofj .
But then by precisely the same attack as in the one-si
case—by determining the value off ( i , j 1), changingj from
j 1 to j 2 by a unitary transformation, determining the value
f ( i , j 2), and so on, Bob can determine the value off ( i , j ) for
all values ofj . This violates the security requirement~c! for
the two-sided protocol. In conclusion, there are functio
namely, F( i , j 1 ,r )5 f ( i , j ) XOR r, that cannot be com-
puted securely by any two-sided protocol.

VI. SUMMARIES AND DISCUSSIONS

This paper deals with the applications of quantum cry
tography in the protection of private information during pu
lic decision ~rather than with the most well-known
application—so-called quantum key distribution!. As an im-
portant example, in a one-sided two-party secure comp
tion, a party Alice has a private inputi and the other party
Bob who has a private inputj . Alice helps Bob to compute a
prescribed functionf ( i , j ) in such a way that, at the end o
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the protocol,~a! Bob learnsf ( i , j ), ~b! Alice learns nothing
~or almost nothing! about j , and~c! Bob knows essentiallty
nothing abouti other than what logically follows from the
value of j and f ( i , j ). @For example, in password identifica
tion f ( i , j )51 if i 5 j and50 otherwise.# Notice that Bob is
supposed to choose aj ~say, j 1) and learnf ( i , j ) for that
particular value ofj only. However, I prove that quantum
one-sided two-party computation is always insecure beca
Bob can learnf ( i , j ) for all values of j . In the cheating
strategy that I consider, Bob determines the values off ( i , j )
for the various values ofj ’s successively.18 That is, Bob
inputs j 5 j 1, determines the value off ( i , j 1), changesj to j 2,
determinesf ( i , j 2), and so on.

Such a cheating strategy works for two reasons. For s
plicity, let me first consider the ideal protocol. Let Bob inp
j 5 j 1 initially. Using the insight from the impossibility of bi
commitment @20–23#, I prove that, owing to the securit
requirement~b!, Bob can cheat at the end of the protocol
changing the value ofj from j 1 to j 2. Thus he can determin
the value off ( i , j 2) instead off ( i , j 1) as long as he hasnot
performed a measurement to determinef ( i , j 1) yet. Of
course, Bob is interested in learningf ( i , j 1) as well. So he
must first measure the value off ( i , j 1) before rotatingj from
j 1 to j 2. If I can show that his measurement off ( i , j 1) does
not disturb the quantum state he possesses, it is clear tha
cheating strategy will work. This is precisely what I d
Since in an ideal protocol with an inputj 5 j 1 Bob can un-
ambiguously determine the value off ( i , j 1) @security re-
quirement~a!#, the density matrix that Bob has must be
eigenstate of the measurement operator that he uses. C
quently, he can measure the value off ( i , j 1) withoutdisturb-
ing the quantum state of the signal at all.@Notice that, in
effect, I have shown that, owing to the security requireme
~a! and~b!, the density matrix that Bob has is a simultaneo
eigenstate off ( i , j 1), f ( i , j 2), . . . ,f ( i , j m). This contradicts
security requirement~c!.#

These two points taken together mean that this chea
strategy beats an ideal protocol for one-sided two-pa
computation.19 In Sec. IV, I generalized my result to sho
that a similar attack defeats nonideal protocols as well
conclusion, I have shown that quantum one-sided two-p
secure computation~ideal or nonideal! is always impossible.

As corollaries to my results, contrary to popular belief
earlier literature, quantum one-out-of-two oblivious trans
and one-way oblivious identification are also impossible.
argued in the Introduction, the reduction theorem in class
cryptography must remain valid in a quantum model. The

18See footnote 8.
19As discussed in the Introduction, one may also use the clas

reduction theorem from bit commitment to one-out-of-two obliv
ous transfer to argue the impossibility of quantum one-sided t
party computations. Such proof is, however, not transparent a
Yet another alternative proof of the insecurity ofideal quantum
one-sided two-party computation can be made by combining
idea of the proof of the impossibility of quantum bit commitme
with a generalization of Wiesner’s early insight@2# on the insecurity
of a subclass of quantum one-out-of-two oblivious trans
schemes. Such proof is, however, nonconstructive and does
apply directly to nonideal protocols. I shall, therefore, omit it he
se
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fore, it can be used to show that quantum~ordinary! oblivi-
ous transfer is impossible. In the future, it would be intere
ing to work out a direct attack that defeats quantum oblivio
transfer.

Since a one-sided two-party computation of a functi
can be reduced to a two-sided two-party computation o
related function, there are functions that cannot be compu
securely in two-sided two-party computations as well. C
any function be computed securely in a quantum two-sid
two-party computation? While I do not have a definite a
swer, the argument for impossibility of ideal quantum co
tossing@23# can be used to prove the impossibility ofideal
two-sided two-party secure computation~and also ideal so-
called zero-knowledge proof!. Furthermore, Sec. IV of Ref
@23# shows that quantum two-sided two-party secure com
tation can never be doneefficiently.20 In conclusion, these
results rule out the perfect or nearly perfect protection
private information in one-sided two-party computations
quantum mechanics. The security of the quantum two-si
two-party computation is also shown to be in very serio
trouble.

In retrospect, there were good reasons for the reexam
tion of the foundations of quantum cryptographic protoc
such as secure computation: While the security of quan
key distribution can intuitively be attributed to the quantu
no-cloning theorem, no simple physical reason has ever b
given to the security of other quantum cryptographic pro
cols such as bit commitment. This is a highly unsatisfact
situation. Besides, most proposed quantum protocols
highly inefficient. From both theoretical and practical poin
of view, a more fundamental understanding of the issues
security and efficiency of those protocols would therefore
most welcome. In the claimed ‘‘secure’’ quantum bit com
mitment protocol@16#, researchers have implicitly assume
that measurements are made by the two parties. Howe
what researchers including myself@20–23# have recently
shown is that by using a quantum computer and perform
an EPR-type of attack, the party, Bob, can defeat the secu
requirement of the protocol. This is remarkable because
basic idea of the EPR attack can be found in@5#. Moreover,
the attack against two-party secure computations prese
here is identical in spirit to the one considered by Wies
@2#. Quantum protocols such as bit commitment and sec
computations are broken because their foundation has b
shaky in the first place.

I emphasize that the cheating strategy proposed in
paper generally requires a quantum computer to implem
Before a quantum computer is ever built, quantum one-si
two-party secure computations may still be secure in pr
tice. Besides, apart from the quantum key distribution~which
al

-
ll.

e

r
ot

.

20Let me normalize everything so that Alice and Bob both lea
one bit of information from executing a two-sided two-party com
putation. If both parties are shameless enough to stop running
protocol whenever one of them has an amount of information tha
e greater than his or her opponent, it is easy to show@23# that the
numberN of rounds of communications needed for the protocol
be successful has to satisfyNe>1. An exponentially smalle re-
quires an exponentially largeN and the scheme is necessarily ine
ficient.
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is widely accepted to be secure!, partial security provided by
applications such as quantum money may still be very u
ful.

On the positive side, the impossibility of quantum on
sided two-party computation together with the impossibil
of quantum bit commitment@20–23# constitutes a major vic-
tory of cryptanalysis againstquantumcryptography. On the
one hand, the quantum key distribution is secure beca
heuristically, of the quantum no-cloning theorem. On t
other hand, quantum bit commitment and quantum one-s
two-party computation are impossible essentially becaus
the EPR paradox. Therefore, there are now solid foundat
to both quantum cryptography and quantum cryptanalysi
the two sides of the coin in quantum cryptology. A key que
tion remains as to the exact boundary to the power of qu
tum cryptography. For instance, what is the power
quantum cryptography in providing partial security in app
cations such as quantum money? Perhaps, new physica
sights can be gained in the attempts to answer this ques
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