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It had been widely claimed that quantum mechanics can protect private information during public decision
in, for example, the so-called two-party secure computation. If this were the case, quantum smart-cards, storing
confidential information accessible only to a proper reader, could prevent fake teller machines from learning
the PIN (personal identification numbefrom the customers’ input. Although such optimism has been chal-
lenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the
security of quantum two-party computation itself remains unaddressed. Here | answer this question directly by
showing that albne-sidedwo-party computationgévhich allow only one of the two parties to learn the repsult
are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and
the so-called quantum one-out-of-two oblivious transfer are impossible. | also construct a class of functions
that cannot be computed securely in any-sidedtwo-party computation. Nevertheless, quantum cryptogra-
phy remains useful in key distribution and can still provide partial security in “quantum money” proposed by
Wiesner.[S1050-294©7)01508-4

PACS numbd(s): 03.65.Bz, 89.70tc, 89.80+h

I. INTRODUCTION computation irclassicalcryptography had led to much inter-

. est in quantumcryptographic protocol$2,5,11-18 which
Copying of an unknown quantum statey, for example, e sugposed to )lgre): u?lcc?nditignally sjcﬁjlré—la. 3

an eavesdropppris strictly forbidden by the linearity of  Ap important primitive in secure computation is the so-

quantum mechanicgl]. Consequently, quantum crypto- called bit commitment.The optimism in unconditionally se-

graphy (or more precisely quantum key distributi8—7])  cure quantum two-party computation was largely contributed

allows two users to share a common random secret string dfy well-known claims of unconditional secure quantum bit

information which can then be used to make their subsequeommitment protocols[16] (and also oblivious transfer

communications totally unintelligible to an eavesdropper. In[17,18). However, such optimism has recently been put into

this paper | am, however, concerned with another class oferious question due to the surprising demonstration of the
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two mi.IIionair(_es may be. interested in kn_owing who is richer 22,23. Yet an important question remains: Other than the
but neither wishes to disclose the precise gmount of mo”egjuantum key distribution, can quantum cryptographic proto-
that he or she has. More generally, imiae-sidedwo-party  cgls, in particular, two-party computation, be unconditionally
computation, Alice has a private inputand Bob a private  secure at all? This is an important question because, in many
input j. Alice would like to help Bob to compute a pre- cases, quantum bit commitment might be thought of as a
scribed functionf(i,j) without revealing anything about means to an end—two-party secure computation. If secure
more than what is logically necessaffor a precise defini- quantum two-party computation is possible, many applica-
tion of a one-sided two-party computation, see Se¢.Iii. tions of quantum cryptography, such as the prevention of
classical cryptography, such two-party computations can b&auds due to typing the Plpersonal identification number
made secure only eithé¢t) through trusted intermediaries or
(2) by accepting some unproven computational assump=——
tions? The impossibility ofunconditionallysecure two-party  unlimited computing powefor with a quantum computéf.0]) can
defeat such unproven computational assumptions.
3The basic idea of bit commitment is to conceal information and

*Electronic address: hkl@hplb.hpl.hp.com to reveal it later. It might be useful to note that Yd8] has shown

'Quantum cryptography was first proposed by Wieskrin that any secure quantum bit commitment scheme can be used to
about 1970 in a manuscript that remained unpublished until 1983implement secure quantum oblivious transfer whereas Kili8}

2In the first case, if both Alice and Bob trust Charles, they simplyhas shown that, in classical cryptography, oblivious transfer can be
tell him their private inputs and let Charles perform the computationused to implement two-party secure computation. Therefore, this
on their behalf and tell them the result afterwards. The problem herehain of argument appears to suggest that, with quantum bit com-
is that Charles can cheat by telling either Alice or Bob the othemitment, quantum cryptography could achieve unconditionally se-
party’s private input. In the second case, assumptions such as tloeire two-party computation, thus solving a long-standing problem
hardness of factoring can be used. However, an adversary witim cryptography.
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to a dishonest teller machine mentioned in the abstract, wiltwo party secure computation is always impossibiEor its

still survive. definition, see Sec. N.That is, as far as one-sided two-party
Amazingly, one possible viewpoint to take is that there iscomputations are concerned, quantum cryptography is abso-

really nothing to prove because the standard reductiofHtely useless. As a corollary, the so-called quantum one-out-

theorem$ [19,24,29 in classical cryptography immediately of-two oinvioys transfer is also impossiblg. | also pr.esent a

imply that quantum one-sided two-party computation is im-class of functions thatannotbe computed in anywo-sided

possible: In classical cryptography, an example of one-sidefyV0-Party computation. Neve_rthgles_s, quantum cryptogra_phy

two party computation is one-out-of-two oblivious transfer,remf'JIInS useful _for“the key dlstnbut!f)n and can siill prowde

which can be used to implement bit commitment. If bit com-part'al security in “quantum money” proposed by Wiesner.

mitment is impossible, one-sided two-party computations Il. IDEAL ONE-SIDED TWO-PARTY SECURE

must also generally be impossible. Doubt has been expressed COMPUTATION

in the literature concerning the validity of this standard re-

duction in a quantum modg®]. Here | argue that by defini- . T _ _

tion the standard reduction must apply to quantum crypto- SuPpose Alice has a privatéi.e., secret input i

graphic protocols: Bit commitment, oblivious transfer, and € {12, - - - n} and Bob has a private inpy {1,2, .. . mj}.

two-party computations are classical concepts whose sechin ideal one-sided two-party secure computation is defined

rity requirements are defined in a classical probabilistic lan2> follows: Alice helps Bob to compute a prescribed function

; ) . f(i,j)e{1,2,...,p} in such a way that, at the end of the
guage. If there is any sense at all in saying that a quanturBrotocol (a) Bob learnsf(i,j) unambiguously,(b) Alice
protocol can achieve say two-party computation, i isat- ’ ’ '

___ X learns nothindaboutj or f(i,j)], and(c) Bob knows noth-

ter of definitionthat the quantum protocol has to satisfy theing abouti more than what logically follows from the values

classical probabilistic security requirements under all Cir-of j andf(i,j).

cumstances. In particular, one must be allowed to use a Notice that, for a one-sided two-party Computation proto-

quantum cryptographic protocol as a “black box™ primitive col to be secure, Bob is supposed to inpytaaticular value

in building up more sophisticated protocols and to analyze j and to learn the value df(i,j) for that particular value

the security of those new protocols withassicalprobability  of j only. I will show that these three security requirements

theory® (@), (b), and(c) are incompatible in the following manner:
By adopting this new and, in my opinion, more accurateAssuming that the first two security requiremegdsand (b)

definition of secure quantum protocols, one sees that the imare satisfied, | will work out a cheating strategy for Bob

possibility of quantum bit commitment immediately implies which would allow him to learn the values &fi,j) for all

the impossibility of quantum one-sided two-party computa-j’s, thus violating security requiremeft).® | therefore con-

tions (and one-out-of-two oblivious transfer as well as clude that ideal quantum one-sided two-party computations

oblivious transfer and this is the end of the story. are impossible. In Sec. IV, | will generalize this result to
Yet such an ending is disappointing in two aspects. Whilgonideal protocol$which may violate security requirements

such a viewpoint is conceptually correct, it is a bit formal (8 and(b) slightly].

and nonconstructive. A constructive proof would make

A. Definition and security requirements

things more transparent and convincing. A perhaps more se- B. Bob’s cheating strategy
rious objection is that while such an argument rules out one- cgnsider the following cheating strategy by Bob who de-
out-of-two oblivious transfer and the two-party computationigrmines the values of(i,j1),f(i,j2), ..., f(i,jm) Succes-

of a general function, there remains the possibility S@he  sjyely: Bob first inputs a valug, for j and goes through the
special class of functiongwhose two-party computations protocol. At the end of the protocol, he determines the value
cannot be used to implement one-out-of-two obliviouspf f(i,j;). He then applies a unitary transformation to
transfef) might still be computed securely in one-sided two- change the value gf from j; to j, and determines(i,j,).
party computations. Here | investigate directly the security ofafter that, Bob applies a unitary transformation to chapge
one-sided two-party computation without using the formalfrom j, to j; and determine$(i,j3) and so on.

standard reduction. My main result is that one-sided quantum

"Remarkably, an alternative proof of the impossibility idgal

4l thank G. Brassard for helpful discussions about those standarguantum one-sided two-party computation can be made by gener-
reduction theorems. alizing Wiesner'q 2] early insight on the impossibility of one-way

50One may get the feeling from reading the literature that a quanscheme for so-called one-out-of-two oblivious transfer and combin-
tum protocol should be regarded as secure if it appears to satisfy iiag it with the idea of the proof of the impossibility of quantum bit
security requirements when it is executealy onceandin isola- commitment. | omit this alternative proof here because it is not
tion. This, however, doesot guarantee that it satisfies the security transparent at all.
requirements when it is used as a subroutine of a larger routine®In other words, instead of the ideal one-sided two-party secure
because a cheater might defeat the security of the larger routine lgomputation protocol, quantum cryptography gives only a protocol
performing coherent measurements. Therefore, | think that a morthat allows Bob to learri(i,j) for all j's. Such a protocol is unin-
accurate definition of a secure quantum protocol should be mucteresting as it can be achieved in classical cryptography simply by
more stringent. having Alice tell Bob those values. Therefore, quantum cryptogra-

8According to Kilian, such functions do exist. phy provides no real advantage in this ideal case.
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C. Key points of the proof Bob because they know the procedure of the protocol. When
. h ] .
The above cheating strategy by Bob works for two rea0th parties are honegt)")iy=|i)a®|j)s and
sons. First, using the insight gained from the impossibility of UMy o= l0i))=U([i)a®]i)s)- )

qguantum bit commitmer{20-23, in Sec. Il B | will prove

the following: The security requirementb)—that Alice  Therefore, the density matrix that Bob has at the end of
knows nothing about—implies that at the end of the proto- protocol is simply

col, Bob can cheat by changing the valuejdfom j, to j,

by applying a unitary transformation to his own quantum pi’j=Tl’A|vij><vij|. 3)
machine’ Consequently, Bob can determine the value of
f(i,j,) instead off(i,j,), as long as he hasot measured B. Changingj from j; t0 j,

f(i,j1) yet. Of course, Bob would like to learf(i,j,) and . . . .
he does measuref(i,j;) before rotatingj; to j,. At first I f_;lsserted in the last section that, owing to the security
sight, this seems to be a problem because measurements' mrei\memf(_b:(, at t_he eqd Sf the lpr.OtOCOI B.Ob can chfange
guantum mechanics generally disturb a signal. Here com e value of] from J, to ], by applying a unitary transfor-
the second point. Measurement i, ;) does not disturb mation to the state of his quantum machine. Since the value

Bob's state at all for the following reason. Since by the se0f Alice’s input i is unknown to Bob, for. such a cheating
curity requirement(@ of an ideal protocol Bob can input strategy to work, | need to prove that this unitary tr_ansfor—
j=j, and learn the value df(i,j,) unambiguously, the den- mation can be chosen to be independent of the valtie"bf

sity matrix that Bob has must be an eigenstate of the mea- ASSertion Givenj,,j,e{1,2, ... mj, there exists a uni-
surement operator that he uses for determirfifigj,). Be- (@'Y transformatior’+/2 such that
ing an eigenstate, the density matrix is, therefore, Ultizpii(Uiniz) 1= piiz @)
undisturbed by Bob’s measurement. QED

In effect, | am arguing that the density matrix Bob has isfor all j.
a simultaneous eigenstate of the measurement operators proof. Notice that Bob must allow Alice to choose the

f(i,j1).f(1,j2), ... .f(i,jm). See Sec. I B. value of her inputi randomly. But then a dishonest Alice
may try to learn abouj by an EPR-type of attack; i.e., she
Ill. DETAILS OF THE PROOF entangles the state of her quantum mackingith her quan-

A. Unitary description tum diceD and prepares the initial state

Let me present my result in more detail. It is convenient 1 . )
to use a unitary description of two-party computation EZ li)p®]i)a- )
[21,23. Let Hy (Hg) denote the Hilbert space of Alice’s
(Bob's) quantum machine. Imagine a two-party computation Recal| thatn is the cardinality ofi.) Instead of measuring
in which both Alice and Bob possess quantum computergye state of her quantum did honestly, she may keep
and quantum storage devices. By maintaining the quantumy herself and use the second regisieto execute the two-

coherence of the composite quantum systdm® Hg (USINg  harty protocol honestly from this point on. Suppose Bob’s
external control such as classical computers, assembling Wlput isj,. The initial state is, therefore

guantum gate arrays, quantum error correction, and fault-

tolerant quantum computatipnone can avoid dealing with 1

the collapse of the wave function. Alice and Bob’s actions on UYin=—=2> [1)p®]i)a®]j1)s- (6)
their quantum machines can be summari2ess an overall \/ﬁ !

unitary transformationd applied to the initial statgu);,

cH,@Hg, ie., At the end of the protocoal, it follows from Eq¢l) and (6)

that the total wave function of the combined systBrmaA,

U in=UUin. (1) andB is described by
The unitary transformatioft is known to both Alice and |vjl>:ﬁ2i Yo U()a®]j1)e). 7)

%The impossibility of quantum bit commitmefi20—23 essen-  Similarly, if Bob’s input isj, instead, the total wave function
tially states that if Alice does not know something, then Bob canat the end of the protocol will be
change it. The commitment made by Bob is, therefore, fake.

For the basic idea, se@1]. For detailed justification with a
concrete modela variant of Yao's modd]l18]), seg]23]. Of course, Hysing the idea of the impossibility of bit commitme0—23,
in reality the execution of the protocol may not require quantumit is trivial to prove that, foreach i a unitary transformatiot i1 -i2
computers. This is, however, equivalent to a situation when théhat rotateg from j, to j, exists. What is less trivial to prove is the
parties do not make full use of their quantum computers. If one camxistence of a unitary transformaticH-/2 which works forall i’s
show that a cheater can cheat successfully against an honest pasiynultaneously. | thank D. Mayers for enlightening discussions. Ac-
who has a quantum computer, clearly the cheater can cheat successally, Bob can choose his unitary transformation according to the
fully against one without. Therefore, a unitary description is veryoutcome of his measurement. This observation will be useful in
useful for my purposes. later discussion just before corollary A in the next section.
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An ideal protocol should prevent such a dishonest Alice from |,

learning anything abouj. Therefore, the reduced density
matrices in Alice’s hand for the two casg¢sj; andj=j,
must be the same, i.e.,

Alice

Pi,

phie= (9)

TrB|vj1>(vjl| =TrB|v]-2><Uj2| =

Equivalently, the two wave function; ) and|v; ) have
the same Schmidt decompositif26], i.e.,

Ivj1>=2k a| ) ap®| Br)s (10

and

|Uj2>:§k: al @) an®|Bi)s - (13)

Here|a)ap, | Bi)e, and|By)g are eigenvectors of the cor-
responding density matrices and sati$ty/|aw)ap= Sk k',
etc. Notice that Eqs(10) and (11) contain the same coeffi-
cientsa, and state$a,)ap and the only difference lies in the
state of Bob’s quantum machiri Now, consider the uni-
tary transformatiot) 112 that rotate$8,)g to | B¢)s . Notice
that it acts onHg aloneand yet, as can be seen from Egs.
(10) and(11), it rotates|v; ) to [v},), i.e.,

v y=Ultlzp, ). (12)
Since
_ 1
D<||Uj>=ﬁ|vij> (13

[see Eqgs(2), (7), and(8)], by multiplying Eq.(12) by o(i|
on the left, one finds that

|vij ) =U112uy; ). (14
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p"!is redundant in the sense that different valueg sifnply
correspond to representing the density magfiin different
bases.

With such a simplification, one can essentially argue that
p' is a simultaneous eigenstate dfi,j;),f(i,j2),...,
f(i,jm) in the following manner: With an input;, Bob can
learnf(i,j,). This implies thap' is an eigenstate df(i,j;).

But Bob can cheat by changing the valuejdfom j; to j,

in the last minute to learf(i,j,) instead. This means that

is also an eigenstate &f{i,j,). By repeating this argument,
one sees clearly that is a simultaneous eigenstate of all the
measuring operators fdé(i,j;),f(i,j,), . ..,f(i,j). Conse-
guently, Bob can learn the valuesfdi,j) for all values ofj
simultaneously. This is why the cheating strategy that | de-
scribe in Sec. 1l B works. In the next section, | will general-
ize this attack to nonideal protocols.

IV. NONIDEAL PROTOCOLS

A general nonideal protocol may violate the security re-
quirements(a) and (b) slightly. In relaxing(b), one would
expect that the unitary transformations that Bob uses for
changingj from j; to j;,, to be imperfect. In relaxinga),
the density matrix that Bob has at the end of the protocol will
now be slightly different from an eigenstate of the measure-
ment operator that he usdghis is because Bob will gener-
ally be unable to determine the value fdfi,j;) unambigu-
ously in nonideal protocols.Nonetheless, as long as the
deviation from idealness is small, one would expect Bob to
learn a substantial amount of information abé(it,j,) even
after his honest determination 6fi,j,). That Bob can learn
something about botf(i,j,) andf(i,j,) is already a serious
violation of the security requiremeft) and there is no need
for one to consider the security fdi(i,j3), etc. In other
words, one would expect that, for essentially the same reason
as the ideal protocol, even nonideal quantum one-sided two-
party computations are impossible. In what follows, | prove
that this is indeed the case. Readers who are uninterested in
technical details may skip the following and go directly to
Sec. IVA.

More concretely, let me relax security requireméntto

As one is interested in Bob’s reduced density matrix, oneallow Alice to have a small probability to distinguish be-

takes the trace o|fvij2)(vi,-2| over H, and uses Eq(14) to
obtain Eqg.(4). This completes the proof of my assertion, Eq.
(4).

The implication of Eq(4) is profound. Independent of the
value of Alice’s private input, at the end of the protocol
Bob can change the value of his own ingutsimply by

applying a unitary transformation to his own quantumcase, Eq.9) is violated for nonideal protocols, i.ep,»AlIiCe

machinet? Therefore, the indej in Bob’s density matrix

27 similar idea is used in the proof of the impossibility of bit
commitment20-23. That Alice knows nothing about Bob’s cho-

tween differentj’s. | mimic the proof of Eq.(4). As before,
consider a dishonest Alice who tries to learn abguby
preparing an illegal initial state ({h)=|i)p®]|i)a Wheren

is the cardinality ofi. She keeps the first regist& for
herself and uses the second registeto execute the two-
party protocol honestly from this point on. Unlike the ideal

i
#pMi® Nonetheless, as long as the probability for Alice to
2

distinguish successfully between the two cases remains
small, the two density matrice,u{*l"ce andp™'®® must in some

iz
sense be close to each other.

sen bit automatically implies that Bob can cheat successfully by Mathematically, the closeness between two density matri-
applying a unitary transformation to change the value of the bitcesp andp’ of a systemS can be described by tHeelity
even after the completion of the commitment phase. Thus, the conf27]. (See also Ref28].) Imagine another systef attached

mitment is fake.

to a given systen$. There are many pure state® and|y’)
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on the composite system that satisfy ideal, one may demand that, for eachBob’s ignorance
aboutf(i,j;) after his measurement would be much less than
Tre(l)(¢l)=p and  Te(|'X¢'D=p". (15  one bit. That is to say that Bob’s measurement can extract
the value off(i,j;) from the density matrixp't with a
probability close to 1. Thereforg'/t can be made to be
almost an eigenstate of Bob’s measurement and thus the dis-

The pure statefy) and|¢’) are called thepurifications of
the density matricep andp’. The fidelity F(p,p’) can be

defined as turbance caused by such measurement is small. Conse-
F(p,p")=max(y|y"), (16)  Quently, one must have
where the maximization is over all possible purifications. | F(p'in,&p1))=1—¢, (22

remark that® for any fixed purificationy of p, there exists a

maximally parallel purificationy’ of p’ that satisfies Eq. wheree<1 and¢ is a linear operatofthe so-called super-

(16). Notice that 6sF<1 andF=1 if and only if p=p"'. operator{29]) which represents the action of thienperfec)
Returning to the discussion on nonideal protocols, themeasurement of(i,j;) by Bob. Since fidelity is preserved

condition that the two density matricepﬁ’*l"Ce and pfz"ce be by unitary transformations, one finds that

close to each other can be specified by the mathematical

. h i1id2pih i14d2y=1 it ihj j1.d2y—1 _
statement that the fidelitf (pf,**,pf, ") is close to 1, say, FUR2phia(Uliz) 75, Ul izg(phin) (Ul 2) ) =1~ €.

j (23)
Alice _Ali
F(Pillce'p‘zlce)>1_5' 17 From Eqgs.(21) and (23), one deducé$ that
wheres< 1.1t follows from the definition of fidelity in Eq. F(UiLizg(phin)(Uitiz)~t piiz)>1-0(ns)—O(e).
(16) that there exists a unitary transformatioit /2 acting (24)

on Hg aloné® such that
o Now the high fidelity of Eq.(24) implies that Bob's
[, | U 2lv; }>1-4. (18 cheating strategy—of determining(i,j,) approximately
) ) first, applying a rotation to his state to charjgeom j; to j,,
Since [from Egs. (2), (7), and (8)] |v;)=(1/Vn)Zili)  and then determining(i,j,)—will allow him to defeat the
®lvy)), security requiremen(c) of the protocol by learning substan-
1 tial information abouf (i, j,). Therefore, even nonideal pro-
Cluitizly. V=2 ~luiizly. — tocols are unsafe ifié<1.
v, U 2o;,)l n‘zl {vij |V lU"1>‘>1 2 19 Case (B):8<1=né. | now separate the discussion fur-
ther into two cases: “typical” and “atypical” functions. A
Now typical functionf(i,j) is defined to be such that, even if the
1 1 value of f(i,j,) is determined inaccurately by Bob for a
=> [(vi; JUITI2v;; == > (vij |UIT Iy, >‘>1_5_ small fraction, say, 1/10 of thes, Bob can still gain a con-
n= 2 vonig 2 ! siderable amount of information about the valuVith such
(20 a definition, |1 now argue that, for a typical function, the
assumptions<<1 necessarily leads to a fatal violation of se-
curity requirement(c), thus showing the insecurity of non-
rately ideal protocols. My point is the following: Since each of the

. . . n terms|(v;; |UI112|y;; )| in Eq. (20) has a value less than
Case (A)né<1. Itis a common requirement in computer (v, |v.”1>|. a. (20 .
science thahd<1. In this case, for each or equal to 1, Eq(20) implies that, for at least nine out of ten

of thei’s, the following is true:

For a protocol to be one sided, one requirgsl. Let me
consider the two casd#\) n6<1 and(B) 6<1=<n§d sepa-

vii Uit I2ju; M>1-né 21
I( |12| | |Jl>| (21 |<vi12|Ujl’jz|Uij1>|>l_105' (25
is still close to 1. | now come to the relaxation of security
requiremenia). Bob still chooses 4§, say,j;, and performs Since | am interested in Bob’s density matrix, | take the trace
a measurement on his quantum state in order to learn thaver Alice’s quantum machiné and find that for each of
value of f(i,j;). However, for a nonideal protocol, Bob’s thosei’s,
measurement result will not give him full information on S B
f(i,j1). Nonetheless, for a protocol that is only slightly non- F(Ultizphiyyitiz) =1 piiz)>1-106. (26)

In relaxing the security requiremerid), Egs. (22) and
13 thank R. Jozsa for a discussion about this point. (23) are still valid. Combining Eqg23) with (26), one finds
0ne might imagine a situation when Alice has been informed bythat for at least nine out of ten of the possible to be
her spy that Bob’s input is eithgy or j,. In this case, her task is to  chosen by Alice,
distinguish between these two remaining possibilities. To prevent
Alice from succeeding, it is crucial that EQL7) holds.
15A similar idea was used by Mayef&0] in the discussion of  ®This follows from the fact that the fidelity is closely relatg2¥]
nonideal bit commitment schemes. See a&b-23. to the Bures metric.
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F(Ulii2g(phin)(Uitdz) =1 phiz)>1-0(108) - O(e).
(27)

Hence, Bob can determine the value fdf,j,) with high
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with certainty. Suppose he findgi,j,) to be c. He can
restrict his attention to the s&of i's that satisfy this con-
straint. If, for all pairsi,i’ €S, f(i,j)=f(i',j) for all j's,
then Bob has nothing to gain in learning the valud @fj,).

accuracy at least nine out of ten times. Since the function iSuppose the contrary. Then there exisfs say,j,, such that
assumed to be typical, this implies that Bob can get a subf(j j,) is not a constant function i6. Let me partition the

stantial amount of information about the valueiofConse-
qguently, the nonideal protocol is insecure.

setS further into two or more subsef§’s according to the
value off(i,j,). Imagine a cheating Alice prepares a state

What about the case of atypical functions? An example of

atypical functions isf(i,j)=1 if i=j andf(i,j)=0 other-

wise (as in quantum one-way oblivious identification in cor-
ollary 2 below. For those functions, it might be fatal if there

exists asingle i such thaf(v;; |UI12|v;; )| is close to 0. In
the above example, if(vyj,|U'112Jvy; )|=0 for i=j,, it
might be the case that a cheating Bpdfter determining
f(i,j1) honestly finds f(i,j,)=0 for all values ofi. There-
fore, Bob gains no information about the valueiadespite
the high fidelity in Eq.(20).

| now argue that even atypical functionannotbe com-

X Isd7Y2 X liyeli). (31)
k IESk

Notice also that, with the above normalization factor
|S|~%'2, eachset § in the partition is assigned equal weight

by Alice. (Here we ignore the obvious overall normalization

factor) Such an assignment of weights maximizes the infor-
mation gain by Bob in performing his measurement. It is
then easy to see that as long &1, Bob can determine

puted securely in nonideal one-sided secure computationgith some confidence to which s& i belongs. This seri-
whenevers<1. It is easiest to understand my reasoning byously violates the security requiremefa. In conclusion, |
working with an example(l will present the general case in have shown rigorously that secure one-sided computations

two paragraphs beloy.Consider a situation in which a
cheating Alice prepares an unequally weighigé., non-

are always impossible foany function whene=0. What
about the general case whe# 0? Since there is no obvious

maximally entangledstate instead of an equally weighted singularity in the problem, provided that is sufficiently

(i.e., maximally entangledstate in Eq.(5). For the function
discussed above (i,j)=1 if i=] andf(i,j)=0 otherwisé,
suppose a cheating Alice prepares the state

1

1 . . .
E“zb@lz)ﬂ'mi;z li)p®[i)a

(28

in her EPR attacKinstead of Eqg.(5)]. Since Alice is not
supposed to learn much about Bob’s inpubne must still

haveF(pJ-Al'ice ,ijzlice)>1— 5. This now implies that

Ko, Ut 02u 5 )[>1-26 (29
and
1 o
_n—li;,-z Kvij,|UI192]u ;) H[>1-286. (30)

Notice that the various's fall into two classegfor i=j,
f(i,jo)=1; for i#j,, f(i,j,)=0] which are to be distin-
guished by Bob. Equatiof29) ensures that Bob will find the
value of f(j,,j,) to be 1 with high probability. Similarly,
Eq. (30) ensures that Bob finds théti,j,) to be zero with a
high probability whenever# j,. Therefore, Bob can deter-
mine with some confidence whethier j, and it is clear that,
for this particular example of(i,j), even a nonideal one-
sided secure computation is impossible.

Are secure one-sided computations impossible dbr

small, one-sided two-party secure computations should re-
main impossible.

Notice that in the above proof, | allow Bob’s choice of the
unitary transformation to be dependent on the vdil(igj,)
that he has obtained. This is perfectly all right.

Finally, |1 remark that it is a matter of definition that a
one-sidedprotocol must haved<1 in Eq. (17). This is be-
cause a protocol witld of order 1 in Eq.(17) is two sided
rather than one sided. For discussions on two-sided proto-
cols, see the next section.

A. Corollaries

Definition One-out-of-two oblivious transfeis an ex-
ample of one-sided two-party secure computation in which
the sender sends two messages and the receiver chooses to
receive either message but cannot read both. Besides, the
sender, Alice, should not learn which message is read by the
receiver, Bob. More precisely, Alice’s inputis a pair of
messagesn(y,m;) and Bob’s inputj is a bit 0 or 1. At the
end of the protocol, Bob learns about the message but
not the other message;, i.e., f(mg,m;,j=0)=m, and
f(mg,my,j=1)=m;.

Corollary 1. Quantum one-out-of-two oblivious transfer
is impossible.

Remark As noted in the Introduction, one-out-of-two
oblivious transfer is an important primitive for building up
secure computations. The impossibility of one-out-of-two
oblivious transfer itself is a major setback to quantum cryp-
tography. Also, this corollary is a generalization of
Wiesner's insigh{2] which showed that it is impossible to
achieveideal quantum one-out-of-two oblivious transfer us-

functions? | now prove rigorously that they are impossibleing only one-waycommunications.

for the casee=0 in Eq.(22). The discussion for the case

Incidentally, there have been claims that quantum cryp-

#0 will be postponed to the very end of this paragraph.tography is useful forone-way oblivious identification

When e=0, Bob determines the value &fi,j,) accurately

[14,15. Such a protocol would allow the first user Alice to
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identify herself in front of a second user, Bob, by means of awo-party computation oF(i,j,r) is insecure. Alice’s den-

password, known only to both. The safety requirement is thasity matrix at the end of the protocol should only be a func-

somebody, ignorant of the password, impersonating Boltion of i andF(i,j,r). This is becausé&(i,j,r) is the only

shall not be able to obtain much information on the passworgiece of information that Alice is supposed to know about

from the identification process. One-way oblivious identifi- Bob's inputsj andr. Let me therefore denote Alice’s density

cation is an example of one-sided two-party secure compumatrix by pkf ") Suppose a dishonest Bob inputs

tation in which the prescribed functidi{i,j)=1 if i=j and

f(i,j) =0 otherwise. In other word$(i,j) gives a yes or no

answer to the question whether the two persons have the

same password. Such oblivious . identification scheme is, j)®1p 2> Nelng (32)

therefore, very useful for preventing frauds from typing a r

PIN (personal identificaton numbeto a dishonest teller ma-

chine that steals passwords. Hrubyvorking on implement-

ing a quantum Smart-card for identification purpogeg.
Corollary 2. Smart-card quantum one-way oblivious iden-

tification is impossible.

and keeps the systeb for himself.[Herep is the cardinal-
ity of f(i,j), asf(i,j)e{1,2,...,p}.] In other words, he
entangles the state ofwith a quantum dic® and performs

; . . an EPR-type of cheating. Suppose further that an honest Al-
Remark This result applies only tone-sidedschemes for ice inputsi. The density matrix that Alice has at the end of

guantum oblivious identification, a subject that earlier paper o : :

[14,15 have focused on and wrongly claimed to achieve.1the protocol will simply be a normalized direct sum
However, one should note that in practical applications, as-

sumption(b) in Sec. Il can be relaxed. For example, it is

conceivable that one can allow the customer, Alice, to learn 1 o

substantial information about the input of Béthe cash ma- => P',;Eéé’“'r) (33

chine. When Bob finds out in the computation that someone P

is disguising herself as Alicéthe answer is “no” in the

computation, he can cancel Alice’s password and ask Alice

to go to the bank in person to get a new password. Such af the individual density matrices. Fanyfixed but arbitrary
protocol is much less powerful than what the original proto-j, as r changes,F(i,j,r) runs over all thep values
cols intend to achieve, but it is still somewhat useful. Also{1,2, ... p}. [Recall thatF(i,j,r)=f(i,j) XOR r.] Con-
notice that the possibility afvo-sidedschemes for oblivious  sequently,

identification remains open. However, the following section

shows that there exists a class of functions that cannot be

computed securely in any two-sided two-party secure com-

putation. 1o iFign 1L L F (L) |
Bzr pAlice ! :B Z pAIice z ! (34)

V. SECURITY OF TWO-SIDED TWO-PARTY
COMPUTATIONS
i.e., Alice’s density matrix isndependenof the value ofj.

Definition Suppose Alice has a private inguand Bob a  But then by precisely the same attack as in the one-sided
private inputj. A two-sided two-party secure computatioh  case—by determining the value ofi,j,), changingj from
a prescribed functiorf(i,j) is a protocol such that, at the j;toj, by a unitary transformation, determining the value of
end, (@) both Alice and Bob learrf(i,j), (b) Alice learns  f(i,j,), and so on, Bob can determine the valud @fj) for
nothing abouj more than what logically follows from(i, j) all values ofj. This violates the security requiremeigj for
and her private input, and (c) Bob learns nothing about  the two-sided protocol. In conclusion, there are functions,
more than what logically follows fronfi(i,j) and his private namely, F(i,j1,r)="f(i,j) XOR r, that cannot be com-
input j. puted securely by any two-sided protocol.

Notice that in classical cryptography, a one-sided two-
party computation of a functiofi(i,j) can be reduced to a
two-sided two-party computation of a functioR(i,j,r)
=f(i,j) XOR rwherer is a random string of input chosen
by Bob and theXOR (exclusiveOR) is taken bitwisé-’ At
the end of the protocol, both Alice and Bob led#fi,j,r). This paper deals with the applications of quantum cryp-
While Bob can invert the function to find tography inthe protection of private information during pub-
f(i,j)=F(i,j,r) XOR r, Alice, being ignorant of Bob’s lic decision (rather than with the most well-known
input r, has absolutely no information abol(t,j). application—so-called quantum key distributioAs an im-

Here | demonstrate explicitly that the quantum two-sidedportant example, in a one-sided two-party secure computa-

tion, a party Alice has a private inputand the other party
Bob who has a private inpyt Alice helps Bob to compute a
| thank R. Cleve for enlightening discussions about this point. prescribed functiorf(i,j) in such a way that, at the end of

VI. SUMMARIES AND DISCUSSIONS
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the protocol,(a) Bob learnsf(i,j), (b) Alice learns nothing fore, it can be used to show that quantdondinary) oblivi-
(or almost nothingaboutj, and(c) Bob knows essentiallty ous transfer is impossible. In the future, it would be interest-
nothing abouti other than what logically follows from the ing to work out a direct attack that defeats quantum oblivious
value ofj andf(i,j). [For example, in password identifica- transfer.
tion f(i,j)=1 if i=] and=0 otherwise] Notice that Bob is Since a one-sided two-party computation of a function
supposed to choose ja(say, j;) and learnf(i,j) for that can be reduced to a two-sided two-party computation of a
particular value ofj only. However, | prove that quantum related function, there are functions that cannot be computed
one-sided two-party computation is always insecure becausgecurely in two-sided two-party computations as well. Can
Bob can learnf(i,j) for all values ofj. In the cheating any function be computed securely in a quantum two-sided
strategy that | consider, Bob determines the value§f)  two-party computation? While 1 do not have a definite an-
for the various values of's successively” That is, Bob  swer, the argument for impossibility of ideal quantum coin
inputsj = j,, determines the value 6{i,j,), changeg toj,,  tossing[23] can be used to prove the impossibility idal
determined (i, j,), and so on. two-sided two-party secure computaticend also ideal so-
Such a cheating strategy works for two reasons. For simcalled zero-knowledge propfFurthermore, Sec. IV of Ref.
plicity, let me first consider the ideal protocol. Let Bob input [23] shows that quantum two-sided two-party secure compu-
j =11 initially. Using the insight from the impossibility of bit  tation can never be dorefficiently?® In conclusion, these
commitment[20—-23, | prove that, owing to the security results rule out the perfect or nearly perfect protection of
requirementb), Bob can cheat at the end of the protocol by private information in one-sided two-party computations by
changing the value gffrom j; to j,. Thus he can determine quantum mechanics. The security of the quantum two-sided
the value off(i,j,) instead off(i,j;) as long as he hasot  two-party computation is also shown to be in very serious
performed a measurement to determif@,j,) yet. Of  trouble.
course, Bob is interested in learnirigi,j,) as well. So he In retrospect, there were good reasons for the reexamina-
must first measure the value i, j ;) before rotating from  tion of the foundations of quantum cryptographic protocols
j1 to j,. If I can show that his measurementfdi,j;) does such as secure computation: While the security of quantum
not disturb the quantum state he possesses, it is clear that thisy distribution can intuitively be attributed to the quantum
cheating strategy will work. This is precisely what | do: no-cloning theorem, no simple physical reason has ever been
Since in an ideal protocol with an inpjit=j; Bob can un-  given to the security of other quantum cryptographic proto-
ambiguously determine the value &fi,j,) [security re- cols such as bit commitment. This is a highly unsatisfactory
quirement(a)], the density matrix that Bob has must be ansituation. Besides, most proposed quantum protocols are
eigenstate of the measurement operator that he uses. Congéghly inefficient. From both theoretical and practical points
quently, he can measure the valuef ¢, j ;) withoutdisturb-  of view, a more fundamental understanding of the issues of
ing the quantum state of the signal at aMotice that, in  security and efficiency of those protocols would therefore be
effect, | have shown that, owing to the security requirementsnost welcome. In the claimed “secure” gquantum bit com-
(@ and(b), the density matrix that Bob has is a simultaneousmitment protocol[16], researchers have implicitly assumed
eigenstate off(i,j,),f(i,j2), ....,f(i,jm). This contradicts that measurements are made by the two parties. However,
security requiremen(c). ] what researchers including mysd20-23 have recently
These two points taken together mean that this cheatinghown is that by using a quantum computer and performing
strategy beats an ideal protocol for one-sided two-partyan EPR-type of attack, the party, Bob, can defeat the security
computation® In Sec. IV, | generalized my result to show requirement of the protocol. This is remarkable because the
that a similar attack defeats nonideal protocols as well. Irbasic idea of the EPR attack can be found5h Moreover,
conclusion, | have shown that quantum one-sided two-partyhe attack against two-party secure computations presented
secure computatiofideal or nonidealis always impossible. here is identical in spirit to the one considered by Wiesner
As corollaries to my results, contrary to popular belief in[2]. Quantum protocols such as bit commitment and secure
earlier literature, quantum one-out-of-two oblivious transfercomputations are broken because their foundation has been
and one-way oblivious identification are also impossible. Asshaky in the first place.
argued in the Introduction, the reduction theorem in classical | emphasize that the cheating strategy proposed in this
cryptography must remain valid in a quantum model. Therepaper generally requires a quantum computer to implement.
Before a quantum computer is ever built, quantum one-sided
two-party secure computations may still be secure in prac-
8see footnote 8. tice. Besides, apart from the quantum key distributiwhich
1%As discussed in the Introduction, one may also use the classical
reduction theorem from bit commitment to one-out-of-two oblivi-
ous transfer to argue the impossibility of quantum one-sided two- *°Let me normalize everything so that Alice and Bob both learn
party computations. Such proof is, however, not transparent at albne bit of information from executing a two-sided two-party com-
Yet another alternative proof of the insecurity idleal quantum  putation. If both parties are shameless enough to stop running the
one-sided two-party computation can be made by combining th@rotocol whenever one of them has an amount of information that is
idea of the proof of the impossibility of quantum bit commitment e greater than his or her opponent, it is easy to sh28} that the
with a generalization of Wiesner's early insigBf on the insecurity numberN of rounds of communications needed for the protocol to
of a subclass of quantum one-out-of-two oblivious transferbe successful has to satisfe=1. An exponentially smalk re-
schemes. Such proof is, however, nonconstructive and does nquires an exponentially large and the scheme is necessarily inef-
apply directly to nonideal protocols. | shall, therefore, omit it here.ficient.
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