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Effects of inelastic scattering on tunneling time based
on the generalized diffusion process approach
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We analyze the effects of inelastic scattering on the tunneling time theoretically, using generalized Nelson’s
quantum mechanics. This generalization enables us to describe a quantum system with optical potential and
channel couplings in a real-time stochastic approach, which seems to give us a new insight into quantum
mechanics beyond Copenhagen interpretation.@S1050-2947~97!01408-X#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

An issue of the tunneling time, i.e., the time associa
with the passage of a particle through a tunneling barrier,
been discussed in many theoretical studies@1–17#, and is not
settled yet. This difficulty arises mainly from the fact th
time is not an observable represented by a self-adjoint op
tor, but is just a parameter in quantum mechanics.

In our previous paper@20#, we proposed a method t
evaluate the tunneling time, using Nelson’s approach
quantum-mechanics@18#. Our aim then was to treat tunne
ing effects in a detailed time-dependent and fully quantu
mechanical way, as any theoretical expression of the tun
ing time must be tested by experiments which are feasibl
present and in the near future.

As discussed in Ref.@20#, Nelson’s approach to quantum
mechanics has several advantages to study the tunn
time, a few of which are listed below. First of all, this a
proach, using the real-time stochastic process, enables
describe individual experimental runs of a quantum sys
in terminology of the ‘‘analog’’ of classical mechanics. Th
is true even in the tunnel region where a classical path
forbidden. From sample paths generated by the stocha
process, we obtain information on the time parameter
particular, the tunneling time.

As a matter of course, the whole ensemble of sam
paths gives us the same results as quantum mechanics i
ordinary approach, e.g., expectation values of the observa
transmission and reflection probabilities in scattering pr
lem, and so on. It is important for us to note that in scatter
phenomena~those without bound states! the transmission
and reflection ensembles are defined unambiguously, tha
each sample path is classified distinctively into either a tra
mission ensemble or reflection one.

We need to accumulate a sufficient number of sam
paths in numerical simulations. In thick or/and high poten
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cases the transmission probability is low, and conseque
we have the difficulty that a number of sample paths belo
ing to the transmission ensemble are also low when e
sample path is followed in the forward time direction. How
ever, in Nelson’s approach there is not only the forwa
Langevin equation but also the backward Langevin equa
@see Eq.~2! below#, both being equivalent to each other
physical results. The difficulty above is avoided when t
backward Langevin equation is employed.

Taking account of these advantages, we developed a
oretical of time-dependent description of tunneling pheno
ena based on Nelson’s stochastic approach in Ref.@20#. Nu-
merical simulations for a one-dimensional square-w
potential barrier model were demonstrated. An important
sult about the tunneling time then is that there are three c
acteristic times, i.e.,the passing time and the hesitating tim,
and their sum,the interacting time. The probability distribu-
tion of these three times were calculated numerically.

Our previous study treated only a quantum system o
single particle under a simple potential. But realistic expe
mental situations are more complicated. Naturally we
tempted to extend our previous formulation to more gene
scattering phenomena. In this paper we consider case
which transition processes into other channels or absorp
processes takes place during scattering processes, and
into these effects on the tunneling time.

Processes of transition into other channels and absorp
are described by channel coupling and optical poten
~complex potential!, respectively, in ordinary quantum me
chanics using the Schro¨dinger equation. So far it is known
that Nelson’s formulation is equivalent to the Schro¨dinger
equationonly for a one-body problem with a single chann
and a real potential. The purpose of this paper is to gene
alize Nelson’s stochastic quantization so that it can deal w
multichannel coupling and/or optical potential problems.
will be shown below, one can construct such generaliz
formulations of Nelson’s approach with additional stochas
jumping processes. These theoretical formulations allow
to perform numerical simulations of stochastic processes
before@20#. This way we can investigate the effects of tra
sition into other channels, or absorption on the tunnel
time.
1142 © 1997 The American Physical Society
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56 1143EFFECTS OF INELASTIC SCATTERING ON . . .
The paper is organized as follows: In Sec. II the origin
Nelson’s quantum mechanics is reviewed briefly for la
relevance. We propose a formulation of the Nelson’s
proach, generalized to a quantum system with channel c
pling, in Sec. III. The formulation of Sec. III hints at how t
develop a formulation for optical potential, which is show
in Sec. IV. In Sec. V a numerical simulation for a square
well potential model, using the formulations in Secs. III a
IV, are demonstrated, and physical implications of these
sults are analyzed. Section VI is devoted to summary
some comments.

II. BRIEF REVIEW OF NELSON’S QUANTUM
MECHANICS

We start with a brief review of the original Nelson
quantum mechanics, which consists of two basic conditio
i.e., the kinematical condition and the dynamical one. T
kinematical condition is given by the Ito-type stochastic d
ferential equation: There are two ways to express it, depe
ing on the forward or backward time direction. Explicitly w
have, for forward time evolution,

dx~ t !5b„x~ t !,t…dt1dw~ t !, ~1!

and, for backward time evolution,

dx~ t !5b* „x~ t !,t…dt1dw* ~ t !. ~2!

The dw(t) is the Gaussian white noise~representing the
quantum fluctuation! with the statistical properties of

^dw~ t !&50 and ^dw~ t !dw~ t !&5
\

m
dt, ~3!

and the same properties fordw* (t) as in Eq.~3!. Here ^ &
means a sample average. It is easy to show that for these
Langevin equations hold the following Fokker-Planck equ
tions for the distribution functionP(x,t) of the random vari-
ablesx(t),

]P~x,t !

]t
5F2

]

]x
b~x,t !1

\

2m

]2

]x2GP~x,t ! ~ forward int !,

~4!

2
]P~x,t !

]t
5F ]

]x
b* ~x,t !1

\

2m

]2

]x2GP~x,t !

~backward in t !. ~5!

Thus a pair of equations~1! and ~2! is mathematically
equivalent to a pair of equations~4! and ~5!. We obtain an
osmotic velocityu from the sum of Eqs.~4! and ~5! as

u5
b2b*

2
5

\

2m

1

P

]P

]x
~6!

under the boundary condition of

P~x→`,t !→0. ~7!

Subtraction of Eq.~5! from Eq. ~4! gives
l
r
-
u-

-
d

s,
e

d-

wo
-

]P

]t
52

]

]x
~vP!, ~8!

wherev is a current velocity,

v5
b1b*

2
. ~9!

The elimination ofP(x,t) from Eqs.~6! and ~8! leads to an
equation called the kinematical equation,

]u

]t
52

\

2m

]2v
]x2 2

]

]x
~uv !. ~10!

The dynamical condition is expressed through the ‘‘me
time derivatives’’ introduced as follows: The ‘‘mean forwar
time derivative’’ D f (t) is defined as

D f ~ t ![ lim
Dt→10

K f ~ t1Dt !2 f ~ t !

Dt U f ~s!~s<t ! fixedL ,

~11!

and the ‘‘mean backward time derivative’’D* f (t) is defined
as

D* f ~ t ![ lim
Dt→10

K f ~ t !2 f ~ t2Dt !

Dt U f ~s!~s>t ! fixedL .

~12!

The ‘‘mean balanced acceleration’’ is introduced through
definitions of Eqs.~11! and ~12! as

a„x~ t !,t…[
DD* 1D* D

2
x~ t !. ~13!

Note that this definition can be rewritten as

a~x,t !52
\

2m

]2u

]x2 1
1

2

]

]x
~v22u2!1

]v
]t

~14!

from Eqs.~1! and ~2! with Eqs.~6! and ~9!. The dynamical
condition is nothing but the classical Newton equation to t
‘‘mean balanced acceleration’’a„x(t),t…, that is,

ma~x,t !52
]V

]x
, ~15!

from which we derive the ‘‘Newton-Nelson equation’’

]v
]t

5
\

2m

]2u

]x2 2v
]v
]x

1u
]u

]x
2

1

m

]V

]x
~16!

because of Eq.~14!.
Next we summarize the mathematical structure of N

son’s quantum mechanics. The two basic equations, Eq.~10!
from the kinematical condition, and Eq.~16! from the dy-
namical condition, form a set of simultaneous equations
two unknown functionsu(x,t) and v(x,t), or equivalently,
b(x,t) andb* (x,t). Then we can determine the ensemble
sample paths or the distribution functionP(x,t). Although it
is practically very difficult to solve these equations direc
due to their nonlinearity, one can easily show the equi
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lence between this approach and the ordinary approach o
Schrödinger equation. This fact tells us that one can solve
problem by means of the wave function much more eas
The equation

]

]xF i
\

m

1

c8

]c8

]t
1

1

2S \

mD 2 1

c8

]2c8

]x2 2
1

m
VG50 ~17!

follows from the combination of Eq.~10! and the imaginary
version of Eq.~16!, where

u1 iv5
\

m

1

c8

]c8

]x
. ~18!

Equation~17! clearly shows the relationship betweenc8 and
the wave functionc as the solution of Schro¨dinger equation

i\
]c

]t
5S 2

\2

2m

]2

]x2 1VDc, ~19!

that is,

c~x,t !5c8~x,t !expS 2
im

\ E t

h~s!dsD , ~20!

with an arbitrary function oft, h(t), which has no physica
relevance. It is easily seen from this proof of the equivale
that one has expressions forb(x,t), b* (x,t), andP(x,t) in
terms ofc(x,t),

b~x,t !5
\

m
~ Im1Re!

]

]x
lnc~x,t !, ~21!

b* ~x,t !5
\

m
~ Im2Re!

]

]x
lnc~x,t !, ~22!

P~x,t !5uc~x,t !u2. ~23!

III. STOCHASTIC FORMULATION FOR QUANTUM
SYSTEM WITH CHANNEL COUPLING

We now generalize the above Nelson’s approach to a
tem with a channel coupling. For simplicity, consider t
two-channel Schro¨dinger equations ($ i , j %5$1,2%)

i\
]

]t
c i~x,t !5S 2

\2

2mi

]2

]x2 1Vii ~x,t ! Dc i~x,t !

1Vi j ~x,t !c j~x,t !, ~24!

with

Vi j 5Vji* . ~25!

Here and below the dummy index does not imply taking
sum. As will be seen, the generalization of the formulation
this section to theN-channel case (N.2) is straightforward.

Consider the Fokker-Planck equations in the stocha
formulation, corresponding to Eq.~24!. First we require a
natural extension of Eq.~23! to the present case,

Pi~x,t !5uc i~x,t !u2. ~26!
he
e
.

e

s-

a
n

ic

The diagonal parts~the kinetic energy andVii terms! in Eq.
~24! are expected to be dealt with as in Sec. II. The Sch¨-
dinger equations~24! and their complex conjugates sugge
the following equations forPi(x,t):

]Pi~x,t !

]t
5F2

]

]x
bi~x,t !1

\

2mi

]2

]x2 2W~ i→ j !~x,t !GPi~x,t !

~ forward in time!, ~27!

2
]Pi~x,t !

]t
5F ]

]x
b* i~x,t !1

\

2mi

]2

]x2 1W~ i→ j !~x,t !GPi~x,t !

~backward in time! ~28!

as Pi(x,t) increases or decreases, due to the potentialVi j
causing transitions betweeni and j , at the rate of the abso
lute value of

W~ i→ j !Pi52W~ j→ i !Pj5
2

\
Imc j* Vji c i . ~29!

Although the sum of Eq.~27! and~28! leads to Eq.~6! with
the indexi ,

ui5
bi2b* i

2
5

\

2mi

1

Pi

]Pi

]x
, ~30!

their difference provides us with

]Pi

]t
52

]

]x
~v i Pi !2W~ i→ j !Pi ~31!

instead of Eq.~8!, where

v i5
bi1b* i

2
. ~32!

As a result, eliminatingPi(x,t) from Eqs.~30! and~31!, one
derives the kinematical equation

]ui

]t
52

\

2mi

]2v i

]x2 2
]

]x
~uiv i !2

\

2mi

]

]x
W~ i→ j ! ~33!

instead of Eq.~10!.
Here arises a natural question what are the stochastic

ferential equations corresponding to the Fokker-Planck eq
tions in Eqs.~27! and ~28!, just as Eqs.~1! and ~2! corre-
spond to Eqs.~4! and ~5!. Apparently we need two random
variablesxi(t) ( i 51 and 2!, which are assumed to be subje
to the stochastic differential equations, similar to Eqs.~1!
and ~2!,

dxi~ t !5bi„xi~ t !,t…dt1dwi~ t ! ~ forward in time!,
~34!

dxi~ t !5b* i„xi~ t !,t…dt1dw* i~ t ! ~backward in time!,
~35!

with the properties fordwi(t) anddw* i(t),
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^dwi~ t !&50, ^dwi~ t !dwj~ t !&5
\

mi
d i j dt,

~36!

^dw* i~ t !&50, ^dw* i~ t !dw* j~ t !&5
\

mi
d i j dt.

As is easily seen, a naive interpretation of these indepen
stochastic differential equations leads only to the Fokk
Planck equations in Eqs.~27! and ~28! without the terms
proportional to W( i→ j ). An additional mechanism to tak
account of the quantum jump betweeni and j represented by
the terms involvingW( i→ j ) is necessary. For this purpose w
supplement Eqs.~34! and ~35! with a stochastic jumping
process betweeni and j . Thus below we attempt the formu
lation of two random variablesxi(t), subject to the stochasti
differential equations~34! and~35! combined with a stochas
tic jumping process in the following way.

The ‘‘dynamical’’ rule to determine how each samp
pathxi(t) changes its index (i 51→2, or vice versa! during
passage of time is described by the following random jum
s
fo
rt

ro
nt
r-

-

ing process~Fig. 1!: At each time a dice is cast,indepen-
dently of the stochastic equations~34! and ~35!, and each
sample path either keeps or changes its index at a ce
rate. For the forward time direction, we have the rule in ca
of W( i→ j ).0 (iÞ j ),

FIG. 1. Schematical illustration of the ‘‘dynamical’’ rule for th
stochastic jumping process between two channels.
xi~ t !→H xj~ t1dt! with the probabilityW~ i→ j !„xi~ t !,t…dt,

xi~ t1dt! with the probability of 12W~ i→ j !„xi~ t !,t…dt,
~37!

xj~ t !→xj~ t1dt! with the probability 1,

and the rule in case ofW( i→ j ),0,

xj~ t !→H xi~ t1dt! with the probability2W~ i→ j !„xj~ t !,t…dt,

xj~ t1dt! with the probability 11W~ i→ j !„xj~ t !,t…dt,
~38!

xi~ t !→xi~ t1dt! with the probability 1.

Likewise, the rules for backward time direction state that, in the case ofW( i→ j ).0,

xj~ t !→H xi~ t2dt! with the probabilityW~ i→ j !„xj~ t !,t…dt,

xj~ t2dt! with the probability 12W~ i→ j !„xj~ t !,t…dt,
~39!

xi~ t !→xi~ t2dt! with the probability 1,

and, in the case ofW( i→ j ),0,

xi~ t !→H xj~ t2dt! with the probability2W~ i→ j !„xi~ t !,t…dt,

xi~ t2dt! with the probability 11W~ i→ j !„xi~ t !,t…dt,
.

~40!

xj~ t !→xj~ t2dt! with the probability 1.
ere

g on
According to the rules of the random jumping proce
above, the behavior of each sample path is illustrated as
lows: For the forward time direction, a sample path sta
from xi(t I), develops according to Eq.~34! with i for a
while, and, when a chance comes, it changes its index f
i to j and follows Eq.~34! with j until the next jumping
process takes place. The jumping process fromxi to xj is
s
l-

s

m

allowed, and the reverse process is forbidden, wh
W( i→ j ).0, and vice versa whereW( i→ j ),0. The jumping
processes may be repeated or may not occur, dependin
the sign and magnitude ofW( i→ j ) . Sample paths show a
similar behavior for the backward time direction.

It is remarked thatxi(t) is generally a functional of both
dw1(s) and dw2(s) (s,t) @or dw* 1(s) or dw* 2(s)
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(s.t)#, as it may repeat jumps betweeni 51 and 2 in the
past ~in the future!. Due to changes in the index for eac
sample path, there are several types of averages which
distinguished from each other carefully. It is convenient
introduce notations for conditional averages. The simple
erage^ & should be taken over both ofdw1(s) anddw2(s)
(s,t). To represent a physical average of thei state att, we
introduce a notation of

^^ f „x~ t !…&&$xi ~ t !%[^ f „xi~ t !…&, ~41!

where the average on the left-hand side implies a conditio
average only over sample paths, labeled byi at t. This aver-
age should be expressed in terms of the probability distr
tion Pi(x,t) as

^^ f „x~ t !…&&$xi ~ t !%5E dx f~x!Pi~x,t !. ~42!

The notation^^ f „x(t)…&&$x1(t)%ø$x2(t)% has trivial interpreta-
tions,

^^ f „x~ t !…&&$x1~ t !%ø$x2~ t !%5^ f „x~ t !…&. ~43!
n

-

are

v-

al

-

Furthermore, conditional averages with different times su
as ^^ f „x(t)…&&$xi (t1dt)%ù$xj (t)%

can be introduced: This ex
ample represents the average only over sample paths w
have the indexj at t and i at t1dt.

Let us now evaluate the time derivative of the physic
averagê ^ f „x(t)…&&$xi (t)%

. For the forward time direction, us
ing appropriate conditional averages, we write

d

dt
^^ f „x~ t !…&&$xi ~ t !%

5
1

dt
@^^ f „x~ t1dt!…&&$xi ~ t1dt!%2^^ f „x~ t !…&&$xi ~ t !%#

5
1

dt
@^^ f „x~ t1dt!…2 f „x~ t !…&&$xi ~ t1dt!%ù$xi ~ t !%

1^^ f „x~ t1dt!…&&$xi ~ t1dt!%ù$xj ~ t !%

2^^ f „x~ t !…&&$xj ~ t1dt!%ù$xi ~ t !%#. ~44!

The three terms here are manipulated as
^^ f „x~ t1dt!…2 f „x~ t !…&&$xi ~ t1dt!%ù$xi ~ t !%5K K d f~x!

dx U
x5x~ t !

dx~ t !1
1

2

d2f ~x!

dx2 U
x5x~ t !

„dx~ t !…21o~dt3/2! L L
$xi ~ t1dt!%ù$xi ~ t !%

5 K K d f~x!

dx
bi„x~ t !,t…dt1

d2f ~x!

dx2

\

2mi
dtL L

$xi ~ t1dt!%ù$xi ~ t !%

5 K K d f~x!

dx
bi„x~ t !,t…dt1

d2f ~x!

dx2

\

2mi
dtL L

$xi ~ t !%

1o~dt2!

5dtE dxS d f~x!

dx
bi~x,t !1

d2f ~x!

dx2

\

2mi
D Pi~x,t !1o~dt2!

5dtE dx f~x!S 2
]

]x
bi~x,t !1

\

2mi

]2

]x2D Pi~x,t !1o~dt2!, ~45!

^^ f „x~ t1dt!…&&$xi ~ t1dt!%ù$xj ~ t !%52dtE dx f~x!W~ i→ j !~x,t !Pi~x,t !u„2W~ i→ j !~x,t !…1o~dt2!, ~46!
o-

ndi-
Nel-
on

ual
and

^^ f „x~ t !…&&$xj ~ t1dt!%ù$xi ~ t !%

5dtE dx f~x!W~ i→ j !~x,t !Pi~x,t !u„W~ i→ j !~x,t !…

1o~dt2!, ~47!

respectively, from Eqs.~34!, ~36!, ~37!, ~38!, and~42!. Col-
lecting Eqs.~44!–~47!, we obtain the correct time evolutio
of Eq. ~27!. This shows the equivalence between Eq.~27!
and the stochastic equation~34! supplemented with the sto
chastic jumping processes~37! and ~38!. Likewise one can
show the equivalence between Eq.~28! and the stochastic
equation~35! supplemented with the stochastic jumping pr
cesses~39! and ~40!.

We need some careful treatment on the dynamical co
tion in the present case. For the equivalence between
son’s and Schro¨dinger approaches, the dynamical conditi
should have the form

]v i

]t
5

\

2mi

]2ui

]x2 2v i

]v i

]x
1ui

]ui

]x
2

1

mi

]Ṽii

]x
. ~48!

Here we introduce a ‘‘quantum potential’’Ṽii which is to
include the effect of channel coupling as well as the us
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56 1147EFFECTS OF INELASTIC SCATTERING ON . . .
potentialVii . The simplest way to achieve this equation is
define the ‘‘mean balanced acceleration’’ai through the
‘‘mean ~forward and backward! time derivative’’ as usual,
but for the stochastic process without any jumping proce
We simply consider a stochastic process governed by
~34! all the time, and denoteXi instead ofxi to distinguish
them from each other. There is no mixing ofdwi anddwj in
Xi , contrary toxi . For eachXi(t) we define the ‘‘mean
balanced acceleration’’ai„Xi(t),t…, and the ‘‘Newton’’ equa-
tions

miai„Xi~ t !,t…52
]Ṽii

]Xi
~49!

becomes Eq.~48!.
The combination of equations~33!1 i ~48! derives

]

]xF i
\

m

1

c i8

]c i8

]t
1

1

2S \

mi
D 2 1

c i8

]2c i8

]x2 2
1

mi
H Ṽii 2

i\

2
W~ i→ j !J G

50, ~50!

where the relation

ui1 iv j5
\

mi

1

c i8

]c i8

]x
~51!

is used. If we shift the functionc i8 to

c i~x,t !5c i8~x,t !expS 2
imi

\ E t

h~s!dsD , ~52!

choose the ‘‘quantum potential’’ as

Ṽii 5Vii 1Re
c i* Vi j c j

uc i u2 , ~53!

and use the relation

W~ i→ j !52
2

\
Im

c i* Vi j c j

uc i u2
, ~54!

we can reproduce the Schro¨dinger equations~24!. By the use
of Eqs.~51! and ~52!, the relations

bi~x,t !5
\

mi
~ Im1Re!

]

]x
lnc i~x,t !, ~55!

b* i~x,t !5
\

mi
~ Im2Re!

]

]x
lnc i~x,t !, ~56!

and Eq.~26! are established again.

IV. STOCHASTIC FORMULATION FOR QUANTUM
SYSTEM OF OPTICAL POTENTIAL

In this section, let us formulate Nelson’s stochastic a
proach to a system of a single degree of freedom descr
by an optical potential. Then the Schro¨dinger equation with
an imaginary part of the potential, denoted byiU ~a physi-
cally relevant situation, i.e., an absorptive process co
s.
q.

-
ed

-

sponds toU,0), is written as

i\
]c~x,t !

]t
5S 2

\2

2m

]2

]x2 1V~x,t !1 iU ~x,t ! Dc~x,t !.

~57!

The formulation in Sec. III suggests a method to estab
a stochastic formulation for this Schro¨dinger equation. The
analogy between the channel-coupling model and the pre
model becomes apparent when we attempt the Fok
Planck equation corresponding to Eq.~57! in the forms

]P~x,t !

]t
5F2

]

]x
b1

\

2m

]2

]x2 1
2U

\ GP~x,t ! ~ forward int !,

~58!

2
]P~x,t !

]t
5F ]

]x
b* 1

\

2m

]2

]x2 2
2U

\ GP~x,t !

~backward int !. ~59!

Equations~58! and ~59! are compared with Eqs.~27! and
~28!; both are quite similar to each other with the correspo
dence between 2U/\ and2W( i→ j ) .

While the sum of Eqs.~58! and ~59! is given by Eq.~6!,
their difference leads to

]P

]t
52

]

]x
~vP!1

2U

\
P ~60!

instead of Eq.~8!. From Eqs.~6! and ~60! follows the kine-
matical equation

]u

]t
52

\

2m

]2v
]x2 2

]

]x
~uv !1

1

m

]

]x
U, ~61!

instead of Eq.~10!.
The additional term in Eq.~58! simply describes produc

tion ~absorption! effects forU.0 (U,0), which one may
put in such a way that the production~absorption! process is
a transition from an ‘‘unphysical’’ sector to a ‘‘physical’
one ~from a ‘‘physical’’ sector to an ‘‘unphysical’’ one!. At
this point the analogy between Sec. III and this section

FIG. 2. Schematical illustration of the ‘‘dynamical’’ rule for th
stochastic jumping process between physical and unphysical se
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helpful to find stochastic processes equivalent to the Fok
Planck equations in Eqs.~58! and~59!: We consider the two
random variablesxp(t) and xu(t) for ‘‘physical’’ and ‘‘un-
physical’’ sectors, respectively, and stochastic jumping
tween them occurs according to certain rules, which will
specified below. In contrast with the channel-coupling c
with the indexi , the stochastic differential equations for bo
of xp(t) andxu(t) can be common. Introducing a notation
a random variablex(t) standing for both ofxp(t) and
xu(t), we require the same form of stochastic different
equations for thisx(t) as Eqs.~1! and ~2! all the time,

dx~ t !5b„x~ t !,t…dt1dw~ t ! forward in time , ~62!

dx~ t !5b* „x~ t !,t…dt1dw* ~ t ! backward in time,
~63!

with the same properties fordw(t) as in Eq.~3!, and so on.
Each sample path is described byx(t) as a whole, but has to
be classified into eitherxp(t) or xu(t) at eacht. Typically a
sample path changes as, for example,xp(t1)→xu(t2)
→•••→xp(tn) as a result of repeated jumping processes
ss
e

d

ic
r-

-
e
e

l

A

sample path is said to be physically relevant att if the
sample is represented byxp(t), while it is not so if it is
represented byxu(t). In other words, the physical average
t is given by the average over ensemble of not all sam
paths but only physically relevant sample paths att. The
notation^^ f (x(t))&&$xp(t)% is introduced to represent this con

ditional average forf „x(t)…. Similarly the notations of other
conditional averages such aŝ ^ f „x(t)…&&$xu(t)% and

^^ f „x(t)…&&$xp(t)%ø$xu(t)% are clear, in particular

^^ f „x~ t !…&&$xp~ t !%ø$xu~ t !%5^ f „x~ t !…&. ~64!

Again, conditional averages related to many times can
introduced, e.g.,̂ ^ f „x(t)…&&$xp(t1dt)%ù$xu(t)% is supposed to
represent the average over all the sample paths which
described byxu at t andxp at t1dt.

Let us summarize the ‘‘dynamical’’ rule for stochast
jumping processes betweenp andu. The rules are given as
follows ~Fig. 2!: ~i! For the forward time direction, in the
case ofU,0,
xp~ t !→H xu~ t1dt! with the probability22U„xp~ t !,t…/\ dt

xp~ t1dt! with the probability 112U„xp~ t !,t…/\ dt,
~65!

xu~ t !→xu~ t1dt! with the probability 1,

and, in the case ofU.0,

xu~ t !→H xp~ t1dt! with the probability 2U„xu~ t !,t…/\ dt

xu~ t1dt! with the probability 122U„xu~ t !,t…/\ dt,
~66!

xp~ t !→xp~ t1dt! with the probability 1.

~ii ! For the backward time direction, in the case ofU,0,

xu~ t !→H xp~ t2dt! with the probability22U„xu~ t !,t…/\ dt

xu~ t2dt! with the probability 112U„xu~ t !,t…/\ dt,
~67!

xp~ t !→xp~ t2dt! with the probability 1,

and, in the case ofU.0,

xp~ t !→H xu~ t2dt! with the probability 2U„xp~ t !,t…/\ dt

xp~ t2dt! with the probability 122U„xp~ t !,t…/\ dt,
~68!

xu~ t !→xu~ t2dt! with the probability 1.
de-

nck
Note that for the forward time direction a jumping proce
from xp to xu is allowed, and the reverse process is forbidd
whereU,0, and vice versa whereU.0, and that whenU is
nonpositive everywhere, the number of sample paths
scribedxp(t) decreases, and that inxu(t) increases ast goes,
the total number being conserved. Regardless of the ind
n

e-

es

of p and u, each sample path is a stochastic process
scribed by Eq.~62! @or Eq. ~63!#.

To prove the equivalence between the Fokker-Pla
equation~58! and the stochastic differential equation~62!
with the jumping rules~65! and ~66!, we calculate, for ex-
ample,
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d^^ f „x~ t !…&&$xp~ t !%

dt
5

1

dt
@^^ f „x~ t1dt!…&&$xp~ t1dt!%

2^^ f „x~ t !…&&$xp~ t !%#

5
1

dt
@^^ f „x~ t1dt!…

2 f „x~ t !…&&$xp~ t1dt!%ù$xp~ t !%

1^^ f „x~ t1dt!…&&$xp~ t1dt!%ù$xu~ t !%

2^^ f „x~ t !…&&$xu~ t1dt!%ù$xp~ t !%#, ~69!

with

^^ f „x~ t1dt!…2 f „x~ t !…&&$xp~ t1dt!%ù$xp~ t !%

5dtE dx f~x!S 2
]

]x
b~x,t !1

\

2m

]2

]x2D P~x,t !

1o~dt2!, ~70!

^^ f „x~ t1dt!…&&$xp~ t1dt!%ù$xu~ t !%

5dtE dx f~x!
2U~x,t !

\
P~x,t !u„U~x,t !…1o~dt2!,

~71!

and

^^ f „x~ t !…&&$xu~ t1dt!%ù$xp~ t !%

52dtE dx f~x!
2U~x,t !

\
P~x,t !u„2U~x,t !…1o~dt2!.

~72!

These equations~69!–~72! follow Eq. ~58!. The equivalence
between the Fokker-Planck approach and the approach o
stochastic differential equation~62! with the stochastic jump-
ing processes~65! and ~66! has been shown for the forwar
direction. Similarly the equivalence between the two a
proaches can be proven for the backward time direction.

As for the dynamical condition, we do not modify th
original Nelson’s formulation. When the mean time deriv
tives D f (t) and D* f (t) are concerned, there may be som
ambiguity with respect to the taking expectation. Here
will follow the argument given above, Eq.~49!. We define
the ‘‘mean balanced acceleration’’ through the ‘‘mean tim
derivatives’’ as usual, but for the stochastic process with
any jumping process. We simply consider a stochastic p
cess governed by Eqs.~62! and ~63! at all times. This leads
to the ‘‘Newton-Nelson equation’’ in Eq.~16! in the present
case.

The combination of the equations~61!1 i ~16! leads to

]

]xF i
\

m

1

c8

]c8

]t
1

1

2S \

mD 2 1

c8

]2c8

]x2 2
1

m
~V1 iU !G50,

~73!

where relation~18! is used. Again the relation betweenc8
and the solution of Eq.~57! c is given as
he

-

-

e

t
o-

c5c8expS 2
im

\ E t

h~s!dsD ~74!

and

b~x,t !5
\

m
~ Im1Re!

]

]x
lnc~x,t !, ~75!

b* ~x,t !5
\

m
~ Im2Re!

]

]x
lnc~x,t !, ~76!

P~x,t !5uc~x,t !u2 ~77!

are satisfied.

V. NUMERICAL ANALYSIS

Now we can perform a numerical analysis of the effe
of the optical potential and channel coupling on the tunnel
time, using above generalized Nelson’s approach. First,
discuss one-dimensional system with a static square-well
tical potential,

V~x!5H 0 in I ~x,0!

V02 iU 0 in II ~0,x,d!

0 in III ~d,x!

~78!

~Fig. 3!. We set the solution of the Schro¨dinger equation,

i\
]

]t
c~x,t !5F2

\2

2m

]2

]x2 1V~x!Gc~x,t !, ~79!

as

c~x,t !5E
2`

`

A~k!wk~x!e2 i ~E/\!tdk, ~80!

with a coefficient functionA(k) andE5\2k2/2m. It is well
known thatwk(x) is written as

wk~x!5H eikx1Rke
2 ikx in I

Cke
kx1Dke

2kx in II

Tke
ikx in III,

~81!

where

FIG. 3. Schematical illustration of one-dimensional optical b
rier tunneling.
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k5
A2m~V02 iU 02E!

\
5kR2 ik I ~k I.0!, ~82!

S k05
A2m~V02 iU 02E0!

\
5kR02 ik I0 ~k I0.0! D ,

~83!

andRk , Tk , Ck , andDk are given as

Rk

Tk

Ck

Dk

6 5B35
2 i ~k21k2!sinhkd

2kke2 ikd

k~k1 ik !e2kd

k~k2 ik !ekd

~84!

B5
1

2kk coshkd1 i ~k22k2!sinhkd
. ~85!

We take a Gaussian form with its center atk5k0, or

A~k!5Ak0
~k!5C expH 2

~k02k!2

4s2 J , ~86!

with a normalization constantC. Here we puts5k0/100 and
V055E05(\k0/2m)2. Using this solution, we numerically
calculate Eqs.~62!, ~63! and ~65!–~68! .

Figure 4 shows the three typical sample paths calcula

FIG. 4. ~a! and ~b! Three typical sample paths in the optic
potential case.~b! is an enlarged version of~a! (m5\51).
d

by Eqs. ~62!, ~65!, and ~66!. There is a sample pathx(t)
which changes its property from ‘‘physical’’ to ‘‘unphysi
cal’’ in the tunnel region.

Figures 5 and 6 show the parameterU0 /E0 vs the average
of passing timetp , calculated by Eqs.~63!, ~67!, and ~68!.
See the details of this ‘‘backward time evolution method’’
our previous work@20#. Generally,tp decrease asU0 /E0
become larger. Let us estimatetp analytically on the WKB-
like approximation. If we can write the wave function in th
tunnel region II as

c~x,t !;c~x!;C8exp~2k0x!5exp$2~kR02 ik I0!x%,
~87!

the drift of Eq.~63! becomes

b* 5
\

m
~k I01kR0!;

\ k̄ 0

m F11
k I0

kR0
1o2S k I0

kR0
D G ,

k̄ 05
A2m~V02E0!

\
~88!

from Eq. ~76!. In these cases, the ‘‘backward’’ time evolu
tion of the distribution functionPT(x,t), which has an ‘‘ini-
tial’’ distribution d(x2d), is written as

FIG. 5. The mean value oftp vs U0 /E0 ~thin potential cases!.

FIG. 6. The mean value oftp vs U0 /E0 ~thick potential cases!.
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]PT~x,t !

]t
52F \

m
k̄0 S 11

k I0

kR0
D ]

]x
1

\

2m

]2

]x2

2
2

\
U0GPT~x,t !, ~89!

and we can obtain the solution of Eq.~89! easily:

PT~x,t !5S 2mp

2\t D
1/2

exp5 S x2d1

\ k̄ 0S 11
k I0

kR0
D

m
tD 2

\t

2m

2
2U0

\
t6 ~ t,0!. ~90!

There are two characteristic time intervals in this solutio
One is the diffusion timetd;md2/\ for which the distribu-
tion sizes up to the potential widthd. The other is the curren
time

tc;
md

\ k̄ 0S 11
k I0

kR0
D ;

md

\ k̄ 0
S 12

k I0

kR0
D , ~91!

for which the peak of the distribution moves fromx5d to
x50. Of course, the approximation of Eq.~87! is justified
when k̄ 0d is much larger than 1, and this leads us to t
relation

td@tc , ~92!

and the time intervaltc becomes the passing time in th
extreme case. Note that thistc has the tendency of decreasin
asU0 /E0 becomes larger.

Second, we discuss a one-dimensional system wit
static square-well potential and two-channel coupling, or
case of the Schro¨dinger equation for this problem written a

i
]

]tFc1

c2
G5F 2

1

2m

]2

]x2 1V U

U 2
1

2m

]2

]x2 1V
G Fc1

c2
G .

~93!

V andU are supposed to be

V~x!5H 0 in I ~x,0!

V0 in II ~0,x,d!

0 in III ~d,x!

~94!

and
.

e

a
e

U~x!5H 0 in I ~x,0!

U0 in II ~0,x,d!

0 in III ~d,x!.

~95!

Figure 7 shows the schematical illustration of our simulatio
We can diagonalize Eq.~93! as

i
]

]tFc1

c2
G

5F 2
1

2m

]2

]x2 1V1U 0

0 2
1

2m

]2

]x2 1V2U
G Fc1

c2
G ,
~96!

where

c15
1

A2
~c11c2! and c25

1

A2
~c12c2!, ~97!

and write down the time-dependent solution ofc1 and c2

easily as the same as Eq.~80!, or

c6~x,t !5E
2`

`

A~k!w6k~x!e2 i ~E/\!tdk, ~98!

with a Gaussian coefficient function A(k) and
E5\2k2/2m. w6k(x) is Eq. ~81!, substitutingk with

k65
A2m~V06U02E!

\
. ~99!

Figure 8 shows the same typical sample paths calculate
Eqs. ~34!, ~37!, and ~38!. There is a path which changes i
index from 1 to 2 in the passage through the tunneling
gion, t i 51,2. Figures 9 and 10 are the averages of the pass
times over the sample paths which belong to$xi(t)% at

FIG. 7. Schematical illustration of one-dimensional scatter
with channel coupling.
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t→`. We can see in Fig. 10 that there is a critical parame
value of (V02U0)/E051 in the behavior oft1 and t2. This
is understood as following: In the case
(V02U0)/E0.1, the ‘‘2 ’’ channel, which is dominant in
the tunnel region II in comparison with ‘‘1 ’’ one, is not the
tunneling channel, and it describes a particle which g
over the potential. Regardless ofx1(t) and x2(t), the time
spent in the ‘‘potential region’’ is expected to agree with t
one which is expected from classical mechanics or

md

\k20
where k205

A2m~E02V01U0!

\
. ~100!

This is also seen in Fig. 9. On the other hand, in the cas
(V02U0)/E0,1, we can approximate the wave functio
c1 andc2 in the thick tunnel region

Fc1

c2
G;F 0

C2exp~2k20 x!
G , ~101!

andc1 andc2 as

Fc1

c2
G; 1

A2
F C2exp~2k20 x!

2C2exp~2k20 x!
G , ~102!

FIG. 8. Three typical sample paths with channel coupling.

FIG. 9. The mean values oft1 and t2 vs U0 /E0 ~thin potential
cases!.
r

s

of

where

k205
A2m~V02U02E0!

\
. ~103!

So we can estimate ‘‘passing time’’ of both channels (1 a
2) at

md

\k20
, ~104!

and likewise Eq.~91!.

VI. SUMMARY AND COMMENTS

In this paper, we have analyzed the effects of inelas
scattering on the tunneling time theoretically, using gene
ized Nelson’s quantum mechanics. This generalization
abled us to describe quantum system with optical poten
and channel couplings in a real-time stochastic approach
this formalism, the space-time development of dynami
variable, e.g., the coordinate of the particle, is described b
definite path determined stochastically. Each sample path
a definite form of trajectory in the space-time diagram, wh
a physical quantity averaged over the ensemble of th
sample paths recovers the effect of quantum coherence.
is true even in Young’s double slits interference experime
Nelson’s quantum mechanics gives each definite traject
and the ensemble of it, but it does not predict which path
selected when one wants to measure the position of a
ticle. In this sense, this ‘‘real-time stochastic process
proach’’ seems to give us a new insight into quantum m
chanics beyond the Copenhagen interpretation. On the o
hand, the effects of more general cases~many-body systems
environment, temperature, and so on! are subjects for the
future, and this work would be the first step to such a stu
Recent experimental data of tunneling time using the neu
spin-echo shift through the magnetic films@19# seem to agree
with the simulation based on our approach@21#, and this
study will be reported in near future.
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FIG. 10. The mean values oft1 andt2 vs U0 /E0 ~thick potential
cases!.
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