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We analyze the effects of inelastic scattering on the tunneling time theoretically, using generalized Nelson’s
guantum mechanics. This generalization enables us to describe a quantum system with optical potential and
channel couplings in a real-time stochastic approach, which seems to give us a new insight into quantum
mechanics beyond Copenhagen interpreta{i§a050-29477)01408-X]

PACS numbd(s): 03.65.Bz

[. INTRODUCTION cases the transmission probability is low, and consequently

we have the difficulty that a number of sample paths belong-

An issue of the tunneling time, i.e., the time associatedng to the transmission ensemble are also low when each
with the passage of a particle through a tunneling barrier, hagsample path is followed in the forward time direction. How-
been discussed in many theoretical stuflles17], and is not  €ver, in Nelson’s approach there is not only the forward

settled yet. This difficulty arises mainly from the fact that Langevin equation but also the backward Langevin equation
time is not an observable represented by a self-adjoint operadSe€ Eq.(2) below], both being equivalent to each other in
tor, but is just a parameter in quantum mechanics. physical results. The difficulty above is avoided when the

In our previous papef20], we proposed a method to backv&fard Langevin ;aqhuation is employed. I o
evaluate the tunneling time, using Nelson's approach of Taking account of these advantages, we developed a the-

quantum-mechanickL8]. Our aim then was to treat tunnel- oretical of time-dependent description of tunneling phenom-

ing effects in a detailed time-dependent and fully quantum-ena based on Nelson’s stochastic approach in [26. Nu-

; . : [nerical simulations for a one-dimensional square-well
mechanical way, as any theoretical expression of the tunnel-

ing i t be tested b . ts which toasibl 6gotential barrier model were demonstrated. An important re-
Ing timeé must be tested by expenments which are 1easible &1t apout the tunneling time then is that there are three char-
present and in the near future.

i ) , acteristic times, i.ethe passing time and the hesitating time
As discussed in Ref20], Nelson's approach to quantum g thejr sumthe interacting timeThe probability distribu-
mechanics has several advantages to study the tunneliqgy of these three times were calculated numerically.
time, a few of which are listed below. First of all, this ap- oy previous study treated only a quantum system of a
proach, using the real-time stochastic process, enables us dthgle particle under a simple potential. But realistic experi-
describe individual experimental runs of a quantum systenmental situations are more complicated. Naturally we are
in terminology of the “analog” of classical mechanics. This tempted to extend our previous formulation to more general
is true even in the tunnel region where a classical path igcattering phenomena. In this paper we consider cases in
forbidden. From sample paths generated by the stochastighich transition processes into other channels or absorptive
process, we obtain information on the time parameter, irprocesses takes place during scattering processes, and look
particular, the tunneling time. into these effects on the tunneling time.

As a matter of course, the whole ensemble of sample Processes of transition into other channels and absorption
paths gives us the same results as quantum mechanics in thaee described by channel coupling and optical potential
ordinary approach, e.g., expectation values of the observablécomplex potentig| respectively, in ordinary quantum me-
transmission and reflection probabilities in scattering probchanics using the Schidinger equation. So far it is known
lem, and so on. Itis important for us to note that in scatteringhat Nelson’s formulation is equivalent to the Safirger
phenomena(those without bound stateshe transmission equationonly for a one-body problem with a single channel
and reflection ensembles are defined unambiguously, that iand a real potential The purpose of this paper is to gener-
each sample path is classified distinctively into either a transalize Nelson’s stochastic quantization so that it can deal with
mission ensemble or reflection one. multichannel coupling and/or optical potential problems. As

We need to accumulate a sufficient number of samplavill be shown below, one can construct such generalized
paths in numerical simulations. In thick or/and high potentialformulations of Nelson’s approach with additional stochastic

jumping processes. These theoretical formulations allow us
to perform numerical simulations of stochastic processes as

*Electronic address: imafuku@mn.waseda.ac.jp before[20]. This way we can investigate the effects of tran-
"Electronic address: ohba@mn.waseda.ac.jp sition into other channels, or absorption on the tunneling
*Electronic address: yamanaka@mn.waseda.ac.jp time.
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The paper is organized as follows: In Sec. Il the original P 9
Nelson’s quantum mechanics is reviewed briefly for later 52_5(0 P), (8)
relevance. We propose a formulation of the Nelson's ap-
proach, generalized to a quantum system with channel coyyherey is a current velocity,
pling, in Sec. Ill. The formulation of Sec. Ill hints at how to
develop a formulation for optical potential, which is shown b+b,
in Sec. IV. In SecV a numerical simulation for a square- vy ©

well potential model, using the formulations in Secs. Ill and
IV, are demonstrated, and physical implications of these reThe elimination ofP(x,t) from Eqgs.(6) and(8) leads to an
sults are analyzed. Section VI is devoted to summary aneéquation called the kinematical equation,
some comments.
—=——————(uv). (10
Il. BRIEF REVIEW OF NELSON’S QUANTUM ot 2m ox°

MECHANICS . L
The dynamical condition is expressed through the “mean

We start with a brief review of the original Nelson’s time derivatives” introduced as follows: The “mean forward
guantum mechanics, which consists of two basic conditiongjme derivative” Df(t) is defined as
i.e., the kinematical condition and the dynamical one. The
kinematical copdiFion is given by the lto-type stochastic dif- Df(t)= lim <f(t+At)— f(1) f(s)(s=t) fixed>,
ferential equation: There are two ways to express it, depend- Ato4+0 At
ing on the forward or backward time direction. Explicitly we (11)
have, for forward time evolution,

and the “mean backward time derivativey, f(t) is defined

dx(t)=b(x(t),t)dt+dw(t), (1) as
and, for backward time evolution, ) f(t)—f(t—At) .
D, f(t)= lim <A—t f(s)(s=t) flxed>.
dx(t)=b, (x(t),t)dt+dw, (t). (2 At—+0

(12)
The dw(t) is the Gaussian white nois@epresenting the

quantum fluctuationwith the statistical properties of The “mean balanced acceleration” is introduced through the

definitions of Eqs(11) and(12) as

)
= =_ DD,+D,D
(dw(t))=0 and (dw(t)dw(t)) mdt, (3) a(x(t) 1)= * : *2 (). (19
and the same properties fdw, (t) as in Eq.(3). Here( ) Note that this definition can be rewritten as
means a sample average. It is easy to show that for these two

Langevin equations hold the following Fokker-Planck equa- AT v
tions for the distribution functiof(x,t) of the random vari- a(x,t)=— 2m +-—2-ud)+— (14
m dx° 2 X at
ablesx(t),
IP(x.1) p b2 from.E_qs..(l) and (2) with Eqs.(6). and(9). The dyngmical .
’ :[_ —b(x,t)+ 5=— —5|P(x,t) (forward int), condition is nothing but the classical Newton equation to this
gt X 2m dx @ “mean balanced acceleratiorg(x(t),t), that is,
v
aP(x,t) [ @ o 92 ma(x,t)=——~, (19
- It = 5b*(x,t)+ ﬁ W P(x,t)
from which we derive the “Newton-Nelson equation”
(backward int). (5) P Y a0 Y
Thus a pair of equationgl) and (2) is mathematically gt 2max@ Vax  Yax T m ox (16)
equivalent to a pair of equationg) and (5). We obtain an
osmotic velocityu from the sum of Eqgs(4) and(5) as because of Eq(14).
Next we summarize the mathematical structure of Nel-
b—b, 1 9P son’s quantum mechanics. The two basic equations(H.
U= =5 b 7% (6)  from the kinematical condition, and E(L6) from the dy-
namical condition, form a set of simultaneous equations for
under the boundary condition of two unknown functionsu(x,t) andv(x,t), or equivalently,
b(x,t) andb, (x,t). Then we can determine the ensemble of
P(x—,t)—0. (7) sample paths or the distribution functi®{x,t). Although it

is practically very difficult to solve these equations directly
Subtraction of Eq(5) from Eq. (4) gives due to their nonlinearity, one can easily show the equiva-
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lence between this approach and the ordinary approach of thehe diagonal partéthe kinetic energy an#;; terms in Eq.
Schralinger equation. This fact tells us that one can solve th€24) are expected to be dealt with as in Sec. Il. The Schro
problem by means of the wave function much more easilydinger equation$24) and their complex conjugates suggest

The equation the following equations foP;(x,t):
% |%%i—l’/{ % %)2% (?;l('/;, —%V}=O (17) ﬂpi(gtx't) :[—%bi(x,t)Jrzirmj—;—W(Hj)(x,t) Pi(x,t)
f/?a"rz\ilg)i f;?ng (;2?6():,053?;?:@” of Eq10) and the imaginary (forward in tima, (27)
u+iv:%%f7a_‘f)’('_ 1 - &P‘;tx't) - (;ixb*i(x,t)+2—mai:2+w(pj)(x,t) P.(x,t)
Equation(17) clearly shows the relationship betwegh and (backward intim¢  (28)

the wave function) as the solution of Schdinger equation
as P;j(x,t) increases or decreases, due to the poteMial

iﬁ(?—lp: _ ﬁ_z (?_22+V v, (19 causing transitions betweénand j, at the rate of the abso-
ot 2m 9x lute value of
that is, 2 .
W(,HJ)P|:_W(]H|)P]:g|mlﬁJ V“lﬂl (29)
im [t
pxO=y (x,t)exr{ B TJ n(s)ds), (20 Although the sum of Eq(27) and(28) leads to Eq(6) with
the indexi,
with an arbitrary function of, »(t), which has no physical
relevance. It is easily seen from this proof of the equivalence b,—b,; i1 9P
that one has expressions fofx,t), b, (x,t), and P(x,t) in Ui=—%—~ 2m P, ox’ (30

terms of(x,t),
their difference provides us with

f J
b(x,t)= E(Im+Re)a—Xln¢(x,t), (21 P P
. ; (?_t':_ ﬁ—x(vipi)—W(iHj)Pi (32)
b, (x,0)= {1 (IM=Re) 2 Ing/(x.), (22) instead of Eq(8), where
POt =[(x,1)]%. (23 :bi+b*i

(32

Ui
2
lll. STOCHASTIC FORMULATION FOR QUANTUM
SYSTEM WITH CHANNEL COUPLING As a result, eliminatind?;(x,t) from Egs.(30) and(31), one
) derives the kinematical equation
We now generalize the above Nelson’s approach to a sys-

tem with a chaqnel coupling. For simplicity, consider the A ho Fvp 9 o9
two-channel Schidinger equations{(,j}={1,2}) T Im oy (Uivi) ~ 2m x i) (33
d 2 92
i%— o = - — 4V, . instead of Eq(10).
i Zp (D =| = 5 2z Vi) | g (x) q(10

Here arises a natural question what are the stochastic dif-
- _ ferential equations corresponding to the Fokker-Planck equa-
VXD, 24 tions in Egs.(27) and (28), just as Eqs(1) and (2) corre-
with spond to Egs(4) and (5). Apparently we need two random
variablesx;(t) (i=1 and 2, which are assumed to be subject
Vij=Vi . (25 to éfze) stochastic differential equations, similar to E¢s.
and(2),
Here and below the dummy index does not imply taking a
sum. As will be seen, the generalization of the formulation in dx(t) =b;(x;(t),t)dt+dw;(t) (forwardintime,
this section to thé-channel caseN>2) is straightforward. (39
Consider the Fokker-Planck equations in the stochastic
formulation, corresponding to Eq24). First we require a dx(t)=b,(xj(t),t)dt+dw,(t) (backward in time,
natural extension of Eq23) to the present case, (35

Pi(x,t) =] i(x,1)|2. (26)  with the properties fodw;(t) anddw, ;(t),
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We2> 0

(dw;(1))=0, (dw;(t)dw;(t))= %@jdt,
' (36)

(dw,(1))=0, (dw,;(t)dw, (t))= % g dt.

As is easily seen, a naive interpretation of these independen
stochastic differential equations leads only to the Fokker-
Planck equations in Eq$27) and (28) without the terms
proportional to W;_,;). An additional mechanism to take
account of the quantum jump betweieand] represented by
the terms involving/V;_, ;) is necessary. For this purpose we
supplement Eqgs(34) and (35) with a stochastic jumping o ) )
process betweenand|. Thus below we attempt the formu- FIG. l .Schelmatlcal illustration of the “dynamical” rule for the
lation of two random variables (t), subject to the stochastic stochastic jumping process between two channels.
differential equati0n$34) and(35) combined with a stochas- |ng procedeig_ 1) At each time a dice is Cas'mdepen_
tic jumping process in the following way. dently of the stochastic equatiorid84) and (35), and each
The “dynamical” rule to determine how each sample sample path either keeps or changes its index at a certain
pathx;(t) changes its indexi&1—2, or vice versaduring  rate. For the forward time direction, we have the rule in case
passage of time is described by the following random jumpof W;_;,>0 (i #]),

x;(t+dt)  with the probabilityW,; _;,(x;(t),t)dt,

XM= (t+dt)  with the probabilty of T-W,, _ (x (1), t)dt, a7
Xj(t)—Xx;(t+dt)  with the probability 1,
and the rule in case oN;_,;)<0,
xi(t+dt) with the probability—W,;_;,(x;(t),t)dt,
X (0= xj(t+dt) with the probability T+W,;_;,(x;(t),t)dt, 39
Xj(t)—x;(t+dt) with the probability 1.
Likewise, the rules for backward time direction state that, in the cas#of;,>0,
xi(t—dt)  with the probabilityW; _;,(x;(t),t)dt,
Xj(t)ﬂ[x]—(t—dt) with the probability 1-W;__;,(x;(t),t)dt, @9
Xij(t)—x;(t—dt) with the probability 1,
and, in the case d&V;_,;,<0,
xj(t—dt)  with the probability— W;_j,(x;(t),t)dt,
Xi(t)_)[xi(t—dt) with the probability 1+ W,;__;,(x;(t),t)dt,’ 0

Xj(t)—x;(t—dt) with the probability 1.

According to the rules of the random jumping processallowed, and the reverse process is forbidden, where
above, the behavior of each sample path is illustrated as foW;_.;,>0, and vice versa wheré/;;_;;<0. The jumping
lows: For the forward time direction, a sample path startgprocesses may be repeated or may not occur, depending on
from x;(t;), develops according to Ed34) with i for a  the sign and magnitude dN_ ;. Sample paths show a
while, and, when a chance comes, it changes its index fromaimilar behavior for the backward time direction.

i to j and follows Eq.(34) with j until the next jumping It is remarked thak;(t) is generally a functional of both
process takes place. The jumping process fignto x; is  dw,(s) and dw,(s) (s<t) [or dw,i(s) or dw,(s)
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(s>1)], as it may repeat jumps betweeés1 and 2 in the Furthermore, conditional averages with different times such
past (in the futurg. Due to changes in the index for each as ((f(x(t)))){X (t+dyinfx(n} Can be introduced: This ex-
sample path, there are several types of averages which aggnple represents the average only over sample paths which
distinguished from each other carefully. It is convenient tohave the indey att andi att-+dt.

introduce notations for conditional averages. The simple av- | et us now evaluate the time derivative of the physical
erage( ) should be taken over both afw,(s) and dwx(s) averagé(f (x(1))))x vy - For the forward time direction, us-

_(s<t). To represent a physical average of itstate at, we ing appropriate conditional averages, we write
introduce a notation of

= . d
((FXON) ey =(F i (D)), (41 a<<f(x(t))>>{xi(t)}

where the average on the left-hand side implies a conditional

average only over sample paths, labeled layt. This aver- _ i _

age should be expressed in terms of the probability distribu- dt[<<f(x(t+dt))»{xi(”dt)} (WM xen]
tion P;(x,t) as

1
= [P (t+d)) = F X)) 1+ dvpn iz (v}
<<f(X(t))>>{xi<t)}=f dx f(X)Pi(x,t). (42) dt (D} N x(t

{F(X(D))) H((FOX(HAD))) e avynix
The notation({f(x(t))))x,m1uix,; has trivial interpreta-
tions, 1 2 — (PN ), e+ avynixo]- (44)

(CFOON g0 ey = (FX(D)). 43 The three terms here are manipulated as

df(x)

d*f(x)
<<f(x(t+dt))_f(X(t))>>{xi(t+dt)}ﬁ{xi(t)}:<< ix

dx(t)+ 5 ol (dx(t))>+o(dt®? >>

X=X(t) X=X(t)

{xj(t+d}n{x;(t)}

df(x) d?f(x) %

={{ —z—bix(t),)dt+ ——— 5— >>
<< dx dx®  2m, {x(t+dvIn{x (0}

[ dieo d*(x) # ,
= Wbl(x(t),t)dt‘F dX2 2m| —dt {X(t)}+0(dt )

2
=dtf dx(%bi(x,twr m i) Pi(x,t)+o(dt?)

dx*> 2m
2
= 2
dtJ dx f(x)| — b X+ =— T P Pi(x,t)+o(dt?), (45
<<f(x(t+dt))>>{xi(t+dt)}ﬁ{xj(t)}: _dtf dx FO)OW(ij) (X, ) Pi(X,1) 0(— Wi j)(X, 1) + o(dt?), (46)
T
and show the equivalence between HG8) and the stochastic
equation(35) supplemented with the stochastic jumping pro-
(CFON st dvpnix oy cesseg39) and (40).

We need some careful treatment on the dynamical condi-
tion in the present case. For the equivalence between Nel-
:dtf dx FOOWii— ) (XD P (X, 1) O(W(i ) (X, 1)) son’s and Schidinger approaches, the dynamical condition
should have the form
+o(dt?), (47
2
respectively, from Eqs34), (36), (37), (38), and(42). Col- @: i ‘9_uz' ,%.}.u‘ %_ i o7V,, _ (48)
lecting Eqs.(44)—(47), we obtain the correct time evolution at  2m; ox Pox - Tlax o my X
of EqQ. (27). This shows the equivalence between E2j7) _
and the stochastic equatidB4) supplemented with the sto- Here we introduce a “quantum potentialN;; which is to
chastic jumping process€87) and (38). Likewise one can include the effect of channel coupling as well as the usual
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potentialV;; . The simplest way to achieve this equation isto , <y U0
define the “mean balanced acceleratio@; through the
“mean (forward and backwapdtime derivative” as usual, 1+2U/"
but for the stochastic process without any jumping process. .
We simply consider a stochastic process governed by Eq.

(34) all the time, and denot¥; instead ofx; to distinguish

them from each other. There is no mixingdf; anddw; in

X;, contrary tox;. For eachX(t) we define the “mean
balanced accelerationd; (X;(t),t), and the “Newton” equa-
tions

Vi
m;a; (X;(t),t)=— X (49
becomes Eq(49).
The combination of equation83)+i(48) derives

FIG. 2. Schematical illustration of the “dynamical” rule for the

d ﬁ 1 9y o 1 n 21 I RS ﬁW stochastic jumping process between physical and unphysical sector.
ax'myl ot T2\ my) oyl x| i 2 e o
sponds taU <0), is written as
=0, (50
IP(x.t) _ h? 92
where the relation h—r ~om 2 TV DFIU XD #(X,D).
a1y (57)
Uity moyl ox (52) The formulation in Sec. Ill suggests a method to establish
a stochastic formulation for this Scliimger equation. The
is used. If we shift the functiog; to analogy between the channel-coupling model and the present
. model becomes apparent when we attempt the Fokker-
, m; [t Planck equation corresponding to in the forms
soo=wiocted — 5[ weas], 62 “ poning to Ba7)
Pty [ 9 ho 9 .
choose the “quantum potential” as i | TP T om et 7 |P(xt) (forwardint),
(58
~ VY
Vi=ViitRe=, (53 Pt [ d hoP
i _ | _ I
, x> T amae T R PO
and use the relation
(backward int). (59)
Wi_j=— 2| Vi, (54)
(i=p— lgi]? Equations(58) and (59) are compared with Eqg27) and

) (28); both are quite similar to each other with the correspon-
we can reproduce the Scldioger equation§24). By the use  dence between@/% and — Wi |

of Egs.(51) and(52), the relations While the sum of Eqs(58) and(.59) is given by Eq.(6),
5 P their difference leads to
bi(x,t)zE(IerRe)&Im//i(x,t), (55 iz_i(vp)jugp 0
at X h
byi(x,t)= %('m—Re)%ml/fi(X,t), (56)  instead of Eq(8). From Egs.(6) and (60) follows the kine-

matical equation

and Eq.(26) are established again. )
&u_ h d%v J 190 61
A mad wxMWFTmxY D
IV. STOCHASTIC FORMULATION FOR QUANTUM

SYSTEM OF OPTICAL POTENTIAL instead of Eq(10).

The additional term in Eq58) simply describes produc-
In this section, let us formulate Nelson’s stochastic aption (absorption effects foru>0 (U<0), which one may
proach to a system of a single degree of freedom describgglt in such a way that the productiéabsorption process is
by an optical potential. Then the Schinger equation with a transition from an “unphysical” sector to a “physical”
an imaginary part of the potential, denoted iy (a physi- one(from a “physical” sector to an “unphysical” one At
cally relevant situation, i.e., an absorptive process correthis point the analogy between Sec. Ill and this section is
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helpful to find stochastic processes equivalent to the Fokkersample path is said to be physically relevanttaif the
Planck equations in Eq$58) and(59): We consider the two  sample is represented by (t), while it is not so if it is
random variables,(t) andx,(t) for “physical” and “un- represented by, (t). In other words, the physical average at
physical” sectors, respectively, and stochastic jumping bet is given by the average over ensemble of not all sample
tween them occurs according to certain rules, which will bepaths but only physically relevant sample pathst.afhe
specified below. In contrast with the channel-coupling caseotation((f(x(t)))){x (v is introduced to represent this con-

with the indexi, the stochastic differential equations for both itional average fow(x(t)) Similarly the notations of other
of xp(t) andx,(t) can be common. Introducing a notation of ¢onditional  averages  such ag(F(x(1)))x, ) and

a random variablex(t) standing for both ofx,(t) and . :
x,(t), we require the same form of stochastic P ditferential ¢ TN ixwpupx, oy are clear, in particular

equations for this(t) as Egs.(1) and(2) all the time
(N 3 Uy = (FXD)).- (64)

dx(t)=b(x(t),t)dt+dw(t) forwardintime, (62
Again, conditional averages related to many times can be
introduced, e.g.((f(x(t)))){XP(Hdt)}m{xu(t)} is supposed to
represent the average over all the sample paths which are
with the same properties fatw(t) as in Eq.(3), and so on. described by, att andx, att+dt.
Each sample path is describedXyt) as a whole, but has to Let us summarize the “dynamical” rule for stochastic
be classified into eithex,(t) or x,(t) at eacht. Typically a  jumping processes betwe@nandu. The rules are given as
sample path changes as, for examplg,(t;)—X(t2) follows (Fig. 2): (i) For the forward time direction, in the
— -+ —Xp(t,) as a result of repeated jumping processes. Acase ofU<0,

dx(t)=b, (x(t),t)dt+dw, (t) backward in time,
(63

xy(t+dt)  with the probability—2U (x,(t),t)/% dt
p(V— Xp(t+dt)  with the probability = 2U(x,(t),t)/A dt,

(65)
X, (t)—x,(t+dt) with the probability 1,
and, in the case df >0,
Xp(t+dt)  with the probability 2J (x,(t),t)/A dt
Xu(t) Xy (t+dt) with the probability 1-2U(x,(t),t)/A dt, (66)
Xp(t)—X,(t+dt)  with the probability 1.
(ii) For the backward time direction, in the caselb& 0,
Xp(t—dt)  with the probability—2U (x,(t),t)/% dt
Xtb= Xy(t—dt)  with the probability & 2U(x,(t),t)/% dt, 67)
Xp(t)—Xp(t—dt)  with the probability 1,
and, in the case dff>0,
X (t—dt)  with the probability 2J(x,(t),t)/% dt
Xpl— Xp(t—dt)  with the probability 1-2U (x,(t),t)/% dt, 68

X, (t)—x,(t—dt) with the probability 1.

Note that for the forward time direction a jumping processof p and u, each sample path is a stochastic process de-
from x, to x,, is allowed, and the reverse process is forbidderscribed by Eq(62) [or Eq. (63)].

whereU <0, and vice versa whetg¢ >0, and that whelJ is To prove the equivalence between the Fokker-Planck
nonpositive everywhere, the number of sample paths desquation(58) and the stochastic differential equati®d2)
scribedx,(t) decreases, and thatx(t) increases asgoes, with the jumping rules65) and (66), we calculate, for ex-
the total number being conserved. Regardless of the indiceample,
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d({(fOM 0y 1
- = Lt d))) i ay

—((f (X(t))>>{xp(t)}]

1
= S(fxt+dt)

= PO e+ a0yt

H(FOX(HAD))) e+ avynixy o

= (PN g eravynixgn ] (69)
with

(f(x(t+dt)— f(X(t))>>{xp(t+dt)}m{xp(t)}

2

=dtf dx f(x)(—%b(x,t)wL%% P(x,t)
+o(dt?), (70)
((F(E+dD))) e+ dvpnix o)
=dtf dx f(x) ZU;LX’U P(x,t) 8(U(x,t))+o(dt?),
(77)

and

(CFOON gyt a0y n 03

:—dtJ dx f(x)ZU;X’t)

P(x,t)8(—U(x,t))+o(dt?).

(72)
These equation&9)—(72) follow Eq. (58). The equivalence

1149

pre-tunnel region

eikx *

-ikx

\ T.e ikx

Re Vo+iUo

I II
0 d

tunnel region transmission region

111

reflection region

FIG. 3. Schematical illustration of one-dimensional optical bar-
rier tunneling.

im (t
Y= ¢’exp< — ?f n(s)ds) (74)
and

B h i,
b(x,t)= a(lm+Re)5lnz,/;(x,t), (75

h 9
b, (x,t)= E(Im—Re)&lnw(x,t), (76)
P(x,t)=g(x,1)]? (77)

are satisfied.

V. NUMERICAL ANALYSIS

Now we can perform a numerical analysis of the effects
of the optical potential and channel coupling on the tunneling
time, using above generalized Nelson’s approach. First, we
discuss one-dimensional system with a static square-well op-
tical potential,

between the Fokker-Planck approach and the approach of the 0 inl (x<0)

stochastic differential equatiq62) with the stochastic jump- r :

ing processe$65) and(66) has been shown for the forward V(x)=1 Vo~iUp inll  (0<x<d) (78)
direction. Similarly the equivalence between the two ap- 0 inlll (d<x)

proaches can be proven for the backward time direction.

As for the dynamical condition, we do not modify the (Fig. 3. We set the solution of the Scldinger equation,
original Nelson’s formulation. When the mean time deriva-
tivesDf(t) andD, f(t) are concerned, there may be some
ambiguity with respect to the taking expectation. Here we
will follow the argument given above, E@¢49). We define
the “mean balanced acceleration” through the “mean timeas

2(92

-2t V(X)

~2m ax (79

P(x,1),

. d B
|hE:,//(x,t)—

derivatives” as usual, but for the stochastic process without

any jumping process. We simply consider a stochastic pro-

cess governed by Eqé&2) and (63) at all times. This leads
to the “Newton-Nelson equation” in Eq16) in the present
case.

The combination of the equatioli6l)+i(16) leads to

a_ﬁ1a¢'+1ﬁ21 P>y’ ViU |0
wmy Tt T2m e mVTIV=0,

(73

where relation(18) is used. Again the relation betweefri
and the solution of Eq57) # is given as

P(X,t)= JZA(k)QDk(X)e—i(E/ﬁ)tdk,

(80)

with a coefficient functiomA(k) andE=7#2k?/2m. It is well
known thate,(x) is written as

eikx+ Rke—ikx
CkeKX+ Dke_ KX
TkeikX

inl

(X)) = inll (81

in 1,

where
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14 '
—_ tunnel region N 1
o Ng 1.2 ¢
= = J[ : path through
e = 4y I 1
5] <)
2 e 2 08 ! } JI }
EY }
~ \ 1 -~ 1 d=1/ke t
(] ' o 04t
= ; E %I o Vo/Eo=I
021+ Vo/Eo=10
0 M
50 100 0 0.5 1 1.5 2
(@) x (units of 1/k) ( units of BW/B)
20
. A - FIG. 5. The mean value of, vs Uy /E, (thin potential casgs
o | passing time Tp
g or C by Egs.(62), (65), and (66). There is a sample patk(t)
“ 4 which changes its property from “physical” to “unphysi-
a 0 cal” in the tunnel region.
§ Figures 5 and 6 show the parametky/E, vs the average
. B of passing timer,, calculated by Eqs63), (67), and(68).
“E’ d See the details of this “backward time evolution method” in
g=! absorbed our previous work[20]. Generally, 7, decrease atly/E,
-20 become larger. Let us estimatg analytically on the WKB-
. like approximation. If we can write the wave function in the
-5 0 5 10 15 tunnel region Il as
(b) x (units of 1/k)

FIG. 4. (a) and (b) Three typical sample paths in the optical

potential case(b) is an enlarged version ¢ (m=#=1).

_2m(Vo—iUo—E)

P(X,t) ~ h(X) ~ C'expl — koX) = exp| — (kro— i K10) X},
(87)

the drift of Eq.(63) becomes

K 7 =kp—ik, (k>0), (82 L
fiko Kio o[ K10
b*z_(K|o+KRO)~_ 1+_+0 — y
V2m(Vo—iUo—Ey) | m ML R ikro
Ko= 7 =Kro—iKkjg (K0>0)],
(83 — N2m(Vy—Ep)
Ko=——7 (88)
andRy, T,, Cy, andD, are given as
. . from Eq. (76). In these cases, the “backward” time evolu-
—i(k?+k?)sinhxd : istribyti - - ini
Ry . tion of the distribution functiorP(x,t), which has an “ini-
T, 2kkeikd tial” distribution 8(x—d), is written as
=BX{ k(k+ik)e ~d (84
Cx
L 25 .
D, k(k—ik)e
S d=10/ko
. € 7 * Vo/Eo =1
B= ok coshed Ti (k2K sinfwed 9 S 154 | + Vo/E9 =10
We take a Gaussian form with its centerkat k,, or '§ 10 booreee- 11r path through |
(]
(ko—K)? g 4 ¢
A(K)=Ay (k)=C eXD{ T 457 | (86) R : # H
with a normalization consta@®. Here we puir=Kky/100 and 0 0 0.5 1 1.5 2
Vo=5E,=(fikg/2m)?. Using this solution, we numerically (units of BW/B)

calculate Eqs(62), (63) and(65)—(68) .

Figure 4 shows the three typical sample paths calculatedrIG. 6. The mean value of, vs Uy /E, (thick potential caseés
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IPr(x,t) [ _ Ko\ @ . ho8? _
T ml\ M e ax T zm [ P, |2
2 I L
— ZUg|Pr(x.b), (89) ; tunnel region
I V U )
L — = J
and we can obtain the solution of E@9) easily: . UV :
2 -1000 -500 0 500 1000
—_— K
ﬁ Ko 1+ —lo)
KRro
2m77 1/2 X_d+ m t
PT(X,I)Z(_—m> exp i : ,
2m kel 2 2
Hil 1)
-1000 v 500 1000
_ ZUOt (t<0). (90) . FIG. 7. Schemz.:ltical illustration of one-dimensional scattering
h with channel coupling.
0 inl (x<0)
There are two characteristic time intervals in this solution. Ux)={ U inll (0<x<d) (95)
One is the diffusion timey~md?/% for which the distribu- )
tion sizes up to the potential width The other is the current 0 infll (d<x).
time Figure 7 shows the schematical illustration of our simulation.
We can diagonalize Eq93) as
md md / Ko
te~ e I (9D W
P L kg Kro i 9| ¥+
o KRro ot
2
for which the peak of the distribution moves froxs=d to ——— ——+V+U 0
x=0. Of course, the approximation of E(7) is justified B 2m Jx [/
when «qd is much larger than 1, and this leads us to the 1 v |
relation 0 “omactV-u
tg>te, (92) (96)
. . . _ . . where
and the time intervat, becomes the passing time in this
extreme case. Note that thishas the tendency of decreasing 1 1
asU,/Eq becomes larger. _ _ _ Vi=—=1typ) and Yy_=—=(1— ), (97
Second, we discuss a one-dimensional system with a V2 V2

static square-well potential and two-channel coupling, or the

case of the Scfidinger equation for this problem written as @nd write down the time-dependent solutionyof and ¢
easily as the same as E®0), or

1 9
- U * »
ol omad Y " wx,t):ﬁ AK) @ (x)e  EMdk,  (98)
"ot AN 1 Pl
U T om WJFV with  a Gaussian coefficient functionA(k) and
93  E=h%k%2m. ¢.(x) is Eq.(81), substitutingx with
v2m(Vo=Uy—E
V andU are supposed to be . ( Oﬁ 0 ). (99)
0 il (x=0) h h I I h Iculated b
. Figure 8 shows the same typical sample paths calculated by
V(x)=1 Vo inll (0<x<d) (94) Egs.(34), (37), and(38). There is a path which changes its
0 inlll (d<x) index from 1 to 2 in the passage through the tunneling re-

gion, t;_, ,. Figures 9 and 10 are the averages of the passing
and times over the sample paths which belong{tq(t)} at
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60 40
35t - -
s 40 channel 2 - g EoVo=5 d=10/ky
< € | fon
o 2s) md ® U+t
h b
2 o 2 2} ko
= =
o tunnel region Z s
3 20 g o path through
g E 10}--q-3-3$F----Vgommmmmmmmmmmmme o]
= -40 (V U =
5
channel 1 uyv
-60 L 0 .
-40 -20 0 20 40 0 2 4 6 8 10
X (units of 1/k) (units of bW/B)
FIG. 8. Three typical sample paths with channel coupling. FIG. 10. The mean values tf andt, vs U, /E, (thick potential
cases
t—oo. We can see in Fig. 10 that there is a critical parameter
value of (Vo— Ug)/Eg=1 in the behavior of, andt,. This  Where BV UE
is understood as following: In the case of K_o= ©o -0 =0/ (103
(Vo—Up)/Eg>1, the “—" channel, which is dominant in h

the tunnel region Il in comparison with+"" one, is not the timate * ina time” of both ch Is (1 and
tunneling channel, and it describes a particle which goe ;);\t’e can estimate “passing time” of both channels (1 an

over the potential. Regardless »f(t) and x,(t), the time md

spent in the “potential region” is expected to agree with the (1049

one which is expected from classical mechanics or fik—o’
and likewise Eq(91).
md V2m(Eg—Vo+Ug)
where k_g= . (100
hk_o h VI. SUMMARY AND COMMENTS

This is also seen in Fig. 9. On the other hand, in the case of I this paper, we have analyzed the effects of inelastic
(Vo—Ug)/Ep<1, we can approximate the wave functions scattering on the tunneling time theoretically, using general-
¥, and_ in the thick tunnel region ized Nelson’s quantum mechanics. This generalization en-

abled us to describe quantum system with optical potential
and channel couplings in a real-time stochastic approach. In
, (101  this formalism, the space-time development of dynamical
variable, e.g., the coordinate of the particle, is described by a
definite path determined stochastically. Each sample path has
and ¢, and ¢, as a definite form of trajectory in the space-time diagram, while
a physical quantity averaged over the ensemble of these

0
C_exp(—k_g X)

s
W

U 1| C_expl—k_g X) sample paths recovers the effect of quantum coherence. This
~ = _ _ , (102 is true even in Young's double slits interference experiment.
¥ 2l —C_exp—k_ o X) , e - -
Nelson’s quantum mechanics gives each definite trajectory,
and the ensemble of it, but it does not predict which path is
5 v selected when one wants to measure the position of a par-
45 e ticle. In this sense, this “real-time stochastic process ap-
4 Eo/Vo =5 d=l/ko { * h . proach” seems to give us a new insight into quantum me-
3.5 * b chanics beyond the Copenhagen interpretation. On the other

hand, the effects of more general cagaany-body systems,
environment, temperature, and so) @re subjects for the
future, and this work would be the first step to such a study.
Recent experimental data of tunneling time using the neutron
spin-echo shift through the magnetic filfri®] seem to agree
with the simulation based on our approg@i], and this
study will be reported in near future.

time ( units of llk(z))
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