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Wigner’s problem for a precessing magnetic dipole

R. López-Peña,* V. I. Man’ko,† and G. Marmo
Dipartimento di Scienze Fisiche, Universita` di Napoli ‘‘Federico II,’’ Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,

Mostra d’Oltremare, Padiglione 19, 80125 Napoli, Italy
~Received 17 January 1997!

For a magnetic dipole precessing in a magnetic field, it is shown that the quantum dynamical vector field
does not determine the commutation relations for the observables. Several nonlinearly related observables with
identical quantum dynamics are constructed explicitly.@S1050-2947~97!07607-5#

PACS number~s!: 03.65.Bz, 03.65.Fd
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I. INTRODUCTION

Wigner posed the problem of whether quantum dynam
equations determine completely the commutation relati
for the observables@1#. He found an ambiguity for the quan
tum harmonic oscillator. This question was also addresse
Okubo @2#, and he stated that the ambiguity in the comm
tation relations for the same quantum vector field may
understood as an ambiguity in the canonical quantization
nonical procedure due to essentially different Lagrangi
giving the same classical equations of motion@3–5#. The
Wigner procedure has been discussed in the context of
astatistics@6#, and in connection with using parastatistics a
supersymmetry@7# ~also see the discusion in@8,9#!. Self-
adjointness of operators in relation with Wigner’s proble
for the harmonic oscillator has been considered by Watan
@10#, and he reduces the problem to considering a sing
oscillator problem@11,12#.

The problem of the commutation relations of differe
observables which are compatible with the same quan
dynamics was studied in detail by Man’koet al. @13#, where
a class of nonlinearly related quadrature components, o
ing the same dynamics of harmonic vibrations, was c
structed. It was also shown that the same dynamics exist
the quadratures which may or may not satisfy the uncerta
relations, since they have different commutation relations
fact, in another context, not related to the Wigner probl
but to that of constructing coherent states, some oscill
dynamics for observables obeying different commutation
lations has been exhibited@14#, and general deformations fo
the harmonic oscillator algebra were proposed@15–18#.

Discussion of Wigner’s problem usually has been do
for the harmonic oscillator. It is interesting to consider sy
tems different from the harmonic oscillator where Wigne
problem emerges. This may suggest experiments wh
could clarify the physical meaning of this ambiguity in th
commutation relations.

The aim of this work is to demonstrate that analogously
the Wigner’s problem solved for the harmonic oscillator, t
dynamics of precessing the magnetic dipole is compat
with a broad class of different commutation relations wh
obey the same dynamical equations. Indeed we will sh
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that this is also compatible withq-commutation relations
@19–21#. We establish a nonlinear relation~a deformation!
which connects the different components of the angular m
mentum of the system.

In the second section we write the quantum system
we consider, the precessing magnetic dipole, and show
formations, both on the observables and in the commuta
relations, which are compatible with the same dynamics
the standard problem. In the third section it is shown that t
phenomenon has a classical counterpart. In Sec. IV we
view the deformed, both in observables and commutat
relations, two-dimensional harmonic oscillator, and in Sec
we establish the connection between this problem and
precessing dipole. In the last section some conclusions
presented.

II. ROTATING MAGNETIC DIPOLE

Let us consider a magnetic dipole precessing in a m
netic field. This system is described by the Hamiltonian

H52m~JW•BW !. ~1!

HereJW is the angular-momentum operator, andm is the mag-
netic moment. Using the standard Heisenberg picture we
tain the equations of motion for the angular-momentum co
ponents

JẆ5m~JW3BW !. ~2!

Let us choose a reference frame in which the magnetic fi
is along theOz axis: BW 5Bêz . We introduce the ladder op
erators

J65
1

A2
~Jx6 iJy!,

J05Jz , ~3!

which satisfy the commutation relations

@J1 ,J2#52J0 , @J0 ,J6#56J6 . ~4!

We can rewrite the equations of motion~2! as

J̇657 imBJ6

J̇050, ~5!
1126 © 1997 The American Physical Society
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56 1127WIGNER’S PROBLEM FOR A PRECESSING MAGNETIC DIPOLE
whose solutions are

J6~ t !5exp~7 imBt!J6~0!,

J0~ t !5J0~0!. ~6!

One notices that the equations of motion forJ1 and J2

are identical with the equations of motion for creation a
annihilation operators for the harmonic oscillator conside
in @13# @see also Eq.~32! for the harmonic-oscillator case#.
Therefore we can use our previous knowledge on the o
dimensional harmonic oscillator discussed in@13#.

The equations of motion~2!, have as integrals of the mo
tion the zero-angular-momentum componentJ0 and the
square of the angular momentumJW2. Due to this one can
deform the angular momentum in the form

J̃ k5JkF~JW2,J0! ~7!

and one can check that the new deformed components sa
the equation

J̃Ẇ 5m~ J̃W 3BW !. ~8!

To getJW2 andJ0, in terms of the deformed operatorsJ̃W 2

and J̃0, we need to invert the relations

J̃W 25 f ~JW2,J0!$@ f ~JW2,J021!1 f ~JW2,J011!#JW2

1@ f ~JW2,J0!2 f ~JW2,J021!2 f ~JW2,J011!#J0
2

1@ f ~JW2,J021!2 f ~JW2,J011!#J0%,

J̃05 f ~JW2,J0!J0 . ~9!

We see that equations of motion~2!, for the usual angular
momentum, and equations of motion~8!, for the deformed
angular momentum, have the same form. The relation
tween the angular momentum and the deformed angular
mentum~7! is provided by a noncanonical nonlinear tran
formation, which preserves the linear character of
dynamics but changes the commutation relations. One
check that the commutation relations of the deformed co
ponents of the angular momentum are

@ J̃ 1 , J̃ 2#5H 12
f ~JW2,J011!

f ~JW2,J021!
J J̃ 1 J̃ 212 f ~JW2,J011! J̃0 ,

@ J̃0 , J̃ 6#5H 12
f ~JW2,J071!

f ~JW2,J0!
J J̃0 J̃ 66 f ~JW2,J071! J̃ 6 .

~10!

The established result shows that one and the same dy
ics, i.e., the same vector field~2!, with the same solutions fo
the magnetic dipole precessing in a magnetic field, is co
patible with two different sets of commutation relations f
the angular-momentum components given in standard f
d
d
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m-
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m

~4!, and the commutation relations of the deformed angu
momentum given by Eq.~10!.

We can introduce deformed commutation relations
fined by ~e.g., see@19,20#!

@A,B#→@A,B#QL5AL~JW2,J0!B2QBL~JW2,J0!A.
~11!

The deformed commutation relations for the deform
angular-momentum components are

@ J̃ 1 , J̃ 2#QL5H L~JW2,J021!2QL~JW2,J011!

3
f ~JW2,J011!

f ~JW2,J021!
J J̃ 1 J̃ 212Q f~JW2,J011!

3L~JW2,J011! J̃0 , ~12!

@ J̃0 , J̃ 6#QL5H L~JW2,J0!2QL~JW2,J071!

3
f ~JW2,J071!

f ~JW2,J0!
J J̃0 J̃ 66Q f~JW2,J071!

3L~JW2,J071! J̃ 6 . ~13!

To recover the original Hamiltonian description of o
dynamical system we require

f ~JW2,J0!L~JW2,J0!51. ~14!

III. CLASSICAL DIPOLE PRECESSING

Let us demonstrate in this section that the phenomeno
preserving dynamics by nonlinear noncanonical transform
tion exists also in the classical counterpart of our system
fact, let lW5rW3pW be the classical angular momentum with t
Poisson brackets

$ l i ,l j%5« i jk l k . ~15!

Then the classical Hamiltonian

H52m~BW • lW ! ~16!

gives the classical equations of motion, i.e., the classical v
tor field,

lẆ5m~ lW3BW !. ~17!

Let us introducec-number classical coordinates

l 65
1

A2
~ l 16 i l 2!, ~18!

which obey the equations of motion

l̇ 657 imBl6 ,

l̇ 050. ~19!
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Again one sees that the equations of motion for comp
variablesl 6 have the same form as the equations of mot
for the complex amplitude of the classical harmonic osci
tor. This system admits

l 5AlW2,l 0 ~20!

as constants of motion. Then, in analogy with the quant
case of the preceding section, let us consider deformed c
sical variables related to the previous ones by a nonlin
noncanonical transformation

l̃W 5 lW f cl~ l ,l 0!. ~21!

One can check thatl̃W obeys the same dynamics~19!; i.e.,

l̇̃ 657 imB l̃ 6 ,

l̇̃ 050. ~22!

If the function f cl( l ,l 0) is regular so that the map is inver
ible, the equations of motion in the new variables are equ
lent to the old ones.

We see that equations of motion~19!, for the usual clas-
sical angular momentum, and equations of motion~22! for
the deformed classical angular momentum are identica
form. The relation between the angular momentum and
formed angular momentum~21! is a noncanonical nonlinea
transformation, which preserve the linear dynamics
changes the Poisson brackets. The Poisson brackets fo
deformed angular momentum are

$ l̃ 6 , l̃ 0%57S f cl„l ~ l̃ a!,l 0~ l̃ a!…

1 l 0~ l̃ a!
]

] l 0
lnu f „l ~ l̃ a!,l 0~ l̃ a!…u D l̃ 6

$ l̃ 1 , l̃ 2%5 f cl„l ~ l̃ a!,l 0~ l̃ a!… l̃ 0

22
]

] l 0
lnu f „l ~ l̃ a!,l 0~ l̃ a!…u l̃ 1 l̃ 2 . ~23!

The Hamiltonian producing the same dynamics with
above Poisson brackets for the deformed angular momen
has the form

H52m f cl„l ~ l̃ a!,l 0~ l̃ a!…~BW 3 l̃W !. ~24!

Thus we have constructed an example of a classical co
terpart of the quantum Wigner’s problem on precessing
namics of ageneralized angular momentum. We point out
that we call physical angular momentum the one given
lW5rW3pW . Thedeformed angular momentum, in spite that has
the same dynamics, is physically different. The angular m
mentum physically meaningful may be established o
through a measuring procedure.
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IV. DEFORMED TWO-DIMENSIONAL HARMONIC
OSCILLATOR

Let us consider a two-dimensional harmonic oscillator

H5 (
i 51,2

v jnj , ~25!

where the number operatorsnj are defined through the cre
ation and annihilation operatorsaj andaj

† in the usual way

@aj ,aj
†#5d i j , @aj ,aj #50,

nj5aj
†aj . ~26!

The equations of motion are

ȧ j52 iv jaj5 i @H,aj #, ~27!

which implies

aj5exp~2 iv j t !aj~0!. ~28!

Let us define the deformed operators

ã j5aj f ~n1 ,n2![aj f ~nk!5 f ~nk1d jk!aj . ~29!

The generators of theU(2) algebra in terms of annihilation
and creation operators are transformed as

ã j
†ãk5 f ~nl ! f ~nl1dkl2d j l !aj

†ak . ~30!

Thus, the number operators are related through the relat

ñ j5 f 2~nl !nj . ~31!

The equations of motion in the new deformed variab
are given by

ȧ̃ j52 iv j ã j ,

ȧ̃ j
†5 iv j ã j

† , ~32!

i.e., they are still linear equations.
We now define the new deformed commutation relatio

in analogy to Eq.~11!, by

@A,B#→@A,B#QL5AL~nk!B2QBL~nk!A. ~33!

The basic commutation relations for our deformed opera
under the deformed commutation relations shown above

@ ã i , ã j #QL5H L~nk1d ik!2QL~nk1d jk!
f ~nk1d jk!

f ~nk1d ik!J ã i ã j ,

~34!

@ ã i , ã j
†#QL5H L~nk1d ik!2QL~nk2d jk!

3
f ~nk! f ~nk1d ik2d jk!

f 2~nk1d ik! J ã i ã j
†

1QL~nk2d jk! f 2~nk!d i j , ~35!
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@ ã i
† , ã j #QL52H QL~nk1d jk!2L~nk2d ik!

3
f ~nk! f ~nk2d ik1d jk!

f 2~nk1d jk! J ã j ã i
†

2L~nk2d ik! f 2~nk!d i j , ~36!

@ ã i
† , ã j

†#QL5H L~nk2d ik!2QL~nk

2d jk!
f ~nk2d jk!

f ~nk2d ik!J ã i
†ã j

† ~37!

@ ñ i , ã j #Q8L5H L~nk!2Q8L~nk1d jk!
f 2~nk1d jk!

f 2~nk!
J ñ i ã j

2Q8L~nk1d jk! f 2~nk1d jk!d i j ã j ~38!

@ ñ i , ã j
†#Q8L5H L~nk!2Q8L~nk2d jk!

f 2~nk2d jk!

f 2~nk!
J ñ i ã j

†

1Q8L~nk2d jk! f 2~nk2d jk!d i j ã j
† . ~39!

It is not difficult to show that our equations of motion a
compatible with these deformed commutation relatio
Namely,

d

dt
@ ã j , ãk#QL5F d

dt
ã j , ãkG

QL

1F ã j ,
d

dt
ãkG

QL

, ~40!

i.e., the dynamics acts as a derivation for the new brack
We are able to recover the original Hamiltonian descr

tion of our dynamical system~27! by requiring

f 2~nk!L~nk!51. ~41!

It is also possible to get more well-known forms of quan
zation in this framework. For example, the one-dimensio
q-deformed quantization by Biedenharn@19# and Macfarlane
@20# is obtained by adding to Eq.~41! the condition

f 2~n11!5~n11!H 11@~n11!Q2Qn11#
f 2~n21!

f 2~n! J 21

,

n>1. ~42!

We remark that in order to be able to make these kinds
comparisons, we need differentQ’s in q commutators~34!–
~39!, if we deal withq commutators involving the numbe
operators or not.

In generic cases, because our commutation relations
compatible with the dynamical vector field, we can find
Hamiltonian description, i.e., the derivation becomes an
ner derivation.

For use in Sec. V, we notice that different labels may
introduced, namely,

N5n11n2

J35 1
2 ~n12n2!, ~43!
.

.
-

l

f

re

-

e

instead of the labelsn1 and n2; i.e., f (n1 ,n2)[ f (N,J3).
With this notation we could write

f ~nk6d jk!5 f @N61,J31 1
2 ~d j 12d j 2!#.

V. JORDAN-SCHWINGER MAPPING

The realization of the angular-momentum algebra us
the SU(2) generators is expressed by the Jordan-Schwin
mapping@22,23#,

J15a1
†a2 ,

J25a2
†a1 ,

J05 1
2 ~a1

†a12a2
†a2!. ~44!

Using the dynamics expressed by Eq.~27!, we obtain the
equations of motion

J̇656 i ~v12v2!J6 ,

J̇050. ~45!

Then the dynamical system coincides with the one descri
in Eq. ~6! if the following condition is satisfied:

v22v15mB. ~46!

Because the Jordan-Schwinger mapping makes the ide

cationJ05 1
2 (n12n2) andJW25 1

2 N( 1
2 N11), N5n11n2, we

see that condition~14! is similar to condition~41!, but not
identical, because the angular-momentum components tr
form in an anisotropic way through the Jordan-Schwing
mapping; i.e.,

J̃a5 f ~N,J0!Ja f ~N,J0!, a56,0. ~47!

VI. CONCLUSIONS

In this work we show that analogously to Wigner’s pro
lem solved for the harmonic oscillator@13#, the dynamics of
a magnetic dipole moving under the influence of a const
magnetic field is compatible with a broad class of differe
commutation relations, including standardq-deformed ones,
which obey the same dynamical equations. We establis
nonlinear relation~a deformation! which connects the differ-
ent components of the angular momentum of the syst
both quantum and classically. Finally, through the Jord
Schwinger map, we connect the problem considered to
already known results about the harmonic oscillator@13#. We
hope that examples more manageable for the experime
test may be useful to understand the experimental mea
of ambiguities in the Hamiltonian descriptions.
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