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Wigner's problem for a precessing magnetic dipole
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For a magnetic dipole precessing in a magnetic field, it is shown that the quantum dynamical vector field
does not determine the commutation relations for the observables. Several nonlinearly related observables with
identical quantum dynamics are constructed explic[iB1050-294{@7)07607-3

PACS numbg(s): 03.65.Bz, 03.65.Fd

[. INTRODUCTION that this is also compatible witlq-commutation relations
[19-21]. We establish a nonlinear relatida deformation

Wigner posed the problem of whether quantum dynamicawhich connects the different components of the angular mo-
equations determine completely the commutation relationgnentum of the system.
for the observableEl]. He found an ambiguity for the quan-  In the second section we write the quantum system that
tum harmonic oscillator. This question was also addressed byye consider, the precessing magnetic dipole, and show de-
Okubo [2], and he stated that the amb|gu|ty in the commu- ormations, both on the observables and in the commutation
tation relations for the same quantum vector field may bdelations, which are compatible with the same dynamics of
understood as an ambiguity in the canonical quantization cdhe standard problem. In the third section it is shown that this
nonical procedure due to essentially different Lagrangianghenomenon has a classical counterpart. In Sec. IV we re-
giving the same classical equations of motj@+5]. The View the deformed, both in observables and commutation
Wigner procedure has been discussed in the context of pafGIationS, two-dimensional harmonic OSCillator, and in Sec. V
astatistic§6], and in connection with using parastatistics andwe establish the connection between this problem and the
supersymmetn[7] (also see the discusion ii8,9]). Self- precessing dipole. In the last section some conclusions are
adjointness of operators in relation with Wigner's problempresented.
for the harmonic oscillator has been considered by Watanabe
[10], and he reduces the problem to considering a singular IIl. ROTATING MAGNETIC DIPOLE

oscillator problen{11,12. Let us consider a magnetic dipole precessing in a mag-

The problem of the commutation relations of different petic field. This system is described by the Hamiltonian
observables which are compatible with the same quantum

dynamics was studied in detail by Man’let al. [13], where H=—pu(J-B). (1)

a class of nonlinearly related quadrature components, obey-

ing the same dynamics of harmonic vibrations, was conHereJ is the angular-momentum operator, gads the mag-

structed. It was also shown that the same dynamics exists faretic moment. Using the standard Heisenberg picture we ob-

the quadratures which may or may not satisfy the uncertaintyain the equations of motion for the angular-momentum com-

relations, since they have different commutation relations. Irponents

fact, in another context, not related to the Wigner problem - .

but to that of constructing coherent states, some oscillator J=u(IXB). 2

dynamics for observables obeying different commutation re- i i L

lations has been exhibitdd4], and general deformations for L€t Us choose a reference frame in which the magnetic field

the harmonic oscillator algebra were propo$es—18§. is along theOz axis: B=Be,. We introduce the ladder op-
Discussion of Wigner's problem usually has been doneerators

for the harmonic oscillator. It is interesting to consider sys-

tems different from the harmonic oscillator where Wigner’s _i 4
. ; . Jo=—=(3xidy),
problem emerges. This may suggest experiments which J2
could clarify the physical meaning of this ambiguity in the
commutation relations. Jo=3;, 3

The aim of this work is to demonstrate that analogously to hich satisfv th tati lati
the Wigner’s problem solved for the harmonic oscillator, theVhich sa isfy the commutation relations
dynamics of precessing the magnetic dipole is compatible [3.,3.1=23g, [Jo.d:]==%J.. (4)
with a broad class of different commutation relations which
obey the same dynamical equations. Indeed we will showVe can rewrite the equations of moti¢®) as
J.=FiuBJl.
*On leave from Instituto de Ciencias Nucleares, UNAM xite. )
TOn leave from Lebedev Physical Institute, Moscow, Russia. Jo=0, (5)
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whose solutions are (4), and the commutation relations of the deformed angular
momentum given by Eq10).
J.(t)=exp(FiuBt)J-(0), We can introduce deformed commutation relations de-

fined by (e.g., sed19,20)

Jo(1)=30(0). 6) [A.B]—[A,Bloy=AA(32,J0)B— QBA (32 Jg)A.

One notices that the equations of motion for andJ_ 11)
are identical with the equations of motion for creation and The deformed commutation relations for the deformed
annihilation Operators for the harmonic oscillator ConSidererngu|ar-momentum Components are
in [13] [see also Eq(32) for the harmonic-oscillator cage

Therefore we can use our previous knowledge on the one- _ . .

dimensional harmonic oscillator discussed 113]. [3+.3 Joa={ A(J%Jo—1)—QA(JI*Jp+1)
The equations of motiofR), have as integrals of the mo-

tion the zero-angular-momentum componely and the £(32,39+ 1)

square of the angular momentudd. Due to this one can

]3+3+2Qf(52,J0+ 1)
deform the angular momentum in the form

X_,—
£(3%,3p—1)

~ - X A(J%,3p+1)T,, 12
Ti= I (32,30) U (0t 4) % (12

and one can check that the new deformed components satisfy ['joji]QAz A(jZ,JO)—QA(jz,JOI 1)

the equation

F=u(3xB % %71) |5 +Qf(3% 3% 1)
— > + = ’ -+
J=u(JIXB). (8) £(32.30) 0J+ 0
To getJ2 andJ,, in terms of the deformed operatcdg XA(J%371) T (13

and Jo, we need to invert the relations To recover the original Hamiltonian description of our

- . . . . dynamical system we require
J2=1(J3%,I){[ (3% Jg— 1)+ (J?,Jp+1)]32 ) )

R . R £(J3%,J0)A(J%,3p)=1. (14
+[(J?,d0) — F(I%,do— 1) — £(3%,39+1)]33
+[f(52,J0— 1)— f(jZ.Jo+ 1)]30), Ill. CLASSICAL DIPOLE PRECESSING

Let us demonstrate in this section that the phenomenon of
To=1(3%30)J0. (99  preserving dynamics by nonlinear noncanonical transforma-
tion exists also in the classical counterpart of our system. In

We see that equations of moti¢®), for the usual angular fact, letl =rXp be the classical angular momentum with the
momentum, and equations of moti¢8), for the deformed Poisson brackets
angular momentum, have the same form. The relation be-
tween the angular momentum and the deformed angular mo- Uil =sijel (19
mentu_m(?) is provided by a noncar_lonical nonlinear trans-+nan the classical Hamiltonian
formation, which preserves the linear character of the

dynamics but changes the commutation relations. One can H=—,u(|§- r) (16)
check that the commutation relations of the deformed com-
ponents of the angular momentum are gives the classical equations of motion, i.e., the classical vec-
tor field,
- ~ f(3%30+1) | ~ ~ - ~ ,
[J.,J_]= 1—m J J_+2f(J3%53p+1)d, r:M(rX§). (17)

. Let us introducec-number classical coordinates
(32,37 1)

- Jod.+f(32 3,7 1),
Tl 33, 21029,7 7.

1 .
(10) Iizﬁ(lli”z),

The established result shows that one and the same dynaiwhich obey the equations of motion

ics, i.e., the same vector fie(d), with the same solutions for i

the magnetic dipole precessing in a magnetic field, is com- l.==iuBl.,

patible with two different sets of commutation relations for _

the angular-momentum components given in standard form [,=0. (19

[301jt] = | 1
(18
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Again one sees that the equations of motion for complex V. DEFORMED TWO-DIMENSIONAL HARMONIC
variablesl . have the same form as the equations of motion OSCILLATOR

for the complex amplitude of the classical harmonic oscilla-
tor. This system admits

1= 21, 20 H= > o, (25)

i=1.2

Let us consider a two-dimensional harmonic oscillator

as constants of motion. Then, in analogy with the quantunwhere the number operatons are defined through the cre-
case of the preceding section, let us consider deformed claation and annihilation operatoeg and ajT in the usual way
sical variables related to the previous ones by a nonlinear

noncanonical transformation [aj.a]]1=8;, [a;.3;]=0,

= = =afa
=011, 1) nj=ajaj. (26)
. The equations of motion are
One can check that obeys the same dynami¢$9); i.e., ]
aJ:_lealzl[H,aJ], (27)
T T

le=%iuBl., which implies

To=0. 22) aj=exp —iwjt)a;(0). (28
Let us define the deformed operators

If the functionf(l,lo) is regular so that the map is invert-
ible, the equations of motion in the new variables are equiva- EJ- =a;f(ny,ny)=a;f(n)=F(n+ 5 )a;. (29
lent to the old ones.

We see that equations of moti¢h9), for the usual clas- The generators of thg(2) algebra in terms of annihilation
sical angular momentum, and equations of moti@®) for ~ and creation operators are transformed as
the deformed classical angular momentum are identical in .
form. The relation between the angular momentum and de- ala="f(n)f(n+ 38— 8)ala. (30)
formed angular momenturf2l) is a noncanonical nonlinear )
transformation, which preserve the linear dynamics putThus, the number operators are related through the relation

changes the Poisson brackets. The Poisson brackets for the

deformed angular momentum are nj=f2(n)n;. 31
The equations of motion in the new deformed variables
(T Tor={ a0 (Ta)lo(Ta) are given by
_ 9 T aj=-iojaj,
+|O(|a)mln“(l(la)alo(la)» |r _
E]T=iwj’aj ’ (32)
e T p=fal(Ta)lo(Ta) o i.e., they are still linear equations.
9 _ L We now define the new deformed commutation relations,
—Z&TIn|f(|( L) lo(TDITLT-. (23  inanalogy to Eq(11), by
0

[A,B]=[A,Bloa=AA(n)B—QBA(NnYA. (33
The Hamiltonian producing the same dynamics with the
above Poisson brackets for the deformed angular momentuithe basic commutation relations for our deformed operators

has the form under the deformed commutation relations shown above are
~ ~ s 2 ~ o~ f(nk+ 5Jk) ~—~
H=—ufe((12),lo(T)BXT). (24 [aiyaj]QAz[A(nk+5ik)_QA(nk+5jk)m ajaj,

Thus we have constructed an example of a classical coun- (34

terpart of the quantum Wigner's problem on precessing dy- o

namics of ageneralized angular momenturée point out [&; ,a}r]QA=[A(nk+ i) — QA (Ny— i)

that we call physical angular momentum the one given by

I'=rx p. Thedeformed angular momentytin spite that has ) F (Mt 8= 8j) | = ~ 1

the same dynamics, is physically different. The angular mo- 2N+ 6,0) a;ia

mentum physically meaningful may be established only
through a measuring procedure. +QA (N — 5jk)f2(nk) Sij s (35
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[al,ajloa=— [ QA (N + 8j) — AN — i)

f(n) (= S+ i)
fz(nk+ 5”()

—A(ng= 8 F4(n) 8, (36)

=T
ajai

[ELEHQA={AUW—5W»—QAUW

f(nk—6j)
_5jk)f(nk_ 5ik)]

_— B , f2(N+ Sjp) | ~ ~
[ni,ajlora={A(nY—Q A(”lﬁ@'UW n;a;
_Q,A(nk‘l‘ 5jk)f2(nk+ 5]k)5lj’5] (38)
F2(n— j) +

~ =t _
[niyaj]Q’A_

]aa

+Q(A(nk— 5jk)f2(nk— 5“()5”’5;- (39)

A(n) —Q"A(Nk— k)

fz(nk)

It is not difficult to show that our equations of motion are

1129

instead of the label®; and n,; i.e., f(ny,n;)=f(N,J3).
With this notation we could write

f(nki 5]k):f[Ni 1,J3+ %(5]1_ 5J2)]

V. JORDAN-SCHWINGER MAPPING

The realization of the angular-momentum algebra using
the SU(2) generators is expressed by the Jordan-Schwinger
mapping[22,23,

— At
J+_ala2,
—af
J_=a,a,,

Jo=13(aja;—ajay). (44)

Using the dynamics expressed by E7), we obtain the
equations of motion

Ji=Fi(w—wy)d,

compatible with these deformed commutation relations.Then the dynamical system coincides with the one described

Namely,

- ~ - ~ do
—laj,alor=|778j,ak| *|aj,zak| ., (40
dt- ! dt™’ oA I'dt oA

in Eq. (6) if the following condition is satisfied:
wy— w1= uB. (46)

Because the Jordan-Schwinger mapping makes the identifi-

i.e., the dynamics acts as a derivation for the new bracket. cationJ,= 1(n;—n,) andJ2=iN(iN+1), N=n;+n,, we
We are able to recover the original Hamiltonian descrip-see that conditior{14) is similar to condition(41), but not

tion of our dynamical systert27) by requiring

f2(n)A(n)=1. (41)

identical, because the angular-momentum components trans-
form in an anisotropic way through the Jordan-Schwinger
mapping; i.e.,

J,=f(N,J0)J, f(N,Jy), a==,0. (47)

It is also possible to get more well-known forms of quanti-
zation in this framework. For example, the one-dimensional
g-deformed quantization by Biedenhdd®] and Macfarlane
[20] is obtained by adding to E¢41) the condition

VI. CONCLUSIONS

In this work we show that analogously to Wigner’s prob-
lem solved for the harmonic oscillatpt3], the dynamics of
a magnetic dipole moving under the influence of a constant
magnetic field is compatible with a broad class of different
commutation relations, including standayetleformed ones,
which obey the same dynamical equations. We establish a
We remark that in order to be able to make these kinds ofonlinear relatior(a deformatioin which connects the differ-
comparisons, we need differe@ts in g commutatorg34)—  ent components of the angular momentum of the system,
(39), if we deal withq commutators involving the number both quantum and classically. Finally, through the Jordan-
operators or not. Schwinger map, we connect the problem considered to the

In generic cases, because our commutation relations a@ready known results about the harmonic oscillfi®. We
compatible with the dynamical vector field, we can find ahope that examples more manageable for the experimental
Hamiltonian description, i.e., the derivation becomes an iniest may be useful to understand the experimental meaning

f2(n—1)) !
f2(n+1)=(n+1) 1+[(n+1)Q—Q“+1]—fZW ,

n=1. (42

ner derivation.

of ambiguities in the Hamiltonian descriptions.

For use in Sec. V, we notice that different labels may be

introduced, namely,

J3=3(n1—ny), (43
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