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Traditional quantum error correction involves the redundant encodirigogpfantum bits usingn quantum
bits to allow the detection and correction of angit error. The smallest genered=1 code requires=5 for
k=1. However, the dominant error process in a physical system is often well known, thus inviting the
following question: Given a specific error model, can more efficient codes be devised? We demonstrate
alternative codes that correct just amplitude damping errors that allow, for exantptd,,&=1 code using
effectivelyn=4.6. Our scheme is based on using bosonic states of photons in a finite number of optical modes.
We present necessary and sufficient conditions for the codes and describe construction algorithms, physical
implementation, and performance bounds.
[S1050-294{@7)02208-1

PACS numbd(s): 03.65—w, 89.70+c, 89.80+h, 02.70—c

I. INTRODUCTION of a specific nature that may admit a simpler description. For
example, in phase damping, no bit flips occur. The following
Information is classically measured in units of bits, which question therefore arises: Given a particular decoherence
are deterministic two-state systems that are said to exist eprocess, what is the optimal quantum error correction
ther as logical zero Qor logical one 1. However, such a scheme?
representation is only an approximation of reality, which is We do not yet know how to handle this general problem.
described at small size scales by the laws of quantum phydiowever, in this paper we report on progress towards a so-
ics. Quantum-mechanical two-state systefgeantum bits lution, py demonstrating a different class.of quantum error
(“qubits™ )] differ from the classical bit in that they may correction codes that correct only one particular decoherenc_e
exist in a superposition of the two states, for example, aProcess known as amplitude damping. Our approach is simi-
|¥)=al0,)+Db|1,), wherea and b are arbitrary complex 12" in philosophy to that of6], but in contrast to that and
coefficients that satisfya|?+|b|2=1. Two continuous real other previous schemes, instead of qubits, which live in a

parameters are needed to describe the state of a qubit and Lﬁo—dlmensmnal Hilbert space, we utilize bosonic systems

t
this sense, more information is somehow carried in it than byt occupy the Hilbert spage) - -|N). We are unaware of
a classical bit. Furthermore, qubits may not be clofigand any classical analog to our codes. We present possible physi-

even more importantly they may exist entangled states cal _implementat_io_ns of_ourscheme and conclude with a com-
where, for example, two qubits only carry one qubigoan-  Parison with existing binary codes.
tum information
Unfortunately, quantum infprmation igpartially) !ost Il AMPLITUDE DAMPING MODEL
whenever a quantum system is observetiether deliber-
ately or inadvertently Thisdecoherencerocess plays a role Noise is a fundamental process that accompanies the dy-
analogous to noise in a classical communication channel. Aamics of any open system. Traditionally, the dynamics of
major advance in quantum information theory has been than open quantum system are described by a “master equa-
discovery that quantum information can be redundantly ention.” We begin with an outline derivation of this formalism
coded in such a manner that it may be efficiently transmittedor a particular noise process that is physically important:
with arbitrarily high fidelity through a decohering quantum amplitude damping. We then turn to an alternate description
channel. Thequantum error correction codd®,3] that make of the same noise process, using the formalism of quantum
this possible are analogous to classical codes for binargperationd 7], which will later prove to be useful in under-
memoryless channels. Corresponding codes for classical lirstanding and deriving our alternative quantum codes.
ear codes and Reed-Muller codes have been fodral. A master equation is generally derived in the following
These quantum coding schemes are based on a model foranner. The system, described by(t), couples to an en-
the decoherence of qubits, in which three kinds of errors carmironmentb, described by, , through an interaction Hamil-
occur: bit flips (0)«|1)), phase flips [L)« —|1)), and tonianH,. Evolution generates an entangled state of the total
both simultaneously. This model is general; it describes alsystem, causing quantum information originally in the sys-
possible decoherence mechanisms for a qubit. However, int@m alone to dissipate into the environment. Tracing over the
given physical system, the dominant decoherence process énvironmental degrees of freedom gives the reduced matrix
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for the system alone, and in the Born and Markov approxiwhere A, are linear operators, sometimes referred to as
mations(the interaction only weakly perturbs the state of the“Kraus effects[7],” which are related to the Lindblad op-
environment, which is furthermore memorylpse Schie  erators appearing in Ed2.4). In this equationk denotes
dinger equation for the system state has the f8(8] different possible final states of the environment; modeling
the environment as a single simple harmonic oscillator, using

. 1(m | , the number state basigy, (or, equivalently, choosinlg to be
p(t)=— ngo dt’ Tro[H, (t),[H,(t=t"),p(t)®pp]] , the number of photoénz lost from the systemnd taking the
(2.1  environment to initially be in the ground state gives the
operators
where the operators are in given in the interaction picture and _ et
7. is the correlation time of the environment. A= (k|exAtabrbialgy - (2.6

One of the simplest possible interactions between a sys-
tem and an environment is a bilinear coupling, a product ofvhere y=1—cos(xAt) is the probability of losing a single
the elementary system and environment coordinate oper&hoton from the system during tim&t. Operator algebra
tors. The effects of this kind of noise are conveniently studtechniqueg8] can be used to evaluate explicitly the inner
ied by modeling the system as a simple harmonic oscillatoproduct, giving
(we shall dispense with self-Hamiltonians in the following
analysis to avoid unnecessary complicatjortr example, n —
this model provides a good description of the scattering of Ak:; V (k) VL= n=k)(n . (2.7)
photons from a single-mode optical fiber to the outside. The
interaction Hamiltonian in the Schdmger picture is Note that the same result can be obtained by direct integra-
‘ : tion of the master equatiof2.4) and manipulation of the
H,=x(a'b+b'a). (2.2 final answer into the form of E¢2.5). One must then iden-
tify the damping rate ay=1—e ! (this is reasonable; we
wherea,b are the annihilation operators of the system andexpect the damping to be exponential with timehe func-
the environment, respectiveljusing a single-mode model tional dependence of on At is slightly different in the two
for the enVironment, which is sufficient to Capture the dy'derivations because we have used a phenomeno'ogica'
namics of interegt andy is a coupling constant. When is  single-mode model of the environment in our outline deriva-
much smaller than the time scales in whigft) or H,(t) tion.
change significantly, Eq2.1) can be approximated to give If the initial state of the system is pure, it may be written
asp=|y)(¢|. The final statep’ may be elegantly described

- T as an explicit mixture of pure states given b
p(1)=—n53Tr[Hi [Hp®opel], (23 P P Jven By

N
where is a prefactor resulting from the integration. Substi- Ly >=ke:90Ak|¢> ' 28

tuting Eqg.(2.2) gives an equation of motion for the system

density matrix where N is the maximum occupation number of a single
bosonic mode. Here thed” symbol represents a tensor
sum of states anfly’) is a convenient shorthand used to
denote a mixed state, as distinguished from a pure state
|#). In other words,

. A
p=— E(a{fa1p+paTa— 2apa’) , (2.9

where A\=27x?7;,. We have setb™)=0 in Eq. (2.4 to

reflect an environment at temperatl® much smaller than o N +

the system’s energy scalew. This master equation de- p' =Ly )i ]:kE::o A ) (| A - 2.9
scribes the gradual loss of energy from the system to a zero-

temperature environment and is knownaamaplitude damp-  The mixed statd ') is a tensor sum oN+1 (unnormal-

ing [8,9]. , . ized) pure states that describe tNet+ 1 possible final states
Often, because of experimental realitye put photons in ¢ 16 system; one may interpret these as noninterfering “al-
one end of the fiber and observe the output at the other endgrative histories’[11]. The normalization of each pure

what one is interested in is the state change between Wgie gives its probability of occurrence. As previously men-

definite times rather than in the continuous evolution behavgonad k describes the number of photons lost to the envi-

ior. In this context, we may use an alternative and equivalenf,yment |t is important that even when no photons are lost
formalism for quantum noise. Mathematically, the evolutionq yhe enyironment, then the state of the system is changed.
of a density matrix between timasand t+At due to a So far, we have described the effect of amplitude damping
particular process may be described as a linear transform%h a single-mode system. Consider now a system with

tion fromdone ﬁlensity matrip to anotherp’. This may be 1 o4es and let us usky; to denote the action of the effect
expressed in the operator sum representdon as Ay on the jth mode of a statg e[1,m]. After amplitude

damping, the initial pure state

r_ T 2.
p ; ApAl, (2.9 i) =Ny N (2.10
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becomes the mixed state

N
@ Akm|nm>
k=0

, (21

N
[¢’out> = E_B Ak0| n0>

k=0

where there are nowN+ 1)™ possible final states. It is con-

venient to use the shorthand notation

AE:AKOO' . 'Akmm, (212
wherek; is the jth digit of the numberk written in baseN
+1, so that we may rewrite E¢2.11) as

m

(N+1)—1
[’r/fout>: N@ Ai|‘//in> .
k=0

(2.13

Note that identical states in a tensor sum can be combin

using the rule

a[yyeb[yy=1]a|*+[b[Ty) , (2.14

since an overall phase does not mattassuming no en-
tanglement with other systems
As an example, amplitude damping of the state

| in)=2al01)+b|10) (2.15

gives, using
Ao=10)(0|+V1—1)(1], (2.16
Ar=y0)(1], (2.17)

the output state

[ Yout) =Aod in) ® Aoal ¥in) © Ard thin) © A4 ¢in>(2 L
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[¢0ut>:€9|¢i>:§?AE|¢in> ) (3.3
k k

where we shall expreds as a base 5 numeral ahdy) is an
unnormalized pure statghe norm of which gives its prob-
ability for occurring in the mixture For small loss probabil-
ity y, the most likely final state will be

| ooy = (1= ¥)?| i)

corresponding to no quanta being lost to the bath. The next
most likely states result from the loss of a single photon:

(3.9

| por)=V2y(1—y)¥qa|03)+ b|21)], 3.5
|10 =2 ¥(1—7)¥%a|30) +b|12)] . (3.6

e%tates resulting from the loss of more than one quantum

occur with probabilities of ordes?. Therefore, we limit our
correction scheme to errors losing at most one quantum.
Each such erroE; takes|0,) and|1,) to states|O,); and
|1,)i, respectively. The key is tha0, ), |1,), |0.);, and
|1,); Vi are mutually orthogonal and so dkgy), | $o1), and
|$10)- In principle, a(“gquantum-nondemolition’) measure-
ment scheme can detect all error syndromes. Furthermore,
for eachi, the norms of|0,); and|1,); are equal. After
detecting an error syndrome, one can apply an appropriate
unitary transformation converting, ); and|1, ); to |0, ) and
|1,), respectively. This makes possible the correction

(3.7)

wherea is independent of,b. Note that this is done without
any information abou&,b and without diminishing the am-
plitude of the erroneous state. For this particular code, the
output state has fidelity{12,13 [see also Eq.(7.4)]
F=1-6v? with respect to the input.

As a comparison, consider the code

al0.)i+b|1 )i—alal0)+b[1)],

= V1= 714in)©/{00) 219 o)=111),  |1)=[22), (39
This result' can bg understood intuitively: The origina! statéyith the most probable state
only contains a single photon and thus, whenever it is lost,
the final state must be the vacuum. This example indicates |poo=a(1—y)[1D)+b(1-7)?|22) . (3.9
that the state of Eq2.15 is useful for detection of a single-
photon loss. However, no useful information abauandb ~ No unitary transformation will bring it back to
can be extracted from the vacuum state and so it is not useful
for error correction a|11)+b|22) (3.10

unlessa,b are predetermineda nonunitary transformation
can revert the change, but it will reduce the fidelity of the

Let us motivate the remainder of this paper by considercorrection process by an amount first orderyin

ing the following example: Wencodethe logical zero and In the remainder of the paper, we shall describe the crite-
one states of a single qubit as ria for a scheme in whiclk qubits may be encoded so that

loss up tot quanta may be corrected. For smigla scheme

IIl. EXAMPLES

|40)+|04) will be exhibited.
)= =5 —| Ww=l22. @Y
IV. CODE CRITERIA
such that the initial state is the arbitrary qubit L )
Quantum error correction is just the reversing of some
|in)=2al0 ) +b|1,) . (3.2 effect due to decoherence. General criteria for this to be pos-

sible have been given in the literature3—14. In this par-
The possible outcomes after amplitude damping may bdcular case, we may express the required conditions in the
written as following manner. Lef|Co)- - -[c))- - -|c; )} bely+1 code-
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words that encode orthogonal logical states within the 1 N
m-mode Hilbert space with maximum total photon numberA,.. .;|c;)=A, ,1—2 [Ni1* Nim) (4.9
N and definelC(t) as the set of alin-digit baseN+1 num- \/Wﬂzl
bers whose digits sum tb(corresponding td errory. The
logical states must satisfy N my(1— )V 2
: o 221 N—||ni1"'nim_1>
<C|1|A‘k‘A'E/|C|2>:O f0r|1¢|2 or k# k’, (41) (47)
T
(cl|AzAxlc)=0g% VI (4.2 and

for all K, k' e UgK(s). Heregy is some constant that de- Al y(1—y)N~ 1% g
pends only ork. The first condition requires that all errone- (cilAo...1A0...ale) = N, Oim- (4.8

=
ous states be orthogonal and the second requires that the
encoded Hilbert space not be deformed. Here we present arhe nondeformation criteria require the above sum to be the
explicit statement of these two conditions as algebraic consame for all code words. Equivalently, the column sum of
ditions on the code construction. the mth column of each code word divided iy has to be
We consider first a code worft;), which may be ex- independent of the code word. Similar expressions for other
pressed as an equally weighted sunNpenergy eigenstates A give rise to similar criteria for each column separately.
[ny...nm) [we shall borrow fron{17] the namequasiclas-  we therefore have the following.
sical stateiQCSs) because these states resemble the classi-
cal code words; QCSs do not refer to coherent states in this Lemma 1. Let each code word be expressed as &ol-
papet. When all the QCSs are equally weighted, we call theumn, N; row matrix with elementsy; . If we choose code
code “balanced.” Otherwise, the code is referred to as “un-words such that 2;n;;/N,=y; for all |[c), then
balanced.” Each code word can be represented by a matr|€q;||A~ wley=gx Vkek(1).
with m columns andN, rows, each row being one of the = p.oof This is proved above.
QCSs in the code word. For instance, if

These criteria correspond to certain symmetry require-
ments among the various code words. Rer2, K(2)
={0---02,0---20,...,20--0,0---11,0---110, ... ,11--0}.

|C|>—\/— [[ngg - nym)+ -+ [Ny -nym] (4.3

then the corresponding matrix, is

Nip Npp Nim
N N2 Nom
(4.9
NNt N2 Nnym
For t=0 errors, we have K(0)={0} and
Aolniz Nimdy=(1— )™ "n;1- - ni), where the row sum
RizE}“:lnij. Criteria given by Eq.(4.2) require that the

amplitudes ofA|c|) be the same for allc,), that is,

N

! > (1—yhi

N, &4 5

be the same for alic;). A sufficientcondition for this is the
equality of all theR; for all i and for all code wordsc;).

Alternatively, one may say that the sum of any row from any
M, equalsN, the same total photon number in all the QCSs.

Denote the set of QCSs with modes and total photon num-
berN asQ(N,m). It follows that if we construct all the code
words from states i®@(N,m), then the nondeformation con-
straint Eq.(4.2) is satisfied fot=0. Physically, this require-

Working outAg|c) for eachk and applying the criteria for
t=0,1,2, one arrives at the following.

Lemma 2. We adopt the same notations as in Lemma 1.
Let us choose code words that satisfy the nondeformation
criteria fort=1 and such thaEinijlnijZ/N,=yl-l,j2 for all
|c|), wherej,,j,e[1N,] andj4,j, may or may not be dis-
tinct. Then<c||A£A;|c,>=gg vkek(2).

Proof. See Appendix A. |

The generalization to arbitratyis as follows.

Theorem 1. Let each code word be expressed aman
column,N; row matrix with elements;; . If we choose code
words such thaEinijlnij2~ Ilt/N| Vi, . indepen-
dently of |¢;) VI, V(j1.j2,....js)e[1N]5, and Vs
el[1t], then<c||A%Ap|c,):g; VkeUl_,K(s), VI.

Proof. See Appendix A. |

The above theorem can be generalized to unbalanced
codes in which code words are unequally weighted super-
positions of QCSs. If the amplitudes of the QCSs

in |c) are (Juipa .. nfun), We replace the sum
Einijlnijz' .. nijt/N| by Ei/.l,inijlnijz' . 'nijt, i.e., we replace
the equal weights N, by the w;’'s (the derivation of Theo-

ment stems from the fact that a state with higher number ofem 1 in the unbalanced case is a straightforward generali-

guanta decays faster. To preserveosteriori probabilities
of each code word, we must encode them in a subspace
which the decay probabilities are equal for all of them.
Similarly, for t=1 errors, we have K(1)
={0---1,0---10,...,1--0} and, for example,

zation of the balanced case and we will skip the proof

in As t increases, the nondeformation criteria become very
restrictive. We have found unbalanced codes by a numerical
search correcting up tis<4 (Sec. VIII), which have no ana-
logs in the balanced codes. On the other handi$e2, we
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found simple construction algorithms for balanced codes V. EXISTENCE OF CODES
with no apparent counterparts for the unbalanced codes.

It should also be noted that the=0 nondeformation cri-
terion, that row sumstotal number of excitations in each
QCS be equal for all rows and for all matricésode wordg
is not a necessary condition. An example is Shor’s nine-bi

How large musWN, m, andN, be to satisfy both the non-
deformation constraint(4.2) and the orthogonality con-
straint, (4.1)? We now show that an unbalanced code exists
{or arbitrarily larget if N is allowed to be arbitrarily large

code[2] and give an upper bound for the requirdd
Let|co), [c1), ...,lc), ... ]ci ), belo+1 code words,
|0.)=(|000 +|111)) 3, 4.9 each being an unequally weighted superpositioNoQCSs
in @(n,m). For convenience, define
|1,)=(/000 —[112))*2 . (4.10 (nm—1)1
P(n,m)=C(n+m—1,m—1)Eﬁ (5.1
The QCSs have different numbers of 1's, but E45) is ni(m—1)!

equal for|0_) and|1,). However, code criteria far>1 will

be extremely complicated when row sums are different, an
treatment of such codes are outside the scope of the pres
discussion.

The other criteria, the orthogonality constraints given by
Eg. (4.1, can be satisfied as follows. Lity=|u;- - -u,,) and
[vy=|vy - vy be two states iIQ(N,m). We define thelis-
tancebetweenu andv as

s the number of all possible partitions of the integer.e.,
e number ok; such that; + X+ +Xp=n [18]. Then if
we chooseN=nd such that

P(n,m)=N;+Ny+---+N; =Ngcs, (5.2

whereNqcs is the total number of QCS in the code words,
then by Theorem 2 all the QCSs involved can be chosen to
1 be distinct and multiplication of the number states by
D(u,v)= EE lui—v| . (4.1 d=t+1 allows the orthogonality condition to be satisfied.
i On the other hand, the nondeformation condition involves
satisfying a certain number of constraint equations, given by
Clearly, O<D<N. Moreover, D(u,v)=D(v,u), D(u,u)  the total number of possible errors timigs The number of
=0, and errors involving losings photons fromm modes is just the
number of partitions ofs into m parts P(s,m). Take the
QCSs to be arbitrary and solve the nondeformation con-
straint equationgof Theorem 1, generalized to include un-
balanced codesas linear equations for the weights of the
1 QCSs. As long as the number of variabld$qecg is no
==> |ui—wj| (4.13  fewer than the number of equations, solutions always exist.
24 We may also augment the system of equationsl by 1
equations to ensure the correct normalization of each code
=D(u,w) . (4.149  word. Hence, foiN that satisfy

1
D(u,v)+D(v,wW)= Ez |uj—vil+vi—w;| (4.12

ThusD is a metric on the discrete spa¢f{N,m). (For bi- !

nary states, this is half of the Hamming distand@efine the  1+1,+1,> P(s,;m)<Ngcs<P(N/(t+1),m), (5.3
distance between two code worfts;) and |c,) to be the s=0
minimum of D(u,,u,) with |u,),|u,) being QCSs incy)
and |c,), respectively. For code words with non-negative
amplitudes of the constituent QCSs, two code words are of .
thogonal if and only if their distance is nonzero. We there
fore have the following.

codes withm modes correcting errors exist.

We simplify Eq.(5.3) by writing explicitly the expression
P(N/(t+1),m) and’P(s,m) and performing the summa-
“tion (by writing the summand as a telescopic sulVe ob-

tain
Theorem 2: Lefc,) and|c,) be two code words formed N
from states in Q; and Q, respectively, where | m+m—1)!
Q1,Q,CQ(N,m) and D(uy up)>t YuyeQy UyeQy. (L1 1 (Hm)ﬂgm
Then(c,|AIkA;,|c2):O Vk, k' e UgiK(S). t! ll
Proof. LetAg |c,)=|d;), Az|c,)=|d,), and|v,),|v,) be t+1°
QCSs in |d;),/d,), respectively, such thatD(d;, (5.4)

d,)=D(v,,v,). Let |uy), |u,) be the original QCSs in

|cq), |c,) before the error. The®(uy,vq) =D(Uy,v,)<t/2 For example, whem=2, Eq. (5.4) becomes

andD(vq,v,) +D(uy,v1) +D(Us,v5)=D(u,,u,) >t. Hence I (t+2)(t+1) N
D(v,,v5)>0 and D(d,,d,)>0. Therefore,|d;) and |d,) fﬂﬁ 1< —1+1, (5.5
are orthogonal states. | t

In other words, by forming code words using QCSs that aravhich gives a scaling lam~t3,/2. The scaling oN as a
sufficiently far apart, then the orthogonality conditions arefunction of t for arbitrary but fixedm can be obtained by
easily satisfied. approximating the factorials involvindl andt in Eq. (5.4)
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using the Stirling approximation. We found that +|dXodXg- - - dXy- - - AXp0Xg- - - AXq)
N~(l,/em)Mm-1DEm-1/m=1) “WwWe have also assumed (6.10
N/(t+ 1) to be large in obtaining the scaling law, and this is

a consistent assumption. Note that this upper bound is gen- +-- (6.1
erally much larger than necessary, as can be seen in the

examples fott=3 or t=4. Much more efficient codes may +dxpdXg - - - dXpog - - dxpdXg - dXp-1))
be obtained because the QCSs may be chosen to give redun- (6.12

dant constraint equations. This may be accomplished either
systematically(next sectiom or by numerical searckiSec.
VII).

For the nondeformation criteria, the row sunmid=N by
construction. The column sum divided by the normalization
factor squared isby Lemma 1}

VI. CONSTRUCTION ALGORITHM dxg+---+dx, dn
FOR T<2 BALANCED CODES % = m (6.13

.SO far, we havg established C”t?”a for anc! proved th‘?n any code word, independent of the order of the constituent
existence of bosonic codes for amplitude damping. We novh~g5  codes in exampleéd)—(3) in Sec. VIl are con-
present an explicit procedure that obtains a class of balanc\;gructed in this way.
codes to correct for=1 andt=2 EITors. To correct fort=2 errors, thet=1 criteria have to be

To correct thet=1 error, consider orderedh-tuples  qisfieq as well. We take a subset of thel code words
(X1, Xa, . . . Xy) SUCh thak, +Xp+ - - +Xpm=n. We willuse o4 il survive the extra nondeformation criteria for 2.
the same symbol@(nm) for the space of all such We also replacal=2 by d=3. For m>2, pairs of code
m-tuples as well as the space of all QGPs; X, - Xm)}. We words in the form '
define an operation.7 on Q(n,m) that takes

(X1,X2, « .. Xm) 10 (X2, ... Xm,Xq), i.€., the symbols are 1
cyclically permuted. Define the order of an element to be the |0y = —=(]dX,dX5- - - dXy) (6.19
size of its orbit under7. It follows that the ordep must Jm
divide m and letm=pq. An element of ordep looks like
(X1, oo XpoXay oo Xpy o oo Xa, - .. Xp) With the string +|dxdxs: - - dxq) (6.15
(X1, - . . Xp) repeatedy times. The orbit looks like . 6.16
(X1:X2, o Xpy + oo X215 X2, + o2 Xp), (6.1 T dxdx, - - dx 1)),
6.1
(X2,X3, « oo X1y« v« X2, X3, « v v Xq), (6.2 (6.179
1
. (6.3 1) =—(|dXp- - - dXdx (6.18
| L> \/ad m 2 l>
(Xp s X1y oo e Xp—qgy oo o XpiX1y « -2 Xp—1) . (6.4
Pt Pt P Pt +] X1+ - A% dXe) (6.19
We form states by taking equal-weight superposition of
QCSs in each orbit; T (6.20
1 +|dX,d X+ - - dXy)) (6.21
C)=—=(|X1Xp" + - Xp* -+ + X1 Xo- - + X 6.
©) \/B(| 172 P 172 P €3 will always satisfy the nondeformation criteria fdre=2
(proof omitted. Examples(4) and(5) in Sec. VIII are con-
XXz - Xq- - XoXge - - Xq) (6.6)  structed in this way. This encodes only one qubit; we are still
looking fort=2 codes that can encode more qubits.
4., (6.7) For t=3, we performed a numerical search for special

QCSs in which the system of linear equations for the weights
is linearly dependent. In the best case, the number of linear
(6.9) equations to be solved can be much reduced. Therefore, we
can find code words involving fewer QCSs, fewer modes,
States formed by distinct orbits are orthogonal, as the orand fewer quanta. Although encoding is certainly possible
bits partition O(n,m). Furthermore, we multiply each num- With a much smaller Hilbert space, we have not found a
ber in the QCSs byl. The minimal separation of distinct Systematic way to generate such QCSs. Codes correcting
QCSs will be at leastl since distances come as multiples of t<4 errors are exhibited in Sec. VIII.
d only. Hence all the code words will remain orthogonal
after errors oft<<d occur. Code words are now in the form VIl. RATES AND FIDELITIES

+|prl' X1+ XpXp- - 'prl>) .

The performance of these bosonic quantum codes can be
)= (|dxdx,- - -dXp- - - dxgd%,- - -dxp> (6.9 characterized py the'nat.e, the number qf ngits communi-
cated per qubit transmitted, and by thédelity, the worst-
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case qubit degradation after decoding and correction. We + Jon NN NN 2 - )
discuss these two measures here. o ! 7.9
The rater is given by the ratio of the number of encoded '
qubits to the maximum number of qubits that can be accom: T
modated in our Hilbert space: then, fork = (ky.kz, . .- km) €K(8),
N
T _
r= k- (7.2) Kol ApARIC) = (1= N "5y* > wiC(nij k) (7.10
mlog,(nd+1) ’ i=1

where ¥ is the number of code words andd+1)™ is the and using the relation for binomial coefficients
size of the Hilbert space in our code. The exact number of
possible code words depends on the choic®&l dthe maxi- _
mum number of excitations in any single modadm (the C(N’S)_Eg;‘(s) 2‘1 #iC(Ni1,Ky)CNiz,Kp) - - C(Nim Kin)
number of modes Fort=1, we have worked out a counting (7.12
scheme, but omit the details here. However, the majority of

the QCSs have orden. Hence, to a good approximation, the we find that the fidelity is

number of code words obtained is

t
_P(n,m) F=2 1=y y%(N,s) (7.12
2¥= e (7.2 s=1

N

_ t+1 t+2
Thus the asymptotic rate of our codes for largeis IZENH )Y+ 00 (713
(m—1)/m. For smalln, code words involving fewer than Thjs expression holds for balanced codes as well as unbal-
m QCSs allow slightly more qubits to be encoded comparedyced codes. The amazing feature is that given a code that
to Eq. (7.2) [see examplegl)—(3) in Sec. VIIl]. This small  gatisfies the orthogonality and nondeformation constraints,
gain can be important in applications such as key distributionr jg independent of; it is determined only byN andt.
in quantum cryptography. We have shown in Sec. V that for - one should note that although codes can be constructed to
arbitrary but fixed, N~ (I, /em) Y D@m=DM"Dis large  correct an arbitrary number of photon loss, the more errors
enough to guarantee the existence of a code lyithl code  gne wishes to correct, the more photons are required. On the
words. This implies a loose asymptotic lower bound to thegther hand, having larger photon number states means a
achievable rate for our code, of=(m—1)/m. _ higher probability for the system as a whole to suffer loss of
We now turn to the code fidelity, which we desire 10 guanta. These two effects compete against each other to give
know as a function of the parametéds m, andt. The fidel-  an ypper bound on the fidelity, which we can estimate as

ity is defined ag13] follows. LetN be the required maximum photon number and
. t the total number of errors to be corrected. As previously
F=ming, (il pel hin) (7.3 discussed, due to the constraint equations that hold for error

. . . correction to be possible, the two parameters can be reduced
wherep; is the final output state after correction. When theto one degree of freedom, in terms of which we may estimate

correction criteria are satisfied, recovery procedures exist fothe optimal achievable fidelity. In terms of the optimum
the correctable errors that recover the input states. Thereforgelity for fixed vy is obtained by setting

the fidelity equals the total probability that some correctable

errors occur, which is given by d
&In(l—}‘)zo. (7.19
: T
F=min,, inl ATAR| Yin) 7.4
w'”ieusez[mzqs) (Winl AR AT in) 7.4 From Eq.(7.13, this gives, to first order iy,
Let the input state be expressed as a sum of code words 19CdN 1 dC+I o 71
|#in)==,a,|c)). Then using the orthogonality and nondefor- CoaNdt “cgr =Y (7.19

mation conditions, we find that
where C is a shorthand notation faf(N,t+1). Using the

(z//inIA%Aﬂ¢m>=|<c,|AIkA;|c|>| , (7.5  Stirling approximation for the factorials i, we obtain
with |c,) any one of the code words on the right-hand side. N dN N—t—1 B
Now, if we write each code word as In N-t—1 WHn t+1 Tiny=0. (7.18
|c)=Vialnyngz - Ny (7.6)  In general,N is much larger thart, which allows further
simplification of Eq.(7.16):
+2lNoizy - Nom) (7.7)
dN t I ! Iny=0 7.1
.. 7.9 ar N M) Tnreo (.17
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The exact dependence bf ont is generally very compli-
cated. This point can be appreciated from the explicit code |ca)=
examples following this section. In particular, for a fixed V3
number of modes, the minimum number of encoding excita-
tions needed to be able to correct for a fixed number of
photons lost depends on the existence of “good solutions” |c5)= \/—
to the equations representing the code criteria and it is ana-
lytically intractable to find the optimal fidelity for the general
case. We thus have only a bound on the fidelity of a bosonic |ce)=—=[|0a2) +|20a)+|a20)], (8.9
code with arbitrary QCSs. There is no theoretical bound on V3
the number of correctable errors.

For concreteness, we will illustrate the above assuming 1
that N asymptotically follows a power scaling law in As ey = ﬁ[|228>+ 1822 +(282)], (8.9
illustrated in Sec. VIN is boundedby such polynomials in
t. Therefore, the following gives moselower bound of the

[|066>+|606>+|660>] (8.6

[|os4>+|4os>+|84o>] 8.7

upper bound of the fidelity. Suppose~flt®, where the |cg)= i[|246>+|624>+|462>], (8.10
prefactor f and exponenta are approximately constant. \/§
Equation(7.17) can be solved for the optimuin
1
topt%(efa/,yflo)ll(afl) . (718) |Cg>:ﬁ[|264>+|642>+|264>], (811)
Plugging back into Eq(7.13 would give an estimate for the lc,)=|444). (8.12

optimal achievable fidelity. However, these gross estimates

are not expected to be meaningful in actual applications be- Example(3): [[6,3,4,4], n=3=0+1+2,t=1, and fi-
causeN(t) will be the determining factor and, as previously delity F~1—15y?. Here

mentioned, is analytically unobtainable.

|c,)=600) +|060) + |006), (8.13
VIIl. EXPLICIT CODES |C2>=|420>+|204>+|042>, (8.14
Some explicit codes resulting from our work are pre- B
sented here. States are given unnormalized when the normal- |c3)=[240 +|402) +[024), (8.19
ization factor is common for all code words. Codes are speci-
b lcay=1222 . (8.16

fied as[[N,m,2,d]], where N is the total number of
excitations in the QCSsn is the number of modes for each  pxample (4): [[9,3,2,3], n=3, t=2, and fidelity

QCS, 2 is the number of code words, ankis the minimal 1 _g4,3 Note that this code differs from the previous
distance between code words. The fidelity of all the codes igne from havingd=3 instead ofd=2. We take only|c,)

given by F~1—C(N,t+1)y' "%, o and|c;) as code words. Thus
Example (1): [[4,2,2,34], n=2, t=1, and fidelity
F~1—6+2. For this we have |0, )=]306)+|063) +|630), (8.17
|1,)=]036)+|360) +|603). (8.18
0)=—=[]40)+|04)], 8.1
100) \/§[| ) +104] ®3 Example(5): [[6,4,2,3], n=6=0+1+2+3, and fidelity
F~1-15y2. The minimal distance between QCSdlis 2.
11,)=]22). (8.2)  However, the QCSs are not generated by multiplying each
number byd=2. Thus
Examplez (2): [[12,3,19,2], _n=6, tzl_, fidelity |0L>:|0321>+|1032+|2103+|321Q: (&1@
F~1-66y“, and labels given in hexadecimak=12,
a=10). For this |1,)=]0123 +|1230 +|2300)+|3012 .  (8.20
Example (6): [[7,2,2,9] and fidelity F~1—21y?. The
|cy)= [|00c)+|000)+|0c0)] (8.3  code words are not formed by cyclic permutations of the
\/— QCSs. Note that columns 1 and 2 have different column
sums. In this case
1
|co) = ﬁ[|oza>+|a02>+ |2a0)], (8.4) |0.)=70)+16), (8.21
|1,.)=1|52)+|34). (8.22
[|048)+|804)+|480)] (8.5 Example(7): [[9,2,2,3] and fidelity 7~ 1— 845, This is

an unbalanced code that will tolerate2 errors. Note that

| C3> \/—
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one code word is formed from the other by reversing the
order of the modeqThis symmetry between the two modes

is a sufficient condition for balanced codes witk2,
m=3.) Here

1 3
|0L>=§|90>+§|36>, (8.23
1 3
|10)= 509+ \/7_|63>. (8.24

Example(8): [[9,3,2,3] and fidelity /~1—84y°. This is
an unbalanced code that will tolerate2 errors, showing

that the symmetry is not a necessary condition for correctin

t=2 errors:
1
|0L>=ﬁ[|036>+|306>+|360>], (8.29
1
|1)=3[V6/333+ 2009 +]090].  (8.26

Example (9): [[16,2,2,4] and fidelity F~1—1820y".
This is an unbalanced code that will tolerdte 3 errors.
Labels are given in base 1€. and g denote 12 and 16,
respectively. We have

1
|0L>=ﬁ[|09>+|90>+£|88>], (8.27
|1 —i |4 +| 4 (8.28
L>_ \/E[ C> C >] .

Example (10): [[20,3,2,4] and fidelity F~1—4845y".
This is another unbalanced code that will tolertte3 er-
rors. Labels are given in base 21.g, andk denote 12, 16,
and 20, respectively. We have

1
|00)= £[104g) +2/40g) +215/0k0)],  (8.29

1=
L>_\/§

Example (11): [[50,2,2,9] and fidelity F=1

[V2|44c)+ \3|488)]. (8.30
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10y — 9° 90°-6
|1)% /2
Kerr
|out)
12)
A A A A A
[%0) |%1) 2} |¢s) |94}

FIG. 1. Quantum circuit to encode a qubit using the code of
example(1). As in [21], signals travel from left to right, wires

gepresent optical modes, diamonds represent beam splitters, meters

are ideal photon counters, and the Kerr device is an ideal nonlinear
optical medium that effects cross-phase modulation of angk
between single photons.

11,)= \/% 19+ \/§|28>
+ \/§:§|55>+ \/§|73>+ \@am :

(8.39

(8.33

IX. PHYSICAL IMPLEMENTATION

Encoding and decoding of the codes we have described
here can be performed in principle usimgphoton eigen-
states, beam splitters, phase shifters, and Kerr nonlinear op-
tical media. We demonstrate, for example, how states for our
simplest code may be constructed. We then discuss how de-
coding and correction may be performed.

Shown in Fig. 1 is a quantum circuit that can be used to
encode a qubit using th2), |04)+|40) code. Let us see
how this circuit works by tracing the state at the five indi-
cated points. The initial state isyy)=]0122. Two 50%:
50% beam splitters act on the first and second two modes of
this state to give

|10)+|01)

V2

[JE(|04>+|40>—2|22) 0.0

|¢1>: 4

—2 118 760/°. Note the rapid growth in the numerical factor Next, a nonlinear optical Kerr medium is used to perform a
in the second term. To correct for large number of errors, weross phase modulation between the two middle modes. This
need to encode a qubit in a large Hilbert space, but emissiogerves to “label” the|22) state, giving

probabilities are large for high number states. This puts a
limit of performance in our codes. The actual code involves
numbers five times the numbers shown belavdenotes 10.

In this case

_ 10)+|01))[\/6(]|04) + |40
|¢/2>—4\/§{(| )+101))[ V6(|04) +[40))]

1 5 +(]10)—|01))[2]|22)]}. (9.2
0,)= \ﬁ|0a>+ \ﬁ|46> (8.31
18 9
1 5 A final beam splitter in the first two modes now serves to
+ \/:|82>+ \ﬁ|91>’ (8.32 turn the phase modulation into a detectable amplitude differ-
3 45 ence
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FIG. 2. (Left) Optical quantum logic gate used as a building
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/4

Bit 0

Bit 1

Bit 2

block in the decoding procedure; example input states are shown on

the left. y is the cross-phase modulation strength of the Kerr me-

dium, which performs the transformation eig'ab’) on two
modesa andb. (Right) Shorthand notation for this circuit.

9a)= =101 V3sirv([04)+ |40)) + (2c09]22)]

V2
+|10)[ \3co(|04) +|40)) — \2sing|22) ]} (9.3)

such that if the first two modes are measured to|@B
(otherwise, the state is discardetlen we have the output

|04) + | 40)

5

|44) =cosd’|22) + sing’ (9.9

where

§' =tan !

N
3tan
is the new effective angléi,) is the desired encoded state.
After transmission of #,) through a lossy communication
link, the final state can then be measured immedidteding,
for example, photon number countend the transmitted

(9.9

FIG. 3. Quantum circuit used to decode a bosonic state into
qubits. Each thick wire represents a pair of bosonic modes. The top
wire carries the bosonic state and the remaining wires are prepared
as dual-rail quantum bits, which carry just one photon in each pair.

Furthermore, since the decomposition of the nuntbénto
sums of powers of 2 is unique, it is convenient to také

be binary fractions ofr. In this manner, the first dual-rail
qubit becomes the least-significant bitrofand so on. If the
qubits are measured, this circuit would then function equiva-
lently to a perfect photon number detector.

However, it is much more useful in that calculations may
be performed based on the binary representatiom wf de-
termine if any error occurred and to calculate the error syn-
drome. The circuit is then applied in reverse to undo the
entanglement with the bosonic state and the appropriate cor-
rection procedure is applied to fix the detected error. This is
possible since generalized measurements may be performed
on the qubit states to determine the error syndrome without
destroying the superposition state of the original qubit en-
coded in the bosonic state.

X. CONCLUSION

Our treatment of amplitude damping errors is somewhat

gubit collapsed. This would be the standard procedure founusual from the standpoint of most quantum error correc-

point-to-point quantum cryptography.

tion theories, which deal with a bit flip and phase flip picture

Alternatively, the qubit may be relayed by performing anof errors. The relationship can be understood by expressing

error correction step. This involves calculation of the errorthe Ay and A; operators as coherent superpositions of such
syndrome, correcting any detected error, and then reerrors; from Eqs(2.16 and(2.17),

encoding the state for further transmission. In this system,
we have a nonbinary state. If it can be turned into a binary
state, then the entire correction procedure may be performed
using standard techniques of quantum computation, with the
usual binary quantum logic gat¢$9]. This is possible as
follows.

Consider the circuit shown in Fig. 2. The structure is iden-
tical to the well-known quantum-optical Fredkin gate
[20,21], but let us think of it here in a different way. The With probabilities up td(y), a binary code withn bits will
lower pair of wires may be considered to be a single “dual-either projectAd™|c;) onto a state with no errors or project
rail” qubit [22], with logical states |0, )=|10) and A§™ A,|c)) onto a state with only one bit flip error, result-
|1,)=]01). With an input statd,)=|0n)|0_ ) and a Kerr ing from a combination of ®™~! and one of the Pauli op-
medium with x=/n, then the output state will be eratorso,,o,. Hence a binary code correcting for any one-
|#3)=]0n)|1.), and in this manner the circuit may be bit errorwill indeed correct all amplitude damping errors up
thought of as a kind ofontrolled-not gatehat distinguishes to losing one photon, although not to all orders. One reason
between a control state ¢d) and|n). we have studied bosonic codes is to exploit the possibilities

We now use this bosonic controlled-not gate to construcfor achieving higher efficiencies or easier physical imple-
the circuit of Fig. 3, which is based on the fact that differentmentation, though the study is theoretically interesting on its
values of y allow us to distinguish different values aof. own.

1
Ao=5[(1+VI=pI+(1-V1=y)o,].  (10.0

vy

Sy

(10.2

[oxtoy].
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It is important to realize that amplitude damping errorsof by using distinct QCSs, so that the QCSs can occur in
are not independent bit errors since the decay factor of eadmore than one code word. Another possibility is to encode
QCS depends on the total number of excitations in it. Thigjubits using QCSs of a different total number of excitations.
fact is also pointed out by Pleniet al. [6]. Any code cor- We hope that further study of bosonic codes will lead to their
recting a genera| one-bit error can do so in the presence d;fractical utilization in addition to the current theoretical in-
possible amplitude damping and is capable of correcting an{erest.
one-bit error in the projected space in which no loss occurs
as well as correcting a single photon loss in the absence of ACKNOWLEDGMENTS
any other errors. Two or more amplitude damping errors , . .
projected into the nonidentity space are viewed as SeparaE We would like to thank John Preskill for particularly use-

errors. The general relation between binary codes and ampliY! discussions. D.W.L. was supported in part by the Army
g ' nary PResearch Office under Grant No. DAAH04-96-1-0299. 1.L.C

tude damping is still under investigation. . i )
Nevertheless, some interesting comparisons may be mad@cknowledges financial support from the Fannie and John

Rates from our bosonic codes contrast with those achievabl'élertZ Foundation.
by the usual binary codes. For the code of examfle

nd=4, m=2, andk=1, so the rate is found to be=0.22. APPENDIX: CRITERIA FOR NONDEFORMATION
This is slightly better thanr=0.20 for the five-bit OF HILBERT SPACE
(t,k)=(1,1) binary perfect codg23], and much better than . ... 3
the eight-bit (1,1) code of Pleniet al. [6], which corrects Consider K(2)={0---02,0 _20’ 20 O}L.J
. . Lo {0--.011,0 --110, --,110 - -0} for t=2 errors. For in-
errors in the presence &, 's in K(0). Similarly, for the stance

code of examplg2), d=2, n=6, m=3, and ¥=10 code
words may be found, giving a rate=0.2994. In comparison,
a naive evaluation of the quantum Hamming bofihd for ~ Ao...02C1) (A1)
binary codes gives a possible rate of 0.41. Nondeformation
constraints are more restrictive on bosonic error correction
codes than on binary codes, but the bosonic states admit 1
coding schemes that are impossible with binary codes. There =Aq...00—— E [Ni1*Nim) (A2)
is no conclusive statement on comparing the general effi- N i=1
ciencies of the two different type of codes, but the examples
we have discovered indicate the existence of a rich variety of
bosonic codes that may be useful in the future. il \/C(nim,Z) Y2 (1—y)N~2
The code fidelities may also be compared. Our :El N,
[[4,2,2,2] code achievesF~1—6+2. In comparison, from
an explicit evaluation of the effect of amplitude damping on
all qubits, we have found that the five-bit (1,1) binary codewhereC(n,m) is the usual binomial coefficient. The norm
achieves fidelity~1—1.75y2, while the eight-bit (1,1) code Square of this state is
achieves only~1—6v?. This agreement with the bosonic
code is not accidental; it stems from the use of the same total
excitation number. However, it is worthwhile to point out : y2(1—y)N~2
that despite the effort to balance the code words, the five-bit (CilAg...0P0...0dCi) = 2—N||:21 Nim(Nim—1) .
code still has better performance on average due to the small (A4)
number of excitation involved in the system.
In conclusion, we have given general criteria for an errorrhe term linear iny is independent off (code-word indepen-
correction code that encodes qubits in bosonic states. This igeny by the criteria fort=1; hence it follows that
a generalization of the binary error correction codes. Moti-
vated by the dominant decoherence procésmplitude 1 m
damping of a system such as photons transmitted through > ni2m (A5)
optical fibers, we classify our errors according to the number N =1
of excitations lost instead of the more common classification ) ) S
of the number of bits or modes corrupted. We have shown, ifnas to be independent bfif th(::: nondeformation criterion is
one case, that specialization to correction amplitude dampintp be satisfied. OtheAy with k=0---02,...,2G--0 im-
does improve the ratio of the number of encoded qubits tgpose the above requirement on other columns.
the number of required qubits. However, bosonic codes un- Similarly, kK=0---11 changes the code word to
der amplitude damping suffer constraints involving deforma-
tion of the Hilbert space not shared by the binary codes, |, >
rendering the efficiencies lower in the bosonic case when 2 \/nim—lnimy (1-vy
many qubits are encoded. i=1 N
It is too early to conclude on the relative performance of (AB6)
the binary codes and the bosonic codes. Further study will
aim at improving the efficiencies, perhaps by using relative
phases to maintain orthogonality of the code words insteawhich has norm square

INig- - Nim—2) , (A3)

m

)N*Z

[Nz Nim_1—1np—1) ,
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Y2(1—y)N2 m modesj; and j,. When we allowj;=j,, we include the
T_Zl Nim—1Nim - (A7)  previous result for two photon loss at one mode. This proves
! - Lemma 2.

Equation(4.2) requires the following to be independent of ~FOr arbitraryt, we get equations involving various bino-
I mial coefficients. Using requirements involving products of

1 m fewer thant n;;’s, we can replace the products of the bino-
WZ Nim—1Nim - (A8)  mial coefficients to products involving exactly n;;. By
| 1=1 _ mathematical induction, the result for arbitrarys then ob-
A similar result is obtained for other with 1's at any two  tained. This completes the proof of Theorem 1.
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