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Bosonic quantum codes for amplitude damping
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Traditional quantum error correction involves the redundant encoding ofk quantum bits usingn quantum
bits to allow the detection and correction of anyt bit error. The smallest generalt51 code requiresn55 for
k51. However, the dominant error process in a physical system is often well known, thus inviting the
following question: Given a specific error model, can more efficient codes be devised? We demonstrate
alternative codes that correct just amplitude damping errors that allow, for example, at51, k51 code using
effectivelyn54.6. Our scheme is based on using bosonic states of photons in a finite number of optical modes.
We present necessary and sufficient conditions for the codes and describe construction algorithms, physical
implementation, and performance bounds.
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PACS number~s!: 03.65.2w, 89.70.1c, 89.80.1h, 02.70.2c
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I. INTRODUCTION

Information is classically measured in units of bits, whi
are deterministic two-state systems that are said to exis
ther as logical zero 0L or logical one 1L . However, such a
representation is only an approximation of reality, which
described at small size scales by the laws of quantum p
ics. Quantum-mechanical two-state systems@quantum bits
~‘‘qubits’’ !# differ from the classical bit in that they ma
exist in a superposition of the two states, for example,
uc&5au0L&1bu1L&, where a and b are arbitrary complex
coefficients that satisfyuau21ubu251. Two continuous rea
parameters are needed to describe the state of a qubit an
this sense, more information is somehow carried in it than
a classical bit. Furthermore, qubits may not be cloned@1# and
even more importantly they may exist inentangled states
where, for example, two qubits only carry one qubit ofquan-
tum information.

Unfortunately, quantum information is~partially! lost
whenever a quantum system is observed~whether deliber-
ately or inadvertently!. Thisdecoherenceprocess plays a role
analogous to noise in a classical communication channe
major advance in quantum information theory has been
discovery that quantum information can be redundantly
coded in such a manner that it may be efficiently transmit
with arbitrarily high fidelity through a decohering quantu
channel. Thequantum error correction codes@2,3# that make
this possible are analogous to classical codes for bin
memoryless channels. Corresponding codes for classica
ear codes and Reed-Muller codes have been found@4,5#.

These quantum coding schemes are based on a mode
the decoherence of qubits, in which three kinds of errors
occur: bit flips (u0&↔u1&), phase flips (u1&↔2u1&), and
both simultaneously. This model is general; it describes
possible decoherence mechanisms for a qubit. However,
given physical system, the dominant decoherence proce
561050-2947/97/56~2!/1114~12!/$10.00
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of a specific nature that may admit a simpler description.
example, in phase damping, no bit flips occur. The followi
question therefore arises: Given a particular decohere
process, what is the optimal quantum error correct
scheme?

We do not yet know how to handle this general proble
However, in this paper we report on progress towards a
lution, by demonstrating a different class of quantum er
correction codes that correct only one particular decohere
process known as amplitude damping. Our approach is s
lar in philosophy to that of@6#, but in contrast to that and
other previous schemes, instead of qubits, which live in
two-dimensional Hilbert space, we utilize bosonic syste
that occupy the Hilbert spaceu0&•••uN&. We are unaware of
any classical analog to our codes. We present possible ph
cal implementations of our scheme and conclude with a co
parison with existing binary codes.

II. AMPLITUDE DAMPING MODEL

Noise is a fundamental process that accompanies the
namics of any open system. Traditionally, the dynamics
an open quantum system are described by a ‘‘master e
tion.’’ We begin with an outline derivation of this formalism
for a particular noise process that is physically importa
amplitude damping. We then turn to an alternate descrip
of the same noise process, using the formalism of quan
operations@7#, which will later prove to be useful in under
standing and deriving our alternative quantum codes.

A master equation is generally derived in the followin
manner. The systema, described byr(t), couples to an en-
vironmentb, described byrb , through an interaction Hamil-
tonianHI . Evolution generates an entangled state of the to
system, causing quantum information originally in the sy
tem alone to dissipate into the environment. Tracing over
environmental degrees of freedom gives the reduced ma
1114 © 1997 The American Physical Society
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56 1115BOSONIC QUANTUM CODES FOR AMPLITUDE DAMPING
for the system alone, and in the Born and Markov appro
mations~the interaction only weakly perturbs the state of t
environment, which is furthermore memoryless! the Schro¨-
dinger equation for the system state has the form@8,9#

ṙ~ t !52
1

\2E
0

tc
dt8Trb†HI~ t !,@HI~ t2t8!,r~ t ! ^ rb#‡ ,

~2.1!

where the operators are in given in the interaction picture
tc is the correlation time of the environment.

One of the simplest possible interactions between a
tem and an environment is a bilinear coupling, a produc
the elementary system and environment coordinate op
tors. The effects of this kind of noise are conveniently stu
ied by modeling the system as a simple harmonic oscilla
~we shall dispense with self-Hamiltonians in the followin
analysis to avoid unnecessary complications!. For example,
this model provides a good description of the scattering
photons from a single-mode optical fiber to the outside. T
interaction Hamiltonian in the Schro¨dinger picture is

HI5x~a†b1b†a!. ~2.2!

wherea,b are the annihilation operators of the system a
the environment, respectively~using a single-mode mode
for the environment, which is sufficient to capture the d
namics of interest!, andx is a coupling constant. Whentc is
much smaller than the time scales in whichr(t) or HI(t)
change significantly, Eq.~2.1! can be approximated to give

ṙ~ t !52h
tc

\2Trb†HI ,@HI ,r~ t ! ^ rb#‡ , ~2.3!

whereh is a prefactor resulting from the integration. Subs
tuting Eq. ~2.2! gives an equation of motion for the syste
density matrix

ṙ52
l

2
~a†ar1ra†a22ara†! , ~2.4!

where l52hx2tc . We have set̂ b†b&50 in Eq. ~2.4! to
reflect an environment at temperaturekT much smaller than
the system’s energy scale\v. This master equation de
scribes the gradual loss of energy from the system to a z
temperature environment and is known asamplitude damp-
ing @8,9#.

Often, because of experimental reality~we put photons in
one end of the fiber and observe the output at the other e!,
what one is interested in is the state change between
definite times rather than in the continuous evolution beh
ior. In this context, we may use an alternative and equiva
formalism for quantum noise. Mathematically, the evoluti
of a density matrix between timest and t1Dt due to a
particular process may be described as a linear transfo
tion from one density matrixr to anotherr8. This may be
expressed in the operator sum representation@10# as

r85(
k

AkrAk
† , ~2.5!
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where Ak are linear operators, sometimes referred to
‘‘Kraus effects @7#,’’ which are related to the Lindblad op
erators appearing in Eq.~2.4!. In this equation,k denotes
different possible final states of the environment; model
the environment as a single simple harmonic oscillator, us
the number state basisu &b ~or, equivalently, choosingk to be
the number of photons lost from the system!, and taking the
environment to initially be in the ground state gives theAk
operators

Ak5b^kueixDt~a†b1b†a!u0&b , ~2.6!

whereg512cos2(xDt) is the probability of losing a single
photon from the system during timeDt. Operator algebra
techniques@8# can be used to evaluate explicitly the inn
product, giving

Ak5(
n
AS n

kD A~12g!n2kgk un2k&^nu . ~2.7!

Note that the same result can be obtained by direct inte
tion of the master equation~2.4! and manipulation of the
final answer into the form of Eq.~2.5!. One must then iden-
tify the damping rate asg512e2lDt ~this is reasonable; we
expect the damping to be exponential with time!. The func-
tional dependence ofg on Dt is slightly different in the two
derivations because we have used a phenomenolog
single-mode model of the environment in our outline deriv
tion.

If the initial state of the system is pure, it may be writte
asr5uc&^cu. The final stater8 may be elegantly describe
as an explicit mixture of pure states given by

@c8&5 %

k50

N

Akuc& , ~2.8!

where N is the maximum occupation number of a sing
bosonic mode. Here the ‘‘% ’’ symbol represents a tenso
sum of states and@c8& is a convenient shorthand used
denote a mixed state, as distinguished from a pure s
uc&. In other words,

r85@c8&^c8#5 (
k50

N

Akuc&^cuAk
† . ~2.9!

The mixed state@c8& is a tensor sum ofN11 ~unnormal-
ized! pure states that describe theN11 possible final states
of the system; one may interpret these as noninterfering ‘
ternative histories’’@11#. The normalization of each pur
state gives its probability of occurrence. As previously me
tioned,k describes the number of photons lost to the en
ronment. It is important that even when no photons are
to the environment, then the state of the system is chang

So far, we have described the effect of amplitude damp
on a single-mode system. Consider now a system withm
modes and let us useAk j to denote the action of the effec
Ak on the j th mode of a statej P@1,m#. After amplitude
damping, the initial pure state

uc in&5un1•••nm& ~2.10!
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1116 56CHUANG, LEUNG, AND YAMAMOTO
becomes the mixed state

@cout&5F %

k50

N

Ak0un0&G•••F %

k50

N

Akmunm&G , ~2.11!

where there are now (N11)m possible final states. It is con
venient to use the shorthand notation

Ak̃5Ak00•••Akmm , ~2.12!

wherekj is the j th digit of the numberk̃ written in baseN
11, so that we may rewrite Eq.~2.11! as

@cout&5 %

k̃50

m

~N11!21
Ak̃uc in& . ~2.13!

Note that identical states in a tensor sum can be comb
using the rule

a@c& % b@c&5Auau21ubu2@c& , ~2.14!

since an overall phase does not matter~assuming no en-
tanglement with other systems!.

As an example, amplitude damping of the state

uc in&5au01&1bu10& ~2.15!

gives, using

A05u0&^0u1A12gu1&^1u, ~2.16!

A15Agu0&^1u , ~2.17!

the output state

@cout&5A00uc in& % A01uc in& % A10uc in& % A11uc in&
~2.18!

5A12guc in& %Agu00& . ~2.19!

This result can be understood intuitively: The original st
only contains a single photon and thus, whenever it is l
the final state must be the vacuum. This example indica
that the state of Eq.~2.15! is useful for detection of a single
photon loss. However, no useful information abouta andb
can be extracted from the vacuum state and so it is not us
for error correction.

III. EXAMPLES

Let us motivate the remainder of this paper by consid
ing the following example: Weencodethe logical zero and
one states of a single qubit as

u0L&5F u40&1u04&
A2 G u1L&5u22& , ~3.1!

such that the initial state is the arbitrary qubit

uc in&5au0L&1bu1L& . ~3.2!

The possible outcomes after amplitude damping may
written as
ed
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@cout&5 %

k̃

uf k̃&5 %

k̃

Ak̃uc in& , ~3.3!

where we shall expressk̃ as a base 5 numeral anduf k̃& is an
unnormalized pure state~the norm of which gives its prob
ability for occurring in the mixture!. For small loss probabil-
ity g, the most likely final state will be

uf00&5~12g!2uc in& , ~3.4!

corresponding to no quanta being lost to the bath. The n
most likely states result from the loss of a single photon:

uf01&5A2g~12g!3/2@au03&1bu21&], ~3.5!

uf10&5A2g~12g!3/2@au30&1bu12&] . ~3.6!

States resulting from the loss of more than one quan
occur with probabilities of orderg2. Therefore, we limit our
correction scheme to errors losing at most one quant
Each such errorEi takesu0L& and u1L& to statesu0L& i and
u1L& i , respectively. The key is thatu0L&, u1L&, u0L& i , and
u1L& i ; i are mutually orthogonal and so areuf00&, uf01&, and
uf10&. In principle, a~‘‘quantum-nondemolition’’! measure-
ment scheme can detect all error syndromes. Furtherm
for each i , the norms ofu0L& i and u1L& i are equal. After
detecting an error syndrome, one can apply an appropr
unitary transformation convertingu0L& i andu1L& i to u0L& and
u1L&, respectively. This makes possible the correction

au0L& i1bu1L& i→a@au0L&1bu1L&] , ~3.7!

wherea is independent ofa,b. Note that this is done withou
any information abouta,b and without diminishing the am
plitude of the erroneous state. For this particular code,
output state has fidelity@12,13# @see also Eq.~7.4!#
F5126g2 with respect to the input.

As a comparison, consider the code

u0L&5u11&, u1L&5u22&, ~3.8!

with the most probable state

uf00&5a~12g!u11&1b~12g!2u22& . ~3.9!

No unitary transformation will bring it back to

au11&1bu22& ~3.10!

unlessa,b are predetermined~a nonunitary transformation
can revert the change, but it will reduce the fidelity of t
correction process by an amount first order ing.

In the remainder of the paper, we shall describe the cr
ria for a scheme in whichk qubits may be encoded so th
loss up tot quanta may be corrected. For smallt, a scheme
will be exhibited.

IV. CODE CRITERIA

Quantum error correction is just the reversing of so
effect due to decoherence. General criteria for this to be p
sible have been given in the literature@13–16#. In this par-
ticular case, we may express the required conditions in
following manner. Let$uc0&•••ucl&•••ucl o

&% be l o11 code-
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56 1117BOSONIC QUANTUM CODES FOR AMPLITUDE DAMPING
words that encode orthogonal logical states within
m-mode Hilbert space with maximum total photon numb
N and defineK(t) as the set of allm-digit baseN11 num-
bers whose digits sum tot ~corresponding tot errors!. The
logical states must satisfy

^cl 1
uAk̃

†
Ak̃8ucl 2

&50 for l 1Þ l 2 or k̃Þ k̃ 8, ~4.1!

^cl uAk̃
†
Ak̃ucl&5gk̃ ; l ~4.2!

for all k̃ , k̃ 8Pøs<tK(s). Heregk̃ is some constant that de
pends only onk̃ . The first condition requires that all errone
ous states be orthogonal and the second requires tha
encoded Hilbert space not be deformed. Here we presen
explicit statement of these two conditions as algebraic c
ditions on the code construction.

We consider first a code worducl&, which may be ex-
pressed as an equally weighted sum ofNl energy eigenstate
un1 . . . nm& @we shall borrow from@17# the namequasiclas-
sical states~QCSs! because these states resemble the cla
cal code words; QCSs do not refer to coherent states in
paper#. When all the QCSs are equally weighted, we call
code ‘‘balanced.’’ Otherwise, the code is referred to as ‘‘u
balanced.’’ Each code word can be represented by a ma
with m columns andNl rows, each row being one of th
QCSs in the code word. For instance, if

ucl&5
1

ANl

@ un11•••n1m&1•••1unNl1
•••nNlm

&] , ~4.3!

then the corresponding matrixMl is

F n11 n12 ••• n1m

n21 n22 ••• n2m

••• ••• ••• •••

nNl1
nNl2 ••• nNlm

G . ~4.4!

For t50 errors, we have K(0)5$0% and
A0uni1•••nim&5(12g)Ri /2uni1•••nim&, where the row sum
Ri5( j 51

m ni j . Criteria given by Eq.~4.2! require that the
amplitudes ofA0ucl& be the same for allucl&, that is,

1

Nl
(
i 51

Nl

~12g!Ri /2 ~4.5!

be the same for allucl&. A sufficientcondition for this is the
equality of all theRi for all i and for all code wordsucl&.
Alternatively, one may say that the sum of any row from a
Ml equalsN, the same total photon number in all the QCS
Denote the set of QCSs withm modes and total photon num
berN asQ(N,m). It follows that if we construct all the code
words from states inQ(N,m), then the nondeformation con
straint Eq.~4.2! is satisfied fort50. Physically, this require-
ment stems from the fact that a state with higher numbe
quanta decays faster. To preservea posteriori probabilities
of each code word, we must encode them in a subspac
which the decay probabilities are equal for all of them.

Similarly, for t51 errors, we have K~1!
5$0•••1,0•••10, . . . ,1•••0% and, for example,
e
r
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A0•••1ucl&5A0•••1

1

ANl
(
i 51

Nl

uni1•••nim& ~4.6!

5(
i 51

Nl Animg~12g!N21

Nl
uni1•••nim21&

~4.7!

and

^cl uA0•••1
† A0•••1ucl&5

g~12g!N21

Nl
(
i 51

Nl

nim . ~4.8!

The nondeformation criteria require the above sum to be
same for all code words. Equivalently, the column sum
the mth column of each code word divided byNl has to be
independent of the code word. Similar expressions for ot
Ak̃ give rise to similar criteria for each column separate
We therefore have the following.

Lemma 1. Let each code word be expressed as anm col-
umn, Nl row matrix with elementsni j . If we choose code
words such that ( ini j /Nl5yj for all ucl&, then

^cl uAk̃
†
Ak̃ucl&5gk̃ ; k̃PK(1).

Proof. This is proved above. j

These criteria correspond to certain symmetry requ
ments among the various code words. Fort52, K~2!
5$0•••02,0•••20, . . . ,20•••0,0•••11,0•••110, . . . ,11•••0%.
Working outAk̃ucl& for each k̃ and applying the criteria for
t50,1,2, one arrives at the following.

Lemma 2. We adopt the same notations as in Lemma
Let us choose code words that satisfy the nondeforma
criteria for t51 and such that( ini j 1

ni j 2
/Nl5yj 1 , j 2

for all

ucl&, where j 1 , j 2P@1,Nl # and j 1 , j 2 may or may not be dis-
tinct. Then^cl uAk̃

†
Ak̃ucl&5gk̃ ; k̃PK(2).

Proof. See Appendix A. j

The generalization to arbitraryt is as follows.

Theorem 1. Let each code word be expressed as am
column,Nl row matrix with elementsni j . If we choose code
words such that( ini j 1

ni j 2
•••ni j t

/Nl5yj 1 , j 2 , . . . ,j s
indepen-

dently of ucl& ; l , ;( j 1 , j 2 , . . . ,j s)P@1,Nl #
s, and ;s

P@1,t#, then^cl uAk̃
†
Ak̃ucl&5gk̃ ; k̃Pøs51

t K(s), ; l .
Proof. See Appendix A. j

The above theorem can be generalized to unbalan
codes in which code words are unequally weighted sup
positions of QCSs. If the amplitudes of the QCS
in ucl& are (Am1,Am2, . . . ,AmNl

), we replace the sum

( ini j 1
ni j 2

•••ni j t
/Nl by ( im ini j 1

ni j 2
•••ni j t

, i.e., we replace

the equal weights 1/Nl by them i ’s ~the derivation of Theo-
rem 1 in the unbalanced case is a straightforward gene
zation of the balanced case and we will skip the proof!.

As t increases, the nondeformation criteria become v
restrictive. We have found unbalanced codes by a numer
search correcting up tot<4 ~Sec. VIII!, which have no ana-
logs in the balanced codes. On the other hand, fort<2, we
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1118 56CHUANG, LEUNG, AND YAMAMOTO
found simple construction algorithms for balanced cod
with no apparent counterparts for the unbalanced codes

It should also be noted that thet50 nondeformation cri-
terion, that row sums~total number of excitations in eac
QCS! be equal for all rows and for all matrices~code words!,
is not a necessary condition. An example is Shor’s nine
code@2#

u0L&5~ u000&1u111&) ^ 3, ~4.9!

u1L&5~ u000&2u111&) ^ 3 . ~4.10!

The QCSs have different numbers of 1’s, but Eq.~4.5! is
equal foru0L& andu1L&. However, code criteria fort.1 will
be extremely complicated when row sums are different,
treatment of such codes are outside the scope of the pre
discussion.

The other criteria, the orthogonality constraints given
Eq. ~4.1!, can be satisfied as follows. Letuu&5uu1•••um& and
uv&5uv1•••vm& be two states inQ(N,m). We define thedis-
tancebetweenu andv as

D~u,v !5
1

2(i
uui2v i u . ~4.11!

Clearly, 0<D<N. Moreover, D(u,v)5D(v,u), D(u,u)
50, and

D~u,v !1D~v,w!5
1

2(i
uui2v i u1uv i2wi u ~4.12!

>
1

2(i
uui2wi u ~4.13!

5D~u,w! . ~4.14!

ThusD is a metric on the discrete spaceQ(N,m). ~For bi-
nary states, this is half of the Hamming distance.! Define the
distance between two code wordsuc1& and uc2& to be the
minimum of D(u1 ,u2) with uu1&,uu2& being QCSs inuc1&
and uc2&, respectively. For code words with non-negati
amplitudes of the constituent QCSs, two code words are
thogonal if and only if their distance is nonzero. We the
fore have the following.

Theorem 2: Letuc1& and uc2& be two code words formed
from states in Q1 and Q2 respectively, where
Q1 ,Q2,Q(N,m) and D(u1 ,u2).t ;u1PQ1 ,u2PQ2.
Then ^cl uAk̃

†
Ak̃8uc2&50 ; k̃ , k̃ 8Pøs<tK(s).

Proof. LetAk̃8uc1&5ud1&, Ak̃uc2&5ud2&, and uv1&,uv2& be
QCSs in ud1&,ud2&, respectively, such thatD~d1,
d2)5D(v1 ,v2). Let uu1&, uu2& be the original QCSs in
uc1&, uc2& before the error. ThenD(u1 ,v1)5D(u2 ,v2)<t/2
andD(v1 ,v2)1D(u1 ,v1)1D(u2 ,v2)>D(u1 ,u2).t. Hence
D(v1 ,v2).0 andD(d1 ,d2).0. Therefore,ud1& and ud2&
are orthogonal states. j

In other words, by forming code words using QCSs that
sufficiently far apart, then the orthogonality conditions a
easily satisfied.
s

it
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V. EXISTENCE OF CODES

How large mustN, m, andNl be to satisfy both the non
deformation constraint,~4.2! and the orthogonality con
straint,~4.1!? We now show that an unbalanced code ex
for arbitrarily larget if N is allowed to be arbitrarily large
and give an upper bound for the requiredN.

Let uc0&, uc1&, . . . , ucl&, . . . , ucl o
&, be l o11 code words,

each being an unequally weighted superposition ofNl QCSs
in Q(n,m). For convenience, define

P~n,m!5C~n1m21,m21![
~n1m21!!

n! ~m21!!
~5.1!

as the number of all possible partitions of the integern, i.e.,
the number ofxi such thatx11x21•••1xm5n @18#. Then if
we chooseN5nd such that

P~n,m!>N11N21•••1Nl o
5NQCS, ~5.2!

whereNQCS is the total number of QCS in the code word
then by Theorem 2 all the QCSs involved can be chose
be distinct and multiplication of the number states
d5t11 allows the orthogonality condition to be satisfied

On the other hand, the nondeformation condition involv
satisfying a certain number of constraint equations, given
the total number of possible errors timesl o . The number of
errors involving losings photons fromm modes is just the
number of partitions ofs into m partsP(s,m). Take the
QCSs to be arbitrary and solve the nondeformation c
straint equations~of Theorem 1, generalized to include un
balanced codes! as linear equations for the weights of th
QCSs. As long as the number of variables (NQCS) is no
fewer than the number of equations, solutions always ex
We may also augment the system of equations byl o11
equations to ensure the correct normalization of each c
word. Hence, forN that satisfy

11 l o1 l o(
s50

t

P~s,m!<NQCS<P„N/~ t11!,m… , ~5.3!

codes withm modes correctingt errors exist.
We simplify Eq.~5.3! by writing explicitly the expression

for P„N/(t11),m… andP(s,m) and performing the summa
tion ~by writing the summand as a telescopic sum!. We ob-
tain

m! ~11 l o!1 l oF ~ t1m!!

t! G<mF S N

t11
1m21D !

N

t11
!

G .

~5.4!

For example, whenm52, Eq. ~5.4! becomes

l o~ t12!~ t11!

2
1 l 011<

N

t11
11 , ~5.5!

which gives a scaling lawN't3l o/2. The scaling ofN as a
function of t for arbitrary but fixedm can be obtained by
approximating the factorials involvingN and t in Eq. ~5.4!
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using the Stirling approximation. We found th
N'( l o /em)1/(m21)t (2m21)/(m21). We have also assume
N/(t11) to be large in obtaining the scaling law, and this
a consistent assumption. Note that this upper bound is g
erally much larger than necessary, as can be seen in
examples fort53 or t54. Much more efficient codes ma
be obtained because the QCSs may be chosen to give re
dant constraint equations. This may be accomplished ei
systematically~next section! or by numerical search~Sec.
VIII !.

VI. CONSTRUCTION ALGORITHM
FOR T<2 BALANCED CODES

So far, we have established criteria for and proved
existence of bosonic codes for amplitude damping. We n
present an explicit procedure that obtains a class of balan
codes to correct fort51 andt52 errors.

To correct the t51 error, consider orderedm-tuples
(x1 ,x2 , . . . ,xm) such thatx11x21•••1xm5n. We will use
the same symbolQ(n,m) for the space of all such
m-tuples as well as the space of all QCSs$ux1x2•••xm&%. We
define an operation T on Q(n,m) that takes
(x1 ,x2 , . . . ,xm) to (x2 , . . . ,xm ,x1), i.e., the symbols are
cyclically permuted. Define the order of an element to be
size of its orbit underT . It follows that the orderp must
divide m and letm5pq. An element of orderp looks like
(x1 , . . . ,xp ,x1 , . . . ,xp , . . . ,x1 , . . . ,xp) with the string
(x1 , . . . ,xp) repeatedq times. The orbit looks like

~x1 ,x2 , . . . ,xp , . . . ,x1 ,x2 , . . . ,xp!, ~6.1!

~x2 ,x3 , . . . ,x1 , . . . ,x2 ,x3 , . . . ,x1!, ~6.2!

. . . , ~6.3!

~xp ,x1 , . . . ,xp21 , . . . ,xp ,x1 , . . . ,xp21! . ~6.4!

We form states by taking equal-weight superposition
QCSs in each orbit:

uc&5
1

Ap
~ ux1x2•••xp•••x1x2•••xp& ~6.5!

1ux2x3•••x1•••x2x3•••x1& ~6.6!

1••• ~6.7!

1uxpx1•••xp21•••xpx1•••xp21&) .
~6.8!

States formed by distinct orbits are orthogonal, as the
bits partitionQ(n,m). Furthermore, we multiply each num
ber in the QCSs byd. The minimal separation of distinc
QCSs will be at leastd since distances come as multiples
d only. Hence all the code words will remain orthogon
after errors oft,d occur. Code words are now in the form

uc&5
1

Ap
~ udx1dx2•••dxp•••dx1dx2•••dxp& ~6.9!
n-
he

un-
er

e
w
ed

e

f

r-

l

1udx2dx3•••dx1•••dx2dx3•••dx1&
~6.10!

1••• ~6.11!

1udxpdx1•••dxp21•••dxpdx1•••dxp21&) .
~6.12!

For the nondeformation criteria, the row sum isnd5N by
construction. The column sum divided by the normalizati
factor squared is~by Lemma 1!

dx11•••1dxp

p
5

dn

m
~6.13!

in any code word, independent of the order of the constitu
QCSs. Codes in examples~1!–~3! in Sec. VIII are con-
structed in this way.

To correct for t52 errors, thet51 criteria have to be
satisfied as well. We take a subset of thet51 code words
that will survive the extra nondeformation criteria fort52.
We also replaced52 by d>3. For m.2, pairs of code
words in the form

u0L&5
1

Am
~ udx1dx2•••dxm& ~6.14!

1udx2dx3•••dx1& ~6.15!

1••• ~6.16!

1udxmdx1•••dxm21&),
~6.17!

u1L&5
1

Am
~ udxm•••dx2dx1& ~6.18!

1udxm21•••dx1dxm& ~6.19!

1••• ~6.20!

1udx1dxm•••dx2&) ~6.21!

will always satisfy the nondeformation criteria fort52
~proof omitted!. Examples~4! and ~5! in Sec. VIII are con-
structed in this way. This encodes only one qubit; we are s
looking for t52 codes that can encode more qubits.

For t>3, we performed a numerical search for spec
QCSs in which the system of linear equations for the weig
is linearly dependent. In the best case, the number of lin
equations to be solved can be much reduced. Therefore
can find code words involving fewer QCSs, fewer mod
and fewer quanta. Although encoding is certainly possi
with a much smaller Hilbert space, we have not found
systematic way to generate such QCSs. Codes correc
t<4 errors are exhibited in Sec. VIII.

VII. RATES AND FIDELITIES

The performance of these bosonic quantum codes ca
characterized by theirrate, the number of qubits communi
cated per qubit transmitted, and by theirfidelity, the worst-
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1120 56CHUANG, LEUNG, AND YAMAMOTO
case qubit degradation after decoding and correction.
discuss these two measures here.

The rater is given by the ratio of the number of encode
qubits to the maximum number of qubits that can be acco
modated in our Hilbert space:

r 5
k

mlog2~nd11!
, ~7.1!

where 2k is the number of code words and (nd11)m is the
size of the Hilbert space in our code. The exact numbe
possible code words depends on the choice ofN ~the maxi-
mum number of excitations in any single mode! andm ~the
number of modes!. For t51, we have worked out a countin
scheme, but omit the details here. However, the majority
the QCSs have orderm. Hence, to a good approximation, th
number of code words obtained is

2k5
P~n,m!

m
. ~7.2!

Thus the asymptotic rate of our codes for largen is
(m21)/m. For small n, code words involving fewer than
m QCSs allow slightly more qubits to be encoded compa
to Eq. ~7.2! @see examples~1!–~3! in Sec. VIII#. This small
gain can be important in applications such as key distribu
in quantum cryptography. We have shown in Sec. V that
arbitrary but fixedt, N'( l o /em)1/(m21)t (2m21)/(m21) is large
enough to guarantee the existence of a code withl o11 code
words. This implies a loose asymptotic lower bound to
achievable rate for our code, ofr 5(m21)/m.

We now turn to the code fidelityF, which we desire to
know as a function of the parametersN, m, andt. The fidel-
ity is defined as@13#

F5minc in
^c inur f uc in& , ~7.3!

wherer f is the final output state after correction. When t
correction criteria are satisfied, recovery procedures exis
the correctable errors that recover the input states. There
the fidelity equals the total probability that some correcta
errors occur, which is given by

F5minc in (
k̃PøsP[1,t]K~s!

^c inuAk̃
†
Ak̃uc in& . ~7.4!

Let the input state be expressed as a sum of code w
uc in&5( la l ucl&. Then using the orthogonality and nondefo
mation conditions, we find that

^c inuAk̃
†
Ak̃uc in&5 z^cl uAk̃

†
Ak̃ucl& z , ~7.5!

with ucl& any one of the code words on the right-hand si
Now, if we write each code word as

ucl&5Am1un11n12•••n1m& ~7.6!

1Am2un21n22•••n2m& ~7.7!

1••• ~7.8!
e

-

f

f

d

n
r

e

or
re,
e

ds

.

1AmNl
unNl1

nNl2
•••nNlm

& ,
~7.9!

then, for k̃ 5 (k1 ,k2 , . . . ,km)PK(s),

z^cl uAk̃
†
Ak̃ucl& z5~12g!N2sgs(

i 51

Nl

m iC~ni j ,kj ! , ~7.10!

and using the relation for binomial coefficients

C~N,s!5 (
k̃PK~s!

(
i 51

Nl

m iC~ni1 ,k1!C~ni2 ,k2!•••C~nim ,km! ,

~7.11!

we find that the fidelity is

F5(
s51

t

~12g!N2sgsC~N,s! ~7.12!

512C~N,t11!g t111O~g t12! . ~7.13!

This expression holds for balanced codes as well as un
anced codes. The amazing feature is that given a code
satisfies the orthogonality and nondeformation constrai
F is independent ofm; it is determined only byN and t.

One should note that although codes can be constructe
correct an arbitrary number of photon loss, the more err
one wishes to correct, the more photons are required. On
other hand, having larger photon number states mean
higher probability for the system as a whole to suffer loss
quanta. These two effects compete against each other to
an upper bound on the fidelity, which we can estimate
follows. LetN be the required maximum photon number a
t the total number of errors to be corrected. As previou
discussed, due to the constraint equations that hold for e
correction to be possible, the two parameters can be redu
to one degree of freedom, in terms of which we may estim
the optimal achievable fidelity. In terms oft, the optimum
fidelity for fixed g is obtained by setting

d

dt
ln~12F!50 . ~7.14!

From Eq.~7.13!, this gives, to first order ing,

1

C
]C
]N

dN

dt
1

1

C
dC
dt

1 lng50, ~7.15!

where C is a shorthand notation forC(N,t11). Using the
Stirling approximation for the factorials inC, we obtain

lnS N

N2t21D dN

dt
1 lnS N2t21

t11 D1 lng50 . ~7.16!

In general,N is much larger thant, which allows further
simplification of Eq.~7.16!:

dN

dt

t

N
2 lnS t

ND1 lng50 . ~7.17!
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The exact dependence ofN on t is generally very compli-
cated. This point can be appreciated from the explicit co
examples following this section. In particular, for a fixe
number of modes, the minimum number of encoding exc
tions needed to be able to correct for a fixed number
photons lost depends on the existence of ‘‘good solution
to the equations representing the code criteria and it is a
lytically intractable to find the optimal fidelity for the gener
case. We thus have only a bound on the fidelity of a boso
code with arbitrary QCSs. There is no theoretical bound
the number of correctable errors.

For concreteness, we will illustrate the above assum
that N asymptotically follows a power scaling law int. As
illustrated in Sec. VI,N is boundedby such polynomials in
t. Therefore, the following gives alooselower bound of the
upper bound of the fidelity. SupposeN' f l ota, where the
prefactor f and exponenta are approximately constan
Equation~7.17! can be solved for the optimumt:

topt'~e2a/g f l 0!1/~a21! . ~7.18!

Plugging back into Eq.~7.13! would give an estimate for the
optimal achievable fidelity. However, these gross estima
are not expected to be meaningful in actual applications
causeN(t) will be the determining factor and, as previous
mentioned, is analytically unobtainable.

VIII. EXPLICIT CODES

Some explicit codes resulting from our work are pr
sented here. States are given unnormalized when the nor
ization factor is common for all code words. Codes are sp
fied as @@N,m,2k,d##, where N is the total number of
excitations in the QCSs,m is the number of modes for eac
QCS, 2k is the number of code words, andd is the minimal
distance between code words. The fidelity of all the code
given byF'12C(N,t11)g t11.

Example ~1!: @@4,2,2,2##, n52, t51, and fidelity
F'126g2. For this we have

u0L&5
1

A2
@ u40&1u04&#, ~8.1!

u1L&5u22&. ~8.2!

Example ~2!: @@12,3,10,2##, n56, t51, fidelity
F'1266g2, and labels given in hexadecimal (c512,
a510). For this

uc1&5
1

A3
@ u00c&1uc00&1u0c0&#, ~8.3!

uc2&5
1

A3
@ u02a&1ua02&1u2a0&], ~8.4!

uc3&5
1

A3
@ u048&1u804&1u480&#, ~8.5!
e

-
f
’’
a-

ic
n

g

s
e-

-
al-
i-

is

uc4&5
1

A3
@ u066&1u606&1u660&#, ~8.6!

uc5&5
1

A3
@ u084&1u408&1u840&#, ~8.7!

uc6&5
1

A3
@ u0a2&1u20a&1ua20&#, ~8.8!

uc7&5
1

A3
@ u228&1u822&1u282&#, ~8.9!

uc8&5
1

A3
@ u246&1u624&1u462&#, ~8.10!

uc9&5
1

A3
@ u264&1u642&1u264&#, ~8.11!

uca&5u444&. ~8.12!

Example~3!: @@6,3,4,2##, n53501112, t51, and fi-
delity F'1215g2. Here

uc1&5u600&1u060&1u006&, ~8.13!

uc2&5u420&1u204&1u042&, ~8.14!

uc3&5u240&1u402&1u024&, ~8.15!

uc4&5u222& . ~8.16!

Example ~4!: @@9,3,2,3##, n53, t52, and fidelity
F'1284g3. Note that this code differs from the previou
one from havingd53 instead ofd52. We take onlyuc2&
and uc3& as code words. Thus

u0L&5u306&1u063&1u630&, ~8.17!

u1L&5u036&1u360&1u603&. ~8.18!

Example~5!: @@6,4,2,2##, n5650111213, and fidelity
F'1215g2. The minimal distance between QCSs isd52.
However, the QCSs are not generated by multiplying e
number byd52. Thus

u0L&5u0321&1u1032&1u2103&1u3210&, ~8.19!

u1L&5u0123&1u1230&1u2301&1u3012& . ~8.20!

Example ~6!: @@7,2,2,2## and fidelity F'1221g2. The
code words are not formed by cyclic permutations of t
QCSs. Note that columns 1 and 2 have different colu
sums. In this case

u0L&5u70&1u16&, ~8.21!

u1L&5u52&1u34&. ~8.22!

Example~7!: @@9,2,2,3## and fidelityF'1284g3. This is
an unbalanced code that will toleratet52 errors. Note that
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1122 56CHUANG, LEUNG, AND YAMAMOTO
one code word is formed from the other by reversing
order of the modes.~This symmetry between the two mode
is a sufficient condition for balanced codes witht52,
m>3.! Here

u0L&5
1

2
u90&1

A3

2
u36&, ~8.23!

u1L&5
1

2
u09&1

A3

2
u63&. ~8.24!

Example~8!: @@9,3,2,3## and fidelityF'1284g3. This is
an unbalanced code that will toleratet52 errors, showing
that the symmetry is not a necessary condition for correc
t52 errors:

u0L&5
1

A3
@ u036&1u306&1u360&#, ~8.25!

u1L&5
1

3
@A6u333&1A2u009&1u090&#. ~8.26!

Example ~9!: @@16,2,2,4## and fidelity F'121820g4.
This is an unbalanced code that will toleratet53 errors.
Labels are given in base 17.c and g denote 12 and 16
respectively. We have

u0L&5
1

A8
@ u0g&1ug0&1A6u88&#, ~8.27!

u1L&5
1

A2
@ u4c&1uc4&#. ~8.28!

Example ~10!: @@20,3,2,4## and fidelity F'124845g4.
This is another unbalanced code that will toleratet53 er-
rors. Labels are given in base 21.c, g, andk denote 12, 16,
and 20, respectively. We have

u0L&5
1

5
@ u04g&12u40g&12A5u0k0&#, ~8.29!

u1L&5
1

A5
@A2u44c&1A3u488&#. ~8.30!

Example ~11!: @@50,2,2,5## and fidelity F'1
22 118 760g5. Note the rapid growth in the numerical facto
in the second term. To correct for large number of errors,
need to encode a qubit in a large Hilbert space, but emis
probabilities are large for high number states. This put
limit of performance in our codes. The actual code involv
numbers five times the numbers shown below.a denotes 10.
In this case

u0L&5A 1

18
u0a&1A5

9
u46& ~8.31!

1A1

3
u82&1A 2

45
u91&, ~8.32!
e

g

e
on
a
s

u1L&5A 1

18
u19&1A1

6
u28& ~8.33!

1A33

90
u55&1A1

3
u73&1A 7

90
ua0& .

~8.34!

IX. PHYSICAL IMPLEMENTATION

Encoding and decoding of the codes we have descri
here can be performed in principle usingn-photon eigen-
states, beam splitters, phase shifters, and Kerr nonlinear
tical media. We demonstrate, for example, how states for
simplest code may be constructed. We then discuss how
coding and correction may be performed.

Shown in Fig. 1 is a quantum circuit that can be used
encode a qubit using theu22&, u04&1u40& code. Let us see
how this circuit works by tracing the state at the five ind
cated points. The initial state isuc0&5u0122&. Two 50%:
50% beam splitters act on the first and second two mode
this state to give

uc1&5F u10&1u01&

A2
G FA6~ u04&1u40&22u22&

4 G . ~9.1!

Next, a nonlinear optical Kerr medium is used to perform
cross phase modulation between the two middle modes.
serves to ‘‘label’’ theu22& state, giving

uc2&5
1

4A2
$~ u10&1u01&!@A6~ u04&1u40&!#

1~ u10&2u01&!@2u22&#%. ~9.2!

A final beam splitter in the first two modes now serves
turn the phase modulation into a detectable amplitude dif
ence

FIG. 1. Quantum circuit to encode a qubit using the code
example~1!. As in @21#, signals travel from left to right, wires
represent optical modes, diamonds represent beam splitters, m
are ideal photon counters, and the Kerr device is an ideal nonlin
optical medium that effects cross-phase modulation of anglep/2
between single photons.
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uc3&5
1

2A2
$u01&@A3sinu~ u04&1u40&!1A2cosuu22&#

1u10&@A3cosu~ u04&1u40&!2A2sinuu22&#% ~9.3!

such that if the first two modes are measured to beu01&
~otherwise, the state is discarded! then we have the output

uc4&5cosu8u22&1sinu8
u04&1u40&

A2
, ~9.4!

where

u85tan21FA1

3
tanuG ~9.5!

is the new effective angle.uc4& is the desired encoded stat
After transmission ofuc4& through a lossy communicatio
link, the final state can then be measured immediately~using,
for example, photon number counters! and the transmitted
qubit collapsed. This would be the standard procedure
point-to-point quantum cryptography.

Alternatively, the qubit may be relayed by performing
error correction step. This involves calculation of the er
syndrome, correcting any detected error, and then
encoding the state for further transmission. In this syst
we have a nonbinary state. If it can be turned into a bin
state, then the entire correction procedure may be perfor
using standard techniques of quantum computation, with
usual binary quantum logic gates@19#. This is possible as
follows.

Consider the circuit shown in Fig. 2. The structure is ide
tical to the well-known quantum-optical Fredkin ga
@20,21#, but let us think of it here in a different way. Th
lower pair of wires may be considered to be a single ‘‘du
rail’’ qubit @22#, with logical states u0L&5u10& and
u1L&5u01&. With an input stateuc0&5u0n&u0L& and a Kerr
medium with x5p/n, then the output state will be
uc3&5u0n&u1L&, and in this manner the circuit may b
thought of as a kind ofcontrolled-not gatethat distinguishes
between a control state ofu0& and un&.

We now use this bosonic controlled-not gate to constr
the circuit of Fig. 3, which is based on the fact that differe
values ofx allow us to distinguish different values ofn.

FIG. 2. ~Left! Optical quantum logic gate used as a buildi
block in the decoding procedure; example input states are show
the left. x is the cross-phase modulation strength of the Kerr m
dium, which performs the transformation exp(ixa†ab†b) on two
modesa andb. ~Right! Shorthand notation for this circuit.
r
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Furthermore, since the decomposition of the numbern into
sums of powers of 2 is unique, it is convenient to takex to
be binary fractions ofp. In this manner, the first dual-rai
qubit becomes the least-significant bit ofn and so on. If the
qubits are measured, this circuit would then function equi
lently to a perfect photon number detector.

However, it is much more useful in that calculations m
be performed based on the binary representation ofn to de-
termine if any error occurred and to calculate the error s
drome. The circuit is then applied in reverse to undo
entanglement with the bosonic state and the appropriate
rection procedure is applied to fix the detected error. Thi
possible since generalized measurements may be perfo
on the qubit states to determine the error syndrome with
destroying the superposition state of the original qubit
coded in the bosonic state.

X. CONCLUSION

Our treatment of amplitude damping errors is somew
unusual from the standpoint of most quantum error corr
tion theories, which deal with a bit flip and phase flip pictu
of errors. The relationship can be understood by expres
the A0 and A1 operators as coherent superpositions of su
errors; from Eqs.~2.16! and ~2.17!,

A05
1

2
@~11A12g!I 1~12A12g!sz#, ~10.1!

A15
Ag

2
@sx1sy# . ~10.2!

With probabilities up toO(g), a binary code withm bits will
either projectA0

^ mucl& onto a state with no errors or projec
A0

^ m21A1ucl& onto a state with only one bit flip error, resul
ing from a combination ofI ^ m21 and one of the Pauli op
eratorssx ,sy . Hence a binary code correcting for any on
bit error will indeed correct all amplitude damping errors
to losing one photon, although not to all orders. One rea
we have studied bosonic codes is to exploit the possibili
for achieving higher efficiencies or easier physical imp
mentation, though the study is theoretically interesting on
own.

on
- FIG. 3. Quantum circuit used to decode a bosonic state
qubits. Each thick wire represents a pair of bosonic modes. The
wire carries the bosonic state and the remaining wires are prep
as dual-rail quantum bits, which carry just one photon in each p
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1124 56CHUANG, LEUNG, AND YAMAMOTO
It is important to realize that amplitude damping erro
are not independent bit errors since the decay factor of e
QCS depends on the total number of excitations in it. T
fact is also pointed out by Plenioet al. @6#. Any code cor-
recting a general one-bit error can do so in the presenc
possible amplitude damping and is capable of correcting
one-bit error in the projected space in which no loss occ
as well as correcting a single photon loss in the absenc
any other errors. Two or more amplitude damping err
projected into the nonidentity space are viewed as sepa
errors. The general relation between binary codes and am
tude damping is still under investigation.

Nevertheless, some interesting comparisons may be m
Rates from our bosonic codes contrast with those achiev
by the usual binary codes. For the code of example~1!,
nd54, m52, andk51, so the rate is found to ber 50.22.
This is slightly better than r 50.20 for the five-bit
(t,k)5(1,1) binary perfect code@23#, and much better than
the eight-bit (1,1) code of Plenioet al. @6#, which corrects
errors in the presence ofAk’s in K(0). Similarly, for the
code of example~2!, d52, n56, m53, and 2k510 code
words may be found, giving a rater 50.2994. In comparison
a naive evaluation of the quantum Hamming bound@17# for
binary codes gives a possible rate of 0.41. Nondeforma
constraints are more restrictive on bosonic error correc
codes than on binary codes, but the bosonic states a
coding schemes that are impossible with binary codes. Th
is no conclusive statement on comparing the general
ciencies of the two different type of codes, but the examp
we have discovered indicate the existence of a rich variet
bosonic codes that may be useful in the future.

The code fidelities may also be compared. O
@@4,2,2,2## code achievesF'126g2. In comparison, from
an explicit evaluation of the effect of amplitude damping
all qubits, we have found that the five-bit (1,1) binary co
achieves fidelity'121.75g2, while the eight-bit (1,1) code
achieves only'126g2. This agreement with the boson
code is not accidental; it stems from the use of the same
excitation number. However, it is worthwhile to point o
that despite the effort to balance the code words, the five
code still has better performance on average due to the s
number of excitation involved in the system.

In conclusion, we have given general criteria for an er
correction code that encodes qubits in bosonic states. Th
a generalization of the binary error correction codes. Mo
vated by the dominant decoherence process~amplitude
damping! of a system such as photons transmitted throu
optical fibers, we classify our errors according to the num
of excitations lost instead of the more common classificat
of the number of bits or modes corrupted. We have shown
one case, that specialization to correction amplitude damp
does improve the ratio of the number of encoded qubits
the number of required qubits. However, bosonic codes
der amplitude damping suffer constraints involving deform
tion of the Hilbert space not shared by the binary cod
rendering the efficiencies lower in the bosonic case w
many qubits are encoded.

It is too early to conclude on the relative performance
the binary codes and the bosonic codes. Further study
aim at improving the efficiencies, perhaps by using relat
phases to maintain orthogonality of the code words inst
ch
s
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of by using distinct QCSs, so that the QCSs can occur
more than one code word. Another possibility is to enco
qubits using QCSs of a different total number of excitatio
We hope that further study of bosonic codes will lead to th
practical utilization in addition to the current theoretical i
terest.
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APPENDIX: CRITERIA FOR NONDEFORMATION
OF HILBERT SPACE

Consider K(2)5$0•••02,0•••20, . . . ,20•••0%ø
$0•••011,0•••110,•••,110•••0% for t52 errors. For in-
stance,

A0•••02ucl& ~A1!

5A0•••02

1

ANl
(
i 51

m

uni1•••nim& ~A2!

5(
i 51

m AC~nim,2!g2~12g!N22

Nl
uni1•••nim22& , ~A3!

whereC(n,m) is the usual binomial coefficient. The norm
square of this state is

^cl uA0•••02
† A0•••02ucl&5

g2~12g!N22

2Nl
(
i 51

m

nim~nim21! .

~A4!

The term linear ing is independent ofl ~code-word indepen-
dent! by the criteria fort51; hence it follows that

1

Nl
(
i 51

m

nim
2 ~A5!

has to be independent ofl if the nondeformation criterion is
to be satisfied. OtherAk̃ with k̃50•••02, . . . ,20•••0 im-
pose the above requirement on other columns.

Similarly, k̃50•••11 changes the code word to

(
i 51

m Anim21nimg2~12g!N22

Nl
uni1•••nim2121nim21& ,

~A6!

which has norm square
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g2~12g!N22

Nl
(
i 51

m

nim21nim . ~A7!

Equation~4.2! requires the following to be independent
l :

1

Nl
(
i 51

m

nim21nim . ~A8!

A similar result is obtained for otherk̃ with 1’s at any two
9

n

modes j 1 and j 2. When we allow j 15 j 2, we include the
previous result for two photon loss at one mode. This pro
Lemma 2.

For arbitraryt, we get equations involving various bino
mial coefficients. Using requirements involving products
fewer thant ni j ’s, we can replace the products of the bin
mial coefficients to products involving exactlyt ni j . By
mathematical induction, the result for arbitraryt is then ob-
tained. This completes the proof of Theorem 1.
ar-
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