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Criteria for the validity of the diabatic-by-sector expansion in the hyperspherical
coordinate method
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It is mathematically indicated that the widely used diabatic-by-sector recipe for solving coupled radial
equations in the hyperspherical coordinate method causes non-negligible errors and these are revealed espe-
cially for extremely low-energy scattering. The intrinsic defects due to this method are illustrated for both
bound state and the scattering states ofdtm. The calculated results are also compared with those obtained by
the adiabatic expansion method.@S1050-2947~97!08407-2#

PACS number~s!: 31.15.Ja, 36.10.Dr
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The hyperspherical coordinate method is recognized a
excellent method to study the Coulomb three-body prob
in a unified manner. It covers conventional two-electron
oms, one-electron diatomic molecules, and even exotic
oms and molecules beyond the validity of the infinite nucl
mass approximation. It also enables one to compute pre
scattering cross sections, resonance positions, and the w
as well as binding energies for several three-body syst
@1#. In practical calculations with the hyperspherical a
proach, the diabatic-by-sector~DBS! method is widely ap-
plied @2#. In spite of the fact that the DBS method is succe
ful in many actual problems we are unaware of rigid crite
for its validity. It is usually checked numerically by confirm
ing the unitarity condition on the transformation matric
from one sector to the adjacent one when the sector size
number of channels are changed.

We have experienced in recent works@3,4# that the DBS
method is by no means applicable to extremely low-ene
collisions due to the slow convergence of calculated cr
sections with respect to the number of channels includ
Furthermore, this defect is never remedied by simply e
ploying a smaller sector size. In the present article we as
tain a source of such difficulties by deriving an alternat
set of coupled radial equations from those originally giv
by the DBS method. The resulting equations correspond
those obtained by the adiabatic~AD! expansion method. The
validity of the DBS method is then discussed with referen
to calculations using both the DBS and AD methods for
binding energies and the scattering cross sections of
dtm system.

We begin with the coupled radial equations of the DB
method, given by

F̃~r!91F 1

4r2
12@E2Ũ~r!#G F̃~r!50, ~1!

where anN3N matrix notation has been adopted for t
radial wave functionF̃ and diabatic coupling matrixŨ. The
quantitiesE andr are the total energy and hyperradius, r
spectively. Hereafter the dimensionN is assumed finite and
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the infinite dimension is expressed asN` . Equation~1! is
defined within a small sector of r, rm2Dr/2
,r,rm1Dr/2, whererm gives the midpoint of the secto
andDr its width.

A set of channel wave functions having a truncated
mension of 13N is defined as$F%, each component o
which is a solution of the associated adiabatic equation

Û~r,V!F~r,V!5F~r,V!U~r!, ~2!

with Û andU the adiabatic Hamiltonian and theN3N diag-
onal adiabatic potential matrix, respectively. The symbolV
denotes all relevant hyperangles. A complete set of the a
batic channel wave functions with the dimension of 13N` is
denoted by$F`%. The matrix $F% spans a subspace o
$F`%. Also let the associated adiabatic potential matrix
U` .

The total wave functionC represented by the 13N di-
mension matrix is written

C~r,V!5F~rm ,V!F̃~r!, ~3!

following the DBS ansatz. Equation~1! results from Eq.~3!

and thusŨ is of the form

Ũ~r!5^F~rm ,V!uÛ~r,V!uF~rm ,V!&

5C†~r!U`~r!C~r!, ~4!

where it is understood that integrations are done overV. In
the second equality we have used the completeness pro
of $F`% and defined the N`3N matrix C as
C(r)5^F`(r,V)uF(rm ,V)&.

It is convenient to partitionC into two block matrices
consisting of aN3N matrix A and a residual (N`2N)3N
matrix AR as
1038 © 1997 The American Physical Society
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C~r!5S A~r!

AR~r!D , ~5!

whereA is given by

A~r!5^F~r,V!uF~rm ,V!&. ~6!

Substituting Eq.~5! into Eq. ~4!, Ũ gives

Ũ~r!5A†~r!U~r!A~r!1AR
†~r!UR~r!AR~r!, ~7!

where theN`3N` matrix U` has been partitioned into tw
diagonal matricesU of dimensionN3N and the remaining
oneUR with dimension (N`2N)3(N`2N).

An alternative radial wave function with the dimension
N3N is defined as

F~r!5A~r!F̃~r!. ~8!

Inserting Eq.~7! and the inverse expressionF̃5A21F into
Eq. ~1! yields coupled radial equations forF,

F912A~A21!8F81F 1

4r2
1A~A21!912~E2AA†U

2AAR
†URARA

21!GF50, ~9!

where the argumentr has been omitted.
It is assumed that the sector sizeDr is sufficiently small

that F(r,V) may be expanded in a Taylor series with r
spect todr5r2rm (udru<Dr),

F~r,V!5F~rm ,V!1F~rm ,V!8dr

1
1

2
F~rm ,V!9dr21•••. ~10!

Then the matrixA becomes

A~r!511P†~rm!dr1
1

2
W†~rm!dr21•••, ~11!

where derivative matricesP and W have been de-
fined as P(r)5^F(r,V)udF(r,V)/dr& and W(r)
5^F(r,V)ud2F(r,V)/dr2&, respectively. Note thatA is
not unitary sinceNÞN` . The matricesA21 andA† are of
the following forms:

A†~r!511P~rm!dr1
1

2
W~rm!dr21••• ~12!

and

A21~r!511P~rm!dr2
1

2
$W†~rm!22P~rm!2%dr21•••

511P~rm!dr1
1

2
$W~rm!22D~rm!%dr21•••,

~13!
respectively. In the second equality of Eq.~13!, we have
used the identityW†(r)1W(r)52WS(r) and the definition
D(r)5WS(r)1P†(r)P(r) with the symmetric matrix
WS defined asWS(r)52^dF(r,V)/drudF(r,V)/dr&.
If the complete set$F`% is inserted intoWS(r), this
matrix is given by WS(r)52^F`(r,V)udF(r,V)/
dr&†^F`(r,V)udF(r,V)/dr&. Therefore, in the limit that
N tends to infinity,D(r) vanishes and Eq.~13! coincides
with Eq. ~12!.

Employing Eqs.~11!–~13! in Eq. ~9! and neglecting con-
tributions from higher-order terms ofdr gives

F~r!912P~rm!F~r!81F 1

4r2
1@W~rm!22D~rm!#

12@E2U~r!#GF~r!50, ~14!

where the fact thatAR in Eq. ~9! is of the order ofdr has
been taken into account. On the other hand, expandingC as

C~r,V!5F~r,V!FAD~r!, ~15!

following the AD expansion method instead of Eq.~3!, one
finds for the coupled radial equations of the wave funct
FAD with theN3N dimension the result

FAD~r!912P~r!FAD~r!81F 1

4r2
1W~r!

12@E2U~r!#GFAD~r!50. ~16!

Here no approximations have been employed so far a
from truncating the dimension of the equations toN.

The quasiadiabatic equation~14! differs from Eq.~16! in
that ~i! the nonadiabatic coupling terms ofP(rm) and
W(rm) are constant within the sector and~ii ! the correct
couplingW(r) is replaced byW(rm)22D(rm). This defect
~i! is remedied in principle by making the sector sizeDr
smaller. In practice, however, this problem becomes m
acute in the case where the couplingsP(r) andW(r) vary
sharply and rapidly within the sector and these values
never regarded as constant. Such rapid variations usually
cur in the distant region ofr where energy levels of differen
channels cross, giving rise to Landau-Zener-type couplin
The defect~ii ! indicates that the DBS method does not s
isfy the correct asymptotic conditions for scattering wa
functions, a drawback that is most significant in the low
incident-energy region.

The asymptotic conditions in the hyperspherical coor
nate method are determined by the behavior of diagona
ements ofW, U and the mock potential 1/4r2 at larger @5#.
An error in the DBS method is of the order;a/r2 with a
negative constanta given by the asymptotic form ofD, in-
dependently of the sector size. This defect is remedied o
by increasing the number of channels and lettingD become
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negligibly small. As illustrated in the following, howeve
the convergence with respect to the number of channe
quite slow in practice.

The defect~ii ! of the DBS appoach is exemplified b
comparing actual calculated results by both the DBS and
methods. To this end, we focus on the binding energies
the scattering cross sections of thedtm system with the total
angular momentumJ50 in then51 manifold. Results to-
gether with the corresponding reported data are shown
Tables I and II. The AD method is that discussed in Re
@3,4#. Computational conditions are set equal for both me
ods. The physical values employed here for masses and
Rydberg constant have been taken from@6#.

As seen in Table I the binding energies obtained by
DBS method converge so slowly that errors incurred rem
large even in the maximum channel (N520) calculations,
where the DBS results are still worse than the AD ones
one unit. In addition, the tendencies of convergence are
posite in both methods. That is, convergence is from be
in the DBS method and from above in the AD metho
While the former does not satisfy the variational princip
the latter does strictly.

The reason for the opposite direction of convergence
the DBS method is easily understood from the properties
the errorD in Eq. ~14!. Its diagonal elements are negativ
definite and act on an effective adiabatic potential so that
depth becomes shallower with increasingN.

The difficulties in the DBS method are further exace
bated in the scattering calculations at extremely low en
gies. The diagonal element ofD behaves asymptotically as
spurious attractive dipole potential;2uau/r2 as mentioned
above and spoils the scattering asymptotic conditions
some extent. Such a breakdown makes it difficult to extr
accurate cross sections, though it would affect the bind
energy calculations only slightly. Especially, it is noticeab
for low-energy scattering in then51 manifold, where an
effective asymptotic potential of the fragment channel

TABLE I. Binding energies ~eV! for a ground state
(J50, v50) and the first excited state (J50, v51) of thedtm
molecule in then51 manifold. These are reckoned from the thres
old energy of thetm(1s) fragment.J andv mean the total angula
momentum and the vibrational quantum numbers, respectiv
DBS and AD represent the present diabatic-by-sector and adia
calculations, respectively.N is the number of channels included.

States N DBS AD Other works

~0,0! 1 333.22 317.75 317.75@7#

2 333.18 317.80 317.80@7#

6 322.20 319.00
12 320.77 319.09
20 320.18 319.11

Exact 319.139752161@8#

~0,1! 1 43.851 31.982 31.99@7#

2 42.789 33.446 33.46@7#

6 36.835 34.634
12 36.059 34.755
20 35.723 34.788

Exact 34.8344647@8#
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dominated by a polarization potential;1/r4 much weaker
than the spurious dipole one. Even if the leading contribut
of the asymptotic potential is from the Coulomb potent
;1/r, the spurious dipole potential could still cause n
ticeable errors.

Table II shows the elastic cross sections oft1dm(1s) in
the range of the center-of-mass incident energies from 1
50 eV. Note that this energy range should be considere
relatively low since 1 eV equals 1.7831024 in the muon
atomic unit. Both calculations by the DBS and the AD me
ods incorporate 20 channels. The cross sections obtaine
the former method are overestimated in the lower-energy
gion due to the presence of the spurious long-range pote
D. These reach the magnitude of cross sections compar
with those by the AD method at energies no less than
order of 10 eV. The cross sections by the DBS method w
found to be considerably overestimated specifically in
extremely low-energy region from 0.001 to 0.1 eV, whe
thedtm molecule plays decisive roles in the muon-catalyz
fusion. As to the elastic process ofd1tm(1s) and the muon
transfer process fromdm(1s) to tm(1s), similar tendencies
to Table II were observed.

To summarize, we derived a set of quasiadiabatic coup
radial equations from those given in the DBS method a
compared it with the exact form of the corresponding A
equations. We found it likely that the DBS method caus
non-negligible errors due to its intrinstic defects that the c
plings P(r) andW(r) are approximated as constant ev
when varying sharply and rapidly within the sector and th
this method does not guarantee to satisfy the correct sca
ing asymptotic conditions. The general discussion was ill
trated using computed binding energies and the scatte
cross sections of thedtm system in then51 manifold. Fi-
nally it is mentioned that recently an attempt has been m
to remedy the drawbacks in the DBS method analyzed in
present article@10#.
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TABLE II. Cross sections~cm2) for the elastic scattering
t1dm(1s) with J50 versus the center-of-mass incident energ
E ~eV! reckoned from the threshold energy of thedm(1s) frag-
ment. Values in square brackets mean the powers of 10.

E DBS AD Other work@9#

1 1.846@218# 9.229@220# 9.322@220#
3 4.379@219# 1.284@219# 1.277@219#
5 2.617@219# 1.351@219# 1.357@219#
8 1.732@219# 1.346@219# 1.346@219#
10 1.529@219# 1.303@219# 1.302@219#
30 6.496@220# 6.873@220# 6.995@220#
50 3.047@220# 3.082@220# 3.216@220#
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