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Nonlocal functional derivative of kinetic energy for the self-consistent Thomas-Fermi atom
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It is well known in the Thomas-Fern(iTF) theory that the functional derivativéT/ésn(r), with T the
kinetic energy anch(r) the ground-state electron density, is proportionalnt&(r). But the differential
equation satisfied by the TF self-consistent density for atoms is shown here to empféssas a linear
combination ofv2n/n and (Vn/n)2. Hence a nonlocal form fo8T/&n(r) follows, solely in terms of these two
variables[S1050-294{®7)00607-0

PACS numbegs): 31.15.Bs

Current emphasis in density functional theory is beingthe “reduced” density gradient variables gives greater flex-
given to the role of functionals involving low-order deriva- ibility in the construction of functionals for the intermediate
tives of the ground-state electron dengitfy). For a single numbers of electronsl met in atoms and molecules.
electron, the functional is known to be that given by von Returning to the single-electron case already referred to,
Weizsa@ker[see Eq(5) below]. However, one wants to deal in order to press this point further, for the H-like atom or the
with substantial numbers of electrolsin, say, atomic and H," molecular ion, we have the elementary result that
molecular structure. Therefore, in this paper, we shall return
to the original(statistical in concept, i.e., large) Thomas- oT 6Ty
Fermi (TF) self-consistent theory of neutral atorfis]. Be- sn(r)  én(r)’
low, we shall construct the explicit differential equation sat-
isfied by the *“universal” electron density of that method. whereT,, is the von Weizseker kinetic energy given bj]
Since the same reduced density gradient variables enter as in

4

the von Weizseker case, and since also the result is simple, T _ A2 [ (Vn)? dr 5
we will quote it at the outset and then prove it subsequently. W7 8m n '
It is
Thus we find for the number of electrohs=1 the general
V2n 1(Vn\? n'® result
sl T @
ST 4% [V?n 1/Vn)\?

where the constarlt having the dimensions of length, will sn(r)  4m| n 2\ n ©)

be obtained below. Given this result, entirely equivalent to
the usual TF potential equation for atoms, one can rewritéthe same two variables characterizing both the limiting cases
the functional derivative of the kinetic energyl N=1 and largeN from Eqgs.(6) and(3). It naturally does not

=c,/n®3dr of that theory[1], namely, follow that the form
5T 5 . 3n? ( 3\ 5T ;F(Vzn vn 2N) ,
a3 %D & 1o | s @ an() " \n\'n)" 0
in terms of the two quantitiesV?n/n) and (Vn/n)? appear-  will still work well for an arbitrary number of electrons
ing in Eq (1). N=[n(r)dr but it is clearly tempting to conjecture that it
The desired result is then may well be a useful starting point for approximating the

functional derivative of the kinetic energy. Whether the as-
sumption(7) is powerful enough to reproduce shell structure
) in the atomic radial densityp(r)=4xr?n(r) remains an
outstanding question bearing on the approximate conjecture
This explicit “nonlocal” form is expected to be asymptoti- (7). But be that as it may, let us return to obtaining the length
cally valid for heavy atoms treated solely by means of then Eq. (1) for the self-consistent TF atom.
nonrelativistic many-electron Schilimger equation, i.e., in Writing the self-consistent potential enerd§(r) in the
the limit for neutral atoms of large atomic numkér2,3]. customary form
What is to be stressed at this point is that, though E2js.
and(3) are identical, because of E(L), the introduction of

ST 5 2

_ 2
on(r) 3Ckl

V’n 1 (Vn)z

'n 3\n

7€
V(r)=—7¢(X), C)
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Eliminating d?¢/dx? from Eq. (16) using Eq.(14) yields,
after a little manipulation involving the constaritsandA in
Egs. (10) and (13), respectively, Eq(1) with the lengthl

Here both¢ andx are dimensionless being related to the given explicitly as

radial distance from the nucleus by5]

a=(1/14)(97%12)3, a,=h2mé.

(10

r=bx=aagx/Z"

The densityn(r), on which we focus all attention below, is

1/3

I = o, (17)

|

T
3

N

related toV(r) for a neutral atom by the inhomogeneous wherea, is the Bohr radius defined in E¢L0).

electron-gas relationd —3]

8
nUFwPF(T)s (11
and
pE(r)
p= V(). (12)

For the neutral atom case taken here as the example througtw-
out, the chemical potentiglk is identically zero. Using Eq.

(8) for V(r), it follows that

8’77( Zm) 3/2 3/2

Z4/362¢)
n(r): 3h3

o aoX

¢

X

32
) , (13

=A22(

where Eq.(13) conveniently defines the constafif which
has dimensions of (length§. Thus, returning to Eq9) one
finds

d?¢ xn(r)
axz ~ AZZ (14
But from Eq.(13) it follows that
$=(AZ%) " *n?¥r) (15)
and hence
d’¢ 2 br 1(Vn)?2
Wzgmgn 1’3(r) Vzn—gT . (16)

A check of Eq.(1) with | given by Eq.(17) is that¢ in
Eq. (9), for the neutral atom, tends to 14&/far from the
nucleug 6] and this is in fact an exact solution of E§), but
does not, of course, satisfy the physical boundary condition
#(0)=1 required by Eq(8) at the point nucleus of charge
Ze. From Eq. (13) it then follows that n(r)
=(12)°Aca®a§/r® must be an exact mathematical solution of
Eq. (1), with | given by Eq.(17). Substituting this solution in
V2n/n gives 30f2, for (—1/3)(Vn/n)? yields —12k2,
hile the right-hand side is readily confirmed from Eg7)

0 be 18¢2.

In summary, the self-consistent TF densityr) of heavy
neutral atoms satisfies the differential equat{@) with the
lengthl given by Eq.(17). Combining Egs(1) and(2), one
is led to the nonlocal functional derivativ@&/én(r) in Eq.
(3). Just as for the exact resuf) for the one-electron prob-
lem, §T/én(r) in Eq. (3) depends only on the quantities
V2n/n and (Vn/n)2, which is encouraging for further stud-
ies of the kinetic energy functional. More speculatively, we
could add exchange in the spirit of Scpti, who calculated
the Dirac-Slater form of exchand8], but still retaining the
original TF densityn(r). Then Eq.(1) essentially expresses
the Dirac-Slatem®3(r) exchange potentigl9] linearly in
terms of (V2n/n) and (Vn/n)2. But, of course, additional
approximations are now invoked beyond those made in de-
termining the functional derivativéT/én(r) in Eq. (3).
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