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Nonlocal functional derivative of kinetic energy for the self-consistent Thomas-Fermi atom

N. H. March*
Oxford University, Oxford, England

~Received 2 December 1996!

It is well known in the Thomas-Fermi~TF! theory that the functional derivativedT/dn(r ), with T the
kinetic energy andn(r ) the ground-state electron density, is proportional ton2/3(r ). But the differential
equation satisfied by the TF self-consistent density for atoms is shown here to expressn1/3(r ) as a linear
combination of¹2n/n and (¹n/n)2. Hence a nonlocal form fordT/dn(r ) follows, solely in terms of these two
variables.@S1050-2947~97!00607-0#

PACS number~s!: 31.15.Bs
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Current emphasis in density functional theory is be
given to the role of functionals involving low-order deriva
tives of the ground-state electron densityn(r ). For a single
electron, the functional is known to be that given by v
Weizsäcker @see Eq.~5! below#. However, one wants to dea
with substantial numbers of electronsN in, say, atomic and
molecular structure. Therefore, in this paper, we shall ret
to the original~statistical in concept, i.e., largeN! Thomas-
Fermi ~TF! self-consistent theory of neutral atoms@1#. Be-
low, we shall construct the explicit differential equation s
isfied by the ‘‘universal’’ electron density of that metho
Since the same reduced density gradient variables enter
the von Weizsa¨cker case, and since also the result is simp
we will quote it at the outset and then prove it subsequen
It is

¹2n

n
2
1

3 S ¹n

n D 25n1/3

l
, ~1!

where the constantl , having the dimensions of length, wi
be obtained below. Given this result, entirely equivalent
the usual TF potential equation for atoms, one can rew
the functional derivative of the kinetic energyT
5cK*n5/3dr of that theory@1#, namely,

dT

dn~r !
5
5

3
ckn

2/3~r !, ck5
3h2

10m S 3

8p D 2/3 ~2!

in terms of the two quantities (¹2n/n) and (¹n/n)2 appear-
ing in Eq ~1!.

The desired result is then

dT

dn~r !
5
5

3
ckl

2F¹2n

n
2
1

3 S ¹n

n D 2G2. ~3!

This explicit ‘‘nonlocal’’ form is expected to be asymptot
cally valid for heavy atoms treated solely by means of
nonrelativistic many-electron Schro¨dinger equation, i.e., in
the limit for neutral atoms of large atomic numberZ @2,3#.
What is to be stressed at this point is that, though Eqs.~2!
and ~3! are identical, because of Eq.~1!, the introduction of
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the ‘‘reduced’’ density gradient variables gives greater fle
ibility in the construction of functionals for the intermedia
numbers of electronsN met in atoms and molecules.

Returning to the single-electron case already referred
in order to press this point further, for the H-like atom or t
H2

1 molecular ion, we have the elementary result that

dT

dn~r !
5

dTW
dn~r !

, ~4!

whereTW is the von Weizsa¨cker kinetic energy given by@4#

TW5
\2

8m E ~¹n!2

n
dr. ~5!

Thus we find for the number of electronsN51 the general
result

dT

dn~r !
52

\2

4m F¹2n

n
2
1

2 S ¹n

n D 2G . ~6!

the same two variables characterizing both the limiting ca
N51 and largeN from Eqs.~6! and~3!. It naturally does not
follow that the form

dT

dn~r !
7FX¹2n

n
,S ¹n

n D 2,NC ~7!

will still work well for an arbitrary number of electrons
N5*n(r )dr but it is clearly tempting to conjecture that
may well be a useful starting point for approximating t
functional derivative of the kinetic energy. Whether the a
sumption~7! is powerful enough to reproduce shell structu
in the atomic radial densityD(r )54pr 2n(r ) remains an
outstanding question bearing on the approximate conjec
~7!. But be that as it may, let us return to obtaining the len
in Eq. ~1! for the self-consistent TF atom.

Writing the self-consistent potential energyV(r ) in the
customary form

V~r !52
Ze2

r
f~x!, ~8!

the ‘‘screening function’’ f(x) satisfies the differentia
equation
y
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d2f

dx2
5

f3/2

x1/2
. ~9!

Here bothf andx are dimensionless,x being related to the
radial distancer from the nucleus by@5#

r5bx5aa0x/Z
1/3, a5~1/4!~9p2/2!1/3, a05\2/me2.

~10!

The densityn(r ), on which we focus all attention below, i
related toV(r ) for a neutral atom by the inhomogeneo
electron-gas relations@1–3#

n~r !5
8p

3h3
pF~r !3 ~11!

and

m5
pF
2~r !

2m
1V~r !. ~12!

For the neutral atom case taken here as the example thro
out, the chemical potentialm is identically zero. Using Eq
~8! for V(r ), it follows that

n~r !5
8p~2m!3/2

3h3 S Z4/3e2faa0x
D 3/25AZ2S f

x D 3/2, ~13!

where Eq.~13! conveniently defines the constantA, which
has dimensions of (length)23. Thus, returning to Eq.~9! one
finds

d2f

dx2
5
xn~r !

AZ2
. ~14!

But from Eq.~13! it follows that

f5~AZ2!22/3xn2/3~r ! ~15!

and hence

d2f

dx2
5
2

3

br

~AZ2!2/3
n21/3~r !F¹2n2

1

3

~¹n!

n

2G . ~16!
. B
gh-

Eliminating d2f/dx2 from Eq. ~16! using Eq.~14! yields,
after a little manipulation involving the constantsb andA in
Eqs. ~10! and ~13!, respectively, Eq.~1! with the lengthl
given explicitly as

l5
1

4 S p

3 D 1/3a0 , ~17!

wherea0 is the Bohr radius defined in Eq.~10!.
A check of Eq.~1! with l given by Eq.~17! is thatf in

Eq. ~9!, for the neutral atom, tends to 144/x3 far from the
nucleus@6# and this is in fact an exact solution of Eq.~9!, but
does not, of course, satisfy the physical boundary condi
f~0!51 required by Eq.~8! at the point nucleus of charg
Ze. From Eq. ~13! it then follows that n(r )
5(12)3Aa6a0

6/r 6 must be an exact mathematical solution
Eq. ~1!, with l given by Eq.~17!. Substituting this solution in
¹2n/n gives 30/r 2, for (21/3)(¹n/n)2 yields 212/r 2,
while the right-hand side is readily confirmed from Eq.~17!
to be 18/r 2.

In summary, the self-consistent TF densityn(r ) of heavy
neutral atoms satisfies the differential equation~1!, with the
length l given by Eq.~17!. Combining Eqs.~1! and~2!, one
is led to the nonlocal functional derivativedT/dn(r ) in Eq.
~3!. Just as for the exact result~6! for the one-electron prob
lem, dT/dn(r ) in Eq. ~3! depends only on the quantitie
¹2n/n and (¹n/n)2, which is encouraging for further stud
ies of the kinetic energy functional. More speculatively, w
could add exchange in the spirit of Scott@7#, who calculated
the Dirac-Slater form of exchange@8#, but still retaining the
original TF densityn(r ). Then Eq.~1! essentially expresse
the Dirac-Slatern1/3(r ) exchange potential@9# linearly in
terms of (¹2n/n) and (¹n/n)2. But, of course, additiona
approximations are now invoked beyond those made in
termining the functional derivativedT/dn(r ) in Eq. ~3!.
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