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Two-mode lasing without inversion with injected atomic coherence
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Department of Physics and Astronomy, Hunter College of the City University of New York,

695 Park Avenue, New York, New York 10021
~Received 2 August 1995; revised manuscript received 28 June 1996!

Noninversion lasing is investigated inL-type three-level atomic systems that are coupled to two modes of
the electromagnetic field. As a result of an external field driving the transition between the lower two closely
spaced levels, laser action can be achieved in both modes simultaneously at arbitrarily small initial upper-level
population~lasing without inversion! provided the pumping rate exceeds a certain threshold. The relative phase
of the two modes is locked to a particular value controlled by the phase of the external field. In addition, new
regimes of the laser operation arise when initial coherences between various atomic levels are also injected into
the resonator. Firstly, laser action can be achieved in both modes at arbitrarily small pumping~no threshold!.
Secondly, the injected atomic coherence can control competition between the modes, and result in a variety of
multistable steady-state behavior illustrating the very sensitive dynamics of the system.
@S1050-2947~97!09807-7#

PACS number~s!: 42.50.Gy, 42.60.Lh, 42.60.Mi, 42.65.Pc
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I. INTRODUCTION

In recent years, a considerable amount of theoretical
experimental research has been devoted to atomic coher
effects in laser systems. The motivation behind this work
both fundamental and applied physics. It targets the mic
scopic mechanism of the emission of light employing act
atoms in coherent superpositions of their quantum states
volved in the laser action and, on the other hand, searche
practical applications of these mechanisms in construc
new types of lasers and other quantum optical devices.
signature of driving atomic coherence can be traced in
performance of the laser, viz., in the dynamical and no
characteristics of the radiation. It has been demonstrate
consider a prominent example, that atomic coherence es
lished between two closely spaced lower levels of three-le
~L-type! atoms using an external field@1# may lead to laser
action even though the active medium is not in an inver
state@lasing without inversion~LWI ! @1–3##. One interpreta-
tion of this effect is that atomic coherence results in non
sorbing resonances in the system@4#. In addition, injecting
initial atomic coherence between all three levels of the d
ing atoms can lead to an elimination of the pumping thre
old for laser operation, another long-thought key concep
the conventional laser theories, and the system enters its
linear regime at arbitrarily small pumping@5#. This is the
consequence of the injected atomic coherence, i.e., a dri
atomic dipole, that radiates independently of the actual in
herent gain-loss ratio in the system. Furthermore, injec
atomic coherence can also result in a simultaneous reduc
of photon-number noise and phase noise in the laser@5#. The
possibility to significantly reduce the noise in laser syste
and produce, for example, squeezed light using injec
atomic coherence has attracted much attention in the
few years@6,7#. The practical applications of these quantu
coherence phenomena in active optical systems are obv
Noninversion lasing could be very useful in, for examp
regimes where inversion is difficult to establish, due to h
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rate of spontaneous emission~i.e., in the high-frequency
vacuum ultraviolet, or x-ray, domain of the spectrum!, while
reduced-noise radiation could be advantageous in, for
ample, optical communication networks. Let us also ment
here two other prominent quantum optical concepts rela
to effects of atomic coherence. These are the enhanced i
of refraction with minimal absorption as suggested by Scu
and collaborators@8#, and the electromagnetically induce
transparency demonstrated by Harris and co-workers@9#. We
also note the recently proposed method of generating ato
coherence utilizing a Stark-shifted sublevel crossing a ne
boring atomic state by Kocharovskayaet al. @10#.

Motivated by the above examples illustrating the sign
cance of atomic coherence in quantum optical systems
consider here a two-mode version of the above-mentio
L-type three-level LWI systems@5#. The transition between
the lower two closely spaced levels is driven by an exter
field and, in addition, atomic coherences between vari
states of the three-level atoms are injected. The competi
between the modes is investigated, together with the onse
noninversion lasing and zero-threshold operation in b
modes. We find that atomic coherences play a crucial rol
the competition between the two modes; they can be app
in some cases, to redistribute the energy between the
modes while, in others, they result in instabilities and mu
stable steady-state behavior of the laser modes. These i
bilities and the very sensitive dynamics exhibiting critic
behavior in the two-mode system suggest that selection
single mode in the experimental realization of LWI can be
essential condition in achieving stable operation.

In the next section we present the model of the system
introducing its Hamiltonian and transforming it into an inte
action picture. The resulting Schro¨dinger equation is solved
in Sec. III for the time-dependent wave function that, in S
IV, is used to derive the master equation for the field-dens
matrix. In Sec. V we transform the master equation into
Fokker-Planck equation for theP function. The drift coeffi-
cients of the equation are then analyzed in Sec. VI to
1012 © 1997 The American Physical Society
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56 1013TWO-MODE LASING WITHOUT INVERSION WITH . . .
scribe the dynamical behavior of the average intensities
phases of the two modes considering various schemes
injected atomic coherences. Finally, we conclude in Sec.

II. THE MODEL

We consider a system ofL-type three-level atoms, a
shown in Fig. 1, where theua&→ub& andua&→uc& transitions
are coupled to two cavity modes of frequenciesV1 and
V2 , respectively. The two closely spaced lower levels,ub&
and uc&, are strongly driven by an external~classical! field
characterized by the Rabi frequencyV, frequencyV3 , and
phasef. We also assume injected coherence between
atomic states, i.e., the corresponding off-diagonal elem
of the initial atomic density matrix are different from zer
This is almost the same system as the one studied in Ref@5#

FIG. 1. Scheme of a two-mode laser driven byL-type three-
level atoms where the two laser modes of frequenciesV1 andV2

couple the upper levela to the lower two levelsb and c and the
external fieldV3 drives the transition between the lower tw
closely spaced levelsb andc.
o
e

.
c

d
for
I.

he
ts

in detail, except here we allow for two separate modes c
tributing to ~competing for! the laser action. Since the for
mulation and solution closely parallels Ref.@5# we confine
ourselves to a brief outline of the model and its solution.

The Hamiltonian for the field and one active atom in t
Schrödinger picture is given by

H5H01V, ~2.1!

where

H05 (
i5a,b,c

\v i u i &^ i u1\V1~a1
†a111/2!1\V2~a2

†a211/2!

~2.2!

and

V5\g1a1ua&^bu1\g2a2ua&^cu

2 1
2\Ve2 i ~V3t1f!ub&^cu1H.c. ~2.3!

Herea1 (a1
†) anda2 (a2

†) are the annihilation~creation! op-
erators for the two cavity modes,g1 andg2 are the coupling
constants for theua&→ub& and ua&→uc& transitions, respec-
tively. The external microwave field is treated semiclas
cally. Let us define the first interaction picture as

VI5e~ i /\!H0tVe2~ i /\!H0t. ~2.4!

After breakingVI up into two terms asVI5V11V2 , where

V152
1

2
\VF 00

0

0
0

exp~2 iD3t1 if!

0
exp~ iD3t2 if!

0
G
~2.5!

and
V25\F 0
g1a1

†exp~2 iD1t !

g2a2
†exp~2 iD2t !

g1a1exp~ iD1t !
0
0

g2a2exp~ iD2t !
0
0

G , ~2.6!
e

we useV1 andV2 to define the second interaction picture

VII5e~ i /\!V1tV2e
2~ i /\!V1t. ~2.7!

The detunings above are defined asD15vab2V1 , D2
5vac2V2 , and D35vbc2V3 , where v i j5v i2v j , i , j
5a,b,c. We assume that the classical driving field is res
nant,D350, and the fields in the two laser modes are d
tuned asD152D25V/2@g. Here g is the atomic decay
rate~common to all levels! as introduced in the next section
Then, applying the rotating-wave approximation by negle
ing the rapidly varying exponentials~and retaining the
slowly varying ones!, lower signs in exp@i(D16V/2)t# and
upper signs in exp@i(D26V/2)t#, we arrive at the interaction
matrix
-
-

t-

VII5
1

2
\gF 0

a1
†2e2 ifa2

†

a2
†1eifa1

†

a12eifa2
0
0

a21e2 ifa1
0
0

G ,
~2.8!

provided g[g15g2 . The corresponding result for th
single-mode system in Ref.@5# is reobtained whena15a2 is
assumed.

III. SOLUTION OF THE MODEL

Using the interaction Hamiltonian given by Eq.~2.8! we
find the time evolution of the wave function of theL system
by solving the time-dependent Schro¨dinger equation in the
second interaction picture,
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1014 56PÁL BOGÁR AND JÁNOS A. BERGOU
i\ċ5VIIc. ~3.1!

Here, c is a column vector of the three componen
ca ,cb ,cc , and Eq.~3.1! is a system of three coupled di
ferential equations for the three components that read as

i ċa5
1

2
g~a12eifa2!cb1

1

2
g~a21e2 ifa1!cc2 i

g

2
ca ,

~3.2!

i ċb5
1

2
g~a1

†2e2 ifa2
†!ca2 i

g

2
cb , ~3.3!

i ċc5
1

2
g~a2

†1eifa1
†!ca2 i

g

2
cc . ~3.4!

The atomic relaxation is introduced via the last terms on
right-hand sides, whereg is the decay constant for the thre
atomic levelsa,b,c, for simplicity, assumed to be the sam
for all levels. Similarly to Ref.@5#, this system can be solve
simultaneously by introducing the new functions,c̃a , c̃1 ,
and c̃2 , defined by

ca5e2g/2~ t2t0!c̃a , ~3.5!

cb5e2g/2~ t2t0!e2 if/2~B2
† c̃11B1c̃2!, ~3.6!

cc5e2g/2~ t2t0!eif/2~B1
† c̃12B2c̃2!, ~3.7!

where

B15 1
2 ~a1e

2 if/21a2e
if/2!, ~3.8!

B25 1
2 ~a1e

2 if/22a2e
if/2!. ~3.9!

In this way, the three differential equations given by E
~3.2!–~3.4! become

c8 a52 igAc̃1 , ~3.10!

c8 152 igc̃a , ~3.11!

c8 250, ~3.12!

where

A5 1
2 ~a1a1

†1a2a2
†!, ~3.13!

and their simultaneous solutions are given by

c̃a~ t !5Cc̃a~ t0!2 iASc̃1~ t0!, ~3.14!

c̃1~ t !5Cc̃1~ t0!2 iSc̃a~ t0!, ~3.15!

c̃2~ t !5c̃2~ t0!, ~3.16!

where C5cos@g(t2t0)A
1/2# and S5A21/2sin@g(t2t0)A

1/2#.
The solutions forca ,cb ,cc can be obtained from Eqs
~3.14!–~3.16! using the definitions, Eqs.~3.5!–~3.7!, in a
straightforward way. We shall use these solutions in the n
section to find the master equation for the field-density
erator.
,

e

.

xt
-

IV. THE MASTER EQUATION

The density operator of the three-levelL atom and the
two-mode field satisfies the following equation of motion
the second interaction picture:

ṙ52
i

\
@VII ,r#. ~4.1!

We want to study the behavior of the field only. To obta
the reduced density operator for the field,rF , we trace the
atom-field density operator over the atomic variables,rF
5Tratomr. Thus, the equation of motion forrF is obtained
from Eq. ~4.1! as

ṙF5Tratomṙ52
i

\
Tratom@VII ,r#. ~4.2!

Using the interaction matrix,VII , given by Eq.~2.8!, Eq.
~4.2! reads

ṙF52 ig$e2 if/2~@B2
† ,r̄ab#1@B1 ,r̄ca# !1eif/2~@B2 ,r̄ba#

1@B1
† ,r̄ac# !%1L1rF1L2rF . ~4.3!

Here,LirF , i51,2, accounts for the effect of field losses
the two modes due to cavity damping, and it is explici
given by

LirF52
gc

2
~ai

†airF1rFai
†ai22airFai

†!, ~4.4!

wheregc is the cavity damping rate, assumed to be the sa
for both modes. Herer̄ab and r̄ac stand for the matrix ele-
ments of the total atom-field density operator. To obtain th
explicit expressions we first calculate the contribution of o
atom injected at timet0 with arbitrary initial condition into
the cavity and then sum the contributions of all atoms
jected at random times betweent21/g and t ~i.e., t21/g
,t0,t! at rater . This means that the atom-field interactio
is considered on a time scale shorter than the atomic lifet
1/g. In this way,

r̄ab5r E
t21/g

t

dt0 ca~ t,t0!cb
†~ t,t0! ~4.5!

and

r̄ac5r E
t21/g

t

dt0 ca~ t,t0!cc
†~ t,t0!. ~4.6!

Substituting the solutions obtained forca ,cb ,cc in the pre-
vious section into Eqs.~4.5! and ~4.6! we calculate the ma-
trix elements as follows. Since the dynamics of the field
governed by the cavity lifetime 1/gc , which is much longer
then the atomic lifetime, 1/g, rF does not change apprecia
bly during the integration time interval, and thusrF (t0) in
Eqs.~4.5! and ~4.6! can be approximated byrF (t). On the
other hand, whent2t0.1/g ~i.e., t21/g.t0! the contribu-
tion to the integral is negligible due to the exponential dam
ing factor. This means that the lower limit of the integratio
can be extended to2`. After performing these steps an
carrying out the integral we can substitute the results
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56 1015TWO-MODE LASING WITHOUT INVERSION WITH . . .
r̄ab , r̄ac and their Hermitian conjugates into the equation
motion in Eq.~4.3! and obtain the final form of the maste
equation for the field-density matrix.

We want to remark here that when we took the trace o
the atomic variables in Eq.~4.2! then, in the matrix element
appearing on the right-hand side in Eq.~4.3! and calculated
according to Eqs.~4.5! and~4.6!, we effectively replaced the
atomic variables by their steady-state values~adiabatic elimi-
nation of atomic variables!. This is justified by the much
faster atomic relaxation rate than that of the field (g@gc). In
doing so, we made use of our solution for the wave funct
in Eqs. ~3.14!–~3.16! and, therefore, in the resulting mast
equation the atomic relaxation process is fully accounted

The explicit but rather complicated form of the mas
equation will not be given here. Instead, in the next secti
we transform it into a Fokker-Planck equation and, analyz
the drift coefficients of the equation, we study the dynam
of the two-mode field.

V. THE FOKKER-PLANCK EQUATION

A. Derivation of the Fokker-Planck equation

In this section we employ the Glauber-SudarshanP rep-
resentation for the field-density matrix to transform the o
erator master equation given implicitly by Eq.~4.3! into a
c-number differential equation, the Fokker-Planck equati
for the P function. An outline of the standard procedure
given in the Appendix; here we present the final results on
Using the normalized intensities,Ĩ i5(b/a)I i , where a
[(r /gc)g

2/g2 and b[4(r /gc)g
4/g4 are the respective

pumping and saturation parameters, and the phasesu i of the
two field modes,i51,2, as the variables of theP function,
P5P( Ĩ 1 , Ĩ 2 ,u1 ,u2 ,t), we arrive at the Fokker-Planck equ
tion given by

1

gc

]P

]t
5$2] Ĩ 1

d Ĩ 1
2]u1

du1
1]

Ĩ 1 Ĩ 1

2
D Ĩ 1 Ĩ 1

1]u1u1
2 Du1u1

1]
Ĩ 1u1

2
D Ĩ 1u1

2] Ĩ 2
d Ĩ 2

2]u2
du2

1]
Ĩ 2 Ĩ 2

2
D Ĩ 2 Ĩ 2

1]u2u2
2 Du2u2

1]
Ĩ 2u2

2
D Ĩ 2u2

1]
Ĩ 1 Ĩ 2

2
D Ĩ 1 Ĩ 2

1]u1u2
2 Du1u2

1]
Ĩ 1u2

2
D Ĩ 1u2

1]
Ĩ 2u1

2
D Ĩ 2u1

%P1••• .

~5.1!

Here we used the notation]xi5]/]xi and ]xiyj
2 5]2/]xi]yj

for the derivatives, wherexi andyi are any of the normalized
intensity and phase variables of the two modes,i51,2, while
the higher-order terms]xiyj zk

3 are omitted. The coefficient

under the derivatives, the drift (d) and diffusion (D) terms
of the equation can be used to analyze the system with
solving the equation for theP function. We introduce the
notation r i j5Ar i ir j j e

iw i j , i , j5a,b,c, for the injected
atomic coherences~which are different from the matrix ele
mentsr̄ab andr̄ac of the total atom-field density operator!. It
should be noted that the phases are constant; i.e., all a
are prepared with the same initial phase relative to the fi
The problem of the preparation of the phase is discusse
detail in Ref.@11#. For the case when the mean intensit
f

r
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^I 1& and^I 2& are much larger than 1, the explicit expressio
for the drift coefficients of the above equation read as

d Ĩ 1
5

Ĩ 1
N1N2

FaS raa2
1

2
M̄1DN1

2
3

16
a Ĩ 2~M̄12M̄2!2N1N2G , ~5.2!

du1
5

a

4N1
FMb24

R3

AĨ 1
2
1

2
AĨ 1Ĩ 2S R3

AĨ 2
2

R4

AĨ 1
D G , ~5.3!

and

d Ĩ 2
5d Ĩ 1

~ interchange, Ĩ 1⇔ Ĩ 2 and M̄1⇔M̄2!, ~5.4!

du2
52du1

~ interchange, Ĩ 1⇔ Ĩ 2 and R3⇔R4!, ~5.5!

where

N1511 1
8 ~ Ĩ 11 Ĩ 2!, ~5.6!

N2511 1
2 ~ Ĩ 11 Ĩ 2!, ~5.7!

M15rbb1rcc12urbcucos~wbc1f!, ~5.8!

M25rbb1rcc22urbcucos~wbc1f!, ~5.9!

Ma5~rbb2rcc!cos~f2u!22urbcusin~wbc1f!sin~f2u!,
~5.10!

Mb5~rbb2rcc!sin~f2u!12urbcusin~wbc1f!cos~f2u!,
~5.11!

R15urabusin~wab2u1!1uracusin~wac1f2u1!, ~5.12!

R252urabusin~wab2f2u2!1uracusin~wac2u2!, ~5.13!

R35urabucos~wab2u1!1uracucos~wac1f2u1!, ~5.14!

R45urabucos~wab2f2u2!2uracucos~wac2u2!, ~5.15!

M̄15M12MaS Ĩ 2
Ĩ 1
D 1/22 4R1

AĨ 1
, ~5.16!

M̄25M22MaS Ĩ 1
Ĩ 2

D 1/22 4R2

AĨ 2
. ~5.17!

Above, we have also introduced the relative phase betw
the two modes denoted byu[u12u2 . Its drift coefficient
can be calculated asdu5du1

2du2
. In order to completely

determine the Fokker-Planck equation~5.1! we give the dif-
fusion terms in the Appendix. A very similar set of equatio
for aV system with initial coherence between closely spac
upper two levels has been derived in Ref.@12#. It has been
shown to lead to spontaneous emission cancellation just
the cancellation of absorption in ourL system.

In the next subsection we outline the procedure empl
ing the drift terms of the equation to investigate the dynam
cal behavior of the average intensities and phases of the
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fields. On the other hand, the diffusion terms prove usefu
studying the noise performance of the field. We are not go
to deal with these problems in the present paper but, toge
with the correlations building up between the two mod
they are planned to be the subject of future work.

B. Applying the drift terms of the Fokker-Planck equation

Having the Fokker-Planck equation at hand, we now e
ploy the drift coefficients to investigate the time-depend
and steady-state properties of the average intensities
phases of the two field modes. We should mention at
point that in theP representation the~stochastic! average of
the intensity is directly connected to the~quantum mechani-
cal! expectation value of the photon number as^I i&5^ni&,
i51,2. It can be shown in general that

1

gc

d

dt
^x&5^dx&, ~5.18!

wherex is any of the four dynamical variables of the equ
tion: Ĩ 1 , Ĩ 2 , u1 , and u2 . After expanding the drift coeffi-
cientsdx in terms ofdx5x2^x& around the average,^x&,
Eq. ~5.18! becomes

1

gc

d

dt
^x&>dxu^all& , ~5.19!

where the drift coefficientdx is taken at the average values
all the dynamical variables on the right-hand side. Solv
the system of differential equations given by Eq.~5.19! we
can find the time dependence of the average quantities, w
the system of the algebraic equations,dxu^all&50, yields the
steady state.

We investigate the stability of the steady states by stu
ing the stability of the phases of the two modes,u1 andu2
~for the sake of simplicity, we omit the stochastic avera
signs, ^ &, from now on!. In doing so, we introduce sma
perturbations,Du1 and Du2 , around the steady state,u1,s
and u2,s , and substituteu1(t)5u1,s1Du1 and u2(t)5u2,s
1Du2 into the corresponding form of Eq.~5.18!. Expanding
du1

anddu2
around the steady state to first order inDu1 and

Du2 we arrive at the system of two linear differential equ
tions,

dDu i
dt

5
]du i

]u1
U

^all&

Du11
]du i

]u2
U

^all&

Du2 , ~5.20!

where i51,2, and the derivatives are to be evaluated
steady state. We can assume that, since this is a syste
linear equations, a simple exponential solution exists in
form Du i(t)5Du i(0)e

lt. The characteristic equation afte
substituting this ansatz back into the above equations
quadratic algebraic equation forl, where the negative defi
niteness of the roots can be analyzed applying Hurwi
criteria. If Rel,0 the initial perturbation decays expone
tially back to the steady state while a positive exponent
plies increasing deviation off the steady state. Thus, nega
definiteness is the criterion for stability. We are going
apply this linear stability analysis together with numeric
n
g
er
,

-
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solutions of the coupled differential equations to determ
the stability of the steady states.

VI. SOLUTIONS OF THE DRIFT EQUATIONS

A. Incoherent pumping

First, let us consider the simplest case when no ato
coherence is injected initially into the resonator,ur i j u50,
i , j5a,b,c. It follows that Rk50, k51,2,3,4 @see Eqs.
~5.12!–~5.15!#, and the equations of motion for the tw
phases reduce to simple forms. In particular, the rela
phase satisfies the equation

u̇5
a

2N1
~rbb2rcc!sin~f2u!. ~6.1!

The stable steady-state solutions of this equation are

u5 Hf
f1p

if rbb.rcc
if rbb,rcc,

~6.2!

while there is no stable solution for equal lower-level pop
lations. The relative phase of the two modes is locked t
value that is essentially controlled by the phase of the ex
nal field. However, switching the sign of the initial inversio
between the two lower levels will result in ap jump in the
steady-state relative phase. Since mode 1 drives
ua&→ub& transition and mode 2 theua&→uc&, the phase of
the mode coupling the upper level to the dominantly pop
lated lower level will be ahead of the other one. The inte
sities corresponding to the possible stable steady states
as

Ĩ 15 Ĩ 25 H a~raa2rcc!21
a~raa2rbb!21

if rbb.rcc
if rbb,rcc.

~6.3!

The intensities in the two modes are equal and determine
the inversion between the upper and the less populated lo
level only. The population of the other lower level can
arbitrarily large, e.g., larger than that of the upper one~no
inversion!, without affecting the laser operation. It is ‘‘hid
den’’ from the lasing mechanism and results in no extra
sorption of the radiation. In particular, if one of the low
levels is empty laser operation can be achieved for arbitra
small upper level population. This is clearly the effect of t
external field coupling the lower two levels. The genera
coherence between these two levels destructs the absor
transition from the dominantly populated lower level to t
upper one. The threshold of the laser is given bya th5(raa
2rxx)

21, whererxx is the population of the less populate
lower level.

B. Injected atomic coherence between the lower levels:rbc

Sincerab andrac are still assumed to be zero,Rk50, k
51,2,3,4@see Eqs.~5.12!–~5.15!# and the equation of motion
for the relative phase is given by

u̇5
a

2N1
@~rbb2rcc!sin~f2u!12urbcusin~wbc1f!

3cos~f2u!#. ~6.4!
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Assuming different lower-level populations,rbbÞrcc , the
stable solutions for the steady-state relative phase read
same as given above in Eq.~6.2!, provided the initial phases
of the injected coherence and the external field are se
wbc1f50 ~or p! for rbb.rcc ~or rbb,rcc!. However, due
to the injected coherence a stable solution can also be fo
for the case of equal lower-level populations,rbb5rcc . The
criterion for the particular value of the phase locking, in th
case, is connected to the initial phase of the injected co
ence and the external field, as given by

u5 Hf1p/2
f2p/2

if sin~wbc1f!,0
if sin~wbc1f!.0, ~6.5!

while the cases off2wbc50 or p are not stable. The cor
responding steady-state intensities read as

Ĩ 1,25~araa21!F16
2urbcucos~wbc1f!

rbb1rcc
G , ~6.6!

where the upper~lower! sign corresponds to the first~sec-
ond! mode. As we have seen above when finding the sta
steady-state phases, in the case of different lower-level po
lations,rbbÞrcc , cos(wbc1f) must be set to61, provided
rbb is larger (11) or smaller (21) thanrcc . Looking at Eq.
~6.6!, the intensity of one of the modes can, in this case,
adjusted by controlling the amplitude of the injected coh
ence,urbcu, at the expense of the intensity of the other mo
Sinceurbcu5Arbbrcc this can be done by adjusting the in
tial populations in the lower levels. On the other hand,
equal lower-level populations,rbb5rcc , the intensities are
controlled by the phase of the injected coherence via vary
cos(wbc1f). Consequently, the intensities in the two mod
can be redistributed in both cases, when the lower-le
populations are different or equal, by controlling the fr
parameter, amplitude, or phase of the injected coherenc
the most extreme cases one of the modes can be switche
completely, e.g.,Ĩ 1>0, making at the same time the intensi
of the other mode increase toĨ 2>2(araa21). This is twice
as large as the balanced intensities in the case of incohe
pumping in Sec. VI A, since all the energy is being conce
trated in one of the modes only.

One should also note when comparing Eq.~6.6! to Eq.
~6.3! that, in the present case, neither of the lower lev
appears in the prefactor of the formula. Their populations
not affect the total intensity in the two modes, they mer
allow for a continuous switching of the intensity from on
mode to the other. That is, LWI appears naturally in t
present case corresponding to the highest gain possible i
incoherently pumped system. The present scheme reprod
the incoherent one when one of the lower levels is empty
when cos(wbc1f) is zero.~Notice that it is not enough to se
the coherenceurbcu to zero since we have already made u
of the relationurbcu5Arbbrcc.!

C. Injected atomic coherence between the upper
and one of the lower levels:rab or rac

Let us consider now injected coherence between the u
and one of the lower two levels, for example,rab . In the
case whenrbb,rcc we found one solution, called regim
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A, that is stable for any pumpinga. The phases of the two
modes, in this case, are locked to the phase of the inje
coherence,u15wab2p/2 andu25wab1p/22f, resulting
in the relative phaseu5f1p. The intensities are equal,Ĩ
[ Ĩ 15 Ĩ 2 , determined by the equation

Ĩ 3/22@a~raa2rbb!21# Ĩ 1/222aurabu50. ~6.7!

The injected atomic coherence provides a new driving te
viz., the third term on the left-hand side of the equation. O
consequence is that, when solving Eq.~6.7!, nonzero inten-
sity can be found for any initial population of the thre
atomic levels including the most extreme cases where
population in the upper level is arbitrarily small. That is, t
active atoms do not need to be inverted and LWI can
realized. On the other hand, laser action can be achieve
arbitrarily small pumping as illustrated by the example d
picted in Fig. 2 due to the extra driving provided by th
injected atomic coherence~radiating atomic dipole!. There-
fore we have stable operation without inversion and with
threshold on the entire domain ofa.

Let us now look at the case whenrbb.rcc . The system,
in this case, exhibits three different stable regimes at ste
state denoted byA, B, andC. An example is depicted in Fig
2. We have already seen regimeA above. However, in the
present case it is not stable for any pumping parameter
becomes unstable in the region of largea where regimesB
andC take over~starting froma520 in the figure!. In par-
ticular, at the critical value of the pumping where regimeA
becomes unstable the system has three different ways to
i.e., becomes tristable. In regimeB, the stable steady-stat
phases do not change as compared to regimeA but the in-
tensities of the two modes separate according to

Ĩ 1
1/25R6Aa~raa2rcc!212R2, ~6.8!

FIG. 2. Steady-state normalized intensities of the two mo
Ĩ 1 and Ĩ 2 as functions of the pumping parametera. Atoms are
injected in a coherent superposition of levelsa andb the popula-
tions of which areraa50.4 andrbb50.5. At a critical value of the
pumping,acrit520, regimeA splits up into three new branche
where, in regimeB, the intensities of the two modes alternative
occupy the upper and lower branches in the figure~bistability!
while in C they stay equal.
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Ĩ 2
1/25R6Aa~raa2rcc!212R2, ~6.9!

whereR[2urabu/(rbb2rcc). The switch from regimeA to
B occurs at the critical value of the pumping given byacrit
5(11R2)/(raa2rcc). This critical point corresponds to th
equal intensities,Ĩ5 Ĩ 15 Ĩ 25R2. The two alternative signs in
Eqs.~6.8! and~6.9! suggest that regimeB provides a bistable
operation where the intensities of the two modes can be
terchanged: they can alternatively occupy the upper
lower branches in Fig. 2. We note that this scheme realiz
noninversion laser system where the intensities are de
mined by the inversion between the upper and the less p
lated lower level.

The third branch in Fig. 2 corresponds to regimeC and
also starts fromacrit . Here, the intensities of the two mode
are equal,Ĩ[ Ĩ 15 Ĩ 2 , and explicitly read as

Ĩ5a~raa2rcc!21. ~6.10!

This brings us back to the intensities found in the case
incoherent pumping given by Eq.~6.3!. However, in the
present case the phase locking between the two mode
different. It is a function of the intensity~i.e., the pumping
parameter,a! and, using Eq.~6.10!, can be found from
sin(wab2u1)52sin(wab2u22f)5R/Aa(raa2rcc)21. That
is, injected coherence does not affect the intensities in reg
C but modifies the region of stability and the steady-st
phases of the two modes.

In summary, the system exhibits critical behavior as
function of the pumping parametera. RegimeA, occupying
the region of low pumping rate, starts from zero thresh
and realizes LWI. An example for the evolution of the inte
sities in the phase space,Ĩ 12 Ĩ 2 , toward, in this case, a
single-valued steady state is depicted in Fig. 3. The tim
dependent behavior of the field is obtained by numerica
solving the system of differential equations for the intensit

FIG. 3. Evolution toward a single-valued steady state in reg
A at a515 of Fig. 2 wheref5wab50 and the initial conditions
for the phases areu1,052u2,052p/2 ~i.e., starting from the
steady-state value of the phases!. The steady-state intensities a
equal (Ĩ 15 Ĩ 2>4) as indicated by a spot in the figure.
n-
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and the phases given by the drift equations@see Eq.~5.19!#.
The results confirm that regimeA is stable, remains stabl
for any pumping, and is the only stable operation whenrbb
,rcc . In the case whenrbb.rcc , regimeA becomes un-
stable and splits into three new branches at a critical valu
the pumping,acrit . These are regimesB andC, all in non-
inversion operation. RegimeB itself is bistable whileC is
single valued. Typical evolution toward the tristable stea
state in the phase space,Ĩ 12 Ĩ 2 , is depicted in Fig. 4. The
numerical solutions confirm the results obtained from
analytical stability analysis for the stable steady states. T
also demonstrate that the time evolution toward steady s
depends critically on the initial conditions. It can be seen
the figure that starting from the same intensities but differ
phases the system will evolve into a different steady st
Finally, we note that the system exhibits similar behav
with injected coherencerac , but with the roles ofrbb and
rcc interchanged.

D. Injected atomic coherence between all the levels:
rab , rac , and rbc

We now consider the scheme where all the poss
atomic coherences,rab , rac , and rbc , are injected. It is
found that stable steady-state operation can be achieved
arbitrary initial population of the atomic levels provided th
phase of the external field is locked to the phase of the
jected lower level coherence aswbc1f50 or p. Let us set,
in particular, the initial population asrbb.rcc and select the
arbitrary phases to bewbc1f5p; the consequences of th
other alternative settings will be discussed at the end of
subsection. In this parameter region, an example for
steady-state intensities of the two modes as functions of
pumping parametera is given in Fig. 5 where the solid an
dashed lines depict the intensities of the first and sec

e FIG. 4. Evolution toward a tristable steady state of regimesB
andC at a530 of Fig. 2 usingf5wab50. For the initial phases
u1,05u2,050, the steady state corresponding to regimeC is realized
~see spot in figure atĨ 15 Ĩ 258!. For u1,052u2,052p/2 we have
two stable pairs of intensities whereĨ 1 and Ĩ 2 are, respectively,
equal to 0.25 and 15.8. They correspond to the two branche
regimeB in Fig. 2, and are realized depending on the initial con
tions for the intensities.
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56 1019TWO-MODE LASING WITHOUT INVERSION WITH . . .
modes, respectively. The curves are labeled with the let
A, B1 , B2 , andB3 , indicating the various regimes that w
are going to consider in detail.

In regimeA, the steady-state phases of the two modes
locked to the phases of the individual injected atomic coh
ences asu15wab2p/2 andu25wac2p/2. It follows from
the relationwab1wac5wbc that the relative phase betwee
the modes locks tou52wbc that is equal tof1p ~see
presumption in the previous paragraph!. The corresponding
intensities of the two modes are calculated from the equa
given by

Ĩ 2
3/22

M2

rbb1rcc
$a@raa2~rbb1rcc!#21% Ĩ 2

1/22
2aR2M2

rbb1rcc

50 ~6.11!

and

Ĩ 1
1/25

R1

R2
Ĩ 2
1/2, ~6.12!

whereR1 , R2 , andM2 are defined by Eqs.~5.12!, ~5.13!,
and ~5.9!, respectively. From the stability analyses we fi
that this particular steady state in regimeA is stable for
pumping parameters below the critical pumpingacrit8 , which
reads as

acrit8 5
114raa~rbb1rcc!/~rbb2rcc!

2

raa22rcc
. ~6.13!

We want to note that this critical point corresponds to
upper limit in the intensities given byĨ 2

1/2,2raa /(rab
2rac). It follows from Eq. ~6.11! that injected coherenc

FIG. 5. Normalized steady-state intensities of the two mo
Ĩ 1 ~solid line! and Ĩ 2 ~dashed line! vs pumping parametera when
all injected atomic coherences,rab , rac , and rbc , are assumed
The initial population of the states areraa50.7 andrbb50.28.
Structures similar to Fig. 2 are apparent: regimesA of each mode
split up into two respective branches,B1 andB2 (B3), at a critical
point, a>14.8. The two equal-intensity regimes,B2 andB3 , ex-
hibit phase bistability.
rs

re
r-

n

n

results in an extra driving term and, as depicted in Fig. 5,
threshold of the laser is zero. It can also be seen that
intensities are connected to the inversion between the u
and the two lower levels combined. Thus, none of the t
lower levels is hidden in this scheme but, since solutions
be found for arbitrarily large lower-level populations, LWI
realized nevertheless. Equation~6.11! is a generalization of
Eq. ~6.7! in which schemerab is injected only. In fact, in the
particular case ofrcc50 Eqs.~6.11! and~6.12! reduce to Eq.
~6.7! and the critical points of stability coincide exactly, a
expected.

Next, let us look at the remaining three regimes,B1 ,
B2 , and B3 , together. The steady-state phases in regim
B1 andB2 are the same as in regimeA while in regimeB3
the phase of the first mode switches tou15wab1p/2 and the
relative phase tou52wbc1p. The intensities are given by
the equations

Ĩ 1
1/25

2

rbb1rcc
FR16R2S rbb1rcc

4raa
~araa21!21D 1/2G ,

~6.14!

Ĩ 2
1/25

2

rbb1rcc
FR26R1S rbb1rcc

4raa
~araa21!21D 1/2G ,

~6.15!

where the upper signs correspond to regimesB1 andB3 and
the lower ones toB2 . The stability analysis suggests th
these regimes are all stable above a critical value of
pumping parameter given by

acrit5
3raa11

raa~rbb1rcc!
. ~6.16!

It follows from Eqs.~6.14! and ~6.15! and from the steady-
state phases above~see also Fig. 5! that regimesB2 andB3
exhibit phase bistability; the intensities in the two regim
are the same for any pumping but the phases~actuallyu1 and
u only! have two different stable steady states. It can also
seen from the factor (araa21) that both lower levels are
absent from the inversion term and, therefore, these regi
realize an optimum scheme for LWI where the population
the lower levels can be arbitrarily large. On the other ha
regimesB1 , B2 , andB3 result in a splitting of the intensities
of regimeA at the critical pumpingacrit ~see Fig. 5! remi-
niscent of that in Sec. VI C. The present scheme is m
complicated, however, because the intensities of the
modes in regimeA are not equal and, therefore, each bran
splits up into two separate branches,B1 andB2 (B3), indi-
vidually. Nevertheless, the two systems correspond to
another both in their regimesA, as discussed above, and
their regimesB. Apart from regimeC missing from the
present system, the two schemes exhibit similar dynam
behaviors approaching the same structure whenrcc is de-
creasing. In particular, whenrcc50 the two systems coin
cide exactly, as expected.

s
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1020 56PÁL BOGÁR AND JÁNOS A. BERGOU
The scheme considered so far in the present subse
corresponds to the particular choice ofrbb.rcc and wbc
1f5p. Let us briefly summarize what happens when
lecting the other alternatives. Switching towbc1f50 re-
sults in an exact interchange of the intensities,Ĩ 1⇔ Ĩ 2 ~i.e.,
switch of the solid and dashed lines in Fig. 5!, and in a shift
of the phase of one of the modes, depending on the reg
by p with respect to its steady-state value above. In parti
lar, for rbb.rcc u1 switches in regimesA, B1 , andB2 while
u2 switches inB3 . For rbb,rcc it is reversed,u1 shifts in
B3 andu2 in A, B1 , andB2 . On the other hand, switchin
from rbb.rcc to rbb,rcc and keeping the value ofwbc
1f the same results in an interchange ofrbb⇔rcc in the
above formulas determining, for example, the magnitude
the intensities or the locations of the critical points.

As a summary to this subsection, we can say that
system in this scheme operates in several different regime
a multistable way exhibiting critical behavior. The intensiti
are single valued in the small pumping region starting fr
zero threshold while, at a critical point, they split up in
tristable structures, reminiscent of those in Sec. VI C. T
phases of the two modes lock to the phases of the inje
coherences between the upper and lower levels asu15wab
6p/2 andu25wac6p/2 depending on the initial paramete
and the actual regime of operation. Above the critical po
the system also exhibits phase bistability. This scheme r
izes LWI in a crucially unstable way due to injected atom
coherences and the interplay between the two coexis
modes.

VII. SUMMARY

We investigated the interaction ofL-type three-level
atomic systems with two modes of the radiation field wh
the lower two closely spaced levels of the atoms are coup
by an external field. In addition, we also assumed ini
atomic coherences between various levels of the active
oms. The purpose of the present paper was to study m
mode effects in LWI together with other quantum coheren
phenomena due to injected atomic coherences. After sol
the Schro¨dinger equation of the model in the interaction p
ture we calculated the master equation for the two-m
field-density matrix. The master equation was converted
a Fokker-Planck equation for theP representation. From th
drift coefficients we then obtained the coupled equations
motion for the average intensities and phases in the
modes. We solved these equations for various initial con
tions and control parameters of the system such as the in
populations of the atoms, injected coherences, phase o
external field, etc.

We found that LWI in both modes is possible as a res
of the external driving field. Similarly to the single-mod
case@5#, the coherence induced between the two lower lev
results in nonabsorbing resonances between the upper
the lower levels of the atoms and, therefore, the popula
in one~or both! of the lower levels can be excluded from th
consideration of the effective population inversion for lasi
action. We also found that the relative phase of the t
modes is locked to the phase of the external field. In ad
tion, including injected atomic coherences into the syst
laser action can be realized with arbitrarily small pumpi
on
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rate ~zero threshold! in both modes@5#. This is due to the
injected atomic dipoles radiating independently of the act
gain-loss ratio in the system. In conclusion, we have sho
that lasing without inversion can be achieved at ze
threshold operation in two phase-locked modes simu
neously.

We also found that injected atomic coherence between
lower two levels of the atoms can be used to redistribute
intensity between the two competing modes. In particu
one of the modes can be shut down, making the other m
two times ‘‘brighter’’ as compared to the symmetrical cas
It can also be seen in this scheme that none of the lower-l
populations appears in the inversion factor in the intens
formula; only that of the upper level appear. This sugge
that both lower levels correspond to nonabsorbing re
nances in this scheme. On the other hand, injecting ato
coherence between the upper and one of the lower leve
the system, besides zero-threshold LWI, gives rise to crit
multimode behavior. We found multiple branching at critic
points of the pumping parameter at steady state where th
far equal intensities can split into different branches. In p
ticular, the intensities of the two modes can exhibit bista
and tristable behavior at steady state accompanied by sin
valued phases in this scheme. These phenomena bec
more complicated when coherences between all atomic
els are injected. In this case, the intensities of the two mo
are different for all pumping rates and, therefore, the m
tiple branching takes place on each mode’s intensity se
rately. Besides intensity multistability, we found phase bis
bility in other regions of the pumping parameter whe
single-valued intensities are accompanied with phases
ing two stable steady states simultaneously.

This critical behavior suggests that the dynamics of
system can become essentially multistable and/or unst
and highly sensitive to initial conditions when more than o
mode are present in the resonator. Therefore, in orde
realize lasing without inversion in experiments in a sta
way, mode selection is crucial. On the other hand, the sys
can also become a candidate for investigating critical p
nomena where the goal actually would be to realize a
study instabilities.
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APPENDIX

The Fokker-Planck equation given by Eq.~5.1! has been
obtained from the master equation given implicitly by E
~4.3! according to the following standard procedure. Sub
tuting the Glauber-SudarshanP representation of the field
density matrix,

rF~ t !5E d2a1d
2a2P~a1 ,a1* ,a2 ,a2* ,t !ua1 ,a2&^a1 ,a2u,

~A1!

into the master equation, we obtain the equation of mot
for P(a1 ,a1* ,a2 ,a2* ,t),
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1

gc

]P

]t
5$2]a1

da1
2]a

1*
da

1*
1]a1a1

2 Da1a1
1]a

1* a
1*

2
Da

1* a
1*
1]a1a

1*
2

Da1a
1*
2]a2

da2
2]a

2*
da

2*
1]a2a2

2 Da2a2
1]a

2* a
2*

2
Da

2* a
2*

1]a2a
2*

2
Da2a

2*
1]a1a2

2 Da1a2
1]a

1* a
2*

2
Da

1* a
2*
1]a1a

2*
2

Da1a
2*
1]a

1* a2

2
Da

1* a2
%P1••• , ~A2!

whereP5P(a1 ,a1* ,a2 ,a2* ,t). Here, we used the notation]a i
5]/]a i and ]a ia j

2 5]2/]a i]a j for the derivatives while the

higher-order terms,]a ia jak
3 , i , j ,k51,2, are omitted. Instead of dealing with this form of the Fokker-Planck equation

transform it into polar form, whereP is now considered as a function of the intensitiesI 1 , I 2 and phasesu1 ,u2 of the two
modes. These are defined by the substitutionsa1[AI 1eiu1 and a2[AI 2eiu2. After introducing the normalized intensities
Ĩ 1 andĨ 2 , defined in Sec. V, the Fokker-Planck equation given by Eq.~A2! becomes Eq.~5.3!. The drift terms in this equation
are given in Sec. V, while here we present the diffusion coefficients assuming that^I 1& and ^I 2&@1 still holds. Then the
diffusion terms are given by

D Ĩ 1 Ĩ 1
5

b Ĩ 1
~N1N2!

2 H raaS 11
1

2
Ĩ 2DN1

21
1

16
M̄1Ĩ 1N2

21
3

16
~M̄1Ĩ 11M̄2Ĩ 2!FN1N22

Ĩ 1
8

~2N213!G J , ~A3!

D Ĩ 1 Ĩ 2
52

b Ĩ 1Ĩ 2
~N1N2!

2 H raaN1
21

1

16
~M̄11M̄2!N2

21
3

64
~M̄1Ĩ 11M̄2Ĩ 2!~N1N213!J , ~A4!

Du1u1
5

b

4Ĩ 1N1
2N2

H raaS 11
1

4
Ĩ 1DN1

22
1

16
M̄1Ĩ 1N21

3

16
~M̄1Ĩ 11M̄2Ĩ 2!FN11

Ĩ 1

24
~2N113!G J , ~A5!

Du1u2
5

b

8N1
2N2

H raaN1
22

1

8
~M̄11M̄2!N21

1

32
~M̄1Ĩ 11M̄2Ĩ 2!~2N113!J , ~A6!

D Ĩ 1u1
5

bAĨ 1 / Ĩ 2
32N1

2N2
H Ĩ 1Ĩ 2S R3

AĨ 2
2

R4

AĨ 1
D ~N123!22Ĩ 2S Mb24

R3

AĨ 2
DN2J , ~A7!

D Ĩ 1u2
5

bAĨ 1 / Ĩ 2
32N1

2N2
H Ĩ 1Ĩ 2S R3

AĨ 2
2

R4

AĨ 1
D ~N123!2 Ĩ 2S Mb24

R3

AĨ 2
DN21 Ĩ 1S Mb24

R4

AĨ 1
DN2J , ~A8!
m

dr

nd-

to
ross
together with

D Ĩ 2 Ĩ 2
5D Ĩ 1 Ĩ 1

~ interchange, Ĩ 1⇔ Ĩ 2 and M̄1⇔M̄2!,
~A9!

Du2u2
5Du1u1

~ interchange, Ĩ 1⇔ Ĩ 2 and M̄1⇔M̄2!,
~A10!

D Ĩ 2u2
52D Ĩ 1u1

~ interchange, Ĩ 1⇔ Ĩ 2 and R3⇔R4!,
~A11!

D Ĩ 2u1
52D Ĩ 1u2

~ interchange, Ĩ 1⇔ Ĩ 2 and R3⇔R4!.
~A12!

Finally, we want to remark that the drift terms of the su
and difference phases,m[u11u2 and u[u12u2 , and the
sum and difference intensities,Ĩ65 Ĩ 16 Ĩ 2 , can be calculated
as the sums and the differences of the corresponding
 ift

terms for the two modes. On the other hand, the correspo
ing diffusion coefficients read as

Dmm5Du1u1
1Du2u2

1Du1u2
, ~A13!

Duu5Du1u1
1Du2u2

2Du1u2
, ~A14!

and

D Ĩ 6 Ĩ 6
5D Ĩ 1 Ĩ 1

1D Ĩ 2 Ĩ 2
6D Ĩ 1 Ĩ 2

, ~A15!

indicating that the noise in these quantities is connected
the cross correlations between the two modes. The c
terms of the sum-difference quantities are given by

Dmu52~Du1u1
2Du2u2

!, ~A16!

D Ĩ 1 Ĩ 2
52~D Ĩ 1 Ĩ 1

2D Ĩ 2 Ĩ 2
!. ~A17!
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