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Two-mode lasing without inversion with injected atomic coherence
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Noninversion lasing is investigated ik-type three-level atomic systems that are coupled to two modes of
the electromagnetic field. As a result of an external field driving the transition between the lower two closely
spaced levels, laser action can be achieved in both modes simultaneously at arbitrarily small initial upper-level
population(lasing without inversiopprovided the pumping rate exceeds a certain threshold. The relative phase
of the two modes is locked to a particular value controlled by the phase of the external field. In addition, new
regimes of the laser operation arise when initial coherences between various atomic levels are also injected into
the resonator. Firstly, laser action can be achieved in both modes at arbitrarily small pynmpihgeshold
Secondly, the injected atomic coherence can control competition between the modes, and result in a variety of
multistable  steady-state behavior illustrating the very sensitive dynamics of the system.
[S1050-294{@7)09807-1

PACS numbes): 42.50.Gy, 42.60.Lh, 42.60.Mi, 42.65.Pc

[. INTRODUCTION rate of spontaneous emissidhe., in the high-frequency,
vacuum ultraviolet, or x-ray, domain of the spectiumvhile

In recent years, a considerable amount of theoretical anteduced-noise radiation could be advantageous in, for ex-
experimental research has been devoted to atomic coherenample, optical communication networks. Let us also mention
effects in laser systems. The motivation behind this work ishere two other prominent quantum optical concepts related
both fundamental and applied physics. It targets the microto effects of atomic coherence. These are the enhanced index
scopic mechanism of the emission of light employing activeof refraction with minimal absorption as suggested by Scully
atoms in coherent superpositions of their quantum states irend collaboratorg8], and the electromagnetically induced
volved in the laser action and, on the other hand, searches fttansparency demonstrated by Harris and co-worl@raNe
practical applications of these mechanisms in constructinglso note the recently proposed method of generating atomic
new types of lasers and other quantum optical devices. Theoherence utilizing a Stark-shifted sublevel crossing a neigh-
signature of driving atomic coherence can be traced in théoring atomic state by Kocharovskagtal.[10].
performance of the laser, viz., in the dynamical and noise Motivated by the above examples illustrating the signifi-
characteristics of the radiation. It has been demonstrated, ®ance of atomic coherence in quantum optical systems we
consider a prominent example, that atomic coherence estabensider here a two-mode version of the above-mentioned
lished between two closely spaced lower levels of three-level-type three-level LWI systemi$]. The transition between
(A-type) atoms using an external fie[d] may lead to laser the lower two closely spaced levels is driven by an external
action even though the active medium is not in an invertedield and, in addition, atomic coherences between various
state[lasing without inversiofLWI) [1-3]]. One interpreta- states of the three-level atoms are injected. The competition
tion of this effect is that atomic coherence results in nonabbetween the modes is investigated, together with the onset of
sorbing resonances in the syst¢#). In addition, injecting noninversion lasing and zero-threshold operation in both
initial atomic coherence between all three levels of the drivimodes. We find that atomic coherences play a crucial role in
ing atoms can lead to an elimination of the pumping threshthe competition between the two modes; they can be applied,
old for laser operation, another long-thought key concept ofn some cases, to redistribute the energy between the two
the conventional laser theories, and the system enters its nomodes while, in others, they result in instabilities and multi-
linear regime at arbitrarily small pumpind]. This is the stable steady-state behavior of the laser modes. These insta-
consequence of the injected atomic coherence, i.e., a drivingilities and the very sensitive dynamics exhibiting critical
atomic dipole, that radiates independently of the actual incobehavior in the two-mode system suggest that selection of a
herent gain-loss ratio in the system. Furthermore, injectedingle mode in the experimental realization of LWI can be an
atomic coherence can also result in a simultaneous reductigssential condition in achieving stable operation.
of photon-number noise and phase noise in the [ggeiThe In the next section we present the model of the system by
possibility to significantly reduce the noise in laser systemsntroducing its Hamiltonian and transforming it into an inter-
and produce, for example, squeezed light using injectedction picture. The resulting Schdimger equation is solved
atomic coherence has attracted much attention in the pa#t Sec. lll for the time-dependent wave function that, in Sec.
few years[6,7]. The practical applications of these quantumlV, is used to derive the master equation for the field-density
coherence phenomena in active optical systems are obvioumatrix. In Sec. V we transform the master equation into a
Noninversion lasing could be very useful in, for example, Fokker-Planck equation for thié function. The drift coeffi-
regimes where inversion is difficult to establish, due to highcients of the equation are then analyzed in Sec. VI to de-
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fio in detail, except here we allow for two separate modes con-
a tributing to (competing foy the laser action. Since the for-
mulation and solution closely parallels R¢5] we confine
ourselves to a brief outline of the model and its solution.

,QI Q, The Hamiltonian for the field and one active atom in the
Schralinger picture is given by
H=Ho+V, 2.2
hw,
l where
fio,

H0=i:;b i haoii)i|+AhQ(ala;+1/2) + 5O, (aja, + 1/2)

FIG. 1. Scheme of a two-mode laser driven hytype three- (2.2
level atoms where the two laser modes of frequenfigsand (0,
couple the upper leved to the lower two leveld andc and the and
external field ()3 drives the transition between the lower two

closely spaced levels andc. V="hgia;]a)(b|+%g,a,]a)(c|

—3h Ve (@t d)py(c|+H.c. 2.3

scribe the dynamical behavior of the average intensities anqereal (aD anda, (ag) are the annihilatioricreation op-

phases of the two modes considering various schemes Q4101 for the two cavity modeg, andg, are the coupling
injected atomic coherences. Finally, we conclude in Sec. Vil .qgstants for théa)— |b) and|a)—|c) transitions, respec-

tively. The external microwave field is treated semiclassi-
Il. THE MODEL cally. Let us define the first interaction picture as

We consider a system ok-type three-level atoms, as V, = eli/MHoty g (i/#)Hot (2.4
shown in Fig. 1, where th@)— |b) and|a)— |c) transitions ! ' '

are coupled to two cavity modes of frequencls and  After breakingV, up into two terms a®,=V,+V,, where
Q,, respectively. The two closely spaced lower levéts,

and|c), are strongly driven by an externélassical field 1 0 0 0
characterized by the Rabi frequenty frequencyQs, and V,=—-#%V| 0 0 expiAst—i¢)
phase¢. We also assume injected coherence between the 2 0 exp—iAst+ig) 0

atomic states, i.e., the corresponding off-diagonal elements (2.5

of the initial atomic density matrix are different from zero.
This is almost the same system as the one studied i &ef. and

0 gia.exp(iAqt)  goa,exp(iAst)
V,=1| g1ajexp(—iAt) 0 0 , (2.6)
g.alexp(—iAst) 0 0
|
we useV; andV, to define the second interaction picture 1 0 a;—e%a, a,+e i?a,
Vi=> hg aj—e 'aj 0 0 ,
V) =elVity,e= (1L, 2.7 aj+e'¢al 0 0

(2.9

The detunings above are defined As=w,,—Qq, A, ] )

= wac—Qy, and Ag=wpc—Q3, Where wjj=w;—wj, ] provided g=g;=g,. The corresponding result for the
=a,b,c. We assume that the classical driving field is reso-Single-mode system in Reff5] is reobtained whem; =a; is
nant, A;=0, and the fields in the two laser modes are de-2ssumed.
tuned asA;=—A,=V/2>y. Here y is the atomic decay
rate(common to all levelsas introduced in the next section.

Then, applying the rotating-wave approximation by neglect-

ing the rapidly varying exponentialséand retaining the Using the interaction Hamiltonian given by E@®.8) we
slowly varying oneg lower signs in exp(A;*=V/2)t] and find the time evolution of the wave function of tiesystem
upper signs in eXi(A,*=VI2)t], we arrive at the interaction by solving the time-dependent ScHinger equation in the
matrix second interaction picture,

Ill. SOLUTION OF THE MODEL
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ihy=V, . 3.1 IV. THE MASTER EQUATION

The density operator of the three-lev&l atom and the
'two-mode field satisfies the following equation of motion in
the second interaction picture:

Here,  is a column vector of the three components
Ya by, e, and Eq.(3.1) is a system of three coupled dif-
ferential equations for the three components that read as

i
-1 i 1 i Y o=——[Vy.p] 4.1
=5 g(al_e'¢az)¢b+§9(az+e "Pay) i 5 Vas = Vupl 43
32  we want to study the behavior of the field only. To obtain

o y the reduced density operator for the fiefg,, we trace the
igy==gal—e al)y.—i = i, (3.3  atom-field density operator over the atomic variables,

P2 2Fa T2 7P =Truonp. Thus, the equation of motion fqir is obtained

from Eq. (4.1 as

-1 :
=5 g(al+e'?al)y,—i % . (3.4 _ . i
PE= Traonp= — % Traonl Vir ,p]. (4.2
The atomic relaxation is introduced via the last terms on the
right-hand sides, wherg is the decay constant for the three Using the interaction matrixy,,, given by Eq.(2.9), Eq.
atomic levelsa,b,c, for simplicity, assumed to be the same (4.2) reads
for all levels. Similarly to Ref[5], this system can be solved

C F— — . —
simultaneously by introducing the new functiong,, i , pr=—ig{e” ' "A[BL pa] +[B. .pcal) + €' “H[B_ ,ppal
andy..., defined by +[BL pach} +Lupet Lz (4.3
Pa=e ATy, (3.9 Here,L;pg, i=1,2, accounts for the effect of field losses in
et il ot = _ the two modes due to cavity damping, and it is explicitly
yp=e Y2 "e 2By +BLy), (3.6)  given by
—e Y2At-to)eid2 BTy —B U , 3. Y
Ve (B4 v-) S Lipg=— ?c (aaipe+pralai—2aipeal), (4.4
where
L il 12 wherey, is the cavity damping rate, assumed to be the same
B.=z(aye ' " +ae' ), (3.8 for both modes. Herg,, and p,. stand for the matrix ele-
. igi2 612 ments of the total atom-field density operator. To obtain their
B_=z(aje 7"~ a,e'”"). (3.9  explicit expressions we first calculate the contribution of one

atom injected at time, with arbitrary initial condition into
‘the cavity and then sum the contributions of all atoms in-
jected at random times betweer 1/y andt (i.e., t—1/y

In this way, the three differential equations given by Eqgs
(3.2—(3.4) become

lz — AZ (3.10 <ty<t) at rater. This means that the atom-field interaction
a gAY ' is considered on a time scale shorter than the atomic lifetime
< L~ 1/y. In this way,
Y =—igya, @1y 7 y
o t
¢_=0, (3.12 pab=rft ¥ dto it to) (1, to) (4.5
-4y
where and
A=L(a;al+aza)), (3.13 . T
r dt t,t t,tg). 4.6
and their simultaneous solutions are given by Pac ft—l/y o Ya(tto) e(tito) 49
Ya(t)=Cifa(to) —IASY, (to), (3.14  Substituting the solutions obtained fgy, i , . in the pre-
vious section into Eqs4.5 and(4.6) we calculate the ma-
Yo ()=Cirs (to) —iS¢a(te), (3.15 trix elements as follows. Since the dynamics of the field is
governed by the cavity lifetime 3, , which is much longer
',)Zf(t)zgf(to), (3.1 then the atomic lifetime, 3/, pr does not change apprecia-

bly during the integration time interval, and thgs (tg) in
where C=cogg(t—ty)A"?] and S=A"YZsing(t—t)A¥?].  Egs.(4.5 and(4.6) can be approximated by (t). On the
The solutions fory,, i, .. can be obtained from Egs. other hand, whet—ty>1/y (i.e., t—1/y>tg) the contribu-
(3.14—(3.16 using the definitions, Eqs3.5—(3.7), in a  tion to the integral is negligible due to the exponential damp-
straightforward way. We shall use these solutions in the nexing factor. This means that the lower limit of the integration
section to find the master equation for the field-density opcan be extended te-. After performing these steps and
erator. carrying out the integral we can substitute the results for
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Pab» Pac @and their Hermitian conjugates into the equation of(l,) and(l,) are much larger than 1, the explicit expressions
motion in Eq.(4.3) and obtain the final form of the master for the drift coefficients of the above equation read as
equation for the field-density matrix. -
We want to remark here that when we took the trace over L
the atomic variables in Ed4.2) then, in the matrix elements 117 NGNS
appearing on the right-hand side in E¢.3) and calculated
according to Eqsi4.5) and(4.6), we effectively replaced the
atomic variables by their steady-state val(ediabatic elimi-
nation of atomic variablgs This is justified by the much
faster atomic relaxation rate than that of the fiejé(y,). In
doing so, we made use of our solution for the wave functiorﬂal
in Egs.(3.14—(3.16 and, therefore, in the resulting master
equation the atomic relaxation process is fully accounted for,
The explicit but rather complicated form of the master
equation will not be given here. Instead, in the next section, d7_=dr (interchange,l <1, and M_v:' M_z), (5.4)
we transform it into a Fokker-Planck equation and, analyzing 2
the drift coefficients of the equation, we study the dynamics
of the two-mode field.

1 —
a’(Paa_ E Ml)Nl

3 - —
——GaIZ(Ml—MZ)—NlNZ}, (5.2

(5.3

oo -3 T 3|

d02=—dgl(interchange,T1®T2 and Rz=R,), (5.9

where
V. THE FOKKER-PLANCK EQUATION o
_ 1

A. Derivation of the Fokker-Planck equation Ni=1+5(l1+12), (5.6

In this section we employ the Glauber-SudarsRarep- No=1+3(1,+1,), (5.7)
resentation for the field-density matrix to transform the op-

erator master equation given implicitly by E@.3) into a M1=pobt pect 2| poc COL ot #), (5.8
c-number differential equation, the Fokker-Planck equation,

for the P function. An outline of the standard procedure is M5=ppb+ Pec— 2| Poe| COL Ppct @), (5.9

given in the Appendix; here we present the final results only. . _
Using the normalized intensitied;=(8/a)l;, where @  Ma=(pop— pcc)COL p— 0) = 2| ppc|SiN(@pct+ P)sin(p— ),

=(rly.)g%y?* and B=4(rly,)g*/y* are the respective (5.10
pumping and saturation parameters, and the ph@sefthe B _ L . _
two field modesj=1,2, as the variables of the function, M= (Pob= poc)Sin( ¢ = 8) + 2| ppclsin( gy + ¢)COS(¢(501)]’)
P=P(l,,l,,0,,60,,t), we arrive at the Fokker-Planck equa- '
tion given by R.= |Pab|5in( ®ap— 01) + |pac|Sin( Pact d—01), (5.12
10P - :
_ ~ - 2 R,=— Si(@ap,— d—0,) + SiN(@ac.— 605), 5.1
'yc o ={- d'l ggld01+a DI I +‘90101D0101 2 |Pabl Pap— ¢~ 02)+|pad Pac™ 02 (5.13

Rs= |pab|COS( ®ap— 01)+ |pac| COS @act ¢—01), (5.14

2 - o 2 -
+ aTlalD 116,71 zd 2™ &92d92+ aTZTZD Ial2
Rs= |pab|COS{ Pab— ¢~ 02)— |pac| CO pac— 0>), (5.19

2 > 2
+§9202D9292+0I262 I2(’2—+_(9|1|2D|1'2

— L\ 4R,
¢ t0,0T0, 97, DT Mi=M;=Mg| =] ——, (5.16
+(90102D0192+(9I162 |102+(9|201D|291}P+ . 1 1 a I \/ﬁ
(5.9 _
— I\ 4R,
Here we used the notatiofy =4/dx; and (9>2<_yj:(92/(9)(i(9yj M,=M,—M, T; _ \/T" (5.17)
| 2

for the derivatives, wherg, andy; are any of the normalized
intensity and phase variables of the two modes],2, while  Above, we have also introduced the relative phase between
the higher-order termﬁxyz are omitted. The coefficients the two modes denoted b§=6,— 6,. Its drift coefficient

under the derivatives, the drifdf and diffusion O) terms ~ can be calculated as,=d, —d,,. In order to completely

of the equation can be used to analyze the system withoutetermine the Fokker- Planck equaucml) we give the dif-
solving the equation for th® function. We introduce the fusion terms in the Appendix. A very similar set of equations
notation pj;= piipjjei“’ii, i,j=a,b,c, for the injected foraV system with initial coherence between closely spaced
atomic coherence@vhich are different from the matrix ele- upper two levels has been derived in Rgf2]. It has been
mentsp,;, andp,. of the total atom-field density operajolt ~ shown to lead to spontaneous emission cancellation just like
should be noted that the phases are constant; i.e., all atortise cancellation of absorption in olr system.

are prepared with the same initial phase relative to the field. In the next subsection we outline the procedure employ-
The problem of the preparation of the phase is discussed itmg the drift terms of the equation to investigate the dynami-
detail in Ref.[11]. For the case when the mean intensitiescal behavior of the average intensities and phases of the two
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fields. On the other hand, the diffusion terms prove useful irsolutions of the coupled differential equations to determine
studying the noise performance of the field. We are not goinghe stability of the steady states.

to deal with these problems in the present paper but, together

with the correlations building up between the two modes, VI. SOLUTIONS OF THE DRIFT EQUATIONS

they are planned to be the subject of future work.
A. Incoherent pumping

B. Applying the drift terms of the Fokker-Planck equation First, let us consider the simplest case when no atomic

. ) . coherence is injected initially into the resonatfy;;|=0,
Having the Fokker-Planck equation at hand, we now em.,j —ab,c. It follows that Re=0, k=1,2,3.4 [see Egs.

ploy the drift coefficients to investigate the tme—dependeni 12.(5.19], and the equations of motion for the two

and steady-state properties of the average intensities a ases reduce to simple forms. In particular, the relative
phases of the two field modes. We should mention at thid P ' P '

point that in theP representation théstochastit average of bhase satisfies the equation

the intensity is directly connected to thguantum mechani- . o

cal) expectation value of the photon number (&g =(n;), 0= N (Ppb— Pcc)SIN(P— 0). (6.1
i=1,2. It can be shown in general that 1

The stable steady-state solutions of this equation are

1d
—_— =(d,), 5.1
Ve dt <X> < > (518 ¢ if ppp>pec

ot m i pop<pee
wherex is any of the four dynamical variables of the equa- ¢ Pbb™Pec

tion: I, 1, 6;, and 6,. After expanding the drift coeffi- while there is no stable solution for equal lower-level popu-
cientsd, in terms of 5x=x—(x) around the averag€x), lations. The relative phase of the two modes is locked to a
Eg. (5.18 becomes value that is essentially controlled by the phase of the exter-
nal field. However, switching the sign of the initial inversion
_ between the two lower levels will result inajump in the
z dt <X>=dx|<a">* (5.19 steady-state relative phase. Since mode 1 drives the
|a)— |b) transition and mode 2 th@)—|c), the phase of
where the drift coefficiend, is taken at the average values of the mode coupling the upper level to the dominantly popu-
all the dynamical variables on the right-hand side. Solvingated lower level will be ahead of the other one. The inten-
the system of differential equations given by E§.19 we  Sities corresponding to the possible stable steady states read
can find the time dependence of the average quantities, whiS
the system of the algebraic equatiod§|.<a”>:O, yields the i
Steady state. T_7 - a(paa=pcc) —1 if Pbb= Pcc
We investigate the stability of the steady states by study- Y2 a(paa—pon) =1 if ppp<pec
ing the stability of the phases of the two modésg,and 6, ) o .
(for the sake of simplicity, we omit the stochastic averageThe_|nten§|tles in the two modes are equal and determined by
signs, (), from now on. In doing so, we introduce small the inversion between tr_\e upper and the less populated lower
perturbations A #; and Ad,, around the steady staté, Ievgl only. The population of the other lower level can be
and 6,5, and substituted,(t) =6, <+ Af; and 6,(t) = 0, arbitrarily large, e.g., larger than that of the upper ¢ne

+ A6, into the corresponding form of E¢6.18. Expanding inversion, without affecting the laser operation. It is “hid-
d01 anddgz around the steady state to first orderii, and den” from the lasing mechanism and results in no extra ab-

A : h f i giff ial sorption of the radiation. In particular, if one of the lower
tioanzswe arrive at the system of two linear difierential equa- g g js empty laser operation can be achieved for arbitrarily

small upper level population. This is clearly the effect of the
external field coupling the lower two levels. The generated
coherence between these two levels destructs the absorptive
transition from the dominantly populated lower level to the
upper one. The threshold of the laser is givendyy=(paa

_ 71 - -
wherei=1,2, and the derivatives are to be evaluated a‘ Pxd ~ Wherep,, is the population of the less populated

steady state. We can assume that, since this is a system gver level.

linear equations, a simple exponential solution exists in the

form A6,(t)=A0;(0)eM. The characteristic equation after B. Injected atomic coherence between the lower levelgi,.
substituting this ansatz back into the above equations is a Sincep,;, and p,. are still assumed to be zer®,=0, k
guadratic algebraic equation far where the negative defi- =1,2,3,4[see Eqs(5.12—(5.15] and the equation of motion
niteness of the roots can be analyzed applying HUrwitz'sq, the relative phase is given by

criteria. If Re\<0 the initial perturbation decays exponen-

tially back to the steady state while a positive exponent im- a i .

plies increasing deviation off the steady state. Thus, negative 0= 2N, [(ppb— Pec)SIN(B— 0)+ 2| prc| SN @pct @)
definiteness is the criterion for stability. We are going to

apply this linear stability analysis together with numerical Xcog¢—0)]. (6.9

] 6.2

6.3

dAg; 9dg,

dt 96,

ad,

+_
T

A6, (5.20

(ally (all)
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Assuming different lower-level populationgy,,# pcc, the
stable solutions for the steady-state relative phase read tt
same as given above in E@.2), provided the initial phases 25
of the injected coherence and the external field are set t
@pct ¢=0 (or @) for pyp™>pec (OF ppp<pcc). However, due 20
to the injected coherence a stable solution can also be foun
for the case of equal lower-level populatiopg,=p... The
criterion for the particular value of the phase locking, in this

intensity
—
191

case, is connected to the initial phase of the injected cohel 10¢
ence and the external field, as given by st
o+ 2 if sin(@pet ¢)<O0 ol
“lp—m/2 if sin(epet $)>0, 6.5
o
while the cases of— ¢,.=0 or 7 are not stable. The cor-
responding steady-state intensities read as _ FIG. 2. Steady-state normalized intensities of the two modes
I, and |, as functions of the pumping parameter Atoms are
~ +2|p|DC|CO$( Pt @) injected in a coherent superposition of levaelandb the popula-
l1,2= (apaa—1)| 1= PooF Poc . (6.8 ions of which arep,,=0.4 andp,,=0.5. At a critical value of the

pumping, a.;= 20, regimeA splits up into three new branches

where the uppetlowen sign corresponds to the firgsec-  Where, in regime, the intensities of the two modes alternatively
ond mode. As we have seen above when finding the stabl@cupy the upper and lower branches in the figlbistability)
steady-state phases, in the case of different lower-level popljile in C they stay equal.

lations, ppp# pec, COSkopct @) Must be set ta- 1, provided

Pop IS larger (+1) or smaller 1) thanp,.. Looking at Eq. . .
(6.6), the intensity of one of the modes can, in this case, béo" that IS sta_ble for any pumping. The phases of the_tyvo
modes, in this case, are locked to the phase of the injected

adjusted by controlling the amplitude of the injected coher-

ence,|pp, at the expense of the intensity of the other mode conerencef; = ¢.p— m/2 and 6,= ¢, + 72— ¢, resulting

Since|pyd = Vppopee this can be done by adjusting the ini- in_the relative phaseﬂ=¢+ T The.mtensmes are equdl,

tial populations in the lower levels. On the other hand, for=!1=12, determined by the equation

equal lower-level populationgy,,=p.c, the intensities are

controlled by the phase of the injected coherence via varying ~ai2 ~1 _

cosfppct ¢). Consequently, the intensities in the two modes | %= [a(paa=pop) — 111 **~2alpap|=0. (6.7

can be redistributed in both cases, when the lower-level

populations are different or equal, by controlling the freeThe injected atomic coherence provides a new driving term,
parameter, amplitude, or phase of the injected coherence. iiz., the third term on the left-hand side of the equation. One
the most extreme cases one of the modes can be switched é®nsequence is that, when solving E6.7), nonzero inten-

completely, e.gIle, making at the same time the intensity sity can be fqund f_or any initial population of the three
of the other mode increasef@sZ(ap —1). This is twice atomic levels including the most extreme cases where the
aa .

as large as the balanced intensities in the case of incohere‘?\?pul""t'on in the upper level is arbitrarily small. That is, the

pumping in Sec. VI A, since all the energy is being concen-active atoms do not need to be inverted and LWI can be

trated in one of the modes only. reg!izeql. On tr;le other_ hand, _Il?ser acgog ca;]n be achilev(ejd at
One should also note when comparing E6.6) to Eq. arbitrarily small pumping as illustrated by the example de-

(6.3 that, in the present case, neither of the lower Ievelso'.Cted In F'g'. 2 due to the extra drlvm_g p_rowded by the

appears in the prefactor of the formula. Their populations d njected atomic COhere”“‘*a.‘d'at”?g atomlc dlpol)e Therg-

not affect the total intensity in the two modes, they merely ore we have stable operation without inversion and without
- A . - threshold on the entire domain af

allow for a continuous switching of the intensity from one

mode to the other. That is, LWI appears naturally in the, L?t us now quk at the case Whey,> pec. The system,

present case corresponding to the highest gain possible in th this case, exhibits three different stab_le regimes _at s_teady

incoherently pumped system. The present scheme reproduc fate denoted b, B, andC. An. example is depicted n Fig.

the incoherent one when one of the lower levels is empty of We have already seen regimeabove. However, in the

when cosé,.+¢) is zero.(Notice that it is not enough to set present case it is not stable for any pumping parameter but

the coherencép,| to zero since we have already made usePecomes unstable in the region of largavhere regimes

; _ and C take over(starting froma =20 in the figure. In par-

of the relation|pyd = Vppbpece) ticular, at the critical value of the pumping where regime

_ _ becomes unstable the system has three different ways to go,

C. Injected atomic coherence between the upper i.e., becomes tristable. In regin® the stable steady-state
and one of the lower levelsip,p OF pac phases do not change as compared to reginimit the in-
Let us consider now injected coherence between the uppéensities of the two modes separate according to
and one of the lower two levels, for exampje,,. In the ~ 11 >
case wherp,,<p.. we found one solution, called regime 17%=R* Ja(paa—ped) —1-R?, (6.8
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FIG. 3. Evolution toward a single-valued steady state in regime FIG. 4. Evolution toward a tristable steady state of regiBes

A at @=15 of Fig. 2 wherep=¢,,=0 and the initial conditions andC at =30 of Fig. 2 using$= ¢,,=0. For the initial phases

for the phases ardyo=—0,0=—=/2 (i.e., starting from the 610=620=0, the steady state corresponding to regiinis realized

steady-state value of the phaseshe steady-state intensities are (see spot in figure dt; =1,=8). For 6, ;= — 0, o= — 7/2 we have

equal (;=1,=4) as indicated by a spot in the figure. two stable pairs of intensities whetg and |, are, respectively,
equal to 0.25 and 15.8. They correspond to the two branches of
regimeB in Fig. 2, and are realized depending on the initial condi-
tions for the intensities.

T%IZZ R* \/a’(paa_Pcc)_l_Rz’ (6.9

whereR=2|pul/(ppp— pcc). The switch from regime to
B occurs at the critical value of the pumping given dy;
=(1+ Rz)/(paa:p%). This critical point corresponds to the

equal intensitied,=1,=1,=R?. The two alternative signs in < ;
: : . pcc- In the case whempy,>p.., regimeA becomes un-
Eqs.(6.8) and(6.9) suggest that regimB provides a bistable stable and splits into three new branches at a critical value of

operation where the intensities of the two modes can be ing, puUMping.ag. These are regimed andC, all in non-
terchanged: they can alternatively occupy the upper an#?version opérglttion. RegimB itself is bistabl,e whileC is

Iowgr brar]ches in Fig. 2. We note that th's schgme realizes &ngle valued. Typical evolution toward the tristable steady
noninversion laser system where the intensities are deter- ~ o~

mined by the inversion between the upper and the less pop&—tate n the phf”?se spadq_,— |2, is depicted in .F'g' 4. The
lated lower level. numerical solutions confirm the results obtained from the

The third branch in Fig. 2 corresponds to regifeand analytical stability analysis for the stal_)le steady states. They
also starts fromy;;. Here, the intensities of the two modes also demonstrate that thg t.' me eVOIL.Jt.'On toward steady stgte
~ = < - depends critically on the initial conditions. It can be seen in
are equal)=I,=15, and explicitly read as the figure that starting from the same intensities but different
phases the system will evolve into a different steady state.
Finally, we note that the system exhibits similar behavior
with injected coherence,., but with the roles ofp,, and

. . iy . pcc interchanged.
This brings us back to the intensities found in the case of

incoherent pumping given by Ed6.3). However, in the
present case the phase locking between the two modes is

and the phases given by the drift equatipsse Eq.(5.19].
The results confirm that regim& is stable, remains stable
for any pumping, and is the only stable operation wigp

T: a(paa=pPcc) — 1. (6.10

D. Injected atomic coherence between all the levels:

different. It is a function of the intensityi.e., the pumping
parameter,a) and, using Eq.(6.10, can be found from

SiN(@ah— 61) = —SiN(@an— b~ d) =RINa(paa—pcc) —1. That

Pab, Pac, and pyc

We now consider the scheme where all the possible
atomic coherencey,p, pac, andpyc, are injected. It is

is, injected coherence does not affect the intensities in regimiund that stable steady-state operation can be achieved for
C but modifies the region of stability and the steady-statearbitrary initial population of the atomic levels provided the
phases of the two modes. phase of the external field is locked to the phase of the in-
In summary, the system exhibits critical behavior as &gected lower level coherence ag.+ ¢=0 or 7. Let us set,
function of the pumping parameter RegimeA, occupying in particular, the initial population as,,> p.. and select the
the region of low pumping rate, starts from zero thresholdarbitrary phases to be,.+ ¢ = m; the consequences of the
and realizes LWI. An example for the evolution of the inten-other alternative settings will be discussed at the end of this
sities in the phase spacg;,—1,, toward, in this case, a subsection. In this parameter region, an example for the
single-valued steady state is depicted in Fig. 3. The timesteady-state intensities of the two modes as functions of the
dependent behavior of the field is obtained by numericallypumping parametes is given in Fig. 5 where the solid and
solving the system of differential equations for the intensitiesdashed lines depict the intensities of the first and second
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results in an extra driving term and, as depicted in Fig. 5, the

50} threshold of the laser is zero. It can also be seen that the
intensities are connected to the inversion between the upper
40 and the two lower levels combined. Thus, none of the two
lower levels is hidden in this scheme but, since solutions can
£ 30 be found for arbitrarily large lower-level populations, LWI is
g realized nevertheless. Equati¢h 1l is a generalization of
= 20 Eq. (6.7) in which scheme, is injected only. In fact, in the
particular case gb..=0 Eqgs.(6.11) and(6.12 reduce to Eq.
10 (6.7) and the critical points of stability coincide exactly, as
expected.
of - Next, let us look at the remaining three regimés,,

B,, and B3, together. The steady-state phases in regimes
o B, andB, are the same as in reginfe while in regimeB;
the phase of the first mode switchestto= ¢, + /2 and the
_ FIG. 5. Normalized steady-state intensities of the two modegelative phase t@= — ¢+ 7. The intensities are given by
I, (solid line) and|, (dashed lingvs pumping parameter when  the equations
all injected atomic coherenceg,,, pac, andp,., are assumed.
The initial population of the states agg,,=0.7 andpy,=0.28.

Structures similar to Fig. 2 are apparent: regimesf each mode ~ 10 2 Pobt Pec 12

split up into two respective branche®; andB, (Bs), at a critical 7= [ 2<4— (apaa—1)—1] |,

point, #=14.8. The two equal-intensity regimeB, and B3, ex- Pob™ Pec Paa (6.14)

hibit phase bistability. ’

modes, respectively. The curves are labeled with the letters _ 2 Pobt Pec 12

A, B,, B,, andBs, indicating the various regimes that we | 3 :—[ i| = (apaa—1)—1| |,
Pobt Pec 4paa

are going to consider in detail.

In regimeA, the steady-state phases of the two modes are
locked to the phases of the individual injected atomic coher- ) )
ences ag; = ¢,,— 7/2 and ,= p,.— /2. It follows from where the upper signs correqund to reglri_igsand B; and
the relationg,y+ ¢ac= @p. that the relative phase between the Iower.ones tdB,. The stability analys'ls. suggests that
the modes locks t@=— gy, that is equal top+ 7 (see these_ regimes are aI_I stable above a critical value of the
presumption in the previous paragrapfihe corresponding PUMPINg parameter given by
intensities of the two modes are calculated from the equation
given by

(6.19

3paatl

_— 6.1
Paal PobT Pcc) (6.19

Acrit=
~ M, ~ 2aR,M,
I 2/2_ o+ {alpaa— (Pobtpcd) 1 — 1} %/2_ P
Pbb™ Pec Pbb™ Pec It follows from Egs.(6.14 and(6.15 and from the steady-
-0 (6.1 State phases aboysee also Fig. bthat regimesB, andB;
exhibit phase bistability; the intensities in the two regimes
and are the same for any pumping but the phasesually 8, and
6 only) have two different stable steady states. It can also be
seen from the factordp,,—1) that both lower levels are
absent from the inversion term and, therefore, these regimes
realize an optimum scheme for LWI where the population of
: the lower levels can be arbitrarily large. On the other hand
whereR;, R,, and M, are defined by Eq¥5.12), (5.13, . . L9 . . ’
and (5.9)1, reszpectivelyz. From the stability analyses we find reg|m§sBl, Ba, andB.3. result in qsphttmg of th'e mtens@es
that this particular steady state in regimeis stable for of regimeA at the critical pumpingx (see Fig. 5 remi-

pumping parameters below the critical pumpigg,, which niscent of that in Sec. VIC. The present s_c_heme IS more
reads as complicated, however, because the intensities of the two

modes in regime\ are not equal and, therefore, each branch

splits up into two separate branch@&s, andB, (B3), indi-

vidually. Nevertheless, the two systems correspond to one
(6.13 another both in their regime&, as discussed above, and in
Paa~ 2Pcc their regimesB. Apart from regimeC missing from the

present system, the two schemes exhibit similar dynamical

We want to note that this critical point corresponds to anpehaviors approaching the same structure whgnis de-
upper limit in the intensities given by 3°<2p../(pap  creasing. In particular, whep..=0 the two systems coin-
—pac)- It follows from Eq. (6.11) that injected coherence cide exactly, as expected.

1/2 (612

;o 1+4paa(pobt pcc) (Pob— Pcc)2
Derit= )
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The scheme considered so far in the present subsectigate (zero thresholdin both modegq5]. This is due to the
corresponds to the particular choice @f,>p.. and ¢, injected atomic dipoles radiating independently of the actual
+ ¢=. Let us briefly summarize what happens when se-gain-loss ratio in the system. In conclusion, we have shown
lecting the other alternatives. Switching g+ ¢=0 re-  that lasing without inversion can be achieved at zero-

sults in an exact interchange of the intensities=1, (i.e.,  threshold operation in two phase-locked modes simulta-

switch of the solid and dashed lines in Fig, &nd in a shift neously.
of the phase of one of the modes, depending on the regime, We also found that injected atomic coherence between the

by 7r wWith respect to its Steady-sta’[e value above. In particulower two levels of the atoms can be used to redistribute the

lar, for ppp> pec 61 SWitches in regimes, B, andB, while  intensity between the two competing modes. In particular,
6, switches inBs. For p,,<pec it is reversed,d, shifts in ~ one of the modes can be shut down, making the other mode

B, and 6, in A, B;, andB,. On the other hand, switching tWO times “brighter” as compared to the symmetrical case.
from ppp>pec 10 ppp<pcc and keeping the value ofy,. It can al_so be seenin fthis scheme t_hat none o_f the Io_vver-le_vel
+ ¢ the same results in an interchangef,< p. in the populations appears in the inversion factor in the intensity
above formulas determining, for example, the magnitudes oformula; only that of the upper level appear. This suggests
the intensities or the locations of the critical points. that both lower levels correspond to nonabsorbing reso-
As a summary to this subsection, we can say that th@ances in this scheme. On the other hand, injecting atomic
system in this scheme operates in several different regimes ffPherence between the upper and one of the lower levels of
a multistable way exhibiting critical behavior. The intensitiesthe System, besides zero-threshold LWI, gives rise to critical
are single valued in the small pumping region starting frommqlnmode behavpr. We found multiple branching at critical
zero threshold while, at a critical point, they split up into Points of the pumping parameter at steady state where the so
tristable structures, reminiscent of those in Sec. VI C. Thdar equal intensities can split into different branches. In par-
phases of the two modes lock to the phases of the injecteicular, the intensities of the two modes can exhibit bistable
coherences between the upper and lower level8;ase,;, and tristable beh.awor at steady state accompanied by single-
+ /2 and@,= ¢ ..+ m/2 depending on the initial parameters valued phages in this scheme. These phenomena pecome
and the actual regime of operation. Above the critical point™ore complicated when coherences between all atomic lev-
the system also exhibits phase bistability. This scheme reaf!S are injected. In this case, the intensities of the two modes
izes LWI in a crucially unstable way due to injected atomic@'e different for all pumping rates and, therefore, the mul-

coherences and the interplay between the two coexistinfP!e branching takes place on each mode’s intensity sepa-
modes. rately. Besides intensity multistability, we found phase bista-

bility in other regions of the pumping parameter where
single-valued intensities are accompanied with phases hav-
VIl. SUMMARY ing two stable steady states simultaneously.
This critical behavior suggests that the dynamics of the

atomic systems with two modes of the radiation field whereSystem can become essentially multistable and/or unstable

the lower two closely spaced levels of the atoms are coupleand highly sensitive.to initial conditions when more than one
by an external field. In addition, we also assumed initialmOde are present in the resonator. Therefore, in order to

atomic coherences between various levels of the active af¢a/iZ€ 1asing W't_hou_t Inversion in experiments in a stable
ay, mode selection is crucial. On the other hand, the system

oms. The purpose of the present paper was to study multt . . o -
mode effects in LWI together with other quantum coherenc an also become a candidate for investigating Cm'(.:al phe-
phenomena due to injected atomic coherences. After solvin omena wh.e.r.e the goal actually would be to realize and
the Schrdinger equation of the model in the interaction pic- tudy instabilities.

ture we calculated the master equation for the two-mode

field-density matrix. The master equation was converted into ACKNOWLEDGMENTS

a Fokker-_P!anck equation for tHe representation. From the This research was supported by a grant from the Office of
drift coefficients we then obtained the coupled equations ofyaval Research, Grant No. N00014-92-J-1233 and by a

motion for the average intensities and phases in the tW@rant from the PSC-CUNY Research Program.
modes. We solved these equations for various initial condi-

We investigated the interaction oh-type three-level

tions and control parameters of the system such as the initial APPENDIX
populations of the atoms, injected coherences, phase of the
external field, etc. The Fokker-Planck equation given by E§.1) has been

We found that LWI in both modes is possible as a resulobtained from the master equation given implicitly by Eq.
of the external driving field. Similarly to the single-mode (4.3) according to the following standard procedure. Substi-
casd 5], the coherence induced between the two lower levelsuting the Glauber-Sudarshdh representation of the field-
results in nonabsorbing resonances between the upper adénsity matrix,
the lower levels of the atoms and, therefore, the population
in one(or both of the lower levels can be excluded from the 2 1 * *
consideration of the effective population inversion for lasing pF(t):j d*ayd®azP(ay, el az,a3 O]y, az){a1, a2,
action. We also found that the relative phase of the two (A2)
modes is locked to the phase of the external field. In addi-
tion, including injected atomic coherences into the systeninto the master equation, we obtain the equation of motion
laser action can be realized with arbitrarily small pumpingfor P(aq,a} ,a;,a5 ,t),
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1 0P ) , i
ZEZ{_é’alda *d *+0alalDalal+aafaIDa1‘a’I+(9alaiDalaI_(9a2da *d *+&a2a2Da2a2+é’a;a”2‘Da§a§
2 2 2 2
+aa2a§Da2a§+&ala2Dala2+a“i“§DaI“§+aa *Dala*_'—o" * D, aZ}P+ ) (A2)

whereP=P(a,,a] ,a,,a3 ,t). Here, we used the notatiah, = d/de; and aiiaj=a2/aaiaaj for the derivatives while the
higher-order termsaa e i,j,k=1,2, are omitted. Instead of dealing with this form of the Fokker-Planck equation we
transform it into polar form, wher® is now considered as a function of the intensitigs|, and phase®,, 6, of the two
modes. These are defined by the substitutiaps: J1.€"% and a,=1/1,€'%. After introducing the normalized intensities,

I, andl,, defined in Sec. V, the Fokker-Planck equation given by(Eg) becomes Eq5.3). The drift terms in this equation

are given in Sec. V, while here we present the diffusion coefficients assumingl {haand (1,)>1 still holds. Then the
diffusion terms are given by

S L+ ST, N2 o MITANZE o (VT4 MaTo) | NaNo— 2 (2N, +3) (A3)
1117 (NgNy) Paa 2 '2]N1" 76 Ml1N3 16 V111 212)| N1ilN2™ g 2
A, .
D|1|2—_W paaNi * 16 (M +M,)N3+ 4(M1|1+M2|2)(N1N2+3) , (A4)
D,, =P 1+1IN 1MIN+3(MI+MI)N+~(2N+3) (A5)
0,0, 4T1N§N2 Paa 1)1 16 111N2 11 212 1
ﬁ 2 1 — N
D9102:8_N§W2 PaaN1— (M1+M2)N2+ 35 (Mal1+Mal5)(2N; +3) 1, (A6)

M —4&) N (A7)
b \/T'; ’

R,
)N2+Il Mp— 4\/TZ>N2], (A8)

Bl Hs

- /|2{|~~< Re | i) T
|1€2 32N N2 l 2 \/ﬂ- \/ﬂ- 1™ 2

Mpy—4—

N

together with terms for the two modes. On the other hand, the correspond-
o o ing diffusion coefficients read as
D7,7,= DTlTl(interchange, I;=1, and M= M,),
(Ag) DMM=D0191+ D0292+ Dglgz, (A13)
Dy,0,= Dalal(imerChange:Tl‘i’Tz and M;& M), Dpp=Dg,0,7Do,0,~ Do, 0, (A14)
(A10)
and
D7 o =—D7 4 (interchange,l; <1, and RyeR,), o o o o
272 171 (All) D|:|1:D|1|1+D|2|2iD|1|2, (A15)

indicating that the noise in these quantities is connected to
the cross correlations between the two modes. The cross
(A12)  terms of the sum-difference guantities are given by

D7,6,=— DTlgz(interchangeL@B and Ry;&R,).

Finally, we want to remark that the drift terms of the sum =2(D, Dy ) (A16)
and difference phaseg,=#6;+ 6, and §=6,—6,, and the 101 =020
sum and difference intensitiels, =1, *1,, can be calculated

as the sums and the differences of the corresponding drift DT+T—:2(DT1T1_DT2T2)' (A7)
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