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Breathing modes and hidden symmetry of trapped atoms in two dimensions
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Atoms confined in a harmonic potential show universal oscillations in two dimen&@)s We point out
the connection of these “breathing” modes to the presence of a hidden symmetry. The underlying symmetry
S0O2,)), i.e., the two-dimensional Lorentz group, allows pulsating solutions to be constructed for the interact-
ing quantum system and for the corresponding nonlinear Gross-Pitaevskii equation. We point out how this
symmetry can be used as a probe for recently proposed experiments of trapped atoms in 2D.
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The problem of Bose-Einstein condensation in an external

potential has received a lot of attention after the experimental atEi pi-ri= Z (dyri)pi— Z M- VitV+ Voo
observation of the condensation in alkali-atom vagatsin
real experiments the trapping potential is approximately har- =2T—nV—2Vq. (1)

monic with frequencyw,. This implies specific peculiarities \we now see that for a potential with the scaling exponent
in the behavior of the system. In recent pag@rs4l afewof —_5 the right-hand side of(1) takes the form

these propertie; have been d.emonstrated. It has been ShO‘Q’E—meSI, whereE is the total energy of the system. In
[2] that the nonllpear G_ross—Pltaevs((BP) equation(12) for  ihis case one gets a closed equationlfor
a trapped two-dimension&RD) system possesses ‘“breath- 5 5
ing” oscillatory modes with the universal frequencyog, dil =~ 4wl +4E/m, 2
describing a pulsation of the condensate. The same modesth the obvious solution,= Acos(2vgt+y)+E/(me3). Thus
show up in[4], where the authors were able to constructthe existence of the “@,” modes is connected with the
explicitly the time evolution of the GP equation in a time- n=—2 scaling of the interaction potential. In a 3D system
dependent external potential in 2D.[f8] the authors discov- the only potential possessing this property is the? Iriter-
ered that the energy spectrum of a system of trapped particlextion used if3]. But in the quantum 2D case the Fermi
interacting with a 172 potential is divided into sets of equi- “pseudopotential” 3g5%(r), as used in the GP equation
distant levels with the separationsg again. To our knowl- [2,4], gives the same scaling.
edge this interesting property has not yet been properly ex- The equations above can be rewritten by introducthe
plained and the connection between these different systenftations will become obvious lajer L™ =3p;-r;/2
has not been established. +i(E—mwjl)/(2wo). We simply getg,L ¥ =i2woL*. The

In this paper we shall show that in these cases the exisphase ofL™ varies linearly with time:

ence of these @, oscillations is ensured by a specific sym- 1
metry property of the system. Proper use of this symmetry D(p.r)= ﬂlm InL*
leads to a transformation that permits a set of breathing mode 0
wave functions to be constructed algebraically, not only for 1 (E—mwgl ) (2wo)
the 1+2 problem but also for a local interaction in two di- = arctan
i : . 2(,00 Eipi . ri/2
mensions. Actually this symmetry is not only a property of
the mean-field theory as found ji&,4] but of the full quan- O(p,r)— (P, 1) =t—t,g,

tum theory. We will show that the oscillating solutions[df o 0 _
are a continuous representation of the underlying groupvherep;,ri are the coordinates atto. ¢ can now be used
S0O2,0). to determine the “abbreviated action3(E,r;), which is a
To understand the role of symmetry in the problem, it isfunction of the energy and the coordinates at the end of a
useful to consider as an instructive example a system of clagath. It is determined by the Hamilton-Jacobi equation
sical particles moving in a harmonic external potentialH(d;S,r;)=E with t=3deS=®d(4,S;r). In hyperspherical
Vo= Zi3Mwjr? and interacting with a potential(r;) with  coordinates in the space of all with r= 1/, ® is only a
the scaling propertyV/(\r;)=\"V(r;). The position of the function of r and ¢,S. Therefore we haveS(E,r;)
ith particle is given byr;, its momentum byp; . =S(E,r)+ Sy(«;), where thex; denote all other coordinates,
Let us consider the quantityl =2iri2 such that clearly showing that the coordinateor | totally separates.
a1 =2Z;r;-p;/m. Following the usual derivation of the virial One of the most powerful methods in physics is the use of
theorem in classical mechanics we get symmetries and groups. One way is to use the invariance of
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the Hamiltonian or the action under certain transformations; 1
another is recognizing that the Hamiltonian is a part of some Q= 2 E(pi Tt p).
larger algebra. The most famous textbook example is the '

algebraic solution of the harmonic oscillator using the specq s the generator of scale transformations, as it describes
trum generating Heisenberg algetjtd,a” |=*woa~ (We  the translation of the coordinates by an amount propor-
put#=1 throughout the papgr tional tor; .

We will now discuss such a spectrum generating sSymme- \ye can collect our result&,5) in the following algebra:
try for the (now quantum-mechaniggbroblem of interacting

particles in a harmonic trap. First we will consider the effect [Q.Ho]=2iHg, [Q,Hped=—2iH
of a scaling transformation for the Hamiltonian
1 [Hpoth]:ing,
HOZE _%Al—i_z V(I’i—l’j) .
[ i< or using
without an external potential: Q
d’2 =— — =
r—Ar¥(r)—\"2¥(rr), Ly ZwO(HO Hoods  L2=%
H 12 . A+, VIN(ri—T))) (3) 1 1
07 \24 T omtit & i=r)).
Mg o2mT & L3:2—w0(H0+Hp0t)=2—on, (6)

H, is scale invariant it/(Ar)=V(r)/\2. This is the case for
an interaction of the fornv(r)=g/r? in any dimension, but we get the algebra
as mentioned above also for ) ) )
1 [Li,L2]=—iks, [Lz,Ls]=iLy, [Ls,Li]=iLls.
V(r—r’)=5952(r—r’) (4) @)
This is the well-known algebra of SW,1) or SO2,1), the

in two dimensions. The first case is known as the Calogerotwo-dimensional Lorentz grou; andL  are the generators
Sutherland modé]5] and is widely investigated. All our re- ©f the two “boosts” andL ;= (1/2wo)H, i.e., the generator
sults apply for both cases, as we will only use symmetryof time translations, is the analog of the generator of the
properties connected to scale transformations, but we corfotation. WithL==(1/,/2)(L1=iL) this reads

centrate on the problem of bosons with a local interaction
and only briefly comment on the relation to known results
for the Calogero-Sutherland model. Actually the local inter-
action is the most important case, at least for neutral atoms at
low energies, where the range of interaction is small comNote the minus sign in the last equation, indicating that the
pared to all other scales. The statistics of the particles doegroup is the Lorentz group S@1) [or SU1,1)] and not

not play a role. SQO3).

It is important to note that @-function interaction is not One important consequence of this spectrum-generating
well defined in two dimensions due to logarithmic ultraviolet Symmetry is that the Hilbert space will separate into irreduc-
divergences that are cut off by the finite rangg of the  ible representations of the group. If the energy is bounded
interaction. This lengtla, obviously breaks the scale invari- from below, these are discrete infinite-dimensional represen-
ance ofH, and will therefore modify our results; neverthe- tations with no upper bound. Starting from the lowest eigen-
less, this effect will be small as long agis smaller than any state in one of the representations with energy,
other scale in the system. This is most clearly seen in thél|Wo)=Eo|¥o), one can construct higher states with ener-
classical wave limit(i.e., the GP equationwhich we will ~ gies Eq+n2w,, n=1,2,... by applying L™ [use
discuss later, where such a problem is absent. HL"|Wo) = (L"H+2wol ")[Vo) = (Eg+2wo)L " [Wp)].

Adding an external potential H=Hq+H o, Hpor |‘lf0> i§ annihilated byi'_*. Obviqusly an infinite nu'mber' of
=3, %mwérf obviously breaks scale invariance, as excitations Wlth_ energies2wg exists, which we will identify
Hpor— A 2H por Under a scale transformation. However, due toWith the breathing modes of the system. _

a special property of the harmonic oscillator, a powerful Also the time dependence of all the operators, which are
spectrum generating symmetry still exists. part of the algebra, can be given explicitly:

The important step is to recognize that the commutator of 4oy Tiowets +
the harmonic potential with the Hamiltonian or the time de- L=(t)=e"""0L". ©

. . 2 . .
rivative of 2iri" is proportional to the generator of scale pefining the operator for the mean-square displacement of
transformations: the particled (t)=X=r?(t), one finds

1
+_ + -1
[HLT]=*2weL~, [L7,L7]= —2wOH. (8)

1 1 2
_ 2.2 2 —
[Hpor, H]= ; > Magr| 2 ~ 5 Vi I(t) mngpm(t)

1
=2 %wé(vi'ri+ri'vi)=ing (5 :m—wg[H—ZwO\/ERG(L+672W°t)]- (10)
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This equation or the corresponding differential equationay,+ (2@,)%a,= —4@wq@, which once again demon-
(9t2|“: —(2wo)q1— H/(mw3)], coinciding with the classical Strates the universal nature of these modes; the initial values
must fulfill (15).

We will now consider the cas@,= wy=const, where the
differential equation$15) can can be solved directly:

Eq. (2), clearly show that the variableis separated from all
other variables, in analogy to the center-of-mass motion
This separation is known in the case of the?linteraction
[3]. As the frequencyw, of the external potential obviously )
couples only to this coordinate, the full nonlinear response to a=sinhyCcog 2wot + y) + coshy, (16)
a change of the potential can also be calculd&d].

For the expectation value we directly get 1
P v T= w—{arctarﬁe‘ tan wot) ]+ wn}
0

(1) =(1(t))=10+Acog 2wot + 7), 11
®=(HD)=lo 2wot+y) @ 1 %sinhnﬂL cosh;7c052w0t>
‘ = —|arcco .
with 1o=(H)/(mw3) and Ae 7= \2/(mwe){(L " )io. The 2wq coshy+ sinhycos 2wt
same solution was found recently for the GP equation in
D=2 [2,4], but here we show that it also holds for the full X sgn(sin2wqt) + 27N (17
guantum system. It is valid not only for the expectation value

but directly for the operator$l0) and is due to a simple
underlying symmetry. We will discuss the change of thisandc(#,t),b(7,t) accordingly. The integem has to be cho-
equation under a group transformation later. sen to get a continuous solutiam(t) =[ wet/ 7+ 1/2], where
The Casimir operator of this group [x] denotes the greatest integer less tlar particularly
C=H?—(2wo)*(L3+L3) commutes not only with the important example is the case when the initial solution is a
Hamiltonian, giving a new conserved quantity, but also withstatic one, e.g., the ground stat; = Wy(r). The transfor-
the generators of the group and is the analog of the invariarihation builds then from such a static solution an oscillating
line element in special relativity. breathing solution. In this case the paramejesf the trans-
The classical wave limit of interacting bosons, i.e., theformation defines the relation of the energy of the new solu-
nonlinear GP equatiof6], has recently attracted consider- tion E to the static oné, according toE = cosh(y)E,. In the
able attention, as it accurately describes the Bose-condensd@lowing we set the phasg=0 in (16), as a finitey can be
of trapped atoms and allows for reliable analytic, and espeachieved by a simple translation in time.
cially numerical, calculation$7]. It is also an interesting Together with the time translations the discussed transfor-
problem on its own for mathematical physics. We will show mation form a group, indeed a continuous representation of
that the previously discovered analytic solutijd$actually ~ SO2,1). A general group transformatidd,, ,,., can be de-

form a continuous representation of the group(80 for  scribed by an initial translation in time b, the above-

the GP equation. described scaling transformation parametrizedsphyand a
In [4] the following transformation of the solution of the second final translation backwards in time can be described
GP equationii=7%=1), by t,. This is the analog to the description of rotations by
Euler angles. Withr' = 7(5,t —t4,) anda’,b’,c’ accordingly
A we have

155 2
i AV + g U+ g| V[>T — V¥, (12

o 2 2
. (19

i ! ’ 1 1
Utz,n’th’:el(b te rz)_\P< 5 r,T,"f‘tz

Ny

It is now simple to work out the multiplication rules of this

was consideredin our notation:

1 group — they are the same as for two-dimensional Lorentz
_ H 2
Wo(r,t) =exi(b+cr )]ﬁqfl(u”)’ (13 gransformations. For example, if one performs two succes-
sive “Lorentz boosts” in the same direction one has to add
the rapidities:
o= 14
u= . T(t)= —.
a(t) a(t’) Uo0,7,0°U0,7,,0=Uo,9,+ 7,0 (19
If the functionsa(t), b(t), andc(t) fulfill ( a;=da, etc), We can see this by calculating the corresponding function

a(t) for two transformations usingl7):

1
a;=4ac, bi=p|l1--], .
t t ’“( a) a=(coshy,+ sinhy,cos2w,t)coshy,

w + sinhzp,cog 2 't
a a_a_t2_|_ (Zwo)zaz_ (2&)0)2_ 71 i wOT(UZ )]
tt 2 2 2 =

0, (15 =cosh 71+ 77,) +sinh 7+ 7,) COS2w,t. (20

and if ¥, is a solution of(12), then¥,, is also a solution of To make the connection to the previously constructed alge-
the GP equation with a possibly time-dependent frequencira, one has to calculate the generators of the group, i.e. the
wo(t). Differentiating (15) gives the linear equation infinitesimal transformationg»—0.
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Csinh(m+7) s 2lwo\(L1)?+(L,). The quantity
C=(H)2—(2wg)?({L1)?>+(L,)?) is conserved under a
group transformation (co%hsinhz=1~) and plays the role of

) ) the Casimir invariant. Generally, i€ is positive, one can
Under such a transformation the wave function changes b)ﬁlways find a group transformation, so that

oW =Uqz,0¥ —¥: (L})2=(L})2=0 and therefore (t)’ = \/C/w3=const. For
C<0 this is not possible ant(t) describes the collapse of
the system, as has been discussef®2in
To conclude, we have shown that the existence of breath-
ing oscillations of 2D atoms in a harmonic trap is ensured by
a hidden symmetry of the system. If the atoms interact to a
good approximation by a Fermi pseudopotential, i.e., by a
with p=—iV. This has to be compared with; |ocal interaction, we expect well-defined modes with a fre-
=z(r-p+p-r) and L,=(1/2w0)(H—2H ). Identifying H  quency of exactly @,. We identified the corresponding so-
with ig; and noting that in the Heisenberg picture |utions of[4] with a continuous representation of the under-
Lo(t) =2 ImL*(t)=L,cos2ut—L;Sin2wst, we can iden- lying “Lorentz” group SQ(2,1).
tify Uy, o with the transformation generated hy. Accord- The experimental conditions for the realization of a 2D
ingly L; generates the transformatieh ,, -/(2.,;) andH ob-  system in a magnetic trap look quite promising in the case
viously U, go. Actually the solutions generated ty, and when most (_)f the atoms are in the cor_1densate. The system
L, describe the breathing of the system, i.e. a pulsating macan be considered as 2D df,> w, is fulfilled, but our cal-
tion. culations are also valid for a system without condensation,
To finish this section we directly evaluate the effect of a€-g., for fermions. In this case the condition for two dimen-
group transformation onto the mean-square displacement &fonality also demands that the effective temperature be less
the bosond (t)=fr2¥|d?r. From (17) we know that, for ~ than the level separation in trzedlrect|on:T<th. On the
any given soluton ¥, I(t) is of the form contrary, one can also use an asymmetric t_ﬁip_whlch is
| (t) = C(coshyy+sinhp,cosugt) as long as the system does Prolonged in thez direction, and excite oscillations in the
not collapse, i.e., as long 4ét)>0. (Such a collapse is of Ccondensate with na dependence.
course possible only for an attractive interaction, i.e., for Important new possibilities are opened by a recent pro-
g<0.) With W'=U,, ¥ and using(20) we get posal[8] to confine atoms in a 2D optical dipole trap. In such
" an experiment the appearance of shamp, 2Arequencies
would be the first demonstration of the two-dimensional na-
) S ) ture of the system. Experimentally it is also easy to excite the
1"(t)= f W (r,n]d*r =a(t) 1 (=(1)) 2w, modes by a change of the external potential as described
in [4]. Precision measurements of this response permit one to
=C(cosh 7o+ n)+sinh(ny+ n)cos2wet). (22)  check the assumptions of the model. Especially, the validity

. . . . . of a local interaction, which was generally accepted so far,
In particular, any solution without a breathing motion

. ilb di breathi q h could be investigated. It will be interesting to study devia-
(70=0) will be transformed into a breathing one and on theyjo s trom such a description both experimentally and theo-
other side any breathing motion can be transformed to 0 bYeticaIIy.
choosingn= — 7.

As mentioned below Eq(ll) all these properties are a  We acknowledge helpful discussions with Natan Andrei.
direct consequence of the underlying group structure and.P. wishes to thank the Institut furheorie der Kondensi-
w%Ccosh(noJr 7) can be identified with the energy of the erten Materie, UniversitaKarlsruhe, for hospitality and the

system, while the amplitude of the oscillations Humboldt Foundation for support.

1
a~1+ dncoswet, r~t— 5ngsin2wot.
0

1
SV~ —ién[z(r- p+p-r)cos2wgt

1
— =—Sin2wqt v (21
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