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Breathing modes and hidden symmetry of trapped atoms in two dimensions
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Atoms confined in a harmonic potential show universal oscillations in two dimensions~2D!. We point out
the connection of these ‘‘breathing’’ modes to the presence of a hidden symmetry. The underlying symmetry
SO~2,1!, i.e., the two-dimensional Lorentz group, allows pulsating solutions to be constructed for the interact-
ing quantum system and for the corresponding nonlinear Gross-Pitaevskii equation. We point out how this
symmetry can be used as a probe for recently proposed experiments of trapped atoms in 2D.
@S1050-2947~97!50502-6#
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The problem of Bose-Einstein condensation in an exte
potential has received a lot of attention after the experime
observation of the condensation in alkali-atom vapors@1#. In
real experiments the trapping potential is approximately h
monic with frequencyv0. This implies specific peculiarities
in the behavior of the system. In recent papers@2–4# a few of
these properties have been demonstrated. It has been s
@2# that the nonlinear Gross-Pitaevskii~GP! equation~12! for
a trapped two-dimensional~2D! system possesses ‘‘breat
ing’’ oscillatory modes with the universal frequency 2v0,
describing a pulsation of the condensate. The same m
show up in @4#, where the authors were able to constru
explicitly the time evolution of the GP equation in a tim
dependent external potential in 2D. In@3# the authors discov-
ered that the energy spectrum of a system of trapped part
interacting with a 1/r 2 potential is divided into sets of equ
distant levels with the separation 2v0 again. To our knowl-
edge this interesting property has not yet been properly
plained and the connection between these different syst
has not been established.

In this paper we shall show that in these cases the e
ence of these 2v0 oscillations is ensured by a specific sym
metry property of the system. Proper use of this symme
leads to a transformation that permits a set of breathing m
wave functions to be constructed algebraically, not only
the 1/r 2 problem but also for a local interaction in two d
mensions. Actually this symmetry is not only a property
the mean-field theory as found in@2,4# but of the full quan-
tum theory. We will show that the oscillating solutions of@4#
are a continuous representation of the underlying gr
SO~2,1!.

To understand the role of symmetry in the problem, it
useful to consider as an instructive example a system of c
sical particles moving in a harmonic external potent
Vpot5( i

1
2mv0

2r i
2 and interacting with a potentialV(r i) with

the scaling property,V(lr i)5lnV(r i). The position of the
ith particle is given byr i , its momentum bypi .

Let us consider the quantityI5( i r i
2 such that

] tI52( ir i•pi /m. Following the usual derivation of the viria
theorem in classical mechanics we get
551050-2947/97/55~2!/853~4!/$10.00
al
al

r-

wn

es
t

les

x-
s

t-

y
de
r

f

p

s-
l

] t(
i
pi•r i5(

i
~] tr i !pi2(

i
r i•“ i~V1Vpot!

52T2nV22Vpot. ~1!

We now see that for a potential with the scaling expon
n522 the right-hand side of ~1! takes the form
2E22mv0

2I , whereE is the total energy of the system. I
this case one gets a closed equation forI :

] t
2I524v0

2I14E/m, ~2!

with the obvious solution,I5Acos(2v0t1g)1E/(mv0
2). Thus

the existence of the ‘‘2v0’’ modes is connected with the
n522 scaling of the interaction potential. In a 3D syste
the only potential possessing this property is the 1/r 2 inter-
action used in@3#. But in the quantum 2D case the Ferm
‘‘pseudopotential’’ 1

2gd2(r), as used in the GP equatio
@2,4#, gives the same scaling.

The equations above can be rewritten by introducing~the
notations will become obvious later! L15( ipi•r i /2
1i (E2mv0

2I )/(2v0). We simply get] tL
15 i2v0L

1. The
phase ofL1 varies linearly with time:

F~pi ,r i ![
1

2v0
Im lnL1

5
1

2v0
arctan

~E2mv0
2I !/~2v0!

( ipi•r i /2

F~pi ,r i !2F~pi
0 ,r i

0!5t2t0 ,

wherepi
0 ,r i

0 are the coordinates att5t0. F can now be used
to determine the ‘‘abbreviated action’’S(E,r i), which is a
function of the energy and the coordinates at the end o
path. It is determined by the Hamilton-Jacobi equati
H(] riS,r i)5E with t5]ES5F(] riS,r). In hyperspherical

coordinates in the space of allr i with r5AI , F is only a
function of r and ] rS. Therefore we haveS(E,r i)
5S(E,r )1S0(a i), where thea i denote all other coordinates
clearly showing that the coordinater or I totally separates.

One of the most powerful methods in physics is the use
symmetries and groups. One way is to use the invarianc
R853 © 1997 The American Physical Society
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the Hamiltonian or the action under certain transformatio
another is recognizing that the Hamiltonian is a part of so
larger algebra. The most famous textbook example is
algebraic solution of the harmonic oscillator using the sp
trum generating Heisenberg algebra@H,a6#56v0a

6 ~we
put \51 throughout the paper!.

We will now discuss such a spectrum generating symm
try for the ~now quantum-mechanical! problem of interacting
particles in a harmonic trap. First we will consider the effe
of a scaling transformation for the Hamiltonian

H05(
i

2
1

2m
D i1(

i, j
V~r i2r j !

without an external potential:

r→lr,C~r!→ld/2C~lr!,

H0→
1

l2(
i

2
1

2m
D i1(

i, j
V„l~r i2r j !…. ~3!

H0 is scale invariant ifV(lr)5V(r)/l2. This is the case for
an interaction of the formV(r)5g/r 2 in any dimension, but
as mentioned above also for

V~r2r8!5
1

2
gd2~r2r8! ~4!

in two dimensions. The first case is known as the Caloge
Sutherland model@5# and is widely investigated. All our re
sults apply for both cases, as we will only use symme
properties connected to scale transformations, but we c
centrate on the problem of bosons with a local interact
and only briefly comment on the relation to known resu
for the Calogero-Sutherland model. Actually the local int
action is the most important case, at least for neutral atom
low energies, where the range of interaction is small co
pared to all other scales. The statistics of the particles d
not play a role.

It is important to note that ad-function interaction is not
well defined in two dimensions due to logarithmic ultravio
divergences that are cut off by the finite rangea0 of the
interaction. This lengtha0 obviously breaks the scale invar
ance ofH0 and will therefore modify our results; neverth
less, this effect will be small as long asa0 is smaller than any
other scale in the system. This is most clearly seen in
classical wave limit~i.e., the GP equation!, which we will
discuss later, where such a problem is absent.

Adding an external potential H5H01Hpot, Hpot

5( i
1
2mv0

2r i
2 obviously breaks scale invariance,

Hpot→l2Hpot under a scale transformation. However, due
a special property of the harmonic oscillator, a power
spectrum generating symmetry still exists.

The important step is to recognize that the commutato
the harmonic potential with the Hamiltonian or the time d
rivative of ( i r i

2 is proportional to the generator of sca
transformations:

@Hpot,H#5F(
j

1

2
mv0

2r j
2 ,(

i
2

1

2m
“ i

2G
5(

i

1

2
v0
2~“ i•r i1r i•“ i !5 iv0

2Q ~5!
;
e
e
-

-
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Q5(
i

1

2
~pi•r i1r i•pi !.

Q is the generator of scale transformations, as it descr
the translation of the coordinatesr i by an amount propor-
tional to r i .

We can collect our results~3,5! in the following algebra:

@Q,H0#52iH 0 , @Q,Hpot#522iH pot,

@Hpot,H#5 iv0
2Q ,

or using

L15
1

2v0
~H02Hpot!, L25

Q

2
,

L35
1

2v0
~H01Hpot!5

1

2v0
H, ~6!

we get the algebra

@L1 ,L2#52 iL 3 , @L2 ,L3#5 iL 1 , @L3 ,L1#5 iL 2 .
~7!

This is the well-known algebra of SU~1,1! or SO~2,1!, the
two-dimensional Lorentz group.L1 andL2 are the generators
of the two ‘‘boosts’’ andL35(1/2v0)H, i.e., the generator
of time translations, is the analog of the generator of
rotation. WithL65(1/A2)(L16 iL 2) this reads

@H,L6#562v0L
6, @L1,L2#52

1

2v0
H. ~8!

Note the minus sign in the last equation, indicating that
group is the Lorentz group SO~2,1! @or SU~1,1!# and not
SO~3!.

One important consequence of this spectrum-genera
symmetry is that the Hilbert space will separate into irred
ible representations of the group. If the energy is bound
from below, these are discrete infinite-dimensional repres
tations with no upper bound. Starting from the lowest eige
state in one of the representations with energyE0,
HuC0&5E0uC0&, one can construct higher states with en
gies E01n2v0, n51,2, . . . by applying L1 @use
HL1uC0& 5 (L1H12v0L

1)uC0& 5 (E012v0)L
1uC0&].

uC0& is annihilated byL2. Obviously an infinite number of
excitations with energiesn2v0 exists, which we will identify
with the breathing modes of the system.

Also the time dependence of all the operators, which
part of the algebra, can be given explicitly:

L6~ t !5e7 i2w0tL6. ~9!

Defining the operator for the mean-square displacemen
the particlesÎ (t)5(r i

2(t), one finds

Î ~ t !5
2

mv0
2Hpot~ t !

5
1

mv0
2 @H22v0A2Re~L1e22w0t!#. ~10!
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This equation or the corresponding differential equat
] t
2Î52(2v0)

2@ Î2H/(mv0
2)#, coinciding with the classica

Eq. ~2!, clearly show that the variableÎ is separated from al
other variables, in analogy to the center-of-mass mot
This separation is known in the case of the 1/r 2 interaction
@3#. As the frequencyv0 of the external potential obviousl
couples only to this coordinate, the full nonlinear respons
a change of the potential can also be calculated@3,4#.

For the expectation value we directly get

I ~ t !5^ Î ~ t !&5I 01Acos~2v0t1g!, ~11!

with I 05^H&/(mv0
2) and Ae2 ig5A2/(mv0)^L

1& t50. The
same solution was found recently for the GP equation
D52 @2,4#, but here we show that it also holds for the fu
quantum system. It is valid not only for the expectation va
but directly for the operators~10! and is due to a simple
underlying symmetry. We will discuss the change of th
equation under a group transformation later.

The Casimir operator of this grou
C5H22(2v0)

2(L1
21L2

2) commutes not only with the
Hamiltonian, giving a new conserved quantity, but also w
the generators of the group and is the analog of the invar
line element in special relativity.

The classical wave limit of interacting bosons, i.e., t
nonlinear GP equation@6#, has recently attracted conside
able attention, as it accurately describes the Bose-conden
of trapped atoms and allows for reliable analytic, and es
cially numerical, calculations@7#. It is also an interesting
problem on its own for mathematical physics. We will sho
that the previously discovered analytic solutions@4# actually
form a continuous representation of the group SO~2,1! for
the GP equation.

In @4# the following transformation of the solution of th
GP equation (m5\51),

i
]C

]t
52

1

2
DC1

1

2
v0
2r 2C1guCu2C2mC, ~12!

was considered~in our notation!:

C2~r,t !5exp@ i ~b1cr2!#
1

Aa
C1~u,t!, ~13!

u5
r

Aa~ t !
, t~ t !5E t dt8

a~ t8!
. ~14!

If the functionsa(t), b(t), andc(t) fulfill ( at5] ta, etc.!,

at54ac, bt5mS 12
1

aD ,
atta2

at
2

2
1

~2ṽ0!
2

2
a22

~2v0!
2

2
50, ~15!

and ifC1 is a solution of~12!, thenC2 is also a solution of
the GP equation with a possibly time-dependent freque
ṽ0(t). Differentiating ~15! gives the linear equation
n

.

to

n

e

nt

ate
e-

y

attt1(2ṽ0)
2at524ṽ0ṽ0ta, which once again demon

strates the universal nature of these modes; the initial va
must fulfill ~15!.

We will now consider the caseṽ05v05const, where the
differential equations~15! can can be solved directly:

a5sinhhcos~2v0t1g!1coshh , ~16!

t5
1

v0
$arctan@e2htan~v0t !#1pn%

5
1

2v0
FarccosS sinhh1coshhcos2v0t

coshh1sinhhcos2v0t
D

3sgn~sin2v0t !12pnG ~17!

andc(h,t),b(h,t) accordingly. The integern has to be cho-
sen to get a continuous solution,n(t)5@v0t/p11/2#, where
@x# denotes the greatest integer less thanx. A particularly
important example is the case when the initial solution i
static one, e.g., the ground state,C15C0(r). The transfor-
mation builds then from such a static solution an oscillat
breathing solution. In this case the parameterh of the trans-
formation defines the relation of the energy of the new so
tion E to the static oneE0 according toE5cosh(h)E0. In the
following we set the phaseg50 in ~16!, as a finiteg can be
achieved by a simple translation in time.

Together with the time translations the discussed trans
mation form a group, indeed a continuous representation
SO~2,1!. A general group transformationUt2 ,h,t1

can be de-

scribed by an initial translation in time byt1, the above-
described scaling transformation parametrized byh, and a
second final translation backwards in time can be descri
by t2. This is the analog to the description of rotations
Euler angles. Witht85t(h,t2t1) anda8,b8,c8 accordingly
we have

Ut2 ,h,t1
C5ei ~b81c8r2!

1

Aa8
CS 1

Aa8
r,t81t2D . ~18!

It is now simple to work out the multiplication rules of thi
group — they are the same as for two-dimensional Lore
transformations. For example, if one performs two succ
sive ‘‘Lorentz boosts’’ in the same direction one has to a
the rapidities:

U0,h2,0
+U0,h1,0

5U0,h11h2,0
. ~19!

We can see this by calculating the corresponding funct
a(t) for two transformations using~17!:

a5~coshh21sinhh2cos2v0t !coshh1

1sinhh1cos@2v0t~h2 ,t !#

5cosh~h11h2!1sinh~h11h2!cos2v0t. ~20!

To make the connection to the previously constructed a
bra, one has to calculate the generators of the group, i.e
infinitesimal transformationsdh→0.
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a'11dhcos2v0t, t't2dh
1

2v0
sin2v0t.

Under such a transformation the wave function changes
dC5U0,dh,0C2C:

dC'2 idhF14 ~r•p1p•r!cos2v0t

2
1

2v0
sin2v0tS i ]

]t
22

1

2
v0
2r 2D GC ~21!

with p52 i“. This has to be compared withL1
51

4(r•p1p•r) and L25(1/2v0)(H22Hpot). Identifying H
with i ] t and noting that in the Heisenberg pictu
L2(t)5A2 ImL1(t)5L2cos2v0t2L1sin2v0t, we can iden-
tify U0,h,0 with the transformation generated byL2. Accord-
ingly L1 generates the transformationU0,h,p/(2v0)

andH ob-

viously Ut,0,0. Actually the solutions generated byL1 and
L2 describe the breathing of the system, i.e. a pulsating
tion.

To finish this section we directly evaluate the effect o
group transformation onto the mean-square displacemen
the bosonsI (t)5*r 2uCud2r . From ~17! we know that, for
any given solution C0, I (t) is of the form
I (t)5C(coshh01sinhh0cos2v0t) as long as the system doe
not collapse, i.e., as long asI (t).0. ~Such a collapse is o
course possible only for an attractive interaction, i.e.,
g,0.! With C85U0,h,0C and using~20! we get

I 8~ t !5E r 2uC8~r,t !ud2r5a~ t !I „t~ t !…

5C„cosh~h01h!1sinh~h01h!cos2v0t…. ~22!

In particular, any solution without a breathing motio
(h050) will be transformed into a breathing one and on t
other side any breathing motion can be transformed to 0
choosingh52h0.

As mentioned below Eq.~11! all these properties are
direct consequence of the underlying group structure
v0
2Ccosh(h01h) can be identified with the energy of th

system, while the amplitude of the oscillation
an

n

.

A

y

o-

of

r

y

d

Csinh(h01h) is 2/v0A^L1&
21^L2&. The quantity

C̃5^H&22(2v0)
2(^L1&

21^L2&
2) is conserved under a

group transformation (cosh22sinh251) and plays the role of
the Casimir invariant. Generally, ifC̃ is positive, one can
always find a group transformation, so th

^L18&
25^L28&

250 and thereforeI (t)85AC̃/v0
25const. For

C̃,0 this is not possible andI (t) describes the collapse o
the system, as has been discussed in@2#.

To conclude, we have shown that the existence of bre
ing oscillations of 2D atoms in a harmonic trap is ensured
a hidden symmetry of the system. If the atoms interact t
good approximation by a Fermi pseudopotential, i.e., b
local interaction, we expect well-defined modes with a f
quency of exactly 2v0. We identified the corresponding so
lutions of @4# with a continuous representation of the unde
lying ‘‘Lorentz’’ group SO~2,1!.

The experimental conditions for the realization of a 2
system in a magnetic trap look quite promising in the ca
when most of the atoms are in the condensate. The sys
can be considered as 2D ifvz@v0 is fulfilled, but our cal-
culations are also valid for a system without condensati
e.g., for fermions. In this case the condition for two dime
sionality also demands that the effective temperature be
than the level separation in thez direction:T!\vz . On the
contrary, one can also use an asymmetric trap@9#, which is
prolonged in thez direction, and excite oscillations in th
condensate with noz dependence.

Important new possibilities are opened by a recent p
posal@8# to confine atoms in a 2D optical dipole trap. In su
an experiment the appearance of sharp 2v0 frequencies
would be the first demonstration of the two-dimensional n
ture of the system. Experimentally it is also easy to excite
2v0 modes by a change of the external potential as descr
in @4#. Precision measurements of this response permit on
check the assumptions of the model. Especially, the valid
of a local interaction, which was generally accepted so
could be investigated. It will be interesting to study dev
tions from such a description both experimentally and th
retically.
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