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Analytical parametrization for the shape of atomic ionization cross sections

Jan M. Rost and Thomas Pattard
Fakultät für Physik, Universita¨t Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany

~Received 8 August 1996!

The behavior of the ionization cross section of atoms is known classically in the limits of threshold energy
and at high energies. These two limits are used to construct a simple analytical formula for the ionization cross
section that depends upon two parameters: the magnitude of the maximum of the cross section and its position
in energy. The parametrization has been tested for electron- and positron-impact ionization as well as for
proton- and antiproton-impact ionization. It reproduces in all cases the shape of the cross section and offers a
unified treatment for ionization by bare projectiles irrespectively of their charge and mass.
@S1050-2947~97!50101-6#

PACS number~s!: 34.50.2s, 34.80.2i, 82.30.2b
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There has been a continuous effort to provide sim
semiempirical formulas for the ionization cross section
atoms. Probably the best known formula has been given
Lotz @1#. ~A summary can be found in Younger and Ma¨rk
@2#; for more recent work concerning electron impact s
@3#.! Some of these parametrizations are rather sophistic
and incorporate the effect of the binding energy from diff
ent electron shells in a target atom. All of them have
common that they use the form of the high-energy limit w
a logarithmic energy dependence lnE/E, as results from the
first Born approximation. However, the power-law behav
close to threshold—as known from the Wannier theory@4#—
has not been taken into account. We will show that fo
good parametrization of the cross section around its m
mum, the low-energy behavior is actually more importa
than the high-energy behavior. For ionization by electr
impact this is not too surprising since the maximum is ty
cally located at an excess energy that equals roughly
binding energy of the ionized electron~typically 2–20 eV for
valence electrons!. On the other hand, the logarithmic co
rection becomes relevant at some keV excess energy; th
far away from the maximum.

In the following we will therefore approximate the high
energy behavior with the simpler classical decrease, whic
linear. This procedure also puts the entire parametrization
a consistent level since the low-energy power law has b
derived from a classical calculation as well~although this
classical low-energy limit also holds quantum mechanica
@5#!. Moreover, the inclusion of the threshold behavior
lows one to formulate a shape function for ionization tha
valid for all kinds of projectiles, from electrons over pos
trons to protons, antiprotons, and charged ions. For a g
target, each of these projectiles leads to a different collis
system with different threshold behavior to be taken in
account by the shape function.

Near the thresholdE50 for ionization of a neutral atom
the cross section follows a power laws(E)}Ea, wherea
depends on the final fragmented state only~e.g.,a51.127 if
the final state consists of two electrons and the ionized at
the typical situation for electron-impact ionization!. The ex-
ponents can be calculated from the Wannier theory@4,6# and
reflect the unstable motion away from the all-particle coal
cence@7#.
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From the first Born approximation we know that in th
high-energy limit an ionization cross section behaves
ln E/E, whereas the classical behavior, known since 19
@8#, predicts a decrease with 1/E. Since we are interested i
an energy regime about the maximum of the cross sect
the logarithmic term does not have a big effect and we w
work with the simpler classical law.

We may combine the two limits in a natural way by wri
ing the ionization cross section as the product

s~E!}
1

E1E0
S E

E1E0
D a

, ~1!

whereE is the excess energy of the system measured f
the ionization threshold. The first factor (E1E0)

21 in ~1!
supplies the classical high-energy limit withs(E@1)}E21

~we use atomic units unless otherwise stated!. The second
factor, while approaching unity for largeE, reduces to
(E/E0)

a near the ionization thresholdE50. This is the cor-
rect form of the classical low-energy limit as derived b
Wannier in 1953@4#, wherea depends on the collisiona
system.

The constantE05EM /a is fixed by the maximum of the
cross section,sM5s(EM). In order to give a shape functio
that can be easily applied to experimental situations, we
dimensionless variablesy5s/sM and x5E/EM , where
sM andEM can be determined either from theory or expe
ment. ~The latter case amounts to fitting the cross sect
with two parameters,sM andEM .) Then, Eq.~1! reads

y[
s~x!

sM
5
f a~x!

f a~1!
, ~2!

where

f a~x!5
1

x1a21 S x

x1a21D a

. ~3!

The normalization of Eq.~2! with f (1) guarantees tha
y51 at the positionx51 of the maximum of the cross sec
tion. Hence, theshapeof the ionization cross section, Eq
~2!, is parameter freeand compares favorably with the ex
periment, as can be seen in Fig. 1~a!, where the cross sec
R5 © 1997 The American Physical Society
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tions are plotted in the reduced unitsx andy together with
thea-dependent shape function, Eq.~2!. The respective ex-
ponenta determines the width of the peak in the ionizati
cross sections. This width becomes smaller for increas
a, as can be seen in Fig. 1~b!.

The novelty of Eq.~1! and Eq.~2! compared to existing
parametrizations of cross sections is~i! the inclusion of the
threshold behavior and~ii ! the scaling of the energy in term
of EM instead of the ionization potentialI as in traditional
formulas. This results in a unified view of collisions involv
ing very different projectiles. While a good parametrizati
of electron-hydrogen scattering~with a51.127, see Table I!
might be expected, positron-hydrogen scattering~where
a52.65) is equally well described@Figs. 2~a! and 2~b!#. Not
necessarily expected is the possibility of representing
ionization of helium by antiprotons with Eq.~1!, where now
a51.199@Fig. 2~d!#. Most surprisingly, the proton-hydroge
ionization cross section@Fig. 2~c!# also follows Eq.~1! with
an exponent ofa569.74. We conclude from these observ
tions that the inclusion of the threshold behavior is inde
important, even for the cross section far from threshold.

A closer inspection of Fig. 2~a! reveals that the shap
function, Eq.~2!, slightly overshoots the actual cross secti
at maximum. This is not observed in the other cases@Figs.

FIG. 1. ~a! shows experimental cross sections for the ionizat
of hydrogen by various projectiles plotted in scaled coordina
y5s/sM versusE/EM . The solid line is the shape function, Eq
~2!; no fit parameters are needed. Proton impact@11# is indicated by
open squares and positron impact (y10.5, @12#! by filled circles.
Antiproton impact with helium as a target is shown with fille
squares (y11, @13#!, and electron impact with open circle
(y11.5, @14#!. ~b! shows theoretical shape functions Eq.~2! for the
systems of~a!.

TABLE I. Examples of Wannier exponents for various col
sional systems with the same potential, but different masses
projectile (mP) and target (mT).

mP mT a

e2 - M` 1 ` 1.127
e2 - H 1 1836 1.127

e1 - M` 1 ` 2.651
e1 - H 1 1836 2.650

p2 – M` 1836 ` 1.160
p2 - H 1836 1836 1.199

p1 – M` 1836 ` 98.675
p1 - H 1836 1836 69.74
g

e

-
d

2~b!–2~d!#. Electron-impact ionization differs from the othe
three collisional systems in the indistinguishable target a
projectile electrons. The Pauli principle imposes an ad
tional symmetry that leads to two partial cross sections. T
behave asEa andE3a close to threshold@9#. On the other
hand, for high energies, symmetrization is unimportant si
projectile and target electron differ very much in energy.
this situation we may extend the shape function to the fo

f sym~x!5 f a~x!1r f 3a~rx!, ~4!

where r5EM
(a)/EM

(3a) , now a true fitting parameter, is th
ratio of the maximum positions of the contributionsf a and
f 3a .
The relative weight off a and f 3a in Eq. ~4! is fixed by

the requirement that both components contribute equally
the asymptotic range for largeE where the ionized target an
the projectile electron are distinguishable because of t
large difference in velocity. Note that for Eq.~4!
x[E/EM

(a)51 is not the position of the maximum of th
cross section anymore. Figure 2~a! shows the two contribu-
tions f a and f 3a separately; the sum—also dashed but har
visible—fits the experimental cross section very well. It c
be seen thatf 3a is indeed strongly suppressed as compa
to f a close to thresholdE50 and correspondingly reache
its maximum at a higher energy,EM

(3a).EM
(a) .

For heavy-ion collisions~i.e., projectiles with masses o
the order of 103me and chargesZ>1), a'Am, wherem is
the reduced mass of projectile and target in atomic units,
a'102 ~see Table I!. Equation~3! may be simplified in this
case by taking the limita→`. Then we have

lim
a→`

f a~x!5
1

x
e21/x. ~5!

Indeed, the shape Eq.~5! ~dashed curves! is indistinguishable
from the shape of Eq.~3! ~solid curves! with the ‘‘correct’’
a569.7 in Fig. 2~c!. Equation~5! implies that the scaling
properties of heavy-ion ionization cross sections should o

n
s

or

FIG. 2. Ionization of hydrogen by electrons~a!, positrons~b!,
and protons~c!. ~d! shows ionization of helium by antiprotons
Symbols and experimental data are the same as in Fig. 1. The
line is the respective cross section, Eq.~1!, with EM andsM fitted
to the experimental data; for the dashed lines see text.
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depend on the position and value of the maximum of
cross section, a result that is of interest in the context
recent experiments on direct ionization by slow ions@10#.

Quite generally, Eq.~3! implies identical shapes for th
ionization cross section involving different targets but t
same projectile. This is demonstrated in Fig. 3 for electr
impact ionization and in Fig. 4 for positron-impact ioniz
tion, respectively. The poor agreement among the posi
cross sections close to the fragmentation threshold can
attributed to the difficult subtraction of the background in t
experiment, i.e., positronium formation, which also produc
a positive ion.

To apply Eq. ~2! one needs to know the exponenta,
which is defined through

a52
1

4
1A 1

16
1
C9~g0!

2C~g0!
, ~6!

whereC95d2C/dg2 with

C~g!5
Q13

sin~g11g!
1

Q23

sin~g22g!
1

Q12

cos~g!
~7!

FIG. 3. Electron-impact ionization cross sections of ato
where the axes have been scaled to the respective maximum v
sM and EM . The data represent the hydrogen target~s! as in
Fig. 1; and from@15#, helium ~1!, nitrogen~3!, carbon~h!, and
oxygen~n!.
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for 2g1,g,g2. The anglesg i5arcsin@Am12mi3/mi # with
the reduced massesmi j5mimj /(mi1mj ) between particles

i and j . Finally,Qi j5ZiZjAmi j /M , with M5( i51
3 mi being

the total mass and the particles labeled so thatZ1Z2.0 holds
for the respective chargesZi . The angleg0 is defined
throughC8(g0)50 and must be obtained numerically unle
particles 1 and 2 are identical, in which caseg050. How-
ever, small differences ina have little influence on the shap
function, and for practical purposes it will be sufficient to u
the limit of infinite mass for the target as provided in Table

In conclusion, based on the classical high- and lo
energy limits, we have proposed a parametrization that
produces the ionization cross section in a unified form for
kinds of projectiles. Comparing the ionization of differe
targets by the same projectile we have found that these c
sections have a common shape if plotted ass/sM versus the
scaled excessenergy E/EM . The simple shape function
f a(x) applies when the ionization cross section is domina
by target electrons with the same ionization potentialI so
that the excess energy can be determined uniquely.

Financial support for this work by the DFG under th
Gerhard-Hess-Programm is gratefully acknowledged as w
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FIG. 4. Same as Fig. 3 but for positron impact. Data are for
hydrogen target~1! as in Fig. 1 and from@16# for helium ~n!,
argon~s!, H2 ~h!, and for neon~3!.
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