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Unified quantum-defect-theory treatment of molecular ionization and dissociation
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Multichannel quantum-defect theory is extended to treat molecular dissociation processes simultaneously
with ionization processes. Allowance is made for nuclear momentum coupling and for coupling with core
excited channels. This theory combines the advantages of several less comprehensive approaches and is
noniterative, nonperturbative, and applicable for arbitrary interaction strength. Several examples showing good
agreement with experimental results relating to the H2 molecule are given.@S1050-2947~97!51404-1#

PACS number~s!: 31.15.2p, 33.80.Gj, 33.80.Eh, 34.50.Gb
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Ionization and dissociation (I1D) are the two fragmen-
tation pathways available to a molecule. At high energy b
are accessible and competition occurs between them. Re
sal of one or the other leads to dissociative recombina
~DR! or associative ionization~AI !, reactions that play a key
role in interstellar chemistry@1# or occur in cold collisions
involving Rydberg atoms@2#. The interconversion of elec
tronic and nuclear energy is mediated by bound states
bedded in theI1D continua. This is ideally described b
multichannel quantum-defect theory~MQDT!, which treats
discrete and continuum states in a unified fashion, extend
scattering theory to negative energy@3#. We present an
MQDT treatment forI1D competition, which, unlike earlie
treatments, is based entirely on clamped nuclei ion-elec
scattering matrices and does not rely on a perturbation
pansion. The treatment accounts for rovibronic coupling d
to electronic core rearrangement and nuclear momen
coupling.

Since Fano’s@4# first application of MQDT to a molecule
the range of molecular problems treated by MQDT has c
tinued to expand. Building on Fano’s pioneering work
rotational channel coupling, Jungen and Atabek@5# ac-
counted for vibrational interaction and sketched out a n
perturbative treatment for electronic core rearrangement.
recently implemented these ideas in a full rovibronic MQD
treatment of thegerade levels of H2 , accounting for both
singly and doubly excited electronic channels@6–9#. Mean-
while MQDT has been extended to treat rotational and vib
tional autoionization simultaneously@10#, and Giusti @11#
has introduced a noniterative, perturbation-based, MQ
treatment of dissociative recombination. Giusti’s approa
was the first to calculate competition between preionizat
and predissociation@12# while accounting for electronic re
arrangement in the core. In 1984 one of us introduced
iterative MQDT procedure that successfully studiedI1D
competition, accounting for rotational and vibrational cha
nel interaction@13#. Stephens and Greene@14# recently pre-
sented a simpler variant of the treatment of Ref.@13#. On a
different track, Gaoet al. @15# obtained very good agreeme
with experimental predissociation widths using a combin
R-matrix MQDT approach.

Each of these previous treatments, however, has a lim
tion. The technique of Ref.@12# is applicable for weak inter-
action between Rydberg states and a dissociative vale
551050-2947/97/55~4!/2503~4!/$10.00
h
er-
n

-

g

n
x-
e
m

-

-
e

-

T
h
n

n

-

d

a-

ce

state; that of Ref.@13# requires iteration and does not accou
for electronic core rearrangement; that of Ref.@14# is highly
iterative and restricted to sharp, nonoverlapping, resonan
and that of Ref.@15# neglects electronic channel interactio
and does not account for competition with preionization.

We combine the various strands to account for the
panoply of rovibronic interactions nonperturbatively and
the context ofI1D competition. Our procedure involve
determining an effective reaction matrixK̄, which explicitly
accounts for ionization and dissociation channels. Beca
this only needs to be done at a single energy in the regio
interest our procedure isnoniterative. Using theK̄ matrix,
physical boundary conditions can be imposed, allowing us
calculateI1D, their competition, DR, and AI, all withou
having to recalculateK̄. Electronic core rearrangement
accounted for and resonances of arbitrary width can be c
sidered. We first present a concise description of our pro
dure, relying on reference to earlier work, and follow with
comparison of some initial results with experiment.

Already, in 1970, Fano@4# recognized the utility of the
eigenchannel functions of the scattering problem. The ph
cal wave functions can be expressed as linear combinat
of the eigenchannel functions. The linear expansion coe
cients are related to the elements of the diagonalizing tra
formation that can be determined as part of the solution
the eigenchannel problem.

For I1D, an eigenchannel functionCb must have a com-
mon phase shifttb in all open channels inboth the electron
scattering directionr→` and in the dissociative direction
R→`. That is,Cb must have the asymptotic form

Cb~r→` or R→`!

5(
iPP

Tib@ f i~r !cos~ptb!2gi~r !sin~ptb!#u i &

1(
d

Tdb@Fd~R!cos~ptb!2Gd~R!sin~ptb!#ud&,

~1!

where the sum oni is over all open ionization channels, an
that ond is over open dissociation channels. There are
many independent functionsCb as there are open channel
R2503 © 1997 The American Physical Society
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f i(r ) andgi(r ) are Coulomb functions describing the rad
motion of the Rydberg electron, whileFd(R) andGd(R) are
numerically evaluated vibrational continuum functions ch
sen so thatFd is regular atR50 andGd is taken a quarter
cycle out of phase.u i & represents ther -independent part of a
rovibronic ionization channel, which is specified by the ele
tronic i1, vibrationalv1, and rotationalN1 state of the ion
core, along with thel value of the Rydberg electron.ud&
represents theR-independent part of a dissociative chann
Restricting our consideration to energies below the thresh
for dissociative ionization,u i :R→`&→0 and ud;r→`&
→0. Thus only one of the sums in Eq.~1! remains for a
given limit. Tib andTdb are the elements of the matrix th
diagonalizes the fullI1D scattering matrix. Inversion of this
diagonalization leads to the effectiveK̄ matrix for I1D,

K̄mm85tan~pm̄mm8!5(
b

Tmbtan~ptb!Tbm8
† . ~2!

The indicesm andm8 and the summation onb run over all
open ionization channelsiPP and all open dissociation
channelsd. m̄, as defined in Eq.~2! is the quantum-defec
matrix for I1D.

Imposing the boundary condition in ther direction given
by the first summation in Eq.~1!, Jungen and Dill@10#
showed how to determine eigenchannel functionscr appro-
priate for preionization with no dissociation. We divide th
range of internuclear spacingsR into an interior regionR
<R0 and an exterior regionR>R0 . The interior region is
chosen as that in which configuration interaction is direc
incorporated into the MQDT treatment~via off-diagonal el-
ements of the electronic reaction matrix@7,8#!. We then use
the cr of Ref. @10# in the interior region. TheR-dependent
factors ofcr are ion-core vibrational wave functions~includ-
ing electronic adiabatic corrections! that vanish at a fixed
large value ofR, as appropriate when all dissociative cha
nels are closed. Thecr therefore have different phase shif
in different dissociative channels and as such are not im
diately appropriate for treatingI1D. More clearly, the
choice of vibrational functions that vanish atR5R0 is
equivalent to choosing a fixed logarithmic derivative~with
respect toR), 2b5`, at R0 . In dissociative scattering
however, the wave function atR0 can have any logarithmic
derivative. To account for dissociative scattering we the
fore need a more general basis set in the interior region.
obtain this by performing several preionization calculatio
determining a new set ofcr in each calculation. Thes
preionization calculations differ in the choice of the logarit
mic derivative imposed on the vibrational factors atR0 . In-
dexing these separate calculations byx, we denote the loga
rithmic derivative for setx by 2b(x) and the resultingcr

eigenchannel functions bycr
(x) . For eachx we follow the

procedure of Ref.@10# ~which can be cast as a generaliz
eigenvalue problem@16#! and obtain the set of eigenchann
functions cr

(x)(R<R0), their associated electronic eige
phasestr

(x) , and the diagonalizing matricesTir
(x) , one for

each of the open ionization channels. Thecr
(x) are obtained

in the sense that the linear coefficientsZi
r(x) of the rovibronic

expansion
-

-

.
ld

y

-
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cr
~x!~R<R0!5(

i
Zi

r~x!H f i u i ;~x!&2(
j
Ki j

~x!gj u j ;~x!&J
~3!

are determined by imposing the boundary condition t
cr
(x)(r→`) takes the form of the first sum in Eq.~1!, with

tr
(x) taking the place oftb and Tir

(x) taking the place of
Tib . In Eq. ~3! the sums oni and j are over all ionization
channels~open and closed!. K, the full vibronic reaction ma-
trix @Eqs.~2!–~5! of Ref. @8## is calculated from theR- and
symmetry-dependent electronic body frame quantum-de
matrix. K involves integrals over the ionic vibrational wav
functions and therefore depends onx.

A linear combination of all the resulting solutions,cr
(x) ,

is sufficiently flexible to account for any logarithmic deriva
tive at R0 and therefore can be used to express theI1D
eigenchannel functionsCb in the interior region

Cb5(
r,x

cr
b~x!cr

~x!~R<R0!. ~4!

We thus require a procedure to determine the eigenph
of the full I1D problem,tb , and the elementsTmb5Tib
andTdb of the diagonalizing matrix of Eq.~1!. As we shall
see, this requires the determination of the linear coefficie
cr

b(x) of Eq. ~4!. Once these quantities are determined
effectiveK matrix K̄ of Eq. ~2! can be calculated and use
for I1D and related processes.

To obtain these quantities we connect the interior expr
sion of Eq.~4! to the exterior regionR>R0 , and then im-
pose the boundary condition of Eq.~1!. We make the con-
nection between the interior and exterior regions on e
cr
(x) . For a givenx we have chosen thecr

(x) so that they all
arrive atR0 with the same logarithmic derivative2b(x). In
the exterior region we neglect electronic configuration int
action and assume that in each dissociation channeld the
system evolves adiabatically along a well-defined potent
energy curve.~Note that in the future a more complete trea
ment of interactions that occur at long range—such as
nonadiabatic avoided crossings between H11H2-ion pair
states and covalent states—could be developed by inco
rating a coupled-equations approach in the exterior regio!
In the present approach the wave function in the exte
region can thus be written as a simple linear combination
functions for each dissociative channel. These functions
simply products of the same vibrational continuum functio
F andG that we already met in Eq.~1!, complemented by
R-independent factorsud&. Thus, in the exterior region
cr
(x) should take the form of the linear combination

cr
~x!~R>R0!5(

d
Tdr

~x!@Fd~R!cos~ptd
~x!!

2Gd~R!sin~ptd
~x!!#ud&. ~5!

The vibrational continuum phase shiftstd
(x) must be such tha

at R0 the logarithmic derivative~with respect toR) of the
exterior function of Eq.~5! matches that of the interior func
tion of Eq. ~3!, which is2b(x). The td

(x) can thus be found
by solving
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2b~x!5
Fd8~R0!cos~ptd

~x!!2Gd8~R0!sin~ptd
~x!!

Fd~R0!cos~ptd
~x!!2Gd~R0!sin~ptd

~x!!
. ~6!

Next, the linear coefficientsTdr
(x) in Eq. ~5! are obtained by

projecting the interior function onto the exterior function.
the case in which there are no relevant dissociative chan
differing only in the principal quantum number at the diss
ciative limit we obtain@13#

Tdr
~x!5

(
v1N1

Zi5 i1 lv1N1
r~x! ^R0uv1&^LuN1&

Nd~R0!@Fd~R0!cos~ptd
~x!!2Gd~R0!sin~ptd

~x!!#
.

~7!

^R0uv1& is the value of the vibrational wave function
R0 . The rotational elementŝLuN1& of the frame transfor-
mation matrix are given in Eq.~14! of Ref. @8#. Nd(R0) is
the energy normalization factor atR0 for the electronic state
involved in channeld. Note that the rovibronic channel in
dex i in Zi includesv

1N1, and that the sum overv1N1 and
the vibrational and rotational factors must all be those app
priate for channeld and the imposed logarithmic derivativ
2b(x).

Choosing the entire set ofcr
(x50) functions as the initial

basis, it is sufficient to complete this basis with one ad
tional functioncr

(xÞ0) for each open dissociative channel
order that the expression forCb in Eq. ~4! be sufficiently
flexible to be able to find the same number of independ
Cb eigenchannel functions as there are open ionization
dissociation channels. We therefore choose one func
from each set$cr

(xÞ0)% and add it to the set$cr
(x50)%. We let

q index the resulting set of pairs ofr,x values that are actu
ally included inCb in Eq. ~4!. We can therefore replace th
indices r

(x)↔q. Thentr
(x)↔tq andtd

(x)↔td
q (td

q depends on
q solely through its dependence onx).

Imposing Eq.~1! as the boundary condition onCb in Eq.
~4! leads to the generalized eigenvalue problem

ScWb5tan~ptb!CcWb, ~8!

where the matricesS andC have elements

Ciq5Tiqcos~ptq!, Siq5Tiqsin~ptq!, iPP;
~9!

Cdq5Tdqcos~ptd
q!, Sdq5Tdqsin~ptd

q!,

and the coefficientscq
b ([cr

b(x)) are arranged into the vecto
cWb. Standard techniques give the full eigenphasestb and the
coefficientscq

b . The components of the full diagonalizin
transformation are

Tib5(
q

cq
bTiqcos@p~tb2tq!# for iPP,

~10!

Tdb5(
q

cq
bTdqcos@p~tb2td

q!#.

This matrix is subjected to a symmetric orthogonalizat
procedureT→VT, providing a criterion for optimizing the
choice of imposed logarithmic derivatives2b(x) by permit-
ls
-

-

i-

nt
nd
n

ting only small discrepancies ofV from the unit matrix. The
best results were obtained when the2b(x) were chosen so
that for each setx an interior solution existed near the energy
at which the calculation ofK̄ was being done. In the calcu-
lations presented below the mean absolute discrepancy wa
not greater than 0.001.

In practice a few ‘‘almost’’ open ionization channels are
left open when calculatingK̄, as in Ref.@13#. Thus these
lowest closed channels are explicitly included inK̄, and do
not introduce strong energy dependence characteristic o
proximity to a resonance. This allows us to evaluateK̄ at a
single energy and then use it over a wide energy range. The
‘‘almost’’ open channels are closed in the last stage of the
calculation, with the imposition of the physical boundary
conditions.

We have shown how to determine the effective reaction
matrix K̄, which contains the ionization and dissociation
channels explicitly. UsingK̄ and imposing physical bound-
ary conditions we can calculateI1D, their competition, DR,
and AI. A separate calculation using this treatment must be
performed for each total angular momentumN, space-fixed
projectionM , and total parity in which we are interested. We
present two examples relating to H2 . The first concerns three
ungerade npL,v Rydberg resonances of H2 lying closely
together between thev151 and 2 ionization thresholds of
H2

1 . Each of these corresponds tov2v1.1 and would be
forbidden by the well-known propensity rule. Figure 1 com-
pares our results with experiment@17# and shows that each
level follows the pathway requiring the least interconversion
of vibrational and electronic energy. Thus 3pp, v58 is
fully predissociated, whereas 5ps, v54 has a vibrational
autoionization yield of about 80%. The remaining level
4pp, v55 corresponds to a delicate balance between the
competing fragmentation pathways. Its behavior changes
dramatically upon rotational excitation, decaying primarily
into an ion and an electron forN51, whereas forN52
fragmentation into two neutral atoms prevails. Table I com-
pares our results with observed resonance positions@18# and
widths @19#. Our calculated yields and widths are of similar

FIG. 1. Competition between ionization~shown! @17# and dis-
sociation ~100%-ionization! in excited levels of singletungerade
H2 .
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quality to previous results@13,14#, and the resonance pos
tions are greatly improved. We stress that the only input d
required are~i! theab initio potential-energy curve of the io
along with its electronic adiabatic corrections,~ii ! an energy-
dependent quantum-defect functionm(R) for each of the
ps and thepp channels~obtained fromab initio potential-
energy curves@20# by the Rydberg equation!, and ~iii ! the
electronic dipole transition moments for excitation from t
H2 ground state@10#.

The second example concernsgerade sandd series built
on the ion ground state. For these states strong prediss
tion is induced by electronic coupling with doubly excite
channels built on the repulsive excited state of the ion. A
treatment of such states has not previously been availa
Figure 2 shows part of the predissociation spectrum
Rottke and Welge@21#. Here sharp, slowly predissocia
ing, Rydberg structures are superimposed on a broad,
decaying resonance. Our calculation uses energy-depen
nondiagonal electronic quantum-defect matricesm rs

L (R) ~ob-
tained fromab initio potential-energy curves@20# and which
account for core excitation as in Ref.@9#!, and involves three
dissociation channelsEF 1Sg

1 , GK 1Sg
1 , and I 1Pg . The

dipole transition moments from the lowerB 1Su
1 state were

calculated from the quantum defects in the same manne
in Ref. @22#. The expansion in Eq.~2! included 168 closed

TABLE I. Energies and widths (cm21) of singletungeradelev-
els of H2 .

State

N51 N52

Energy Width Energy Width

5ps, v54 obs. 127 599.4 127 666.9
calc. 127 602.2 0.38 127 669.7 0.48

4pp, v55 obs. 127 667.6 127 758.7
calc. 127 665.4 0.046 127 758.4 0.024

3pp, v58 obs. 127 248.2 3.4~3! 127 321.6 10.2~2!

calc. 127 246.9 3.3 127 321.0 11.4
At
ta

ia-

ll
le.
f

st
ent

as

and 18 open rovibrational ionic channels. Although no io
ization channel was open in this energy range the latter w
included in the effectiveK̄ matrix. These channels wer
closed by the imposition of the physical boundary conditio
in the last step of the calculation and yielded the calcula
resonances seen in Fig. 2.

In summary, the approach outlined here treats correla
motion of atoms and electrons in a diatomic molecule, wh
preserving the main advantage of quantum-defect the
that the electronic wave functions are not explicitly require
TheR-dependent quantum-defect matrices are the only
namical parameters required and are directly related to
clamped nuclei potential-energy curves of the molecule.
energies below the threshold for dissociative ionization t
procedure unifies the treatment of the different molecu
fragmentation pathways into a single quantum-defect tre
ment based on theK̄ matrix.

S.C.R. thanks the Natural Sciences and Engineering
search Council of Canada and the Universite´ de Paris–Sud
for support and L. Wolniewicz for providing results in ad
vance of publication.

FIG. 2. Part of predissociation spectrum of singletgeradeH2

excited from theB 1Su
1 , v50, N50 level. ~a! Observed@21#; ~b!

calculated~present work!.
.
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