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Stokes phase and geometrical phase in a driven two-level system
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The generic two-level model with time-dependent matrix elements becomes soluble in the limit that its
diagonal and off-diagonal terms vary along a flat ellipse, encircling the diabolical singular point in the param-
eter space. The time evolution of the state vector is explicitly obtained, and the condition for its evolution to
form a closed circuit in the projective Hilbert space of rays is given as a result of destructive interference at
level crossing. The Aharonov-Anandan geometrical phase is shown to be related to the Stokes phase for the
Landau-Zener model, which is a natural extension of Berry’s phase to nonadiabatic evolutions.
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Since Berry[1] pointed out the existence of a nontrivial  H(t)=e(t)(|1)(1|—[2)(2])+ A(t)(|1)(2]+|2)(1)),
phase factor associated with adiabatic evolutions of the state
vector in accordance with a cyclic change of parameters con-
tained in the Hamiltonian, a number of works have beerin Which the diagonal and the off-diagonal terms are time-
devoted to clarifying the meaning of this observat(@?3] dependent real pargme’gers. The adlab.atlc eigenenergies are
and to extending the concept of tgeometrical phas¢éo a ~ degenerate at the diabolical poiet: A=0 in the(e,A) plane.
wider class of quantum process@s-7]. Specifically, Aha-  Although the following arguments may be advanced for a
ronov and Anandaii5] have shown that the assumption of more general setting, we assume for the sake of definiteness

the adiabaticity can be removed if one considers a cIoseI‘P"’lt the point(e(t),A(t)) moves along an ellipse given by

. 7 . . “€e(t)=egcowt and A(t)=Agsinwt. The case in which
path in the projective Hilbert space of rays instead of those I\ const has been discussed in a previous Brin con-
the parameter space. It is shown that if the state vector r P P

¢ 10 its initial val f i luti tt Shection with the coherent destruction of tunnellig].
urns 1o 1is infaj value after a time evolution except 1or a -~ pe time eyolution of the state vecta¥(t) driven by

multiplicative phase factor, one can define a geometrical part W) at=H(t) (1), (=1 hereafteris investigated under

of thls_phase in _the.sens.e that it depends only on the cIose[ e initial conditiony(0)=|1). Note that the diabatic basit)
curve in the projective Hilbert space. coincides with the adiabatic eigenstaté-a®. In the limit of

One of the prototype models to demonstrate the geometrioy, yariation of the parameter valueg(t) traces the upper
cal phase factor is a spin system in time-dependent magnetianch of the adiabatic eigenstates. The adiabatic perturba-

fields[1,5,8,9, or equivalently, a two-level atom driven by a tjon theory[14] tells us that the condition for the adiabatic
coherent laser fielffL0]. Aharonov and Anandan presented aeyolution is given by

few examples of the generalized geometrical phase for spin
systems. Suter, Mueller, and Pirj@4] performed an experi- (A3 €
mental verification of Aharonov and Anandan’s phase factor w<min 6_0 A_o '
by the NMR spin-echo technique. The evolution of the state
vector in these examples is essentially a precession of thehere mif } means that the smallest should be chosen in the
spin under a static magnetic field, and is trivial as a dynamiorder of magnitude. Thenj(t) surely comes back t{i) at
cal problem. Furthermore, the relation with the adiabatict=27/w, but gains a phase factor ¢kg®]. Here y(® is
evolution driven by a time-dependent Hamiltonian originally decomposed into two partsy® =y +x%, in which
conceived by Berry is not clear. Therefore, it will be worth- (2 is the dynamical phase given by
while to have a model that obeys a nontrivial equation of
motion driven by a Hamiltonian with explicit time depen- (@ _ Zﬂ’wm
dence and that is still soluble. In this work, | propose such a Xd =7 0 e(D)"+A(D) L, )
model. The model is a two-level system with time-dependent
diagonal and off-diagonal matrix elements, which bridgesand y(® is Berry’s phase given by(® = .

- ; - AT : g g
the adiabatic and the diabatic limits continuously. The evo- Now we consider another extreme situation that shall be

lution of the state vector is analytically given in a limiting cajled the limit of impulsive transition. This is characterized
situation of the orbital shape in the parameter space. Thgy the inequality

geometrical phase factor for nonadiabatic processes is shown

to be related with a phase factor called the Stokes phase, Ap<ep. (4)

which appears in the theory of second-order differential

equations. Since the off-diagonal coupling works effectively only for
Consider a two-level systerfi) and |2) driven by the the diagonal energy difference satisfyiagcA in the order

Hamiltonian of magnitude, the time evolution of the system in this limit

@)
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can be regarded as a successive occurrence of nonadiabaB¢ on = () as ;1 =G1°M,G3yy, =G3?M,G1,,
transitions around the avoided crossing between the adiabatégc. If one defines a unitary matrik by
eigenstates. By choosing the diabatic stéteand|2) for the

basis set, one may also say that the system undergoes suc- " " Jq —J1—qe@+?
cessive off-diagonal transitions betwefn and |2) around T=G;'M,G;°= Ji—qe (¢+0) Ja )
the level crossings. Hereafter, we adopt the diabatic base for q q 9

the representation of the state vector. Since the time duration

that the system stays in the transition region is estimateg) can be written simply asfon_1=T(T*T)™ Ly, om
to be of order ofAq/eow for moderate values oo,  —(T*T)My, (m=1,2,...), in theimpulsive transition limit.
the transition occurs impulsively at crossing timés |ntroduce another unitary matrig defined by
=(n—-3) 7w, (n=1,2,...), and thesystem propagates al-
most freely between each crossing. \/ﬁe—i(w 0) \/a

The present author has shown that the time evolution of 5:( i<¢+0)>. (10
the two-level system in such a case can well be described by B \/a v1-qe
the transfer-matrix formalisml2]. The equation of motion

around the crossing time is approximated by that for theThen we find
Landau-Zener mode[15]. At the crossing timet,,_; T*T=-g? (11)
(m=1,2,...), theincoming and outgoing states are con-
nected by the transfer matrjx6] and
y Jq —J1—qé? - S$*=2 cosS—1, (12
1= M qa—id ,
1-qe ‘/a with cosf=+1—qcos(+6). From Eq.(13), we may put

S"=a,+ B,S and derive recursion relations far, and 8,

where the {,j) component represents the transfgr—|i). asa. 1~ — B, and
n+1— " Pn

In the above equatiorg=exp(—2md), with 6=A3/(2€,0)
being the adiabaticity parameter. The phdgses the Stokes Bus1—2 COSBy+ Br_1=0, (13)
phase, and is given by
) with B8y;=0, B,=1. This equation is equivalent to that for a
¢=ml4+arg’(1-i6)+6(Ino—-1), (6)  poundary value problem in a one-dimensional tight-binding

) ) model, and can be easily solved to yield
whereI'(z) is theT function. The Stokes phase generally

originates from the connection of the asymptotic forms of sinné
confluent hypergeometric functions, namely, Weber's func- Bn=
tion in this casdg15], at a regular singularity17]. It also

guarantees the single-valued nature of the solution againgfina|ly, we obtain

the rotation of Zr around the singularity in the complex

plane. The phasé is a monotonically decreasing function of Yom—1=(—1)""L( JEﬁmel, Ji—qe '¢*0p,

6, and takes the following limiting values in the adiabatic

(6—x) and the diabatic(6—0) limits: ¢(6—<)=0 and —Bam-2)", (195
$(6—0)=mx/4. At the crossing time,,, (m=1,2,...), the _

transfer matrix is given bM,=M* , where* means the  ¥om=(—1)"(V1-qe "9 Byn— Bom 1, —VaBam) .
complex conjugate. Note that the transfer matrix depends (16)
both on the sign of the off-diagonal matrix element and th
way of crossing, whethdf) crosseg2) from the upper side
or from the lower side. The outgoing statetgt,_; and the

~ siné (14)

eThe probabilityP,, that the system exists |8) att=n=/w is
given by

incoming state at,,,, is connected by the propagator sinf (2m—1)¢]]2
e 0 P =1 T
Glz( —i ) ] (7)
0 e’ ~ [sin2mé)]? g
where oA sing

20 2eq For irrational values of/, the sequencfP,} distributes
0:2] Ve(t)?+A(t)%dt=—.. (8)  uniformly and densely over the intervgd,1]. If &/ is a
0 w rational number{P,} has a periodic structure, which corre-

_ ) o sponds to the case of a standing wave in the analogy of the
Likewise the propagator fromym, t0 tomyq is given byG,  tight-binding model for a linear chain. In particular, the con-
=GJ . dition for complete return to the initial value after a period of

Denote the state vector at each half cyttenm/w (N circulation is given by cag=0. This leads to the requirement
=0,1,2...) asy, . In the representation by a two-component
vector, ¢, is obtained by successive operation Mf and o+ 6=(k+3)m, k=0,1,2..., (19
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which means that the destructive interference between theal phase is explicitly calculated for nonadiabatic quantum
two transition paths, one throudh) and the other through evolutions. The adiabatic geometrical phase of Berry is re-
|2) in the intermediate state, completely suppresses the prolcovered as a special case. The only assumption is that the
ability to reach|2) after the second crossing. Equatici®) parameters in the Hamiltonian move on a very flat orbital so
determines a set of one-dimensional manifolds in the paranthat the transition is effectively localized near the level cross-
eter spaced;,Ay,w). Hereafter we restrict ourselves to one ing. It is remarkable that the geometrical phase, which is a
of such manifolds. quantity attributed to the global feature of the circuit, is
From Eq.(16), the state vector in the final state of circu- closely related with the Stokes phase, which is a quantity
lation is given by, =|1). That is, the state vector returns to bearing only local information at the level crossing.
its initial value including the phase factor with the dynamical Here we have restricted ourselves to a specific model
phase being just compensated by the geometrical phase. Theven by Eq.(1) in which the orbital(e(t),A(t)) encircles
dynamical phasgy is given by[5] the singular point. It should be noted that in order to yield a
”e) geometrical phase, the orbital need not encircle the singular
_ e -~ point. In fact, an analogous analysis can be made for the
Xd_‘fo (POIHMIp)At==260(1=a) (200 01 in whichA(t) = Ao(const) withAg<e, [12]. In this
case the condition for complete return of the state vector is
within the impulsive transition approximation. Therefore, thegiven in terms of the Stokes phase as
geometrical phasgg is given by
¢+ 60=km, k=1,2,..., (29
Xg=26(1—q) (mod2m). (21
where ¢ and 6 are defined in the same way as E@. and
Equations(19) and(21) connect the geometrical phase with (8) [12]. On the other hand, the geometrical phase is shown
the Stokes phase. In the adiabatic lindit>«c, we find  to be given byy,=26(1—q). As the adiabaticity increases,
q—0, ¢—0 and xy—26=m (mod2w), which recovers the area swept by the polarization vecfpron = enlarges
Berry’s phase. The geometrical phagg changes continu- faster than the present case. In the limit of adiabatic evolu-
ously from O tor as the adiabaticity parametérchanges tion, g travels only a single half of the great circle connect-
from O to oo, ing the poles along the meridiah=0, first downward then
The closed curve in the projected Hilbert space of rays fofupward, so that the geometrical phase approachdastead
a two-level system is most clearly visualized by a circuit ongf 4,
the two-spher& corresponding to the polarization vector If the phaset satisfies the condition
defined for the density matrixi1],
I
p=3(1+p-d), (22 £=5om (25

wheregd is Pauli’s spin matrices. Aharonov and Anand&h
and Suter and co-workef41] noticed that the geometrical
phasey(C) is related with the solid angl@(C) subtended
by the circuitC on X at the origin as

for integersn and| that obey the restriction€@1<<2n and
are relatively prime, the system returns to the initial state first
after nth cycle. In this case, the density matrix becomes a
multivalued function of the parametefs(t),A(t)). For the

¥(C)=10(C). (23) process satisfying conditiof25), the state vector returns to

z Yan=(—1)"""|1) after n cycles. The integem may be

In our model, the locus of the vectgris a spherical triangle  called a winding number, ant is an additional quantum
on =. If one represent§ by the spherical angle®,®) as number_de&gnatmg the pattern of the evolution. Since the
px=Sin® cosb, p,=sin® sin®, p,=co, the circuitC is probability _that_ the system exists in thewer branch from
given as follows. Fromt=0 to t=t,(= m/2w), p stays at tm 10 tm+1 i given byg[sinmé/sing? (m=1.2,....0—1),
the north pole®=0. At t=t,, it suddenly moves along a the dynamical phasg is calculated as

meridian to the point®,,®;), where®,=2 cos *\/q and on—1
®,=¢. Fromt, to t,(=37/w), it moves along the parallel — _ : 2
to (0,,9,) whered,=¢+26. Then att=t,, it suddenly Xd o m§=:1 {1~ 2q[sinmé/sing 7} 6

goes back to the north pole along the meridian and stays
there untilt=2#/w. The solid angle subtended at the origin __ 2n0( _ i) 26)
is thenQ(C)=26(1—cod;)=46(1—q). Thus we find x4 Sireé)”
={(C)/2 in agreement with the case of REf1]. The geo-
metrical phase is truly geometrical: It depends only on thelhis is an extension of Eq20) to the process with winding
circuit in the projective Hilbert space but not on the specificnumbern. The geometrical phasg, is given by
Hamiltonian by which the system is driven. Asincreases,
satisfying Eq.(19), the area swept by increases, and in the
limit §—0, p travelsX along the great circle witb=0 from
the north pole to the south pole and goes back to the north
pole along the great circld=1. Formula(21) is recovered by setting=1=1 in the above

In the present work, | have proposed a soluble model of &quation.
driven two-level system, in which the generalized geometri- The experimental observation of the nonadiabatic pro-

xgz(n+|)w+2n0(1—%€,>. (27)
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cesses and the associated geometrical phase investigated henessing called the optical adiabatic rapid passage induced
would be possible, in principle, by using the phase-sensitivéy resonant laser fields have been done for gas gi&es

technigue of magnetic resonandé&l] under the time-

well as for solidgd 20]. It will be of interest to clarify the role

dependent longitudinal and the transverse magnetic fields. Itsf the quantum phase by using these techniques, although the
optical analod 18] may also be a candidate for the possibil- effect of dephasin{21] should also be considered in realistic
ity. In fact, experimental observations of the quasi-level-situations.
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