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Stokes phase and geometrical phase in a driven two-level system

Yosuke Kayanuma
Department of Mathematical Sciences, College of Engineering, Osaka Prefecture University, Sakai 593, Japan

~Received 24 September 1996!

The generic two-level model with time-dependent matrix elements becomes soluble in the limit that its
diagonal and off-diagonal terms vary along a flat ellipse, encircling the diabolical singular point in the param-
eter space. The time evolution of the state vector is explicitly obtained, and the condition for its evolution to
form a closed circuit in the projective Hilbert space of rays is given as a result of destructive interference at
level crossing. The Aharonov-Anandan geometrical phase is shown to be related to the Stokes phase for the
Landau-Zener model, which is a natural extension of Berry’s phase to nonadiabatic evolutions.
@S1050-2947~97!51004-3#

PACS number~s!: 03.65.2w
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Since Berry@1# pointed out the existence of a nontrivi
phase factor associated with adiabatic evolutions of the s
vector in accordance with a cyclic change of parameters c
tained in the Hamiltonian, a number of works have be
devoted to clarifying the meaning of this observation@2,3#
and to extending the concept of thegeometrical phaseto a
wider class of quantum processes@4–7#. Specifically, Aha-
ronov and Anandan@5# have shown that the assumption
the adiabaticity can be removed if one considers a clo
path in the projective Hilbert space of rays instead of thos
the parameter space. It is shown that if the state vector
turns to its initial value after a time evolution except for
multiplicative phase factor, one can define a geometrical
of this phase in the sense that it depends only on the clo
curve in the projective Hilbert space.

One of the prototype models to demonstrate the geom
cal phase factor is a spin system in time-dependent magn
fields @1,5,8,9#, or equivalently, a two-level atom driven by
coherent laser field@10#. Aharonov and Anandan presented
few examples of the generalized geometrical phase for
systems. Suter, Mueller, and Pines@11# performed an experi-
mental verification of Aharonov and Anandan’s phase fac
by the NMR spin-echo technique. The evolution of the st
vector in these examples is essentially a precession of
spin under a static magnetic field, and is trivial as a dyna
cal problem. Furthermore, the relation with the adiaba
evolution driven by a time-dependent Hamiltonian origina
conceived by Berry is not clear. Therefore, it will be wort
while to have a model that obeys a nontrivial equation
motion driven by a Hamiltonian with explicit time depen
dence and that is still soluble. In this work, I propose suc
model. The model is a two-level system with time-depend
diagonal and off-diagonal matrix elements, which bridg
the adiabatic and the diabatic limits continuously. The e
lution of the state vector is analytically given in a limitin
situation of the orbital shape in the parameter space.
geometrical phase factor for nonadiabatic processes is sh
to be related with a phase factor called the Stokes ph
which appears in the theory of second-order differen
equations.

Consider a two-level systemu1& and u2& driven by the
Hamiltonian
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H~ t !5e~ t !~ u1&^1u2u2&^2u!1D~ t !~ u1&^2u1u2&^1u!,
~1!

in which the diagonal and the off-diagonal terms are tim
dependent real parameters. The adiabatic eigenenergie
degenerate at the diabolical point,e5D50 in the~e,D! plane.
Although the following arguments may be advanced fo
more general setting, we assume for the sake of definite
that the point„e(t),D(t)… moves along an ellipse given b
e(t)5e0cosvt and D(t)5D0sinvt. The case in which
D5const has been discussed in a previous paper@12# in con-
nection with the coherent destruction of tunneling@13#.

The time evolution of the state vectorc(t) driven by
i ]c(t)/]t5H(t)c(t), (\51 hereafter! is investigated under
the initial conditionc~0!5u1&. Note that the diabatic basisu1&
coincides with the adiabatic eigenstate att50. In the limit of
slow variation of the parameter values,c(t) traces the upper
branch of the adiabatic eigenstates. The adiabatic pertu
tion theory@14# tells us that the condition for the adiabat
evolution is given by

v!minH D0
2

e0
,

e0
2

D0
J , ~2!

where min$ % means that the smallest should be chosen in
order of magnitude. Then,c(t) surely comes back tou1& at
t52p/v, but gains a phase factor exp@ix(a)#. Here x (a) is
decomposed into two parts,x (a)5xd

(a)1xg
(a) , in which

xd
(a) is the dynamical phase given by

xd
~a!52E

0

2p/v
Ae~ t !21D~ t !2dt, ~3!

andxg
(a) is Berry’s phase given byxg

(a)5p.
Now we consider another extreme situation that shall

called the limit of impulsive transition. This is characterize
by the inequality

D0!e0 . ~4!

Since the off-diagonal coupling works effectively only fo
the diagonal energy difference satisfyinge<D in the order
of magnitude, the time evolution of the system in this lim
R2495 © 1997 The American Physical Society
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R2496 55YOSUKE KAYANUMA
can be regarded as a successive occurrence of nonadia
transitions around the avoided crossing between the adia
eigenstates. By choosing the diabatic statesu1& andu2& for the
basis set, one may also say that the system undergoes
cessive off-diagonal transitions betweenu1& and u2& around
the level crossings. Hereafter, we adopt the diabatic base
the representation of the state vector. Since the time dura
that the system stays in the transition region is estima
to be of order ofD0 /e0v for moderate values ofD0 ,
the transition occurs impulsively at crossing timestn
[(n2 1

2)p/v, (n51,2,...), and thesystem propagates a
most freely between each crossing.

The present author has shown that the time evolution
the two-level system in such a case can well be describe
the transfer-matrix formalism@12#. The equation of motion
around the crossing time is approximated by that for
Landau-Zener model@15#. At the crossing timet2m21
(m51,2,...), the incoming and outgoing states are co
nected by the transfer matrix@16#

M15S Aq 2A12qeif

A12qe2 if Aq D , ~5!

where the (i , j ) component represents the transferu j &→u i &.
In the above equation,q[exp(22pd), with d[D0

2/(2e0v)
being the adiabaticity parameter. The phasef is the Stokes
phase, and is given by

f5p/41argG~12 id!1d~ lnd21!, ~6!

whereG(z) is the G function. The Stokes phase genera
originates from the connection of the asymptotic forms
confluent hypergeometric functions, namely, Weber’s fu
tion in this case@15#, at a regular singularity@17#. It also
guarantees the single-valued nature of the solution aga
the rotation of 2p around the singularity in the comple
plane. The phasef is a monotonically decreasing function o
d, and takes the following limiting values in the adiaba
~d→`! and the diabatic~d→0! limits: f~d→`!50 and
f~d→0!5p/4. At the crossing timet2m (m51,2,...), the
transfer matrix is given byM2[M1* , where* means the
complex conjugate. Note that the transfer matrix depe
both on the sign of the off-diagonal matrix element and
way of crossing, whetheru1& crossesu2& from the upper side
or from the lower side. The outgoing state att2m21 and the
incoming state att2m is connected by the propagator

G15S eiu 0

0 e2 iuD , ~7!

where

u52E
0

p/2v
Ae~ t !21D~ t !2dt.

2e0
v

. ~8!

Likewise the propagator fromt2m to t2m11 is given byG2

[G1* .
Denote the state vector at each half cyclet5np/v (n

50,1,2,...) ascn . In the representation by a two-compone
vector, cn is obtained by successive operation ofMi and
atic
tic
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Gi on c0[(0
1) asc15G1

1/2M1G2
1/2c0 , c25G2

1/2M2G1
1/2c1 ,

etc. If one defines a unitary matrixT by

T[G1
1/2M1G2

1/25S Aq 2A12qei ~f1u!

A12qe2 i ~f1u! Aq D ,
~9!

cn can be written simply asc2m215T(T*T)m21c0 , c2m
5(T*T)mc0 (m51,2,...), in theimpulsive transition limit.
Introduce another unitary matrixS defined by

S5S A12qe2 i ~f1u! Aq
2Aq A12qei ~f1u!D . ~10!

Then we find

T*T52S2 ~11!

and

S252 cosjS21, ~12!

with cosj[A12q cos(f1u). From Eq. ~13!, we may put
Sn5an1bnS and derive recursion relations foran andbn
asan1152bn and

bn1122 cosjbn1bn2150, ~13!

with b050, b151. This equation is equivalent to that for
boundary value problem in a one-dimensional tight-bind
model, and can be easily solved to yield

bn5
sinnj

sinj
. ~14!

Finally, we obtain

c2m215~21!m21~Aqb2m21 , A12qe2 i ~f1u!b2m21

2b2m22!
T, ~15!

c2m5~21!m~A12qe2 i ~f1u!b2m2b2m21 , 2Aqb2m!T.
~16!

The probabilityPn that the system exists inu2& at t5np/v is
given by

P2m21512qFsin@~2m21!j#

sinj G2, ~17!

P2m5qFsin~2mj!

sinj G2. ~18!

For irrational values ofj /p, the sequence$Pn% distributes
uniformly and densely over the interval@0,1#. If j /p is a
rational number,$Pn% has a periodic structure, which corre
sponds to the case of a standing wave in the analogy of
tight-binding model for a linear chain. In particular, the co
dition for complete return to the initial value after a period
circulation is given by cosj50. This leads to the requiremen

f1u5~k1 1
2 !p, k50,1,2,..., ~19!
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which means that the destructive interference between
two transition paths, one throughu1& and the other through
u2& in the intermediate state, completely suppresses the p
ability to reachu2& after the second crossing. Equation~19!
determines a set of one-dimensional manifolds in the par
eter space (e0 ,D0 ,v). Hereafter we restrict ourselves to on
of such manifolds.

From Eq.~16!, the state vector in the final state of circ
lation is given byc25u1&. That is, the state vector returns
its initial value including the phase factor with the dynamic
phase being just compensated by the geometrical phase
dynamical phasexd is given by@5#

xd52E
0

2p/v

^c~ t !uH~ t !uc~ t !&dt522u~12q! ~20!

within the impulsive transition approximation. Therefore, t
geometrical phasexg is given by

xg52u~12q! ~mod2p!. ~21!

Equations~19! and ~21! connect the geometrical phase wi
the Stokes phase. In the adiabatic limitd→`, we find
q→0, f→0 and xg→2u5p (mod2p), which recovers
Berry’s phase. The geometrical phasexg changes continu-
ously from 0 top as the adiabaticity parameterd changes
from 0 to`.

The closed curve in the projected Hilbert space of rays
a two-level system is most clearly visualized by a circuit
the two-sphere( corresponding to the polarization vectorpW
defined for the density matrix@11#,

r5 1
2 ~11pW •sW !, ~22!

wheresW is Pauli’s spin matrices. Aharonov and Anandan@5#
and Suter and co-workers@11# noticed that the geometrica
phasex(C) is related with the solid angleV(C) subtended
by the circuitC on ( at the origin as

x~C!5 1
2V~C!. ~23!

In our model, the locus of the vectorpW is a spherical triangle
on (. If one representspW by the spherical angles~Q,F! as
px5sinQ cosF, py5sinQ sinF, pz5cosQ, the circuitC is
given as follows. Fromt50 to t5t1(5p/2v), pW stays at
the north poleQ50. At t5t1 , it suddenly moves along a
meridian to the point (Q1 ,F1), whereQ152 cos21Aq and
F15f. From t1 to t2(53p/v), it moves along the paralle
to (Q1 ,F2) whereF25f12u. Then att5t2 , it suddenly
goes back to the north pole along the meridian and s
there untilt52p/v. The solid angle subtended at the orig
is thenV(C)52u(12cosQ1)54u(12q). Thus we findxg
5V(C)/2 in agreement with the case of Ref.@11#. The geo-
metrical phase is truly geometrical: It depends only on
circuit in the projective Hilbert space but not on the spec
Hamiltonian by which the system is driven. Asd increases,
satisfying Eq.~19!, the area swept bypW increases, and in the
limit d→`, pW travels( along the great circle withF50 from
the north pole to the south pole and goes back to the n
pole along the great circleF5p.

In the present work, I have proposed a soluble model o
driven two-level system, in which the generalized geome
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cal phase is explicitly calculated for nonadiabatic quant
evolutions. The adiabatic geometrical phase of Berry is
covered as a special case. The only assumption is tha
parameters in the Hamiltonian move on a very flat orbital
that the transition is effectively localized near the level cro
ing. It is remarkable that the geometrical phase, which i
quantity attributed to the global feature of the circuit,
closely related with the Stokes phase, which is a quan
bearing only local information at the level crossing.

Here we have restricted ourselves to a specific mo
given by Eq.~1! in which the orbital„e(t),D(t)… encircles
the singular point. It should be noted that in order to yield
geometrical phase, the orbital need not encircle the sing
point. In fact, an analogous analysis can be made for
model in whichD(t)5D0(const) withD0!e0 @12#. In this
case the condition for complete return of the state vecto
given in terms of the Stokes phase as

f1u5kp, k51,2,..., ~24!

wheref andu are defined in the same way as Eqs.~6! and
~8! @12#. On the other hand, the geometrical phase is sho
to be given byxg52u(12q). As the adiabaticity increases
the area swept by the polarization vectorpW on ( enlarges
faster than the present case. In the limit of adiabatic evo
tion, pW travels only a single half of the great circle conne
ing the poles along the meridianF50, first downward then
upward, so that the geometrical phase approaches 2p instead
of p.

If the phasej satisfies the condition

j5
l

2n
p, ~25!

for integersn and l that obey the restriction 0, l,2n and
are relatively prime, the system returns to the initial state fi
after nth cycle. In this case, the density matrix becomes
multivalued function of the parameters„e(t),D(t)…. For the
process satisfying condition~25!, the state vector returns t
c2n5(21)n1 l u1& after n cycles. The integern may be
called a winding number, andl is an additional quantum
number designating the pattern of the evolution. Since
probability that the system exists in thelower branch from
tm to tm11 is given byq@sinmj /sinj#2 (m51,2,...,2n21),
the dynamical phasexd is calculated as

xd52u2 (
m51

2n21

$122q@sinmj/sinj#2%u

522nuS 12
q

sin2j D . ~26!

This is an extension of Eq.~20! to the process with winding
numbern. The geometrical phasexg is given by

xg5~n1 l !p12nuS 12
q

sin2j D . ~27!

Formula ~21! is recovered by settingn5 l51 in the above
equation.

The experimental observation of the nonadiabatic p
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cesses and the associated geometrical phase investigate
would be possible, in principle, by using the phase-sensi
technique of magnetic resonance@11# under the time-
dependent longitudinal and the transverse magnetic fields
optical analog@18# may also be a candidate for the possib
ity. In fact, experimental observations of the quasi-lev
here
e

Its

-

crossing called the optical adiabatic rapid passage indu
by resonant laser fields have been done for gas phase@19# as
well as for solids@20#. It will be of interest to clarify the role
of the quantum phase by using these techniques, althoug
effect of dephasing@21# should also be considered in realist
situations.
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