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Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection
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We propose and demonstrate a method for determining the two-time photon-number correlations of an
optical field on ultrafast time scales. The method, which uses dual-pulse, phase-averaged, balanced-homodyne
detection, is sensitive at the single-photon level and can have a quantum efficiency approaching 100%. Using
this method we have determined the two-time, photon-number correlations on subpicosecond time scales of
emission from a semiconductor optical amplifig81050-29477)51003-1

PACS numbds): 42.50.Ar, 03.65.Bz

Optical-field correlations contain information about the dual-pulse phase-averaged BHD. The technique is related to
guantum properties of light. The two-time, photon-numberrecently proposed methods for determining the full quantum
correlation function(:n(t)n(t+7):) (with normal operator state of a two-mode optical field using BHD with a LO com-
ordering is an important example whose normalized form,prised of two, nonoverlapping pulsgd40-12. Opatrny,
referred to as second-order coherenceg@¥(t,t+ 7), has Welsch, and Voge[12] have recently shown that certain
been measured for both classi¢alg., photon-bunchefd]) ~ two-time, photon-number correlations can be obtained from
and nonclassicale.g., photon-antibunchef2]) states of dual-pulse BHD, without first performing a full state recon-
light. Standard methods for determining two-time correlationstruction, by a method that requires the relative phase be-
statistics involve jointly counting the photons that arrive intween the two LO pulses to be varied in a controlled manner.
two time windows at =+ 6t/2 andt+ 7=+ 8t/2. These methods In contrast, the technique presented and demonstrated here
are presently limited by the time resolution and quantumuses only LO pulses with random phases and thus minimizes
efficiency(QE) of available detectors. Photon counting usingthe amount of data required to obtain the photon-number
photomultipliers or avalanche photodioddAPDs) can  correlations. To demonstrate our method we have performed
achieve a time resolution and sampling window limited to€Xxperiments using thermal-like light from a semiconductor
approximately 10 ps, while photon-counting streak cameragptical amplifier and LO pulses that yield a 150-fs sampling
have a demonstrated sampling time of approximately 20 p&indow.

[3]. Also, photocathode emission-type detectors such as pho- A balanced-homodyne detector optically interferes the
tomultipliers and streak cameras can detect single photorignal field with a strong LO on a 50-50 beam splitter whose
(with 10—20 % QE but cannot distinguish betweemand  outputs are detected using high-QE photodiodes. The inter-
n+1 photons fom greater than around 1[@]. APDs oper- ference amplifies a single-photon signal to a level much
ating in Geiger mode can detect single photewith QE  greater than the equivalent electronic noise of the photodiode
around 809 but are saturated by a single photon and therel8]. The detector photocurrents are time-integrated and sub-
fore cannot distinguish betweer 1 and any higher number tracted to give a measurement of the field quadrature ampli-
[4]. tude,q,, [8,13]. The operator for the measured quadrature is

Nonlinear-optical mixing and an integrating, slow detec-éllef(élef'“r aje'’)/2Y2 where ¢ is the phase of the LO
tor can be used to measure an intensity autocorrelation of threnda; is the annihilation operator for the signal that is in the
form f{:n(t)n(t+ 7):)dt [5]. This gives a measurement on same spatial-temporghonmonochromaticmode as the LO:
ultrafast time scales of intensity correlations, but only in the
difference variabler. This is appropriate for stationary . LI =4+
sources but fails to capture the complete two-time correlation a; fo dt flo(t—t)Es™(1). 1
statistics of time-varying fields. Also, nonlinear techniques

typically have low quantum efficiency, which degrades the . : .
information available in some cases. Here f o(t) is the normalized temporal-mode function for

Recently a method has been developed for determining1e LQ P“'S‘?’ which is centered gt The detection integra-
the photon-number statistics withinsingle sampling win-  1on time T is assumed to be 10”9 compared to the pulse
dow using pulsed, phase-averaged, balanced-homodyne ddrations. We have define("(t) as the part of the
tection(BHD) [6,7]. This technique is a derivative of optical (Positive-frequencysignal-field operator that is in the spatial
homodyne tomographyi8], a method by which phase- Mmode _deflned by that of the LO. I_f we assume that the LO
sensitive BHD is used to reconstruct the full quantum statd®ulse is much shorter than the inverse optical bandwidth
of an optical field in a single space-time mode. These methof the signal, then Eq(1) can be approximated aa;
ods have a sampling time limited only by the duration of a=KE{(t,), whereK= fldt ff,(t—t;). For an LO with a
reference, local oscillatqtO) pulse, and allow photodiodes known temporal modéwith K+0) the complex constar
with QE near 100%9] to be used. can be determined. Under these conditions measuging

In this Rapid Communication we present a technique tgrovides a sampling of the signal field in a short time win-
determine thetwo-time photon-number correlations from dow.
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The probability density?(q4, 6) for the field quadrature space-time modes; i-eéaa5=6190091+ﬁ2,38ina- By mea-

amplitudeq, 4 is built up by making repeated measurements_ . o . -
while controlling or monitoring the LO phasg By using a suring the quadrature distributid(Q; 6,8,) of the Q, g

LO whose phase is uniformly randomized over the rangevanable for a sufficient set of discrete valuest®f3, anda,

S ; one can obtain the joint density matrix in the Fock bas@.
[Pﬂ(sﬂ)] th(el /pzha)lsf%;e:jv;r;?qed g)uairl‘;:z;zs'S;rl'b:::gge'si2;:)": Yt the case where phase-random LOs are used, the phase-
1= 7))o 1.0). B

o N averaged distribution
mation is lost, the photon-number distribution can be deter-

mined by averaging certain sampling functions over this — 27 (2w

single distribution6]. P(Q,a)=(1/472)f de dg P(Q,0,5,a)
To extend this method to the two-time photon-number o Jo

statistics requires that the signal field be sampled jointly in . - _

two separate time windows. If it were possible to separatiS measured, from which the joint photon-number distribu-

temporally the field on ultrafast scales, we could send th jon for the two modes can be obtained.

two sections of the field to two separate BHDs. Using inde- Now W?(-S;rf%v th'at it is possible to obtain the fact'origl
pendent ultrashort LOs for each BHD we could then simyl-moments(n;”n3?) directly from the phase-averaged distri-

taneously sample the field in each of the two sections t®ution,P(Q,«), without a full reconstruction of the photon-
measure the joint quadrature distributid®(qy, 6;0,,3). number distribution. We make the ansatz that the factorial

Hereq, andg, are values ofj;, and §,;—the quadrature moments can be expressed as some linear combination of

operators associated with the signal-field temporal modegven moments oP(Q,«), i.e.,
that are selected by the first and second LO pulses having

. . . |
phases) and B, respectively. Alternatively, if phase-random . ax —
LOs are used, the phase-averaged distribution (AR )>:|:O i:Eo Cl,if dQ PP(Q.aip), (4
p_(ql,qz):y(zw)ZJzwfhp(ql,g;qzlg)dg dg with a set of discrete values; |=i/2l (with «; ;=0 when
o Jo I=0), andC, ; represents a matrix of coefficients that will be

. . - ... determined. By rewritin ,a@) as a projection integral
is measured. From this the joint photon-number distributio 10] I y rewriing>(Q, ) projection integ

can be obtaine@10]. If instead only certain photon-number
correlations are desired, it can be shown that the factorial__ .
moments of the joint photon-number distribution can be de-P(Q,a)=f f dg;dqg,P(q1,9,) 6(Q—q,cosx—Q,Sina),

termined by (5)
ARy~ (aajaran= [ [ dadapa,a) BG4 becomes
2\ 2K\t AURK :J J da.da-P(
x 2J+k( J. )( k) Ha(anHaan, @ (0207 ) | dindeP(ang)
Imax | Y

where a,~KES)(t,), Hyi(q;) are Hermite polynomials, x> > Cpi >, (cosa; )? 2

S | - X . =0 i=0 $=o0 \ 2s
and( ) represents a quantum expectation value. This result is
E\lgfneralization of the single-mode case treated by Richter X(sinai,|)25qf'_2sqgs, (6)

Because it is not possible in practice to separate the signgjhere we have used the generalized binomial expansion,
field into two sections on ultrashort time scales it is not POS+keeping only the even powers.
sible to measure _directly either of the joint distributions, The desired coefficient§, ; can be obtained by equating
P(d1,6:d2.8) or P(q1,0z). This can be circumvented by the summation inside the integral in E) to the scaled
using a LO that is in a variable superposition of the twoproduct of Hermite polynomials inside the integral in E2).

modes of interesf10-12. Consider the case in which the Note that because the highest-order terntig,(x) is x2™,
two modes have the same spatial structure but with temporgle can limit the summation ovel in Eq. (6) to

modes chosen as two, localized pulses with sh&{®, | _—j+k. We can then determine the matrix of coefficients
which are separated by a delaty { t;) that is greater than Ci; by equating equal powers af*q3” for all u<j and
their durations, i.e., v<k. To simplify this we solve for the vecto€, (with

; g coefficientsC, ;), associated with the particular value of
flo(t)=€"coga)f(t—ty) +efsin(a)f(t-tp).  (3) I=L, for eat(’:lh L=<j+k separately. Only terms with

Here a is an adjustable parameter setting the relative ampli: ZJ,_F,V; L2Vare then '|nvo|ved, S0 we equate equal powers of
g5” on the right-hand side of Eq§2) and(6) for all

tude between the two LO pulses, whiteand 8 are their 1 o2 . . i
phases. Using this dual-pulse LO in homodyne detectiot <L this leaves the following requirement on tie :
with an integration time much greater thasn—t, gives a L

measurement of a quadrature variallg,s that is a linear E (2L)! (cosa; )2 ~2"(sing; | )?"CL;=D-W | (7)
combination of the quadrature operators for the individual i=0 ' ' ' g
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Equation(7) represents a set df+ 1 linearly independent > .
equationgone for each & v<L) that can be written in ma- 1 T 1 Photodiodes
trix form and solved by standard Gauss-Jordon reduction. L}Ln 1w\
Doing this for allL<j+k we can determine the matrix of vl vyl >
coefficients C, ; required in order for Eq(4) (with Iy WPS PBS3
=j+Kk) to be valid. The required number of LO amplitude
combinations is determinea priori by the theory and scales
with the order of the desired correlation function.
If the LO pulses are short, artig#t,, we can write the

measured correlations as

(i)

~|K[2i+9)

R1611

whereD(MW=0 unlessL — j < v=<k, for which
2L—(+K) (i 1120 1112

(Liky_ 2 (1H*(kY)

v (j+rv—LD)I(k=p)!

(_1)j+k7L.

®)

wp1_ PBS2

‘ g4
Y we2 [

Delay I Delay I
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FIG. 1. Experimental setup. Beam polarization is indicated by
an arrow(horizonta) or a filled circle(vertical).

ing beam splitter PBS2. The two pulses are vertically and
A A A A horizontally polarized, respectively, and are then combined
><([E‘S’)(tl)]j[E(S“(tl)]i[Eg)(tz)]k[E(s”(tz)]k), with the signal pulse using PBS3. The action of WP3 and
PBS3 allows us to vary the relative amplitude of each pulse
© in the LO according to cas and siny, respectively. Two
wheret; andt, are the times at which the two LO pulses delay arms allow the LO pulses to be independently delayed
sample the signal field, respectively. This generalizes théelative to the signal pulse. The signal and LO fields are
single-mode case, which allows one to measure the factoriditerfered, split, and balanced by WP4 and PBS4 and are

moment(i{)~ K 2([ES(ty) PIES"(t,) ).
As an important example considee k=1 for which the
solution to Eq.(7) for L=0,1,2 leads to the result

(:A(t)A(t2):)=5(Q%) qlma— 5(Q%0lo— 5(Q")ql
—3(Q%0lo— 3(Q¥ gl 2t 7, (10
where h;=a'a,=n(t;) is the operator associated with the

detected by Si photodioddslamamatsu S4280, 90% quan-
tum efficiency, response time-1 ng. The current pulses
from the two photodiodes are independently integrated, am-
plified, and sampled by the computer with two 16-bit analog-
to-digital channels to yield two photoelectron numbers
whose difference is scaled by the LO shot-noise level to give
a field quadrature measurem¢at.

Our signal is from a single-spatial-mode superluminescent

number of photons that would be counted in an effectivediode (SLD) manufactured at the David Sarnoff Research

time window that is centered &t and whose width is pro-
portional to|K|2. In Eq. (10), { )o|, represents & average
over the phase-averaged distributie®{(Q,«), holding «

Center[16]. The SLD is pumped by a voltage pulse that is
triggered by a digital delay generator whose trigger is de-
rived from the Ti:sapphire laser system. This trigger method

fixed. To obtain Eq(10) we used the fact that, because theallows us to synchronize the SLD optical pulse with the LO

two modes are required to be independentA(t,), their

optical pulses with approximately 80-ps trigger jitter, which

operators commute. In this example one needs to measugets our overall time-resolution limit. The sampling time is

the quadrature distributioR(Q,«) for only three different
values ofa corresponding to the LO photons residing all in
the first mode(a=0), half in each of the two mode&gv= 7/
4), and all in the second modex=/2). If, in addition,
(n(ty)) and{n(t,)) are determined from the single-pulse-LO

150 fs, set by the LO pulse. The output of the SLD is domi-
nated by amplified spontaneous emission, which can be char-
acterized as chaotic or thermal-like lighf7]. The broadband
emission at 830 nm is spectrally filtered with an interference
filter to produce a 4-ns pulse having a 0.22-nm spectral

technique[6], one can obtain the two-time second-order co-yidth. The inverse bandwidth of the signal is approximately

herence definefor a quasimonochromatic figlds[15]

(:n(t)n(ty):)
(n(t))(n(ty))

This function is independent of QE.

9@ (ty,t) = (12)

3.4 ps, thereby validating the approximation leading to Eq.
9.

The signal and the LO pulses do not share a constant
phase relationship because they come from separate sources.
A piezoelectric translator in one arm of the interferometer is

We have demonstrated this method to determine the uiriven to randomize the relative phagé—o6) between the
trafast two-time photon-number correlation statistics of atwo LO pulses in order to validate the phase-random analysis
4-ns optical pulse. The LO pulses are derived from ascheme in Eq(10). One LO delay arm was set so the center
Ti:sapphire-based laser system that generates ultrashort, né¥rthe first LO pulse {;) occurred near the maximum of the

transform-limited pulse$l50 f9 at a wavelength of 830 nm

signal pulse while the other LO delay arm was automated

and a repetition rate of 1 kHz. The experimental setup igvith @ computer-controlled stepper motor allowing the rela-
shown in Fig. 1. Using a Mach-Zehnder interferometer thetive delay between the two pulses=t,—t;) to be stepped
pulse is initially split in two and recombined to produce a©Over a 20-ps range. For each value ofve measured the

dual-pulse LO. The pulse amplitudes are set edeakh
pulse containing approximately 4@hotons, using half-

wave plates WP1 and WP2 in conjunction with the polariz-

quadrature distributiorP(Q,«) for three different values
of a: 0, w/2, and w/4. From these we computed
(:n(ty)N(ty+ 7):). To normalize this correlation function as
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of 7. In each case its value remained constantiasvas
varied over the 4-ns pulse, so we can say that the signal field
is quasistationary over its duration. Thus the 80-ps trigger
jitter between the signal pulse and the LO pulses, which sets
the time-resolution limit by effectively averaging over time
t,, did not adversely affect the results shown in Fig. 2. The
spread in the data is consistent with predicted statistical error
bars[18].

To test the accuracy of the results obtained above we have
measured the second-order coherence function by a second
method that only applies to thermal light and that yields the
time-integratedg®(7) = fg®(t,,t;+ 7)dt;. Because our
signal field is quasistationary the time-integragét!( ) will
have the same dependence ag?)(t,,t;+ 7). Using a scan-
ning monochromator we measured the normalized optical

, . spectrumS(v) of the signal field. For thermal light its Fou-
FIG. 2. The second-order coherence experimentally determined =

via BHD (dotg and from the measured optical spectrisolid ner t@nsf(;rm S(7) can be usgd o ca.lculf';ltg(z)(r)

line). The value ot is set to occur near the maximum of the signal =1+ |S( 7')| [_15]._The result of this calculation is shown as

pulse. Typical predicted statistical error bars are shp@. the solid line in Fig. 2 and agrees quite well with the results
of our more general technique, thereby verifying the thermal-

in Eq. (11), note thatP(Q,0) andP(Q, /2) are single-mode like nature of our source. _

quadrature distributions. With the single-mode theory we VW€ have proposed and demonstrated a technique by

thus determinedn(t,)) and(f(t,+ 7)), which have a value which two-time, photon-number correlations can be obtained

of approximately 8 photons that is constant over the 20-p&" ultrafast time scales. Th_e teghnique’s high quantum effi-
range. ciency and ultrashort sampling times offer promise for char-

The results forg®(t,,t,+ 7) are shown in Fig. 2. The acterizing weak, ultrafast optical sources such as molecular

second-order coherence decays from a value of 2 to a val'd Semiconductor systems.

of 1, which is expected for a thermal-like field. Because this We thank M. Munroe and M. E. Anderson for their assis-
method is limited to values of larger than a few LO pulse tance and G. Alphonse at the David Sarnoff Research Center
durations, we determined the value for zero delayfor providing the superluminescent diode used in the experi-
9'®(t1,t1), by the single-LO pulse analys{$]. We also ment. This research is supported by the National Science
measured)'?)(t,,t,+ 7) as a function ot for a few values Foundation, Grant No. PHY-9515436.
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