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Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection

D. F. McAlister and M. G. Raymer
Department of Physics and Center for Optics in Science and Technology, University of Oregon, Eugene, Oregon 97403

~Received 4 October 1996!

We propose and demonstrate a method for determining the two-time photon-number correlations of an
optical field on ultrafast time scales. The method, which uses dual-pulse, phase-averaged, balanced-homodyne
detection, is sensitive at the single-photon level and can have a quantum efficiency approaching 100%. Using
this method we have determined the two-time, photon-number correlations on subpicosecond time scales of
emission from a semiconductor optical amplifier.@S1050-2947~97!51003-1#

PACS number~s!: 42.50.Ar, 03.65.Bz
he
e

m

io
in

um
ng

to
ra
p

ph
to

re
r

c
f t
n
h
y
tio
e
h

in

l
-
at
t
f a
s

t

to
um
-

n
om
n-
be-
er.
here
izes
ber
ed

tor
ng

the
se
ter-
ch
ode
ub-
pli-
is

he

r

lse

al
LO
dth

in-
Optical-field correlations contain information about t
quantum properties of light. The two-time, photon-numb
correlation function^:n̂(t)n̂(t1t):& ~with normal operator
ordering! is an important example whose normalized for
referred to as second-order coherence, org(2)(t,t1t), has
been measured for both classical~e.g., photon-bunched@1#!
and nonclassical~e.g., photon-antibunched@2#! states of
light. Standard methods for determining two-time correlat
statistics involve jointly counting the photons that arrive
two time windows att6dt/2 andt1t6dt/2. These methods
are presently limited by the time resolution and quant
efficiency~QE! of available detectors. Photon counting usi
photomultipliers or avalanche photodiodes~APDs! can
achieve a time resolution and sampling window limited
approximately 10 ps, while photon-counting streak came
have a demonstrated sampling time of approximately 20
@3#. Also, photocathode emission-type detectors such as
tomultipliers and streak cameras can detect single pho
~with 10–20 % QE! but cannot distinguish betweenn and
n11 photons forn greater than around 10@3#. APDs oper-
ating in Geiger mode can detect single photons~with QE
around 80%! but are saturated by a single photon and the
fore cannot distinguish betweenn51 and any higher numbe
@4#.

Nonlinear-optical mixing and an integrating, slow dete
tor can be used to measure an intensity autocorrelation o
form *^:n̂(t)n̂(t1t):&dt @5#. This gives a measurement o
ultrafast time scales of intensity correlations, but only in t
difference variablet. This is appropriate for stationar
sources but fails to capture the complete two-time correla
statistics of time-varying fields. Also, nonlinear techniqu
typically have low quantum efficiency, which degrades t
information available in some cases.

Recently a method has been developed for determin
the photon-number statistics within asingle sampling win-
dow using pulsed, phase-averaged, balanced-homodyne
tection~BHD! @6,7#. This technique is a derivative of optica
homodyne tomography@8#, a method by which phase
sensitive BHD is used to reconstruct the full quantum st
of an optical field in a single space-time mode. These me
ods have a sampling time limited only by the duration o
reference, local oscillator~LO! pulse, and allow photodiode
with QE near 100%@9# to be used.

In this Rapid Communication we present a technique
determine thetwo-time, photon-number correlations from
551050-2947/97/55~3!/1609~4!/$10.00
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dual-pulse, phase-averaged BHD. The technique is related
recently proposed methods for determining the full quant
state of a two-mode optical field using BHD with a LO com
prised of two, nonoverlapping pulses@10–12#. Opatrny,
Welsch, and Vogel@12# have recently shown that certai
two-time, photon-number correlations can be obtained fr
dual-pulse BHD, without first performing a full state reco
struction, by a method that requires the relative phase
tween the two LO pulses to be varied in a controlled mann
In contrast, the technique presented and demonstrated
uses only LO pulses with random phases and thus minim
the amount of data required to obtain the photon-num
correlations. To demonstrate our method we have perform
experiments using thermal-like light from a semiconduc
optical amplifier and LO pulses that yield a 150-fs sampli
window.

A balanced-homodyne detector optically interferes
signal field with a strong LO on a 50-50 beam splitter who
outputs are detected using high-QE photodiodes. The in
ference amplifies a single-photon signal to a level mu
greater than the equivalent electronic noise of the photodi
@8#. The detector photocurrents are time-integrated and s
tracted to give a measurement of the field quadrature am
tude,q1u @8,13#. The operator for the measured quadrature
q̂1u5(â1e

2 iu1â1
†eiu)/21/2, whereu is the phase of the LO

andâ1 is the annihilation operator for the signal that is in t
same spatial-temporal~nonmonochromatic! mode as the LO:

â1}E
0

T

dt fLO* ~ t2t1!ÊS
~1 !~ t !. ~1!

Here f LO(t) is the normalized temporal-mode function fo
the LO pulse, which is centered att1 . The detection integra-
tion time T is assumed to be long compared to the pu
durations. We have definedÊS

(1)(t) as the part of the
~positive-frequency! signal-field operator that is in the spati
mode defined by that of the LO. If we assume that the
pulse is much shorter than the inverse optical bandwi
of the signal, then Eq.~1! can be approximated asâ1
.KÊS

(1)(t1), whereK}*0
Tdt fLO* (t2t1). For an LO with a

known temporal mode~with KÞ0! the complex constantK
can be determined. Under these conditions measuringq1u
provides a sampling of the signal field in a short time w
dow.
R1609 © 1997 The American Physical Society
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The probability densityP(q1 ,u) for the field quadrature
amplitudeq1u is built up by making repeated measureme
while controlling or monitoring the LO phaseu. By using a
LO whose phase is uniformly randomized over the ran
@0,2p# the phase-averaged quadrature distribution is built
P̄(q1)5(1/2p)*0

2pdu P(q1 ,u). Although all phase infor-
mation is lost, the photon-number distribution can be de
mined by averaging certain sampling functions over t
single distribution@6#.

To extend this method to the two-time photon-numb
statistics requires that the signal field be sampled jointly
two separate time windows. If it were possible to separ
temporally the field on ultrafast scales, we could send
two sections of the field to two separate BHDs. Using ind
pendent ultrashort LOs for each BHD we could then sim
taneously sample the field in each of the two sections
measure the joint quadrature distributionP(q1 ,u;q2 ,b).
Hereq1 andq2 are values ofq̂1u and q̂2b—the quadrature
operators associated with the signal-field temporal mo
that are selected by the first and second LO pulses ha
phasesu andb, respectively. Alternatively, if phase-rando
LOs are used, the phase-averaged distribution

P̄~q1 ,q2!51 / ~2p!2E
0

2pE
0

2p

P~q1 ,u;q2b!du db

is measured. From this the joint photon-number distribut
can be obtained@10#. If instead only certain photon-numbe
correlations are desired, it can be shown that the facto
moments of the joint photon-number distribution can be
termined by

^n̂1
~ j !n̂2

~k!&5^â1
† j â1

j â2
†kâ2

k&5E E dq1dq2P̄~q1 ,q2!

3F2 j1kS 2 jj D S 2kk D G21

H2 j~q1!H2k~q2!, ~2!

where â2'KÊS
(1)(t2), H2 j (q1) are Hermite polynomials

and^ & represents a quantum expectation value. This resu
a generalization of the single-mode case treated by Ric
@14#.

Because it is not possible in practice to separate the si
field into two sections on ultrashort time scales it is not p
sible to measure directly either of the joint distribution
P(q1 ,u;q2 ,b) or P̄(q1 ,q2). This can be circumvented b
using a LO that is in a variable superposition of the tw
modes of interest@10–12#. Consider the case in which th
two modes have the same spatial structure but with temp
modes chosen as two, localized pulses with shapef (t),
which are separated by a delay (t22t1) that is greater than
their durations, i.e.,

f LO~ t !5eiucos~a! f ~ t2t1!1eibsin~a! f ~ t2t2!. ~3!

Herea is an adjustable parameter setting the relative am
tude between the two LO pulses, whileu and b are their
phases. Using this dual-pulse LO in homodyne detec
with an integration time much greater thant22t1 gives a
measurement of a quadrature variableQ̂aub that is a linear
combination of the quadrature operators for the individ
s
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space-time modes; i.e.,Q̂aub5q̂1ucosa1q̂2bsina. By mea-

suring the quadrature distributionP(Q;u,b,a) of the Q̂aub
variable for a sufficient set of discrete values ofu, b, anda,
one can obtain the joint density matrix in the Fock basis@10#.
In the case where phase-random LOs are used, the ph
averaged distribution

P̄~Q,a!5~1 /4p2!E
0

2pE
0

2p

du db P~Q,u,b,a!

is measured, from which the joint photon-number distrib
tion for the two modes can be obtained.

Now we show that it is possible to obtain the factor
moments^n̂1

( j )n̂2
(k)& directly from the phase-averaged distr

bution, P̄(Q,a), without a full reconstruction of the photon
number distribution. We make the ansatz that the facto
moments can be expressed as some linear combinatio
even moments ofP̄(Q,a), i.e.,

^n̂1
~ j !n̂2

~k!&5(
l50

lmax

(
i50

l

Cl ,iE dQ Q2l P̄~Q,a i ,l !, ~4!

with a set of discrete valuesa i ,l5 ip/2l ~with a i ,0[0 when
l50!, andCl ,i represents a matrix of coefficients that will b
determined. By rewritingP̄(Q,a) as a projection integra
@10#

P̄~Q,a!5E E dq1dq2P̄~q1 ,q2!d~Q2q1cosa2q2sina!,

~5!

Eq. ~4! becomes

^n̂1
~ j !n̂2

~k!&5E E dq1dq2P̄~q1 ,q2!

3(
l50

lmax

(
i50

l

Cl ,i (
s50

l S 2l2sD ~cosa i ,l !
2l22s

3~sina i ,l !
2sq1

2l22sq2
2s , ~6!

where we have used the generalized binomial expans
keeping only the even powers.

The desired coefficientsCl ,i can be obtained by equatin
the summation inside the integral in Eq.~6! to the scaled
product of Hermite polynomials inside the integral in Eq.~2!.
Note that because the highest-order term inH2m(x) is x

2m,
we can limit the summation overl in Eq. ~6! to
lmax5 j1k. We can then determine the matrix of coefficien
Cl ,i by equating equal powers ofq1

2mq2
2n for all m< j and

n<k. To simplify this we solve for the vectorCL ~with
coefficientsCL,i), associated with the particular value o
l5L, for each L< j1k separately. Only terms with
m1n5L are then involved, so we equate equal powers
q1
2L22nq2

2n on the right-hand side of Eqs.~2! and ~6! for all
n<L; this leaves the following requirement on theCL :

(
i50

L

~2L !! ~cosa i ,L!2L22n~sina i ,L!2nCL,i5Dn
~L jk ! , ~7!
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whereDn
(L jk)50 unlessL2 j<n<k, for which

Dn
~L jk !5

22L2~ j1k!~ j ! !2~k! !2

~ j1n2L !! ~k2n!!
~21! j1k2L. ~8!

Equation~7! represents a set ofL11 linearly independen
equations~one for each 0<n<L) that can be written in ma
trix form and solved by standard Gauss-Jordon reduct
Doing this for allL< j1k we can determine the matrix o
coefficientsCl ,i required in order for Eq.~4! ~with lmax
5 j1k) to be valid. The required number of LO amplitud
combinations is determineda priori by the theory and scale
with the order of the desired correlation function.

If the LO pulses are short, andt1Þt2 , we can write the
measured correlations as

^n̂1
~ j !n̂2

~k!&

.uKu2~ j1k!

3^@ÊS
~2 !~ t1!#

j@ÊS
~1 !~ t1!#

j@ÊS
~2 !~ t2!#

k@ÊS
~1 !~ t2!#

k&,

~9!

where t1 and t2 are the times at which the two LO pulse
sample the signal field, respectively. This generalizes
single-mode case, which allows one to measure the facto
moment^n̂1

( j )&'uKu2 j^@ÊS
(2)(t1)#

j@ÊS
(1)(t1)#

j&.
As an important example considerj5k51 for which the

solution to Eq.~7! for L50,1,2 leads to the result

^:n̂~ t1!n̂~ t2!:&5 2
3 ^Q4&Qup/42

1
6 ^Q4&Qu02

1
6 ^Q4&Qup/2

2 1
2 ^Q2&Qu02

1
2 ^Q2&Qup/21

1
4 , ~10!

where n̂i5âi
†âi5n̂(t i) is the operator associated with th

number of photons that would be counted in an effect
time window that is centered att i and whose width is pro-
portional touKu2. In Eq. ~10!, ^ &Qua represents aQ average
over the phase-averaged distributionP̄(Q,a), holding a
fixed. To obtain Eq.~10! we used the fact that, because t
two modes are required to be independent (t1Þt2), their
operators commute. In this example one needs to mea
the quadrature distributionP̄(Q,a) for only three different
values ofa corresponding to the LO photons residing all
the first mode~a50!, half in each of the two modes~a5p/
4!, and all in the second mode~a5p/2!. If, in addition,
^n̂(t1)& and^n̂(t2)& are determined from the single-pulse-L
technique@6#, one can obtain the two-time second-order c
herence defined~for a quasimonochromatic field! as @15#

g~2!~ t1 ,t2!5
^:n̂~ t1!n̂~ t2!:&

^n̂~ t1!&^n̂~ t2!&
. ~11!

This function is independent of QE.
We have demonstrated this method to determine the

trafast two-time photon-number correlation statistics o
4-ns optical pulse. The LO pulses are derived from
Ti:sapphire-based laser system that generates ultrashort,
transform-limited pulses~150 fs! at a wavelength of 830 nm
and a repetition rate of 1 kHz. The experimental setup
shown in Fig. 1. Using a Mach-Zehnder interferometer
pulse is initially split in two and recombined to produce
dual-pulse LO. The pulse amplitudes are set equal~each
pulse containing approximately 106 photons!, using half-
wave plates WP1 and WP2 in conjunction with the polar
n.
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ing beam splitter PBS2. The two pulses are vertically an
horizontally polarized, respectively, and are then combine
with the signal pulse using PBS3. The action of WP3 an
PBS3 allows us to vary the relative amplitude of each puls
in the LO according to cosa and sina, respectively. Two
delay arms allow the LO pulses to be independently delay
relative to the signal pulse. The signal and LO fields ar
interfered, split, and balanced by WP4 and PBS4 and a
detected by Si photodiodes~Hamamatsu S4280, 90% quan-
tum efficiency, response time;1 ns!. The current pulses
from the two photodiodes are independently integrated, am
plified, and sampled by the computer with two 16-bit analog
to-digital channels to yield two photoelectron number
whose difference is scaled by the LO shot-noise level to giv
a field quadrature measurement@8#.

Our signal is from a single-spatial-mode superluminesce
diode ~SLD! manufactured at the David Sarnoff Researc
Center@16#. The SLD is pumped by a voltage pulse that is
triggered by a digital delay generator whose trigger is de
rived from the Ti:sapphire laser system. This trigger metho
allows us to synchronize the SLD optical pulse with the LO
optical pulses with approximately 80-ps trigger jitter, which
sets our overall time-resolution limit. The sampling time is
150 fs, set by the LO pulse. The output of the SLD is dom
nated by amplified spontaneous emission, which can be ch
acterized as chaotic or thermal-like light@17#. The broadband
emission at 830 nm is spectrally filtered with an interferenc
filter to produce a 4-ns pulse having a 0.22-nm spectr
width. The inverse bandwidth of the signal is approximatel
3.4 ps, thereby validating the approximation leading to Eq
~9!.

The signal and the LO pulses do not share a consta
phase relationship because they come from separate sour
A piezoelectric translator in one arm of the interferometer
driven to randomize the relative phase~b2u! between the
two LO pulses in order to validate the phase-random analys
scheme in Eq.~10!. One LO delay arm was set so the cente
of the first LO pulse (t1) occurred near the maximum of the
signal pulse while the other LO delay arm was automate
with a computer-controlled stepper motor allowing the rela
tive delay between the two pulses (t[t22t1) to be stepped
over a 20-ps range. For each value oft we measured the
quadrature distributionP̄(Q,a) for three different values
of a : 0, p/2, and p/4. From these we computed
^:n̂(t1)n̂(t11t):&. To normalize this correlation function as

FIG. 1. Experimental setup. Beam polarization is indicated b
an arrow~horizontal! or a filled circle~vertical!.
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R1612 55D. F. McALISTER AND M. G. RAYMER
in Eq. ~11!, note thatP̄(Q,0) andP̄(Q,p/2) are single-mode
quadrature distributions. With the single-mode theory w
thus determined̂n̂(t1)& and^n̂(t11t)&, which have a value
of approximately 8 photons that is constant over the 20-
range.

The results forg(2)(t1 ,t11t) are shown in Fig. 2. The
second-order coherence decays from a value of 2 to a va
of 1, which is expected for a thermal-like field. Because th
method is limited to values oft larger than a few LO pulse
durations, we determined the value for zero dela
g~2!~ t1 ,t1!, by the single-LO pulse analysis@6#. We also
measuredg(2)(t1 ,t11t) as a function oft1 for a few values

FIG. 2. The second-order coherence experimentally determin
via BHD ~dots! and from the measured optical spectrum~solid
line!. The value oft1 is set to occur near the maximum of the signa
pulse. Typical predicted statistical error bars are shown@18#.
tt
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of t. In each case its value remained constant ast1 was
varied over the 4-ns pulse, so we can say that the signal
is quasistationary over its duration. Thus the 80-ps trig
jitter between the signal pulse and the LO pulses, which s
the time-resolution limit by effectively averaging over tim
t1 , did not adversely affect the results shown in Fig. 2. T
spread in the data is consistent with predicted statistical e
bars@18#.

To test the accuracy of the results obtained above we h
measured the second-order coherence function by a se
method that only applies to thermal light and that yields
time-integratedg(2)(t)5*g(2)(t1 ,t11t)dt1 . Because our
signal field is quasistationary the time-integratedg(2)(t) will
have the samet dependence asg(2)(t1 ,t11t). Using a scan-
ning monochromator we measured the normalized opt
spectrumS(n) of the signal field. For thermal light its Fou
rier transform S̃(t) can be used to calculateg(2)(t)
511uS̃(t)u2 @15#. The result of this calculation is shown a
the solid line in Fig. 2 and agrees quite well with the resu
of our more general technique, thereby verifying the therm
like nature of our source.

We have proposed and demonstrated a technique
which two-time, photon-number correlations can be obtain
on ultrafast time scales. The technique’s high quantum e
ciency and ultrashort sampling times offer promise for ch
acterizing weak, ultrafast optical sources such as molec
and semiconductor systems.

We thank M. Munroe and M. E. Anderson for their ass
tance and G. Alphonse at the David Sarnoff Research Ce
for providing the superluminescent diode used in the exp
ment. This research is supported by the National Scie
Foundation, Grant No. PHY-9515436.
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