PHYSICAL REVIEW A VOLUME 55, NUMBER 3 MARCH 1997
Kinematical bounds on evolution and optimization of mixed quantum states
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Upper and lower bounds are established for time-dependent ensemble averages of observables of driven
guantum systems in mixed states. They limit controllability of observables independently of the control fields.
Narrower bounds are established when the observable is a projector onto a pure quantum state or subspace.
They are optimal in the sense of being kinematically achievable. Calculations on nonlinear optimal control of
a four-level model indicate that these kinematical bounds are dynamically achievable asymptotically with
increasing control pulse strengfl$1050-294{®7)51203-(

PACS numbgs): 03.65.Bz, 05.30-d, 31.70.Hq

Kinematical constraints on quantum systerfibe struc- -
ture of Hilbert space imposes nontrivial constraints on the A= Ag(D)W (D)X Pg(t)], 3
temporal variation of observable properties of a driven quan- of
tum'system ina mixetﬂ_statistiga) state. Being purely kine- WhereAaB(t)=<‘Ifa(t)|A|‘lfB(t)>. Then with(1) we have
matical, these constraints limit the extent to which the sys-
tem can be controlled by application of time-dependent
external fields such as laser pulses, a topic of widespread (A(D)) =2 WAL, (1), (4)
current interest. “

Statistical evolutionWe start from the definition of the
time-dependent quantum statistical aver@¥yg)) of any ob-
servableA:

It is assumed that the operatér is of trace clasgfinite

trace. It is also assumed to be positive semidefinite, having

a non-negative expectation value in any state; then the same

is true of A,,(t). (The case where tha,, are not non-
(A(t))zE wa<‘1'a(t)|A|‘I'a(t))=Tr [Af)(t)]. 1) ne_gative, but nev_erthele_sg bounded below, can be reduced to

@ this case by a shift of origin of.) Denote the greatest lower
bound and least upper bound of the, by Wi, and w,,y,

Here the| W ,(t)) are solutions of the time-dependent Sehro respectively. Then the su) will not be increased ifv, is

dinger equation satisfying initial conditiofi¥’ ,(t;))=|a) at  replaced byw,,,, and it will not be decreased i, is re-

some initial timet; and thew, are statistical weights for placed byw,,. It follows that

these possible initial states, satisfying,=0 and X, w,

=Trp(t)=1. The initial statega) are the complete ortho- Winin TTAS (A(1)) SWinaxTTA . (5
normal set of eigenstates of the initial statistical operator A . . )
p(t:). Its spectral representation foet; is Note that the trace oA is time independent, since it is basis

invariant and can be evaluated in a time-independent basis. If
the state space has infinite dimension tlngp,=0 and the
P() =2, W, | W ()W (1)] (2)  lower bound is trivial. )
“ OccupationsThe simplest case is whekis the projector
onto a specified stat@l), assumed to be normalized. Since

and thew, are its time-independent eigenvalues, some Ofne trace of a projector onto any pure quantum state is unity,
which may be zero. If more than one eigenvalue is nonzerdeq . (s) implies

p is said to represent mixed state The state space is as-

sumed to be a Hilbert spa¢purely discretg of eitherAfinite Winin<(A(1)) = (V| p()| V) <Wa- (6)

or infinite dimension. If the dimension is infinite, therhas

no nonzero smallest eigenvalue but instead an infinite séMuch of the work on optimal control of quantum systems is

quence of decreasing eigenvalues with limit zero, but a largdirected toward maximizing the population of a specified

est eigenvalue exists in all cases. In the applications we hawgiate at a specified target tinie by determination of the

in mind, the|a) are eigenstates of an unperturbed Hamil-optimal time variation of the electric field of a laser pulse

tonian representing the system in the absence of the drivinduring a prior time interval; <t<t [1-7]. The upper bound

laser pulse, but the derivation of kinematical bounds is not6) limits the maximum achievable population in mixed-state

restricted to that case. (statistical situations, and the lower bound is also of interest
Bounds The time-evolved stateW¥ (t))} are also com- since it implies that during the entire evolution framto

plete and orthonormal. Expand the observablim Aerms of  t; the populations of all levels remain in the band between

them: Wpin @NdW,4, the minimal and maximal initial populations.
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(If any of thew,, are equal to zero, then the lower bound is 1.00
trivial, w,i,=0. This is also the case if the state space has
infinite dimension). The special role of the initial time arises

through the fact that the density operator is diagonal in the  0.80 ]
basis{|a)} only at the initial time, equivalent to the usual

assumption[8] of randoma priori phases. An interesting " ]
special case is that of aN-level quantum system with a § 060

completely uncertain initial state, in the sense that the statis- =

tical weights of all members of the ensemble are equal to 1/ ,,8_‘ 0.40

N. Thenw,,, andw,,,, are equal and the subsequent level
populations are completely uncontrollable, since they remain
equal to 1IN independently of any control terms in the
Hamiltonian. A somewhat similar result on uncontrollability
of a system whose initial state has random initial phase was o9 . . . . s s s
obtained previously by Dahledt al.[9], although the details 0 100 200 300 400 500 600 700 800
of their approach were very different. In the following para-
graph we will describe the results of calculations confirming

the behavior predicted b) and strongly suggesting thatthe g 1. populations versus time produced by a pulse optimal for
upper bound is asymptotically dynamically achievable, in themaximizing the population of level 4 at the target time. Pulse flu-
sense that it can be approached arbitrarily closely by deteence was fixed at 0.02 8 and initial populations were Boltzman-
mination of optimal laser pulse§(t) for a sequence of in- nian. Solid line, ground level 1; long dashes, level 2; short dashed,
creasing pulse fluences. We found that the bowpg, could  level 3; dots, uppe(targe} level 4.

be saturated to within a fraction of a percent at fluences low

enough that our iterative nonlinear optimization algorlthm:0.2758, W,=0.1976, andw,—0.1416. f(t) is propor-

converged. This can be understood as follows: The expres{.— | 1o the electric field of the | Ise. We determined
sions (1) and (2) show that if a driving term in the Hamil- lonal to the electric Tield or the laser pulse. VVe determine

tonian can be determined during the time interyatt<t; ;[he ?p;tlrtr)]alf(t) folf maX|m|zat|ontof the flphaldpopu!?tlop of

so as to forcg¥, (t)) to evolve from its specified initial evel <+ Dy a noniinéar eigensystem method simiiar 1o one
“max L _ described previouslj10]. The optimization was carried out

value|W,, (t))=|amag at the initial timet; to the speci-  fo; 4 fixed pulse length;=0.841 ps and a sequence of in-

fied target staté¥) at the target timey, then the target state creasing pulse fluenceScsp:ngZ(t)dt, where F(t)

occupation will assume its kinematical maximum Value:plzf(t)/ﬁ and py, is the 1-2 transition dipole moment.

Wmax at time t¢. Here |qjamax(t)> Is the particular state in For the largest fluence useg,=0.02 fs'1, the final popu-
Egs. (1) and (2) for which w, assumes its largest value |ation A(t;)) of level 4 for the optimal pulse was 0.3842,
Wmax- The nonlinear optimization proceduf0,11 is car-  only 0.26% less than the upper bouwg,.,=0.3850 of Eq.
ried out for fixed, finite values of the fluenceriving pulse (), the initial Boltzmann population of the lowest level 1.
energy, as was the linear approximation of Wilson and co-Figure 1 shows the populations of all four levels vs time for
workers[6]. Such a formulation is appropriate in view of this case. Att=t, practically the entire contribution t6l)
experimental constraints on laser pulse production, and hagmes fromW4(t)) (which belongs tav; =W, =0.3850,
mathematical advantages since it leads naturally to aBhowing that the optimal pulse caus#s,(t)) to rotate from
eigenvalue-eigenfunction formulation of the problem |1) at t=0 to nearly |[4) at t=t;. [Recall that here

[4—6,10. Our calculations show that the kinematical upperA:|4><4|! and note that the¥ (t)) form an orthonormal set

boundw,,5, IS approached with increasing pulse fluence, in-at all t.1 The corresponding obtimal puldét) is shown in
dicating that|\lfamax(t)) can be made to evolve to a state Fig. 2_'] P gop puldet)

<o
o
=)

Time (fs)

nearly equal to a specified target stpie at the target time More general observabledn the case of observables
t¢. This is expected on the basis of a generalized pulse arafiore complicated than the projector onto a pure state, it may
therorem for multilevel systend.2]. be possible to improve the bounds). Consider the case

Example We performed mixed-state nonlinear optimiza- whereA is the projector onto a subspaBeof states having
tion calculations on a simplified model of the lowest four some physical property that one might wish to optimize. It
vibrational levels of the HF molecule, defined by the can be written as
Hamilton H=Ho+f()V  with  Ho=37_;E;[n)(n|
and V=33_.d,(|n){n+1|+|n+ 1></n|), where E,/#
=wo(N—3[1-3(n—3)B], d,=0.09M2 Debye, wy=7.80 ~
x 10 s71 andB=0.0419. These parameters are appropri- A_; NSNS, 0
ate to a Morese-oscillator model studied previoldlg| as
an example of molecular quantum control. We took the ob-
servableA to be the projector onto the upper levet4. The  where{|\,S)} is any orthonormalbut incompletg set span-
statistical weightsv,, (=1, . . . ,4 of the unperturbed states ning S. Then TA=dg whered; is the dimension 0§, so the
were a Boltzmann distribution conse™ «/“T at a tempera- upper and lower boundg) are multiplied byds. To im-
ture such thatkT=E,—E,;, implying w;=0.3850, w, prove these bounds, note that
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FIG. 2. Optimizing pulse for the case of Fig. 1. FIG. 3. Populations versus time produced by a pulse optimal for
maximizing the sum of populations of levels 3 and 4 at the final
time. Pulse fluence was fixed at 0.025 ¥sModel and initial con-

(A(t))= 2 WoX,s, (8) ditions were the same as for Figs. 1 and 2. Solid line, ground level
@ 1; long dashes, level 2; short dashes, level 3; dots, upper level 4;
dash-dots, target population equal to sum of level 3 and 4 popula-
where tions.
ST 4 @ )| escribe the results of a calculation confirming the predicte
Xas= 2 [(Wa(D)\,S)[? (9  describe th Its of a calculat f the predicted

behavior and strongly suggesting that the upper bound is
asymptotically dynamically achievable.

Example Consider the same molecular vibration model
and initial Boltzmann distribution as in the calculations for
sumw. (dg) of the ds largest of thew,, . Any decrease in Figs. 1 and 2, but take the observable to be maximized at

thesex_ s below unity must be Compensated by a correspondt me t; to be the sum of populations of the upper two levels,
ing increase of some of the,s multiplying smallerw,,, to  corresponding tA=[3)(3] +[4)(4|. The level populations vs
maintain satisfaction of the sum rule. ThugA(t)) time and optlmall pulsé(t) are shown in Figs. 3 and 4 for
<w-(dg) for all t. If the state space has finite dimension,ﬂuence 0.025 fs*. The final pop.ulatlons of levels 3 and 4
then by a similar argument involving thth smallest of the Vere 0.3553 and 0.3034, summing(#&(t))=0.6587, only
w,, one concludes thdi(t)) cannot be less than the sum of 9-32% less than the upper boumd.(2)=w, +w,=0.6608

The x,g satisfy O<x,s<1 and the sum rul& x,s=ds.
Suppose that those,s multiplying thedg largest of thew,,
are unity and all other are zero. ThéA(t)) reduces to the

theds smallest of thew,,, implying of Eq. (10). At t=t; practically the _entlre contribution to
Eq. (1) comes from |¥,(t;)) (which belongs tow;
w_(dg)<(A(t))<w-(dg), (10) =0.3850 and|W¥,(t)) (which belongs tow,=0.2758, and

wherew_(dg) andw- (dg) are, respectively, the sums of the

ds smallest andlg largest of thew,,. If the state space has 0.008 T T
infinite dimension, then there is no nonzero smalestand 0.006
one must definav_(dg)=0, but the upper bound remains

nontrivial so long as» represents a mixed state. It follows 0.004 il Il |
from Eq. (9) that thex s multiplying a givenw,, is unity if 0.002 I I H ’H ‘ m

and only if [ ¥ (t)) lies in S. SinceS is of dimensiordg and =5
the |¥,) are mutually orthogonal, the upper bound is real- _%
ized if and only if those associated with tHe largest of the ) H l
w,, all lie in S. The upper boundL0) is, therefore, optimal in = -0.002 } ‘ |
| il

the sense of being kinematically attainable. A similar argu-
ment applies to the lower bound in the case in which the -0.004
state space has finite dimension. However, in what follows ;906
it is assumed that the goal is maximization EA(ts)),

in which case the lower bound is not relevant. The question  -0.008 : : : : : : : :
of whether the upper bound dynamicallyattainable at some 0 100 200 300 400 500 600 700 800
target timet; by suitable driving terms in the Hamiltonian, Time (fs)

starting at timd;<<t; with physically reasonable initial states

|W,(t)))=|a), remains. In the following paragraph we will FIG. 4. Optimizing pulse for the case of Fig. 3.
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these two states lie almost completely in the target subspagemain valid in the presence of stochastic driving terms and
spanned by the unperturbed staj®sand |4). This does not should be relevant to models incorporating fluctuating envi-
mean that eithef¥(t;)) or |[¥'5(t;)) are close to either of ronmental effects via stochastic differential equatiphé—
these unperturbed states, but rather that they are close 1®], in addition to the probabilistic initial conditions implicit
linear combinations of these two states. The freedom ofn the use of statistical ensembles in EG3—(10). The ques-
choice of coefficients in these linear combinations is presumtion of whether these kinematical bounds are dynamically
ably the reason that a single optimal control fi¢{d) can  achievable by suitable controls even in the presence of sto-
simultaneously rotate two orthogonal vectd®,(t)) and  chastic driving terms is at present open and should be inves-
|W,(t)) from |1) and|2) att=0 to the subspace spanned by tigated.
|3) and |4) at t=t;. This can be regarded as a nontrivial Note addedRecently we have become aware of a very
generalization of the generalized pulse area thedfh In  general group-theoretical approach of Hioe and Ebgri]
contrast, in the case of Figs. 1 and 2, which target the purkeading to a generalized coherence vector implying con-
state|4), the populations of levels 3 and 4 sum to 0.5631 atstraints similar to Eq(10). In view of the similar conclu-
t=t;, whereasw-(2) is 0.6608. Thus the field of Fig. 2, sions, our approach is probably closely related, and detailed
optimal for targeting level 4, is nonoptimal for targeting the exploration of the connection is likely to be fruitful.
3,4 subspace. Similarly, the field of Fig. 4, optimal for tar-
geting the 3,4 subspace, is nonoptimal for targeting levels 3
or 4, both of which have a kinematical upper boungl,, One of us(M.D.G.) thanks R. M. Mazo, J. Leahy, N.
=w,;=0.3850 on their populations. Deshpande, and R. L. Arnowitt for helpful discussions and
These results confirm the relevance and asymptotic dysuggestions. The computations were performed in the Uni-
namical achievability of the upper bounds on evolution andversity of Oregon’s Computational Science Laboratory on
optimization of mixed states given by E@) and more gen- SGI Power Challenge and Onyx systems, whose purchase
erally Eq.(12), at least for four-level systems. Since the ki- was funded through NSF Grant No. CDA-9413532 and a
nematical bounds do not depend on the Hamiltonian, thegorporate donation from Silicon Graphics, Inc.
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