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Kinematical bounds on evolution and optimization of mixed quantum states
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Upper and lower bounds are established for time-dependent ensemble averages of observables of driven
quantum systems in mixed states. They limit controllability of observables independently of the control fields.
Narrower bounds are established when the observable is a projector onto a pure quantum state or subspace.
They are optimal in the sense of being kinematically achievable. Calculations on nonlinear optimal control of
a four-level model indicate that these kinematical bounds are dynamically achievable asymptotically with
increasing control pulse strength.@S1050-2947~97!51203-0#

PACS number~s!: 03.65.Bz, 05.30.2d, 31.70.Hq
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Kinematical constraints on quantum systems. The struc-
ture of Hilbert space imposes nontrivial constraints on
temporal variation of observable properties of a driven qu
tum system in a mixed~statistical! state. Being purely kine-
matical, these constraints limit the extent to which the s
tem can be controlled by application of time-depend
external fields such as laser pulses, a topic of widespr
current interest.

Statistical evolution. We start from the definition of the
time-dependent quantum statistical average^A(t)& of any ob-
servableÂ:

^A~ t !&5(
a

wa^Ca~ t !uÂuCa~ t !&5Tr @Âr̂~ t !#. ~1!

Here theuCa(t)& are solutions of the time-dependent Sch¨-
dinger equation satisfying initial conditionsuCa(t i)&5ua& at
some initial timet i and thewa are statistical weights fo
these possible initial states, satisfyingwa>0 and (awa
5Trr̂(t)51. The initial statesua& are the complete ortho
normal set of eigenstates of the initial statistical opera
r̂(t i!. Its spectral representation fort>t i is

r̂~ t !5(
a

wauCa~ t !&^Ca~ t !u ~2!

and thewa are its time-independent eigenvalues, some
which may be zero. If more than one eigenvalue is nonz
r̂ is said to represent amixed state. The state space is as
sumed to be a Hilbert space~purely discrete! of either finite
or infinite dimension. If the dimension is infinite, thenr̂ has
no nonzero smallest eigenvalue but instead an infinite
quence of decreasing eigenvalues with limit zero, but a la
est eigenvalue exists in all cases. In the applications we h
in mind, the ua& are eigenstates of an unperturbed Ham
tonian representing the system in the absence of the dri
laser pulse, but the derivation of kinematical bounds is
restricted to that case.

Bounds: The time-evolved states$uCa(t)&% are also com-
plete and orthonormal. Expand the observable Aˆ in terms of
them:
551050-2947/97/55~3!/1565~4!/$10.00
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Aaß~ t !uCa~ t !&^Cß~ t !u, ~3!

whereAaß(t)5^Ca(t)uÂuCß(t)&. Then with~1! we have

^A~ t !&5(
a

waAaa~ t !. ~4!

It is assumed that the operatorÂ is of trace class~finite
trace!. It is also assumed to be positive semidefinite, hav
a non-negative expectation value in any state; then the s
is true of Aaa(t). ~The case where theAaa are not non-
negative, but nevertheless bounded below, can be reduc
this case by a shift of origin ofÂ.! Denote the greatest lowe
bound and least upper bound of thewa by wmin andwmax,
respectively. Then the sum~4! will not be increased ifwa is
replaced bywmin , and it will not be decreased ifwa is re-
placed bywmax. It follows that

wminTrÂ<^A~ t !&<wmaxTrÂ . ~5!

Note that the trace ofÂ is time independent, since it is bas
invariant and can be evaluated in a time-independent bas
the state space has infinite dimension thenwmin50 and the
lower bound is trivial.

OccupationsThe simplest case is whenÂ is the projector
onto a specified stateuC&, assumed to be normalized. Sinc
the trace of a projector onto any pure quantum state is un
Eq. ~5! implies

wmin<^A~ t !&5^Cur̂~ t !uC&<wmax. ~6!

Much of the work on optimal control of quantum systems
directed toward maximizing the population of a specifi
state at a specified target timet f by determination of the
optimal time variation of the electric field of a laser pul
during a prior time intervalt i<t<t f @1–7#. The upper bound
~6! limits the maximum achievable population in mixed-sta
~statistical! situations, and the lower bound is also of intere
since it implies that during the entire evolution fromt i to
t f the populations of all levels remain in the band betwe
wmin andwmax, the minimal and maximal initial populations
R1565 © 1997 The American Physical Society
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~If any of thewa are equal to zero, then the lower bound
trivial, wmin50. This is also the case if the state space
infinite dimension.! The special role of the initial time arise
through the fact that the density operator is diagonal in
basis $ua&% only at the initial time, equivalent to the usu
assumption@8# of randoma priori phases. An interesting
special case is that of anN-level quantum system with a
completely uncertain initial state, in the sense that the sta
tical weights of all members of the ensemble are equal to
N. Thenwmin andwmax are equal and the subsequent lev
populations are completely uncontrollable, since they rem
equal to 1/N independently of any control terms in th
Hamiltonian. A somewhat similar result on uncontrollabili
of a system whose initial state has random initial phase
obtained previously by Dahlehet al. @9#, although the details
of their approach were very different. In the following par
graph we will describe the results of calculations confirm
the behavior predicted by~6! and strongly suggesting that th
upper bound is asymptotically dynamically achievable, in
sense that it can be approached arbitrarily closely by de
mination of optimal laser pulsesf (t) for a sequence of in-
creasing pulse fluences. We found that the boundwmax could
be saturated to within a fraction of a percent at fluences
enough that our iterative nonlinear optimization algorith
converged. This can be understood as follows: The exp
sions ~1! and ~2! show that if a driving term in the Hamil
tonian can be determined during the time intervalt i<t<t f
so as to forceuCamax

(t)& to evolve from its specified initia

value uCamax
(t i)&5uamax& at the initial timet i to the speci-

fied target stateuC& at the target timet f , then the target state
occupation will assume its kinematical maximum val
wmax at time t f . Here uCamax

(t)& is the particular state in

Eqs. ~1! and ~2! for which wa assumes its largest valu
wmax. The nonlinear optimization procedure@10,11# is car-
ried out for fixed, finite values of the fluence~driving pulse
energy!, as was the linear approximation of Wilson and c
workers @6#. Such a formulation is appropriate in view o
experimental constraints on laser pulse production, and
mathematical advantages since it leads naturally to
eigenvalue-eigenfunction formulation of the proble
@4–6,10#. Our calculations show that the kinematical upp
boundwmax is approached with increasing pulse fluence,
dicating thatuCamax

(t)& can be made to evolve to a sta
nearly equal to a specified target stateuC& at the target time
t f . This is expected on the basis of a generalized pulse
therorem for multilevel systems@12#.

Example. We performed mixed-state nonlinear optimiz
tion calculations on a simplified model of the lowest fo
vibrational levels of the HF molecule, defined by th
Hamilton Ĥ5Ĥ01 f (t)V̂ with Ĥ05(n51

4 Enun&^nu
and V̂5(n51

3 dn(un&^n11u1un11&^nu), where En /\
5v0(n2 1

2)@121
2(n21

2)B#, dn50.097n1/2 Debye, v057.80
31014 s21, andB50.0419. These parameters are approp
ate to a Morese-oscillator model studied previously@13# as
an example of molecular quantum control. We took the
servableÂ to be the projector onto the upper leveln54. The
statistical weightswa ~a51, . . . ,4! of the unperturbed state
were a Boltzmann distribution const3e2Ea /kT at a tempera-
ture such thatkT5E42E1, implying w150.3850, w2
s
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50.2758, w350.1976, andw450.1416. f (t) is propor-
tional to the electric field of the laser pulse. We determin
the optimalf (t) for maximization of the final population o
level 4 by a nonlinear eigensystem method similar to o
described previously@10#. The optimization was carried ou
for a fixed pulse lengtht f50.841 ps and a sequence of in
creasing pulse fluencesep5*0

t fF2(t)dt, where F(t)
5p12f (t)/\ and p12 is the 1→2 transition dipole moment
For the largest fluence used,ep50.02 fs21, the final popu-
lation A(t f)& of level 4 for the optimal pulse was 0.3842
only 0.26% less than the upper boundwmax50.3850 of Eq.
~6!, the initial Boltzmann population of the lowest level
Figure 1 shows the populations of all four levels vs time
this case. Att5t f practically the entire contribution to~1!
comes fromuC1(t)& ~which belongs tow15wmax 50.3850!,
showing that the optimal pulse causesuC1(t)& to rotate from
u1& at t50 to nearly u4& at t5t f . @Recall that here
Â5u4&^4u, and note that theuCa(t)& form an orthonormal se
at all t.# The corresponding optimal pulsef (t) is shown in
Fig. 2.

More general observables. In the case of observable
more complicated than the projector onto a pure state, it m
be possible to improve the bounds~5!. Consider the case
whereÂ is the projector onto a subspaceS of states having
some physical property that one might wish to optimize.
can be written as

Â5(
l

ul,S&^l,Su, ~7!

where$ul,S&% is any orthonormal~but incomplete! set span-
ningS. Then TrÂ5ds whereds is the dimension ofS, so the
upper and lower bounds~6! are multiplied byds . To im-
prove these bounds, note that

FIG. 1. Populations versus time produced by a pulse optimal
maximizing the population of level 4 at the target time. Pulse fl
ence was fixed at 0.02 fs21 and initial populations were Boltzman
nian. Solid line, ground level 1; long dashes, level 2; short dash
level 3; dots, upper~target! level 4.
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^A~ t !&5(
a

waxaS , ~8!

where

xaS5(
l

u^Ca~ t !ul,S&u2. ~9!

The xaS satisfy 0<xaS<1 and the sum rule(axaS5dS .
Suppose that thosexaS multiplying thedS largest of thewa
are unity and all other are zero. Then^A(t)& reduces to the
sumw.(dS) of the dS largest of thewa . Any decrease in
thesexaS below unity must be compensated by a correspo
ing increase of some of thexaS multiplying smallerwa , to
maintain satisfaction of the sum rule. ThuŝA(t)&
<w.(dS) for all t. If the state space has finite dimensio
then by a similar argument involving thedS smallest of the
wa one concludes that^A(t)& cannot be less than the sum
thedS smallest of thewa , implying

w,~dS!<^A~ t !&<w.~dS!, ~10!

wherew,(dS) andw.(dS) are, respectively, the sums of th
dS smallest anddS largest of thewa . If the state space ha
infinite dimension, then there is no nonzero smallestwa and
one must definew,(dS)50, but the upper bound remain
nontrivial so long asr̂ represents a mixed state. It follow
from Eq. ~9! that thexaS multiplying a givenwa is unity if
and only if uCa(t)& lies inS. SinceS is of dimensiondS and
the uCa& are mutually orthogonal, the upper bound is re
ized if and only if those associated with thedS largest of the
wa all lie in S. The upper bound~10! is, therefore, optimal in
the sense of being kinematically attainable. A similar arg
ment applies to the lower bound in the case in which
state space has finite dimension. However, in what follo
it is assumed that the goal is maximization of^A(t f)&,
in which case the lower bound is not relevant. The ques
of whether the upper bound isdynamicallyattainable at some
target timet f by suitable driving terms in the Hamiltonian
starting at timet i,t f with physically reasonable initial state
uCa(t i)&5ua&, remains. In the following paragraph we wi

FIG. 2. Optimizing pulse for the case of Fig. 1.
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describe the results of a calculation confirming the predic
behavior and strongly suggesting that the upper bound
asymptotically dynamically achievable.

Example. Consider the same molecular vibration mod
and initial Boltzmann distribution as in the calculations f
Figs. 1 and 2, but take the observable to be maximized
time t f to be the sum of populations of the upper two leve
corresponding toÂ5u3&^3u1u4&^4u. The level populations vs
time and optimal pulsef (t) are shown in Figs. 3 and 4 fo
fluence 0.025 fs21. The final populations of levels 3 and
were 0.3553 and 0.3034, summing to^A(t f)&50.6587, only
0.32% less than the upper boundw.(2)5w11w250.6608
of Eq. ~10!. At t5t f practically the entire contribution to
Eq. ~1! comes from uC1(t f)& ~which belongs tow1
50.3850! and uC2(t)& ~which belongs tow250.2758!, and

FIG. 3. Populations versus time produced by a pulse optimal
maximizing the sum of populations of levels 3 and 4 at the fi
time. Pulse fluence was fixed at 0.025 fs21. Model and initial con-
ditions were the same as for Figs. 1 and 2. Solid line, ground le
1; long dashes, level 2; short dashes, level 3; dots, upper leve
dash-dots, target population equal to sum of level 3 and 4 pop
tions.

FIG. 4. Optimizing pulse for the case of Fig. 3.
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these two states lie almost completely in the target subsp
spanned by the unperturbed statesu3& and u4&. This does not
mean that eitheruC1(t f)& or uC2(t f)& are close to either o
these unperturbed states, but rather that they are clos
linear combinations of these two states. The freedom
choice of coefficients in these linear combinations is presu
ably the reason that a single optimal control fieldf (t) can
simultaneously rotate two orthogonal vectorsuC1(t)& and
uC2(t)& from u1& and u2& at t50 to the subspace spanned
u3& and u4& at t5t f . This can be regarded as a nontrivi
generalization of the generalized pulse area theorem@12#. In
contrast, in the case of Figs. 1 and 2, which target the p
stateu4&, the populations of levels 3 and 4 sum to 0.5631
t5t f , whereasw.(2) is 0.6608. Thus the field of Fig. 2
optimal for targeting level 4, is nonoptimal for targeting th
3,4 subspace. Similarly, the field of Fig. 4, optimal for ta
geting the 3,4 subspace, is nonoptimal for targeting leve
or 4, both of which have a kinematical upper boundwmax
5w150.3850 on their populations.

These results confirm the relevance and asymptotic
namical achievability of the upper bounds on evolution a
optimization of mixed states given by Eq.~6! and more gen-
erally Eq.~12!, at least for four-level systems. Since the k
nematical bounds do not depend on the Hamiltonian, t
.
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remain valid in the presence of stochastic driving terms a
should be relevant to models incorporating fluctuating en
ronmental effects via stochastic differential equations@14–
16#, in addition to the probabilistic initial conditions implici
in the use of statistical ensembles in Eqs.~1!–~10!. The ques-
tion of whether these kinematical bounds are dynamica
achievable by suitable controls even in the presence of
chastic driving terms is at present open and should be in
tigated.

Note added. Recently we have become aware of a ve
general group-theoretical approach of Hioe and Eberly@17#
leading to a generalized coherence vector implying c
straints similar to Eq.~10!. In view of the similar conclu-
sions, our approach is probably closely related, and deta
exploration of the connection is likely to be fruitful.
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