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Proposal for an experiment to measure the Hausdorff dimension
of quantum-mechanical trajectories

H. Kröger*
Département de Physique, Universite´ Laval, Québec, Quebec, Canada G1K 7P4

~Received 6 June 1995; revised manuscript received 11 September 1996!

We make a proposal for a Gedanken experiment, based on the Aharonov-Bohm effect, regarding how to
measure in principle the zigzagness of the trajectory of propagation~aberration from its classical trajectory! of
a massive particle in quantum mechanics. Experiment I is conceived to show that contributions from quantum
paths aberrating from the classical trajectory are directly observable. Experiment II is conceived to measure
average length, scaling behavior, and critical exponent~Hausdorff dimension! of quantum-mechanical paths.
@S1050-2947~97!08902-6#
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ic
s
. F
m
-

s
e
ho
co
m

ics
-

elf
o
f
ar
y

on
a

l

e
e

i
th

me
tive

ans
er
t
mal
er-
-

as

d by

are
al-
city
ble.
I. BACKGROUND

In order to demonstrate the distinction between class
mechanics and quantum mechanics one often consider
ground-state energy of a system that has bound states
example, for the harmonic oscillator classical and quantu
mechanical ground-state energy differ~in one space dimen
sion! by

Eqm2Ecl5
1
2\v. ~1!

The existence of such an effect can be understood in term
Heisenberg’s uncertainty principle. But the distinction b
tween classical and quantum mechanics does not only s
up in bound states but also in scattering states. Let us
sider the propagation of a massive particle. Classical
chanics predicts that the particle follows smooth~differen-
tiable! trajectories. However, in quantum mechan
according to Feynman and Hibbs@1# the paths are nondiffer
entiable, self-similar curves, i.e., zigzag curves~see Fig. 1!.
Feynman and Hibbs noticed in 1965 the property of s
similarity, which plays an eminent role in many areas
modern physics. Mandelbrot@2# has introduced the notion o
fractal geometry and pointed out that self-similarity is a ch
acteristic feature of a fractal. Fractals are characterized b
fractal dimensiondf or a Hausdorff dimensiondH . Abbot
and Wise@3# have demonstrated by an analytic calculati
that quantum-mechanical free motion yields paths that
fractal curves with Hausdorff dimensiondH52. The corre-
sponding classical system follows a trajectory withdH51
~the Hausdorff dimensiondH coincides with the topologica
dimensiondtop when the object is ‘‘not fractal’’ anddtop51
for a curve!. Thus we can express the distinction betwe
classical and quantum mechanics by the Hausdorff dim
sion of propagation of a free massive particle,

dqm
H 2dcl

H51. ~2!

For the sake of later discussions, let us recall the basic
gredients of Abbot and Wise’s calculation. They consider
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quantum-mechanical motion of a free particle. They assu
measurements of the position of the particle at consecu
time intervalsDt. The uncertainty of position isDx. Let us
call this a monitored path. Taking a measurement me
there is an interaction with the particle, hence it is no long
‘‘free.’’ Without specifying what the interaction is, Abbo
and Wise consider that the measurement implies a mini
disturbance of momentum, given by Heisenberg’s unc
tainty relationDp>\/Dx. WhenDx goes to zero, this gen
erates an erratic path. Their calculation starts att50 from a
localized (Dx) wave packet and they compute the length
the expectation value of position at timeDt and its scaling
whenDt→0 andDx→0. From this they deducedH52 for an
average monitored path. This result has been generalize

FIG. 1. Typical paths of a quantum-mechanical particle
highly irregular on a fine scale, as shown in the sketch. Thus,
though a mean velocity can be defined, no mean-square velo
exists at any point. In other words, the paths are nondifferentia
The figure is taken from Ref.@1#.
951 © 1997 The American Physical Society
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Campesino-Romeoet al. @4# who finddH52 for a monitored
average path in the presence of a harmonic oscillator po
tial.

In contrast to that one can ask: What isdH for an unmoni-
tored path? As mentioned above, the geometric charact
tics of quantum paths, like zigzagness, nondifferentiabil
and self-similarity have already been known to Feynman
Hibbs by 1965. It should be noted that they have also co
puted the essential pieces, which almost provesdH52 for an
unmonitored average quantum-mechanical path. Their ca
lation includes the presences of any local potential. Mo
over, their calculation shows the close connection w
Heisenberg’s uncertainty principle. So let us recall here
basic steps of Feynman and Hibbs’s calculation@5#. They
consider the Hamiltonian

H5
2\2D

2m
1V~x!, ~3!

whereV denotes a local potential. The quantum-mechan
transition element from a stateuxin ,t50& to a stateuxfin ,t5T&
is given by

^xfin ,t5Tuxin ,t50&5^xfinuexpF2
i

\
HTG uxin&

5E @dx~ t !#expF i\ S@x~ t !#G . ~4!

The expression on the right-hand side is the path integral@1#,
i.e., the sum over pathsx(t), which start atxin at t50 and
arrive atxfin at t5T. The paths are ‘‘weighted’’ by a phas
factor exp$iS[x(t)]/\%, whereS is the classical action corre
sponding to the above Hamiltonian for a given path,

S5E
0

T

dt
m

2
ẋ22V„x~ t !…. ~5!

Analogously, the transition element of an operatorF[ x̂] is
given by

^F@ x̂#&5^xfin ,t5TuF@ x̂#uxin ,t50&

5E @dx~ t !#F@x~ t !#expF i\ S@x~ t !#G . ~6!

Now suppose time is divided into small slicesd [xi5x(t i)]
giving the action

S5 (
i51

N21

dFm2 S xi112xi
d D 22V~xi !G . ~7!

Feynman and Hibbs obtain the general relation

K ]F

]xk
L 52

id

\ K F ]S

]xk
L . ~8!

PuttingF5xk , this yields

^1&5
i

\ KmxkS xk112xk
d

2
xk2xk21

d D1dxkV8~xk!L .
~9!
n-

is-
,
d
-

u-
-
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e
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In the limit d→0, the potential term becomes negligible a
one obtains

Km xk112xk
d

xkL 2 K xkm xk2xk21

d L 5
\

i
^1&. ~10!

This means the transition element of a product of posit
and momentum depends on the order in time of these
quantities. This leads to the usual operator commutation
between position and momentum, which implies the Heis
berg uncertainty relation between position and momentu
Now suppose one advances the second term on the left-
side of Eq.~10! by one time sliced

K xkm xk2xk21

d L 5 K xk11m
xk112xk

d L 1O~d!. ~11!

Then in the limitDt[d→0, Eqs.~10! and ~11! imply

^~xk112xk!
2&52

\d

im
^1&.

~12!

^~Dx!2&}
\

m
Dt.

This is Feynman and Hibbs’s important result on the scal
relation between a time incrementDt and the corresponding
average length increment of a typical quantum path. Now
make an assumption that we consider as plausible, but
we were not able to prove:

^uDxu&25^~Dx!2&. ~13!

Now let us consider a finite time intervalT5NDt and the
length of the path the particle has traveled betwe
x05x(t0)5xin andxN5x(tN)5xf i . Classically the length is
given by

Lclass5 (
k50

N21

uxk112xku. ~14!

According to Feynman and Hibbs, the corresponding qu
tity in quantum mechanics is the transition element given
Eq. ~6!, whereF[ x̂] is given by the classical length,

^L&5K xfin ,t5TU (
k50

N21

uxk112xkuUxin ,t50L
5E @dx~ t !# (

k50

N21

ux~ tk11!2x~ tk!uexpF i\ S@x~ t !#G .
~15!



th
e
in
ns

n-

l
l

o
lt

h

a

an
a
th

o
le
of
ty

-
g
ity

ity
rk
h
in

th
n
ea
te
s
u

th

-

ca
n
n

is

x
po

for
-

i-
in-
a

-
age
and
re.
w-
as
nty
tion
oni-
cer-
n-
ws

ion
er-

t
this
ling
s,
ns

di-

nd,
one
ntial
-

ntal
een
uch
eme
e
m-
in

o-
of
ve a

ac-
eri-
r-

n is
t in-
no
m-
ri-
ag

on.
to
nical
ge
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One should note that this is not an expectation value in
usual sense. Feynman and Hibbs refer to the transition
ments as ‘‘weighted averages.’’ The weighting function
quantum mechanics is a complex function. Thus the tra
tion element is in general complex. Using Eqs.~12! and~13!
one computes

^L&5N^uDxu&5
T

Dt
^uDxu&}

T\

m^uDxu&
. ~16!

Comparing this with the definition of the Hausdorff dime
sion @see Eqs.~17! and ~18!# and puttinge5^uDxu& yields
Hausdorff dimensiondH52 for an unmonitored typica
quantum-mechanical path in the presence of an arbitrary
cal potential.

Because the rigor of this result hinges upon the validity
the assumption in Eq.~13! it is interesting to check this resu
by a numerical calculation. Kro¨geret al. @6# have computed
the transition element of the path lengtĥ L&
5^( k50

N21uxk112xku& via numerical simulations of the pat
integral on a time lattice, however, using imaginary time~in
order to be able to use Monte Carlo methods!. The results for
the Hausdorff dimension of unmonitored paths are comp
ible with dH52 for free motion.

When we ask what is the Hausdorff dimension for a qu
tum mechanical particle with interaction, we expect for loc
potentials via Feynman and Hibbs’ calculation to obtain
valuedH52. The numerical simulations by Kro¨geret al. @6#
in the presence of local potentials such as the harmonic
cillator or Coulomb potential give results also compatib
with dH52. However,dHÞ2 has been found in the case
velocity-dependent interactions. More precisely, for veloci
dependent interactionsU;U0uẋua, the valuedH52 has been
found fora<2, butdH,2 for a.2. Velocity-dependent ac
tions play a role in condensed matter physics: The propa
tion in a solid medium introduces higher-order veloc
terms via dispersion relations@7#. Also Brueckner’s @8#
theory of nuclear matter saturation introduces veloc
dependent interactions. The action relevant for this wo
namely, the interaction of a massive charged particle wit
vector potential, is also a velocity-dependent action, be
linear in the velocity~a51!. Thus one expects alsodH52.

Let us summarize the present situation concerning
fractal dimension of an average quantum path in the prese
of a local potential: A monitored path is a path where m
surements of position are taken at some discrete time in
vals; i.e., the particle undergoes interaction. Possible way
do this are discussed in Sec. III. On the other hand an
monitored path is undisturbed by interaction~in nonrelativ-
istic quantum mechanics we neglect interaction with
vacuum, particle creation, vacuum polarization, etc.!. There
is a rigorous proof ofdH52 for monitored paths. For un
monitored paths, there is strong indication thatdH52 holds
also. However, neither a rigorous proof nor a numeri
simulation in real time has been established so far. O
might ask: What is the relationship between monitored a
unmonitored paths and why shoulddH coincide for both?
First of all, the operational definition of length employed
different. For monitored paths, the authors of Refs.@3, 4#
have defined lengthD l as the usual quantum-mechanical e
pectation value of the absolute value of an increment of
e
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sition in the state of a wave function having been evolved
an increment of timeDt from an original wave function be
ing characterized by localization uncertaintyDx. In this
work and Ref.@6# we are interested in the length of unmon
tored paths, however, not in length corresponding to an
finitesimal time interval, but the length corresponding to
finite time interval, sayT. This involves a number of inter
mediate times. The goal to seek information on the aver
of an observable at several times leads to Feynman
Hibbs’ transition element, which we have employed he
Thus the length definition and average are different. Ho
ever, there is a common link, which may be considered
the physical origin of fractal paths: Heisenberg’s uncertai
relation and behind this the fundamental commutator rela
between position and momentum. For the case of the m
tored paths, the process of localization leads via the un
tainty principle to erratic paths. But also for the case of u
monitored paths, Feynman and Hibbs’s calculation sho
that the scaling relation betweenDx and Dt, Eq. ~12!, is
directly related to the commutator relation between posit
and momentum, which again is directly related to the unc
tainty principle. But why then should the outcome ofdH
agree? Because the resultdH52 for unmonitored paths is no
rigorously established yet, one can only speculate on
hypothetical coincidence. For unmonitored paths the sca
relation Eq.~12! is valid for a very large class of interaction
namely, all local potentials. Also the numerical simulatio
in Ref. @6# have given, within statistical errors,dH52 for all
local potentials investigated. In other words there is an in
cation~not a proof! thatdH52 for unmonitored paths in the
presence of arbitrary local potentials. On the other ha
monitoring a path means interaction by measurement. If
assumes that such interaction is described by a local pote
it seems plausible thatdH coincides for monitored and un
monitored paths.

If the zigzagness of quantum paths is such a fundame
property of quantum mechanics, one might ask if it has b
measured experimentally. To the author’s knowledge s
an experiment has not been done yet. Thus the central th
of this work is made up of the following questions: Can w
observe experimentally the zigzagness of quantu
mechanical trajectories? Is such an experiment feasible
principle? Can it be done in practice? The motivation is tw
fold: ~a! Zigzagness of paths is a fundamental property
quantum mechanics, and thus it would be desirable to ha
direct experimental evidence.~b! As we have mentioned
above, there is an indication that velocity-dependent inter
tions may change the Hausdorff dimension. Thus an exp
ment measuring the Hausdorff dimension would yield info
mation on the interaction.

The zigzagness of the free quantum-mechanical motio
principally not measurable, because every measuremen
volves an interaction with the system. Hence the system is
longer free. Thus we can study at best the quantu
mechanical motion of an interacting particle. As our nume
cal simulations have shown, one would still expect a zigz
motion. For a certain class of potentials~local potentials! the
fractal dimension would be the same as for free moti
What do we want to measure, in particular? We want
measure the geometry of the average quantum-mecha
trajectory, in particular we want to measure the avera
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954 55H. KRÖGER
length of the trajectories, then the scaling of this length un
variation of an elementary length scale, and finally extrac
critical exponent, which is closely related to the fractal
mension~Hausdorff dimension! of the trajectory.

II. REMINDER ON FRACTAL DIMENSION

A definition of the Hausdorff~fractal! dimensiondH is
given by Mandelbrot@2#. He considers as an example how
measure the length of the coastline of England. One tak
yardstick, representing a straight line of a given length. Lee
denote the ratio of the yardstick length to a fixed unit leng
Then one walks around the coastline, and measures
length of the coast with the particular yardstick~starting a
new step where the previous step leaves off!. The number of
steps multiplied with the yardstick length~characterized by
e! gives a valueL~e! for the coastal length. Then one repea
the same procedure with a smaller yardstick, saye8. Doing
this for many values ofe yields a functionL versuse. It has
qualitatively the shape shown in Fig. 2. One observes fo
wide range of length scalese that the length of the British
coast obeys a power law

L~e!5L0e
2a. ~17!

This looks like the critical behavior of a macroscopic obse
able at the critical point, thusa is called a critical exponent
The Hausdorff dimensiondH is defined by

a5dH21. ~18!

So, one has an elementary length scalee, and one measure
the length of the curveL~e!. Thene goes to zero. One look
for a power-law behavior~critical behavior! and determines
the critical exponent. The Hausdorff dimension is direc
related to the critical exponent.

III. MEASUREMENT OF POSITION IN QUANTUM
MECHANICS AND ELEMENTARY LENGTH

In the calculation of the Hausdorff dimension for unmon
tored paths in Sec. I, one has discretized time with an in
ment Dt. The average increment of length^uDxu& and the
average total lengtĥL& have been determined dynamical
by the system. One has found a power law^L&;L0^uDxu&2a

and the critical exponenta has been extracted in the lim
^uDxu&→0, which is equivalent toDt→0, due to the scaling
relation ~12!. In an experiment, in order to measure t

FIG. 2. Graph corresponding to Eq.~17!. Length vse. The log-
log plot allows one to determine the critical exponenta.
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length ^L& and extract the critical exponent one would pr
ceed differently: One would introduce an elementary len
scaleDxexp at the disposal of the experimentator. Then o
would measure the lengtĥL& by sequential measuremen
of position as a function ofDxexp; i.e., one would monitor
the path. Again one would expect a power laŵL&
;L08^Dxexp&

2a8. Then one would approach the lim
Dxexp→0. One would expect for the critical exponenta85a.
A typical quantum-mechanical path is sketched in Fig.
Zigzag motion occurs in the transversal as well as in
longitudinal direction~not shown in Fig. 3!.

We have to say what we mean by elementary len
~‘‘yardstick’’ !. From the experimental point of view it mean
the length scale of experimental resolution when measu
position. In the following we give several examples of ho
this can be done:~a! Sequence of absorbers~screens!, each
with a slit @Fig. 4~a!#. Here the elementary lengthDx is given
by the distance between the slits.~b! Spark wire chamber
@Fig. 4~b!#. Here the elementary lengthDx is given by the
distance between the wires.~c! Bubble chamber. Here the
elementary lengthDx is given by the spatial resolution o
two different bubbles. In the experimental proposal p
sented below we will use neither of those, but we will co
sider as an elementary length the distance between neigh
ing solenoids carrying magnetic flux because the sugge
experiment is a generalized Aharonov-Bohm experiment

How could one measure the length of a typical quant
path by monitoring the position? In principle, this can
done by a setup of an electron source, a detector, and
tiple screens with multiple holes@see Figs. 5~a! and 5~b!#. In
order to measure by which hole an electron has pas
Feynman and Hibbs@1# have suggested two possible expe
ments:~a! A light source is placed behind the screen@Fig.
5~a!#. One observes scattering of light from the electr
through one of the holes. From the scattered light one
determine by which holes the electron has passed.~b! As an
alternative, one can arrange such that the screen with h
can move freely in a vertical direction@Fig. 5~b!#. Before the
electron passes, the screen is at rest. When the elec
passes, it scatters from the screen at the hole. The hol
which the electron passes can be determined by measuri
the screen is recoiling upward or downward, i.e., by meas
ing the momentum of the screen. One can imagine plac
several such screens, each carrying several holes. Then
determines the holes that the electron has passed and c
the time for each passage of a hole, in order to determin
there has been forward movement from the source to
detector.

FIG. 3. Schematic plot of propagation of massive free partic
Dashed line: classical trajectory. Full line: quantum-mechanical z
zag motion. Note: there is zigzagness in all spatial dimensions,
in longitudinal as well as transversal directions.
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The experimental length resolutionDx is given by the
distance between neighboring screens and the distance
tween holes on a screen. We want to determine the lengt
the path. In order to extract a fractal dimension we need
studyDx→0. Then we run into the following problems: Th

FIG. 4. Measurement of position and definition of element
length scaleDx. ~a! Sequence of screens with holes.~b! Wire cham-
ber.

FIG. 5. Measurement of position of holes traversed by an e
tron. ~a! Determination of position by electron-light scattering.~b!
Determination of position by measuring recoil direction and m
mentum of movable screen.
be-
of
to

first one is a kind of technical problem: When we put mo
screens between source and detector, then fewer elec
will arrive at the screen. The counting rate goes down qu
drastically. This can be compensated by a longer beam t
i.e., by emitting more electrons. There is, however, anot
more serious problem. Consider alternative~a!: In order to
tell if an electron has passed by a particular hole, the elec
is scattered from light with wavelengthl. The ~scattering!
source of light of wavelengthl cannot be located in spac
with precision greater than order ofl. Thus when we want to
decrease the spatial resolutionDx, we need to decrease th
wave length l accordingly. Light carries a momentum
2p\/l, which is ~partially! transferred to the electron. Thu
the smallerDx, the larger the momentum transferred to t
electron and the more the original quantum path of the e
tron is altered. This is Heisenberg’s uncertainty princip
Any determination of the alternative~sequence of holes!
taken by a process capable of following more than one al
native destroys the interference between alternatives. In o
words, when we determine by which holes the electron
passed, then the final interference pattern no longer has
shape shown in Fig. 6~this has nothing to do with the fac
that there are several screens; it happens also for one sc
with two holes!.

For this reason, we are going to suggest below an exp
ment without monitoring the path. The experiment is diffe
ent in the following sense: We do not place screens, so th
is no loss in the counting rate. Secondly, our proposa
based on the Aharonov-Bohm effect, which is classically
null effect, contrary to the above setup with screens, wh
classically does not give a null effect. Finally, in our pr
posal we determine the path via the topology of t
Aharonov-Bohm effect.

IV. REMINDER ON AHARONOV-BOHM EXPERIMENT

The experiments we will suggest in the next sections
generalizations of the Aharonov-Bohm effect. Thus it
worthwhile to recall the notion of the Aharonov-Bohm effe
and the experimental setup, which has confirmed this eff
Aharonov and Bohm@9# have suggested in 1959 that the
should be an observable difference between classical
quantum mechanics when a charged particle interacts wi
magnetic field. In particular, when the magnetic field~ideal-

y

c-

-

FIG. 6. Setup of Aharonov-Bohm experiment. A charged p
ticle ~electron! is scattered from two slits and one observes interf
ence in the detector. When placing a solenoid~thin magnetic flux
tube! in the region between the classical trajectories, one observ
shift in interference.
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ized! corresponds to an infinitely long, infinitesimally thi
flux tube ~solenoid!, then outside of the flux tube the mag
netic fieldBW 50, but the vector potential is nonzero~Au}1/r
in spherical coordinates!. Due to the particular geometry o
the magnetic field, which is independent of thez coordinate
~the flux tube is assumed to be parallel to thez axis!, we
have an effective two-dimensional~2D! system in any plane
perpendicular to the flux tube.

Now consider a charged particle~chargeq! passing by
~scattering from! the solenoid. Classically, the Lorentz forc
is zero. But quantum mechanically, the electron wave fu
tion is affected by the nonvanishing vector potential. Ah
ronov and Bohm@9# have computed the cross section f
scattering from an infinitesimally thin flux tube with fluxf.
Choosing the gauge of the vector potential such that the
tor potential takes the form

Ar50, Au5f/2pr , ~19!

they find the cross section~in the notation of Ref.@10#!

ds

du
5

1

2pk

sin2~pa!

sin2~u/2!
, a5

qf

2p\c
, ~20!

wherek is the wave number.
The Aharonov-Bohm effect has been confirmed by

periment@11#. The setup corresponds to a two-slit interfe
ence experiment~see Fig. 6!. A very thin solenoid is placed
perpendicular to the plane in the region between the two
and the detector~region between the two classical traject
ries!. Then the interpretation is as follows@12#. One com-
pares two cases:~a! The solenoid is turned off~flux and
vector potential are zero!. Then there is interference due
scattering from two sources. This is due to a difference in
phase of the wave functiond~BW 50!, corresponding to the
two trajectories.~b! The solenoid is turned on~flux and vec-
tor potential are nonzero.! Then quantum mechanics sa
that the wave function experiences a change of phase du
the presence of the vector potential given by

d5d~BW 50!1
q

\c ECd lW•AW , ~21!

whereC denotes the closed curve formed by the two traj
tories,S is the area of the interior of this curve,AW is the
vector potential,BW is the magnetic field,f is the magnetic
flux, and q is the charge of the particle. Thus the pha
change of the interference amplitude due to the presenc
the vector potential is basically given by the flux through t
regionS,

Dd5d2d~BW 50!5
q

\c ECd lW•AW 5
q

\c ESdsW•BW 5
qf

\c
.

~22!

This change of phaseDd shifts the maximum of the interfer
ence pattern~see Fig. 6!. Again, classically there is no suc
effect, because the magnetic field is practically zero~exactly
zero for an idealized solenoid! outside of the solenoid an
hence everywhere on the classical trajectory. In summ
the Aharonov-Bohm effect shows that there is a differen
-
-

c-

-

ts

e

to

-

e
of

y,
e

between quantum mechanics and classical mechanics,
moreover, the vector potential is a real physical quantity.

In the Aharonov-Bohm experiment, as described abo
the quantum effects come from the phase change of the w
function due to the presence of the vector potential. In or
to better understand the experiment suggested below,
need to take a closer look into the quantum mechanics of
Aharonov-Bohm effect. It actually turns out that the abo
explanation in terms of phase change of the wave functio
valid only in the case when the distanceh between the sole-
noid and the classical trajectories~see Fig. 6! is large com-
pared to the de Broglie wavelengthl. Note that the classica
region is given byDx@\/p5l/2p, and the region of quan
tum mechanics is given byDx!\/p5l/2p. In general, the
presence of the vector potential creates a phase change p
change of modulus of the wave function. This is so, in p
ticular, when one of the classical trajectories is close to
solenoid. This is just the situation, which will play an impo
tant role in our experimental proposal.

Schulman@13# was the first to point out the connectio
between quantum mechanics and topology in the Aharon
Bohm effect. This holds in the strict sense only in the ide
ized situation of an infinitely thin and long flux tube. Qua
tum paths can go by either to the left or to the right side
the solenoid. Mathematically, this is equivalent to a pla
with a hole at the position of the solenoid. Quantum
mechanical propagation proceeds forward in time but f
ward and backward in both space dimensions~zigzag trajec-
tories!. Thus paths can occur, which wind around t
solenoid~see Fig. 7!. The classical Hamiltonian in the pres
ence of the vector potential is given by

H5
1

2m S pW 2
q

c
AW D 2, ~23!

and the action is given by

S5E dt
m

2
ẋW 21

q

c
ẋW •AW ~xW ,t !. ~24!

FIG. 7. Schematic quantum path from source to detector wi
ing around solenoid.
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Thus, when considering quantization by path integral,
~6!, there occurs an Aharonov-Bohm phase factor due to
vector potential present in the action. This factor
exp@ia~ufin2uin12pnw!# @see Eq.~29! below#, when the
path windsnw50,61,62, . . . times around the solenoid
anda5qf/2p\c. This factor depends only upon the initia
and final azimuthal angleu and the number of windings, bu
otherwise it is independent of the path. In other words, pa
can be classified by their winding number; they fall in
homotopy classes.

Now let us consider the Aharonov-Bohm propagator. F
tunately, this expression can be computed analytically.
follow the presentation by Wilczek@10#. The idea is to start
from the free propagator, and decompose it into classes
responding to winding numbersnw50,61,62, . . . ,6`.
Then one takes the free propagator in each winding cl
multiplies it by the Aharonov-Bohm phase factor, and fina
sums over all windings. The free propagator inD52 dimen-
sions is given by~see Ref.@14#!

K free5^xW finuexp@2 iHT/\#uxW in&

5
m

2p i\T
expF im2\T

~xW fin2xW in!
2G

5
m

2p i\T
expF im2\T

@r 821r 222r 8r cos~u82u!#G .
~25!

In order to avoid confusion with the magnetic quantum nu
berm, the particle mass is denoted bym in the following.
.
e

s

-
e

r-

s,

-

Now one allowsu8 andu to correspond to different winding
number sectors. One definesQ5u82u12pnw . The free
propagator is periodic inu between2p and p. Then one
definesK̃ free~l! by Fourier transformation ofK free~u!,

K̃ free~l!5E
2p

1p du

2p
exp@2 ilu#K free~u!

5E
2p

1p du

2p

m

2p i\T

3expF im2\T
@r 821r 222r 8r cos~u!#G

5
m

2p i\T
expF im2\T

~r 821r 2!G I uluS mrr 8

i\T D ,
~26!

where I v(z) is the modified Bessel function. Thus the fre
propagator in the winding sectornw is given by

Knw
free~Q!5E

2`

1`

dl exp@ ilQ#K̃ free~l!

5E
2`

1`

dl exp@ il~u82u12pnw!#
m

2p i\T

3expF im2\T
~r 821r 2!G I uluS mrr 8

i\T D . ~27!

The total free propagator, being the sum over all windings
then
own
ted with
K free~r 8,u8;r ,u!5 (
nw52`

1` E
2`

1`

dl exp@ il~u82u12pnw!#
m

2p i\T
expF im2\T

~r 821r 2!G I uluS mrr 8

i\T D
5 (

m52`

1`

exp@ im~u82u!#
m

2p i\T
expF im2\T

~r 821r 2!G I umuS mrr 8

i\T D . ~28!

This is the free propagator, as given by Eq.~25!, expressed in a more complicated way. However, now it is easy to write d
the Aharonov-Bohm propagator. The Aharonov-Bohm propagator is the sum over all paths, where each path is weigh
the phase exp@iS/\#. The paths can be decomposed into classes with a given winding numbernw , wherenw50,61,62, . . . .
Thus the Aharonov-Bohm propagator for a given winding numbernw is just the free propagator for winding numbernw times
the Aharonov-Bohm phase factor. For the vector potential given by Eq.~19!, this phase factor given by

expF i\ E
0

T

dt
q

c
ẋW •AW G5expF iq\c Exin

xfin
dxW•AW G5exp@ ia~u82u12pnw!#. ~29!

Thus one finds the Aharonov-Bohm propagator for winding numbernw :

Knw
AB~Q!5E

2`

1`

dl exp@ i ~l1a!Q#K̃ free~l!. ~30!

The total Aharonov-Bohm propagator is finally given by

KAB~r 8,u8;r ,u!5 (
nw52`

1` E
2`

1`

dl exp@ i ~l1a!~u82u12pnw!#K̃ free~l!5 (
m52`

1`

exp@ im~u82u!#K̃ free~l2a!
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5 (
m52`

1`

exp@ im~u82u!#
m

2p i\T
expF im2\T

~r 821r 2!G I um2auS mrr 8

i\T D . ~31!
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The Aharonov-Bohm propagator, when lettingr 8, r→`
yields the Aharonov-Bohm differential cross section giv
by Eq.~20! ~see Ref.@10#!. Inspection of the free propagato
and the Aharonov-Bohm propagator show the followi
structure: Apart from a common dimensionful prefac
m/2p i\T, they are both functions of dimensionless arg
mentsm(r 821r 2)/2\T andmr 8r /\T. The Aharonov-Bohm
propagator further depends on the dimensionless qua
a5qf/2p\c. When we considerr 85r large, then we have
velocity v5(r 81r )/T, momentump5mv, and the de Bro-
glie wavelengthl52p\/p5p\T/mr . Then the dimension-
less argument of the exponential function and the Be
function becomespr /l.

As mentioned above, the interpretation of the Aharon
Bohm interference experiment is based on the phase ch
of the wave function, making the assumption that the so
noid is far away from the classical trajectories. Because
have the exact expression for the Aharonov-Bohm propa
tor at hand, we are able to test this assumption. We introd
a semiclassical propagator, defined by the product of the
propagator multiplied with the Aharonov-Bohm phase fac
computed along the classical trajectory~straight line between
xin andxfin , zero winding!

Ksemiclass~r 8,u8;r ,u!5K free~r 8,u8;r ,u!exp@ ia~u82u!#.
~32!

Firstly, we have tested the free propagator expansion
terms of Bessel functions. We have compared the exact
pression, Eq.~25!, with the expansion in the magnetic qua
tum numberm, Eq. ~28!. We have imposed a cutoffmmax,
letting the sum run over2mmax<m<mmax. We have kept
fixed the values of parameters\51, xin , xfin , L52, T510,
m51. L is the length of a straight line betweenxin andxfin ,
which is the trajectory of classical propagation. We ha
chosen the origin~of spherical coordinates! to be located at
some distanceh from the trajectory of classical propagatio
and equidistant fromxin andxfin . We have variedh from 0 to
10 andmmax from 5 to 15. The reference value, Eq.~25!, is
independent from h and mmax. It has the value
K free50.003161292i0.0155982. This set of parameters co
responds to the de Broglie wavelengthl510p. If we iden-
tify the distanceh of the origin with the resolutionDx, then
we cross ath55 from the quantum-mechanical region to t
classical region. Figure 8~a! shows the real part; Fig. 8~b!
corresponds to the imaginary part. One observes rapid
vergence inmmax.

We have tested the assumption on the asymptotic be
ior of the Aharonov-Bohm propagator by evaluating nume
cally the Aharonov-Bohm propagator and the semiclass
propagator. We have chosen the parameters as in Fig. 8;
we have variedh anda. The results are plotted in Figs. 9 an
10. Figure 9~a! shows the real part of the semiclassic
propagator, Eq.~32!. Figure 9~b! shows the real part of the
Aharonov-Bohm propagator, Eq.~31!. Here we have chose
r
-

ity

el

-
ge
-
e
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ce
ee
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x-

e
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v-
-
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l

the cutoffmmax550. From the convergence test of the fr
propagator, we estimate thatmmax520 should be sufficient to
guarantee stability in the sixth significant decimal digit wh
h<10. The absolute value of the real part of the differen
between the semiclassical and Aharonov-Bohm propagat
displayed in Fig. 9~c!. The corresponding results for th
imaginary part are plotted in Fig. 10. As in Fig. 8, this set
parameters corresponds to the de Broglie wavelengthl510p
and the crossing of the quantum-mechanical region to
classical region occurs ath55. One observes that when th
distance h becomes large, the difference between t

FIG. 8. Free propagator. A comparison of exact result, Eq.~25!,
with expansion in Bessel functions, Eq.~28!. ~a! Real part as func-
tion of distance h from classical path and of cutoffmmax,
5<mmax<15. ~b! Same for imaginary part. For other parameters s
text.
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FIG. 9. ~a! Real part of semiclassical propagator, Eq.~32!. ~b!
Real part of Aharonov-Bohm propagator, Eq.~31!. ~c! Absolute
value of the difference of both. Dependence on distanceh and ona.
Other parameters as in Fig. 8, cutoffmmax550.
 FIG. 10. Same as Fig. 9, but for the imaginary part.
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Aharonov-Bohm propagator and the semiclassical propa
tor tends to zero. Moreover, one observes that the differe
between these propagators is most pronounced for small
tanceh ~h→0!.

V. GEDANKEN EXPERIMENT I TO SEARCH
FOR ABERRATION FROM CLASSICAL PATH
IN QUANTUM-MECHANICAL TRAJECTORIES

Now I want to suggest a Gedanken experiment in orde
show that not only is there a difference between classical
quantum mechanics, but that quantum effects come from
zigzagness of quantum-mechanical trajectories. The setu
based on the Aharonov-Bohm experiment. But there is so
modification. Contrary to the original experiment, where t
solenoid was placed in the interior~center! of the region
bounded by the two classical trajectories, now I suggest p
ing the solenoid in the region outside~see Fig. 11!. Let h
denote the distance of the solenoid from the classical tra
tory A–D. Then we let the solenoid approach the classi
trajectory~h→0!. Again we consider the case~a! when the
solenoid is turned off and~b! when the solenoid is turned on
The Gedanken experiment measures the change of the i
ference pattern between cases~a! and ~b!.

Let us discuss what results we expect to find in this s
nario, based on our knowledge of the Aharonov-Bohm eff
and the numerical calculation of the propagator. Firstly, leh
be large compared to the de Broglie wavelengthl. Whenh
is large, the Aharonov-Bohm propagator and the semicla
cal propagator coincide. Then as in the Aharonov-Bohm
periment, the wave function of an electron experience
change of phase, given by Eq.~21!. However, the phase
change of the interference amplitude, given by Eq.~22!, now
has the outcomeDd50, because there is no magnetic flu
through the regionS ~between the classical trajectories!.
Thus switching off and on the magnetic field will not pr
duce a change in the interference pattern.

Now suppose the solenoid approaches the classical tra
tory A–D, but we assume that its distance from the oth
classical trajectoryB–D is still large. Then the propagato
corresponding to the trajectoryA–D is given by the
Aharonov-Bohm propagator, while the propagator cor
sponding to the trajectoryB–D is given by the semiclassica
propagator. Our previous numerical results show a mar
difference between the Aharonov-Bohm propagator and
semiclassical propagator~for propagation between the sam
points!. There is a difference not only in phase, but also
modulus. Thus we expect for the interference experim
when h becomes small and when the magnetic field
switched on and off, that a change of phase as well a

FIG. 11. Setup of Gedanken experiment I. Similar to Aharon
Bohm experiment, but the solenoid is placed outside the reg
bounded by the classical trajectories.
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modulus will show up in the interference amplitude. Its i
terpretation is as follows: Quantum mechanics, expresse
the language of path integrals, tells us that there are co
butions from all possible paths. There are paths close to
classical path~see Fig. 12! that give dominant contributions
There are paths far away from the classical path that g
very small contributions. There are also paths crossing
area of the solenoid~in the case of finite extension!. As long
as all paths of propagation between slitA and detectorD
pass by the same side of the solenoid@see Figs. 11 and
12~a!#, there will be zero change in phase and modulus in
interference amplitude. But when paths occur, which pass
both sides of the solenoid@Fig. 12~b!#, or eventually wind
around the solenoid as quantum mechanics predicts, the
terference is described by the Aharonov-Bohm propaga
for routeA–D and by the semiclassical propagator for t
routeB–D, producing a change of the interference patte
In other words, any difference between the interference p
terns for magnetic fieldsBW 50 andBW Þ0 indicates that there
must be contributions from paths that have deviated from
classical pathA–D by at least a distanceh. Thus the pro-
posal of experiment I is as follows:~1! Measure the interfer-
ence pattern whenBW 50. ~2! Measure the interference pa
tern whenBW Þ0, as a function ofh. Any difference between
~1! and~2! signals that quantum paths have fluctuated at le
by a distanceh from the classical trajectory.

In Figs. 9 and 10 we have presented results in dimens
less units. Now we want to take a look at the behavior of
propagator for a more physical choice of parameters.
take\5c51, thus\c5197 MeV fm51, and express every
quantity in ~powers of! fm. The electron mass isme50.511
MeV/c250.25931022 fm21. We chooseL52 cm5231013

fm, T51 s5331023 fm. The diameter of an elementary so
lenoid used in an Aharonov-Bohm experiment is of the or
of dsol;5 mm553109 fm. We have variedh from
h5dsol553109 fm to h5100dsol5531011 fm. This set of
parameters corresponds to a de Broglie wavelen

-
n

FIG. 12. Gedanken experiment I, similar to Fig. 11. Sketch
interference pattern if there were only two contributing quantu
mechanical paths~in the neighborhood of the two classical paths!.
If the solenoid is situated outside of the region bounded by the
quantum paths, there is no shift in interference~a!, otherwise there
is a shift ~b!.
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l53.6331013 fm. If we again identifyh5Dx, then we have
2pDx/l50.8631023 for h5dsol and 2pDx/l50.8631021

for h5100dsol. Thus we are in the quantum-mechanical
gion. Experimentally, the magnetic flux can be varied co
tinuously in a certain range@15#. Dirac’s quantization condi-

FIG. 13. Same as Fig. 9, after division by factorm/2p i\T. For
physical parameters see text.
-
-

tion of flux from a Dirac string attached to a magne
monopole is given by@16# qf/2p\c5a5n, n50,1,2, . . .
Thus it is reasonable to varya in the order of unity. We have
varieda from 0 to 3. We have plotted the propagators af
dividing by the common factorm/2p i\T. Figure 13~a! dis-
plays the real part of the semiclassical propagator; Fig. 13~b!
shows the real part of the Aharonov-Bohm propagator, a
in Fig. 13~c! we have plotted the absolute value of the re
part of their difference. Figure 13~c! shows that when the
solenoid has a distance from the classical trajectory in
order of severaldsol, there is a marked difference in particu
lar for a'1/2,3/2, . . . , i.e., half integer. This quantum
mechanical effect should be observable experimentally.

Summarizing this section, a change in the interferen
pattern can only occur due to contributions of paths, wh
aberrate from the classical path, in such a way that the s
noid is in the interior of the region bounded by the two pa
~coming from the two slits!. Thus the observation of a
change of the interference pattern in this Gedanken exp
ment shows directly the necessity to take into account c
tributions from paths aberrating from the classical path. B
it does not necessarily show that the paths zigzag. The a
ration could be a smooth one like a sin curve. In order to
more information on the geometry of those paths, in parti
lar on average length, scaling behavior, critical expone
i.e., Hausdorff dimension, we suggest another Gedanken
periment.

VI. GEDANKEN EXPERIMENT II TO MEASURE THE
FRACTAL DIMENSION OF QUANTUM-MECHANICAL

TRAJECTORIES

A. Setup

This setup is a generalization of the setup of Gedan
experiment I. As discussed above, one needs an eleme
length scaleDx and one has to measure the length of t
trajectory in terms of this elementary length scale. I sugg
taking as an elementary length scale the distance betw
two neighboring solenoids in an array of solenoids~see Fig.
14!. The array of solenoids is placed such that the class
trajectory coming from slitA passes through this array, whil
the classical trajectory coming from the slitB does not pass
through this array. For example, the array could be place
the lower half plane bounded by a line of points that a
equidistant from the two slits.

As pointed out above, analytical and numerical calcu
tions have given Hausdorff dimensiondH52 for free

FIG. 14. Setup of Gedanken experiment II. Same as Gedan
experiment I, but there are many solenoids.
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962 55H. KRÖGER
quantum-mechanical motion. This is valid for motion
D51,2,3 space dimensions. In this sense the trajec
shown in Fig. 3 is not quite correct: The motion zigzags
the longitudinal as well as the transversal direction, while
Fig. 3 zigzagness is shown only in the transversal direct
This experiment will be sensitive only to zigzagness in
plane perpendicular to the flux tubes. The reason is as
lows: The massive charged particle interacts with the ve
potential corresponding to the magnetic field of the so
noids. The solenoids represent~idealized! infinitely long and
thin flux tubes. The system is invariant with respect to tra
lations parallel to the flux tubes. Any zigzagness of motion
this direction does not show up in the phase fac
exp@iq/\c*CdxW•AW # and hence does not show up in the inte
ference pattern.

From Gedanken experiment I we have learned that
servable quantum effects occur when quantum paths de
from the classical path such that quantum paths go by b
sides of the solenoid. As a consequence, this experime
sensitive only to zigzagness on a length scale larger than
minimal distance between two solenoids i.e.,Dx. This is due
to the topological character of our experiment. Thus we a
What are the topologically different~homotopy! classes of
paths, corresponding to the given geometry of selonoids
suming we haveNS solenoids positioned in a regular arra
with next-neighbor distanceDx? The topological class of a
path depends on the starting pointxin , the endpointxfin , and
the way it winds around the individual solenoids. One sho
note that this does not depend on the sequential orde
winding around individual solenoids. Equivalent paths w
the same winding but different sequential order are show
Fig. 15. Mathematically, this is characterized by the ph
factor exp@iq/\c*CdxW•AW #, corresponding to the pathC. If,
e.g., the pathC is closed and winds around solenoi
1, . . . ,NS , respectively, with winding number
n1 , . . . ,nNS, this phase factor yields

expF iq\c @n1f11•••nnNSfNS
#G . ~33!

From the knowledge of this phase factor one can extract
winding numbers of solenoids in a unique way, if the fl
valuesf1 to fk are incommensurable, i.e., their ratios are n
rational numbers. In practice, however, quantum effects
the amplitude due to high winding numbers become v
small and eventually fornw larger than some cutoffncutoff
they are no longer detectable in an experiment. Thus we
allow the ratio of fluxes

f i

f j
5
ni
nj
, ni ,nj.ncutoff ~34!

The experiment consists of measuring the interfere
pattern, once when all solenoids are turned off and o
when all solenoids are turned on. Any change in the inter
ence pattern is due to a change of wave function, t
traverses the array of solenoids. How is the change of
phase and modulus of the wave function related to the flu
the solenoids? This is answered by the rules of quan
mechanics expressed in terms of the path integral: The w
function is given by the path integral
ry
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c~xW ,t !5E @dx#exp~ i /\S@xW # !uxW ,t;xW0 ,t0, ~35!

representing all paths betweenxW0 ,t0 andxW ,t. For the purpose
of the interference experiment one would choosexW0 ,t0 cor-
responding to the source andxW ,t corresponding to the detec
tor. All paths go through either one of the two slits. Th
integral is a sum over paths. By splitting the action into
kinetic and a magnetic part the wave function can be
pressed as

c~wW ,t !5(
C

expi /\Sfree@C#

3exp F iq\c ECdxW•AW ~xW ,t !GU
xW ,t;xW0 ,t0

. ~36!

The wave function is a superposition of phase factors. E
phase factor has been split into a term representing
weight of the free action and a term representing the phas
a line integral of the vector potential. If we would retain
Eq. ~36! only one pathC1 passing through slit 1 and one pa
C2 passing through slit 2~which is of course unphysical!,
then the interference pattern, given by the absolute amplit
squared, would be determined by the difference of the pha
corresponding toC1 andC2 ~see Ref.@12#!. But the differ-
ence of two line integrals, both going fromxW0 ,t0 to xW ,t,

FIG. 15. Topologically equivalent paths.
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corresponds to a line integral along a closed curveC ~fol-
lowing C1 and returning byC2!. Then the second phase fa
tor in Eq. ~36! would describe the total flux going throug
the areaS interior toC, as given in Eqs.~21! and ~22!.

B. Reconstruction of paths: case of two paths

The Gedanken experiment measures the interference
tern and hence the change of the phase and modulus o
wave function. The question is how to extract from this
formation about the geometry of paths, and in particu
about the length of the average path. We want to treat
problem in two steps: Firstly, suppose there is only one p
corresponding to each slit. The shift of the phaseDd of the
wave function is then given by the sum of fluxes of t
solenoids in the interior areaS. In Fig. 14, those are the
fluxes of solenoids 1 to 6, 10, 11, 13, and 14. Suppose
know the shiftDd and hence the total flux. How can we te
from that which particular solenoids have contributed to
flux? This information is necessary in order to trace the
jectory. It can be answered in the following way: We mu
assign to each solenoid a particular flux, such that know
the total flux allows one to reconstruct which individu
fluxes have contributed. This is certainly not possible wh
all individual fluxes have the same value. This problem
mathematically equivalent to the following problem in num
ber theory: Given is a finite set of real numbersr i ,
i51,...,N, and a real numberR. Suppose we know that th
equation

n1r 11•••nNrN5R ~37!

possesses a solution for a set of integer numbersn1 ,...,nN .
We want to know the following: Under what conditions
this solution unique? A possible answer is the followin
One choosesr i , i51,...,N as the ratio of large integer num
bers, which do not possess a common integer divisor.
imposes a cutoff on the integer numbersni,ncutoff , where
ncutoff is small compared to the integers occurring in the n
merators and denominators ofr i . Then the solution is
unique. Let us give an example:r 1597/99, r 25101/111,
R58463/10989. Then

8463

10989
5n1

97

99
1n2

101

111
~38!

possesses the solutionn1522, n253, but no other integer
solution for say23,ni,3.

Here we have made the following association between
integer numbers and our experiment:

R↔total flux,

r j5↔flux of individual solenoid j ,

nj5↔winding number of path

around solenoidj . ~39!

Suppose we have tuned the magnetic field of the individ
solenoidj , such that the corresponding individual flux tak
at-
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on the valuer j . From the experiment we know the total flu
R. Thus we can determine in a unique way the winding nu
bersnj .

C. Reconstruction of paths: case of many paths

The above procedure allows one to reconstruct the pat
there is a single path. In quantum mechanics there are
nitely many paths that contribute to the amplitude. How c
we reconstruct the average path from the knowledge of
interference pattern in the general case? The idea is to
advantage of the connection between quantum mecha
and topology. Recall the discussion of the Aharonov-Bo
effect: The quantum-mechanical free propagator can be w
ten as a decomposition of the free propagator into wind
number sectors and then summing over all winding numb
@Eq. ~28!#. The Aharonov-Bohm propagator has a simil
decomposition. However, now the contribution from a giv
winding sector is the product of the free propagator in t
winding sector times the Aharonov-Bohm phase fac
exp@ia(u82u12pnw)# @Eq. ~31!#. One aspect of this is im-
portant in the following: If one varies the magnetic flux
the solenoidf→f8 and hencea→a8, this changes of course
the total Aharonov-Bohm propagator. It also changes
Aharonov-Bohm phase factor in each winding sector. Bu
does not changethe free propagator in each winding secto

All this carries over to the generalized Aharonov-Boh
setting with the array ofNS solenoids. Again the full propa
gator decomposes into homotopy classes. The contribu
from each homotopy class is the free propagator in this
motopy class times a generalized Aharonov-Bohm phase
tor,

expF iq

2p\c
$~u82u!f tot12p@n1f11•••nNSfNS

#%G ,
f tot5f11•••fNS

. ~40!

The important aspect is again: Changing the fluxesfi
changes the full propagator, but does not change the
propagator in each homotopy class.

Thus experimentally, we have a way to determine the f
propagator corresponding to a given homotopy class.
introduce a cutoff in the winding numbersni,ncutoff . What
value would one attribute toncutoff? In a Gedanken experi
ment one considers an idealized situation neglecting exp
mental errors. In such a situation one would considerncutoff
as a parameter that should be increased until the Hausd
dimension of the quantum path~Sec. VI! converges. In a
more realistic situation one faces experimental errors or m
precisely thresholds~limits! of experimental resolution. One
expects that winding numbers beyond the cutoff give con
butions to the amplitude that are of the order of experimen
errors and hence cannot be detected. The relation betwe
given experimental threshold and the corresponding valu
ncutoff could be estimated via a numerical simulation of t
path integral.

This cutoff makes the number of homotopy classes fin
Let us enumerate the homotopy classes bynh51,2,...,NH .
The experimenter chooses a set of fluxes of the solenoi
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f i
(1), i51,...,NS . Then he measures the corresponding int

ference pattern, sayI ~1!. Then the experimenter chooses a
other set of fluxes of the solenoids,f i

(2), i51,...,NS , and
measures again the interference pattern,I ~2!. This is repeated
s
to

in

d,

o

o
s.
r

n
id
o

ia
.

r-
-
for NF different sets of fluxes. The gathered information
then sufficient to determine the free propagators in the
motopy classesnh51,...,NH . The wave function for emis-
sion from the source atxW0 ,t0 is given by
c~xW ,t !5(
C

expi /\Sfree@C#expF iq\c ECdxW•AW ~xW ,t !GU
xW ,t;xW0 ,t0

5(
nh

Knh
freeexpF iq

2p\c
$~u82u!f tot12p@n1f11•••nNsfNs

#%G . ~41!

The interference pattern is given by the squared modulus of the wave function

I5uc~xW ,t !u2. ~42!

Thus consideringNF different sets of fluxes, one has

I ~ f !5U(
nh

Knh
freeexpF iq

2p\c
@~u82u!f tot

~ f !12p~n1f1
~ f !1•••nNsfNs

~ f !!#GU2, f51,...,NF . ~43!
hs,
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Because a given set of fluxes and a given homotopy clasnh
determines the generalized Aharonov-Bohm phase fac
and the free propagator in each homotopy classKnh

free is inde-

pendent of the fluxes, this equation allows one to determ
the unknown coefficientsKnh

free, nh51,...,NH . Because

Knh
free are complex numbers, and the fluxesf and vector po-

tentialsAW are real, we need at least twice as many sets
fluxes as the numberNH of homotopy classes considere
NF.2NH .

D. Length of paths

Suppose we know by now from experiment the values
Knh
free corresponding to a given homotopy classnh . What

length of path would we assign to it? Consider the array
solenoids with distanceDx between neighboring solenoid
Homotopy classes are distinguished by the phase facto
the vector potential exp@iq/\c*CdxW•AW #. We start by grouping
paths occurring in the path integral, Eq.~36!, into classes:
Two paths are in the same class, if they can be made ide
cal by stretching and deforming without crossing a soleno
This reflects the fact that we cannot resolve any structure
a scale smaller than the resolutionDx. Moreover, the phase

FIG. 16. Gedanken experiment II. Prescription how to assoc
a length to a particular quantum path corresponding to Fig. 14
r,

e

of

f

f

of

ti-
.
n

factor of the vector potential does not distinguish the pat
such as, e.g., in Figs. 15~a! and 15~b!. These two paths be
long to the same class. These two paths can be transfor
into each other by deformation of paths and applying
following rule: When two oriented paths cross each oth
they can be cut at the vertex such that each each piece h
incoming and an outgoing line relative to the vertex. F
each class we define a representative path, which pass
the middle between two neighboring solenoids. Then o
draws a straight line from the middle of one of those pairs
the middle of the next of those pairs~see Fig. 16!. Each of
those representative paths is defined by a given sequen
pairs of solenoids. What representative path do we assoc
e.g., to those topologically equivalent paths of Figs. 15~a!
and 15~b!? Because the length of the curve is expected to
to infinity, whenDx→0, we are experimentally on the con
servative side, if we choose the shortest path from thos
Figs. 15~a! and 15~b!, that is, the path that goes forward
the longitudinal direction, except for loops around individu
solenoids~this is shorter than doing one loop around tw
solenoids!. Thus the rule for representative path is as f
lows: It starts atxin and arrives atxfin . It goes by pieces of
straight lines always passing in the middle of a pair of so
noids. The representative path is determined by the wind
numbers corresponding to the solenoids of the array. Am
several paths compatible with the same winding numb
the shortest path is taken as the representative path.
means that each loop goes around at most one solenoid~pos-
sibly several times!. An example of such a path is shown
Fig. 16. In this sense, we associate to each homotopy cla
representative path. Let us denote those representative p
by Cr . Then we define the classical length of the trajecto
as follows:

LCr~Dx!5sum of length of pieces of straight line.
~44!

Finally, we want to obtain a quantum-mechanical express
te
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for the length of paths. The general expression is a weigh
average given by the transition element

^L&5

(
C

LC exp$ iS@C#/\%

(
C

exp$ iS@C#/\%

, ~45!

where the sum goes over all possible pathsC that go from
the source att in to the detector attfin . This is meant to be the
same length definition as given in Eq.~15!, but takingN→`
and introducing a normalizing factor. In the discussion
experiment II we have introduced an elementary length s
Dx. In order to obtain an operational length definition for t
experiment, we replace the infinite sum over all paths in
~45! by a finite sum over the representative paths and
weight factor exp@iS/\# is given by the action in the homo
topy class corresponding to the representative path. Thu
obtain

^L~Dx!&5

(
Cr

LCr exp$ iS@nh#/\%

(
Cr

exp$ iS@nh#/\%

, ~46!

where

exp$ iS@nh#/\%5Knh
freeexpF iq

2p\c
$~u82u!f tot

12p@n1f11•••nNsfNs
#%G , ~47!

and Knh
free has been determined from our experiment. T

yields ^L& for a given array of solenoids, characterized
Dx, in the presence of the vector potential of the soleno
But we can also obtain the length in the absence of the ve
potential, i.e., corresponding to free propagation: The len
is still given by Eq.~46!. But the action weight factor, put
ting all fluxesfi[0, is then

exp$ iS@nh#/\%5Knh
free. ~48!

Finally, in order to extract the Hausdorff dimensiondH , we
have to measure the length^L(Dx)& for many values ofDx,
look for a power law behavior whenDx→0, and determine
the critical exponent and thusdH .

At the end of this section we discuss limitations and
rors. As a consequence of the fact that this experiment is
sensitive to the zigzagness parallel to the solenoids, we
not measure the length of the path but only its project
onto the plane perpendicular to the solenoids, i.e., inD52
dimensions. Nevertheless, the length as such is physic
not so interesting~it depends onDx anyway!. The physically
important quantity is the critical exponent~Hausdorff dimen-
sion!, which corresponds to taking the limitDx→0. But the
latter should be the same in any space dimension.

Let us comment on the two length definitions employ
here: Firstly, there is the general definition, Eq.~45! ex-
pressed as a path integral. Secondly, there is an operat
d
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definition Eq.~46! proposed to be applied in the experimen
These definitions differ in two aspects:~i! While Eq. ~45!
describes the continuum limit and takes into account in
nitely many paths, Eq.~46! is an approximation, taking into
account only a finite number of paths. This is the same k
of approximation as is done when replacing an ordinary
tegral by a finite sum. When lettingDx go to zero, the num-
ber of paths tends to infinity.~ii ! The more serious differenc
is the fact that while Eq.~45! represents all paths, Eq.~46!
chooses only one representative path for each homo
class, although there may be several topologically inequ
lent paths in the same homotopy class. An example is sh
in Fig. 15.

Finally, let us suppose the experiment were perform
and the experimenters would have extracteddH51.56 0.1.
What would one conclude from this? Firstly, such a res
would establish that quantum paths are fractals~anything
with dH.1!. But then one would ask the following: Fo
theoretical reasons, would one expect to finddH52. What is
the reason for this difference? As pointed out above,
theoretical resultdH52 is not rigorously established. Thus
may be thatdH51.5 is the correct answer anddH52 is
wrong. However, this is quite unlikely. Nevertheless, it
very desirable to get a firm theoretical answer. This could
done by proving Eq.~13! or at least by solving the path
integral by computer simulation in real time and extracti
dH52. Suppose the latter had been achieved. Then
would conclude that the proposed experiment is incompl
in the following sense: It shows that quantum paths zigz
but the experiment ‘‘does not capture all zigzagness.’’ P
sible errors are as follows:~a! The upper limit of winding
number imposed in the experiment is too small.~b! The dis-
tance between solenoidsDx is too large.~c! The chosen
definition of representative path in a given homotopy cla
namely the shortest connected path among topologically
equivalent paths within a homotopy class, is incorrect. Err
~a! and ~b! are questions of experimental precision, whi
may be a substantial problem when doing a real experim
However, we do not consider it a serious conceptual prob
~in a Gedanken experiment!. The most serious point and pos
sibly the weakest part in our view is~c!. If the definition of
the representative path is incomplete, one cannot test q
tum mechanics. In order to verify the proposed length d
nition of a representative path, we suggest doing a numer
simulation of path integrals in the presence of the soleno
and computing the quantum-mechanical length as define
Eq. ~46! with that defined by Eq.~45!.

VII. SUMMARY

We have made a proposal of how to observe experim
tally the zigzag motion of quantum-mechanical paths. W
have suggested two experiments: Experiment I is conce
to show the existence of zigzagness. Experiment II is c
ceived to determine the average length of path, its sca
behavior whenDx→0, and eventually the correspondin
Hausdorff dimension. Finally we want to return to th
Heisenberg uncertainty principle, as discussed in Sec. II
the context of the multislit experiments. It says the follow
ing: The higher the precision in measuring positions to
termine a quantum path, the more it will change the interf
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ence pattern of the quantum amplitude. What relevance d
this have to our experiment? What does our experiment h
in common with the multislit experiment of Sec. III? Whe
does it differ? Firstly, in the multislit experiment the spat
resolution is given by the distance between holes and
wavelength of light. In our experiment the spatial resoluti
is given by the distance between solenoids. Thus the arra
multiple screens with multiple holes corresponds to the ar
of solenoids. This is a common feature between our exp
ment and the multislit experiment. However, the rest is d
ferent: In the multislit experiment, by interaction with ligh
one determines the holes passed by the electron, but a
same time modifies its quantum path and hence its inter
ence pattern. In our experiment, for each set of soleno
with a given set of fluxes, corresponding to time-independ
vector potentials, one does not measure the position, bu
undisturbed interference pattern of the electron propaga
in the vector potential. Then one changes the set of flu
~but not the position of solenoids!, and measures again th
interference pattern. This is repeated a number of times.
crucial point is this: Changing the fluxes of the soleno
~and hence the vector potential! does not change the fre
propagator in the homotopy class given by the array of s
noids. Thus measuring the interference pattern for a la
enough number of sets of different fluxes allows to det
mine the free propagator in the homotopy classes. From
follows the length. Thus contrary to the multislit experime
y,
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we do not determine the holes~or pairs of solenoids! that the
electron has passed, but relative amplitudes for classe
quantum-mechanical paths.

Finally, let us comment on the practical feasibility of o
proposed experiments. Certainly experiment I is much s
pler. Assuming the diameter of a realistic small solenoid
be of the order ofdsol55 mm, we have seen that quantum
mechanical effects should be clearly observable when
solenoid is placed in a wide range of distances~e.g.,h5dsol
to h5100dsol for the particular choice of the parameter!
from the classical trajectory, provided that the flux is su
thata takes values in the neighborhood of half integer nu
bers. The second experiment is more difficult. However, p
of the experiment can be tested by comparison with theo
For the case of one single solenoid, the homotopy clas
and the free propagator in each homotopy class are kn
analytically. This can be compared with the results of t
experiment.
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