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Proposal for an experiment to measure the Hausdorff dimension
of quantum-mechanical trajectories
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We make a proposal for a Gedanken experiment, based on the Aharonov-Bohm effect, regarding how to
measure in principle the zigzagness of the trajectory of propag@tmerration from its classical trajectoryf
a massive particle in quantum mechanics. Experiment | is conceived to show that contributions from quantum
paths aberrating from the classical trajectory are directly observable. Experiment Il is conceived to measure
average length, scaling behavior, and critical exporteliausdorff dimensionof quantum-mechanical paths.
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I. BACKGROUND guantum-mechanical motion of a free particle. They assume
measurements of the position of the particle at consecutive
In order to demonstrate the distinction between classicdime intervalsAt. The uncertainty of position iAx. Let us
mechanics and gquantum mechanics one often considers tigall this a monitored path. Taking a measurement means
ground-state energy of a system that has bound states. Finere is an interaction with the particle, hence it is no longer
example, for the harmonic oscillator classical and quantum=free.” Without specifying what the interaction is, Abbot
mechanical ground-state energy difféam one space dimen- and Wise consider that the measurement implies a minimal
sion) by disturbance of momentum, given by Heisenberg’'s uncer-
tainty relationAp=#/Ax. WhenAx goes to zero, this gen-
Eqm—Ea= tho. 1) erates an erratic path. Their calculation starts=sd from a
localized Ax) wave packet and they compute the length as
The existence of such an effect can be understood in terms @fie expectation value of position at tind& and its scaling
Heisenberg’s uncertainty principle. But the distinction be-whenAt—0 andAx—0. From this they deducd,=2 for an
tween classical and quantum mechanics does not only shoswverage monitored path. This result has been generalized by
up in bound states but also in scattering states. Let us con-
sider the propagation of a massive particle. Classical me-
chanics predicts that the particle follows smodtifferen-
tiable) trajectories. However, in quantum mechanics
according to Feynman and Hibpg| the paths are nondiffer-
entiable, self-similar curves, i.e., zigzag curyese Fig. 1L
Feynman and Hibbs noticed in 1965 the property of self-
similarity, which plays an eminent role in many areas of
modern physics. Mandelbrf2] has introduced the notion of
fractal geometry and pointed out that self-similarity is a char-
acteristic feature of a fractal. Fractals are characterized by a
fractal dimensiond; or a Hausdorff dimensionl,,. Abbot
and Wise[3] have demonstrated by an analytic calculation
that quantum-mechanical free motion yields paths that are
fractal curves with Hausdorff dimensiaty=2. The corre-
sponding classical system follows a trajectory with=1
(the Hausdorff dimensiod,; coincides with the topological
dimensiond,,, when the object is “not fractal” andi;,,=1
for a curvg. Thus we can express the distinction between
classical and quantum mechanics by the Hausdorff dimen-
sion of propagation of a free massive particle, 22 79)

t

;‘J (%5, 78)

dgm—dg=1. 2

x

For the sake of later discussions, let us recall the basic in- g 1. Typical paths of a quantum-mechanical particle are
gredients of Abbot and Wise's calculation. They consider theyighly irregular on a fine scale, as shown in the sketch. Thus, al-
though a mean velocity can be defined, no mean-square velocity
exists at any point. In other words, the paths are nondifferentiable.
*Electronic address: hkroger@phy.ulaval.ca The figure is taken from Refl].
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Campesino-Romeet al.[4] who findd,,=2 for a monitored
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In the limit 5—0, the potential term becomes negligible and

average path in the presence of a harmonic oscillator potersne obtains

tial.
In contrast to that one can ask: Whatlis for an unmoni-

tored path? As mentioned above, the geometric characteris-
tics of quantum paths, like zigzagness, nondifferentiability,

1 —X .\ %
<mxk1—5xkxk>—<kaxk—;kl>=i—<l). (10

and self-similarity have already been known to Feynman and

Hibbs by 1965. It should be noted that they have also com

puted the essential pieces, which almost prayigs 2 for an

unmonitored average gquantum-mechanical path. Their calc
lation includes the presences of any local potential. Mor
over, their calculation shows the close connection with
Heisenberg’s uncertainty principle. So let us recall here th

basic steps of Feynman and Hibbs’s calculatish They
consider the Hamiltonian

2A

H= 2m

+V(x), 3

This means the transition element of a product of position
and momentum depends on the order in time of these two

LGuantities. This leads to the usual operator commutation law
®hetween position and momentum, which implies the Heisen-

berg uncertainty relation between position and momentum.

Now suppose one advances the second term on the left-hand

side of Eq.(10) by one time slices

Xie— X X —X
<ka %>:<xk+lm %>+0(5). (11)

whereV denotes a local potential. The quantum-mechanical

transition element from a stape,, ,t=0) to a statexg, t=T)
is given by

|Xin>

i
(Xfin ’t:T|Xinat:O>:<Xfin|eXF{ Ok HT

:f [dx(t)]ex;{;i— S[x(t)]}- (4)

The expression on the right-hand side is the path intédtal
i.e., the sum over pathg(t), which start atx;, att=0 and

arrive atxs, att=T. The paths are “weighted” by a phase
factor exgiS[x(t)]/A}, whereS is the classical action corre-

sponding to the above Hamiltonian for a given path,
T m,
S=J dtixz—V(x(t)). (5)
0

Analogously, the transition element of an operafgK] is
given by

(FIX1)=(Xfin ,t=T|F[X]|Xj,t=0)

. (6)

:f [dx(t)]F[x(t)]ex;{fIL— S[x(1)]

Now suppose time is divided into small slicégx;=x(t;)]
giving the action

s=N§ 5{T Xi+l_xi>2—V(x-) )
= o Yl
Feynman and Hibbs obtain the general relation
JF i aS
(=% \F 5. ©

Putting F=x,, this yields

i Xer1™ X Xe— X1
<1>—g<mxk( R

+ 5ka, (Xk)> .
©)

Then in the limitAt=45—0, Egs.(10) and(11) imply

. ho
((Xr1—= X)) =— m (1).
(12

A
(A% — At

This is Feynman and Hibbs's important result on the scaling
relation between a time incremefit and the corresponding
average length increment of a typical quantum path. Now we
make an assumption that we consider as plausible, but that
we were not able to prove:

(|AX[)?=((Ax)?). (13)

Now let us consider a finite time interv@l= NAt and the
length of the path the particle has traveled between
Xo=X(tg) =X;, andxy=X(ty)=X;; . Classically the length is
given by

N—-1

L class™ kZO |Xk+1_Xk|- (14

According to Feynman and Hibbs, the corresponding quan-
tity in quantum mechanics is the transition element given by
Eq. (6), whereF[X] is given by the classical length,

Xin ,t:0>
N—-1

- [raxen 3 |x<tk+1>—x(tk>|exp['g SX(1)]

N-1
E [Xier 1= Xl
k=0

<L>:<Xfin-t:T

(15
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One should note that this is not an expectation value in thaition in the state of a wave function having been evolved for
usual sense. Feynman and Hibbs refer to the transition elen increment of time\t from an original wave function be-
ments as “weighted averages.” The weighting function ining characterized by localization uncertainfyx. In this
quantum mechanics is a complex function. Thus the transiwork and Ref[6] we are interested in the length of unmoni-
tion element is in general complex. Using E¢K2) and(13)  tored paths, however, not in length corresponding to an in-
one computes finitesimal time interval, but the length corresponding to a
finite time interval, sayl. This involves a number of inter-
(16) mediate times. The goal to seek information on the average
of an observable at several times leads to Feynman and
Hibbs’ transition element, which we have employed here.
Comparing this with the definition of the Hausdorff dimen- Thus the length definition and average are different. How-
sion [see Egs(17) and (18)] and puttinge={|Ax|) yields  ever, there is a common link, which may be considered as
Hausdorff dimensiond,=2 for an unmonitored typical the physical origin of fractal paths: Heisenberg’s uncertainty
guantum-mechanical path in the presence of an arbitrary larelation and behind this the fundamental commutator relation
cal potential. between position and momentum. For the case of the moni-
Because the rigor of this result hinges upon the validity oftored paths, the process of localization leads via the uncer-
the assumption in Eq13) it is interesting to check this result tainty principle to erratic paths. But also for the case of un-
by a numerical calculation. Kger et al.[6] have computed monitored paths, Feynman and Hibbs’s calculation shows
the transition element of the path lengthL) that the scaling relation betweekx and At, Eq. (12), is
=(2 M¢xr1— %) via numerical simulations of the path directly related to the commutator relation between position
integral on a time lattice, however, using imaginary tifmee  and momentum, which again is directly related to the uncer-
order to be able to use Monte Carlo method$e results for  tainty principle. But why then should the outcome @f
the Hausdorff dimension of unmonitored paths are compatagree? Because the restyf=2 for unmonitored paths is not
ible with d;=2 for free motion. rigorously established yet, one can only speculate on this
When we ask what is the Hausdorff dimension for a quanhypothetical coincidence. For unmonitored paths the scaling
tum mechanical particle with interaction, we expect for localrelation Eq.(12) is valid for a very large class of interactions,
potentials via Feynman and Hibbs’ calculation to obtain thenamely, all local potentials. Also the numerical simulations
valued,;=2. The numerical simulations by Kgeret al.[6] in Ref.[6] have given, within statistical errord,,=2 for all
in the presence of local potentials such as the harmonic odecal potentials investigated. In other words there is an indi-
cillator or Coulomb potential give results also compatiblecation(not a proof thatd,,=2 for unmonitored paths in the
with dy=2. However,d,#2 has been found in the case of presence of arbitrary local potentials. On the other hand,
velocity-dependent interactions. More precisely, for velocity-monitoring a path means interaction by measurement. If one
dependent interactios~ Uy|x|*, the valued,,=2 has been assumes that such interaction is described by a local potential
found for a<2, butd, <2 for a>2. Velocity-dependent ac- it seems plausible that,, coincides for monitored and un-
tions play a role in condensed matter physics: The propaganonitored paths.
tion in a solid medium introduces higher-order velocity If the zigzagness of quantum paths is such a fundamental
terms via dispersion relationg7]. Also Brueckner’'s[8]  property of quantum mechanics, one might ask if it has been
theory of nuclear matter saturation introduces velocity-measured experimentally. To the author’'s knowledge such
dependent interactions. The action relevant for this workan experiment has not been done yet. Thus the central theme
namely, the interaction of a massive charged particle with &f this work is made up of the following questions: Can we
vector potential, is also a velocity-dependent action, beingbserve experimentally the zigzagness of quantum-
linear in the velocity(e=1). Thus one expects alsh,=2. mechanical trajectories? Is such an experiment feasible in
Let us summarize the present situation concerning th@rinciple? Can it be done in practice? The motivation is two-
fractal dimension of an average quantum path in the presendeld: (a) Zigzagness of paths is a fundamental property of
of a local potential: A monitored path is a path where mea-quantum mechanics, and thus it would be desirable to have a
surements of position are taken at some discrete time intedirect experimental evidencéb) As we have mentioned
vals; i.e., the particle undergoes interaction. Possible ways tabove, there is an indication that velocity-dependent interac-
do this are discussed in Sec. lll. On the other hand an urtions may change the Hausdorff dimension. Thus an experi-
monitored path is undisturbed by interactiGn nonrelativ- ment measuring the Hausdorff dimension would yield infor-
istic quantum mechanics we neglect interaction with themation on the interaction.
vacuum, particle creation, vacuum polarization, Jet€here The zigzagness of the free quantum-mechanical motion is
is a rigorous proof ofd,=2 for monitored paths. For un- principally not measurable, because every measurement in-
monitored paths, there is strong indication tdgt=2 holds  volves an interaction with the system. Hence the system is no
also. However, neither a rigorous proof nor a numericalonger free. Thus we can study at best the quantum-
simulation in real time has been established so far. Onenechanical motion of an interacting particle. As our numeri-
might ask: What is the relationship between monitored anaal simulations have shown, one would still expect a zigzag
unmonitored paths and why shoutl, coincide for both? motion. For a certain class of potentidlscal potentials the
First of all, the operational definition of length employed is fractal dimension would be the same as for free motion.
different. For monitored paths, the authors of R¢fs. 4] What do we want to measure, in particular? We want to
have defined lengtAl as the usual quantum-mechanical ex-measure the geometry of the average quantum-mechanical
pectation value of the absolute value of an increment of potrajectory, in particular we want to measure the average

T Th
(Ly=N(|Ax)= 57 <|AX|>“W-
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aberration from
classical path

L log L
source detector
E a|
Slope = -
\ classical trajectory
(free motion)

FIG. 3. Schematic plot of propagation of massive free particle.

> log ¢ Dashed line: classical trajectory. Full line: quantum-mechanical zig-

zag motion. Note: there is zigzagness in all spatial dimensions, i.e.,

log plot allows one to determine the critical exponent .
length{L) and extract the critical exponent one would pro-

length of the trajectories, then the scaling of this length undef€ed differently: One would introduce an elementary length
variation of an elementary length scale, and finally extract #C2l€AXey, at the disposal of the experimentator. Then one
critical exponent, which is closely related to the fractal di-Would measure the lengtfL) by sequential measurements

mension(Hausdorff dimensionof the trajectory. of position as a function of\Xe; i.e., one would monitor
the path. Again one would expect a power lafi)
Il. REMINDER ON FRACTAL DIMENSION ~Lo(AXexp . Then one would approach the limit

o ) ) . AXgy—0. One would expect for the critical exponerit=a.

A definition of the Hausdorff(fracta) dimensiondy is A typical quantum-mechanical path is sketched in Fig. 3.
given by Mandelbrof2]. He considers as an example how to zigzag motion occurs in the transversal as well as in the
measure the length of the coastline of England. One takes |gngitudinal direction(not shown in Fig. B
yardstick, representing astraight Iine Ofagiven Iengthd_et We have to Say What we mean by e|ementary |ength
denote the ratio of the yardstick length to a fixed unit |e“9th-(“yardstick”). From the experimental point of view it means
Then one walks around the coastline, and measures thfie length scale of experimental resolution when measuring
length of the coast with the particular yardstitkarting a  position. In the following we give several examples of how
new step where the previous step leaves. dfie number of  this can be doneta) Sequence of absorbefscreeny each
steps multiplied with the yardstick lengticharacterized by ith a slit[Fig. 4@]. Here the elementary lengtti is given
€) gives a valud. (e) for the coastal length. Then one repeatspy the distance between the slith) Spark wire chamber
the same procedure with a smaller yardstick, sayDoing [Fig. 4(b)]. Here the elementary lengthx is given by the
this for many values o€ yleldS a functionL versuse. It has distance between the Wire@) Bubble chamber. Here the
qualitatively the shape shown in Fig. 2. One observes for @lementary lengtiAx is given by the spatial resolution of
wide range of length scalesthat the length of the British two different bubbles. In the experimental proposal pre-
coast obeys a power law sented below we will use neither of those, but we will con-

w sider as an elementary length the distance between neighbor-
L(e)=Loe *. 17) ing solenoids carrying magnetic flux because the suggested
experiment is a generalized Aharonov-Bohm experiment.

How could one measure the length of a typical quantum
path by monitoring the position? In principle, this can be
done by a setup of an electron source, a detector, and mul-

a=dy—1. (18) tiple screens with multiple holdsee Figs. &) and §b)]. In
order to measure by which hole an electron has passed,
So, one has an elementary length saaland one measures Feynman and Hibbgl] have suggested two possible experi-
the length of the curvé (e). Thene goes to zero. One looks ments:(a) A light source is placed behind the screfgig.
for a power-law behaviofcritical behavioy and determines 5(@)]. One observes scattering of light from the electron
the critical exponent. The Hausdorff dimension is directlythrough one of the holes. From the scattered light one can

This looks like the critical behavior of a macroscopic observ-
able at the critical point, thua is called a critical exponent.
The Hausdorff dimensiod,, is defined by

related to the critical exponent. determine by which holes the electron has pas@®dis an
alternative, one can arrange such that the screen with holes

IIl. MEASUREMENT OF POSITION IN QUANTUM can move freely in a vertical directidfrig. 5b)]. Before the
MECHANICS AND ELEMENTARY LENGTH electron passes, the screen is at rest. When the electron

passes, it scatters from the screen at the hole. The hole by
In the calculation of the Hausdorff dimension for unmoni- which the electron passes can be determined by measuring if
tored paths in Sec. |, one has discretized time with an increthe screen is recoiling upward or downward, i.e., by measur-
ment At. The average increment of lengthAx|) and the ing the momentum of the screen. One can imagine placing
average total lengtkL) have been determined dynamically several such screens, each carrying several holes. Then one
by the system. One has found a power law~Lq(|AX|)"“  determines the holes that the electron has passed and clocks
and the critical exponenk has been extracted in the limit the time for each passage of a hole, in order to determine if
(]Ax|)—0, which is equivalent ta\t—0, due to the scaling there has been forward movement from the source to the
relation (12). In an experiment, in order to measure thedetector.
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FIG. 6. Setup of Aharonov-Bohm experiment. A charged par-
[ ] L] L]

ticle (electron is scattered from two slits and one observes interfer-
ence in the detector. When placing a solenghdn magnetic flux

- _ tube in the region between the classical trajectories, one observes a
FIG. 4. Measurement of position and definition of elementarygpitt in interference.

length scale\x. (a) Sequence of screens with holés). Wire cham-
ber.

(b)

first one is a kind of technical problem: When we put more
screens between source and detector, then fewer electrons

_ The experimental length resolutiolix is given by the iy arrive at the screen. The counting rate goes down quite
distance between neighboring screens and the distance astically. This can be compensated by a longer beam time,

tween holes on a screen. We want to determine the length ofy ' emitting more electrons. There is, however, another
the path. In order to extract a fractal dimension we need tQ,,re ‘serious problem. Consider alternatia In order to
studyAx—0. Then we run into the following problems: The ot an electron has passed by a particular hole, the electron
is scattered from light with wavelength. The (scattering
source of light of wavelengthh cannot be located in space
with precision greater than order »f Thus when we want to
decrease the spatial resolutidrx, we need to decrease the
wave length A accordingly. Light carries a momentum

/,‘ e 27hIN, which is (partially) transferred to the electron. Thus

b ¥ T | the smallerAx, the larger the momentum transferred to the
E/f,/”/ * electron and the more the original quantum path of the elec-

A tron is altered. This is Heisenberg’s uncertainty principle:

: Any determination of the alternativésequence of holes
taken by a process capable of following more than one alter-
native destroys the interference between alternatives. In other
words, when we determine by which holes the electron has
passed, then the final interference pattern no longer has the
shape shown in Fig. &his has nothing to do with the fact

(a) : that there are several screens; it happens also for one screen
with two holes.

For this reason, we are going to suggest below an experi-
ment without monitoring the path. The experiment is differ-
ent in the following sense: We do not place screens, so there
is no loss in the counting rate. Secondly, our proposal is
= based on the Aharonov-Bohm effect, which is classically a
f null effect, contrary to the above setup with screens, which
classically does not give a null effect. Finally, in our pro-
IEN posal we determine the path via the topology of the
‘ Aharonov-Bohm effect.

g

fl IV. REMINDER ON AHARONOV-BOHM EXPERIMENT

The experiments we will suggest in the next sections are
generalizations of the Aharonov-Bohm effect. Thus it is
{b) OO OO worthwhile to recall the notion of the Aharonov-Bohm effect
and the experimental setup, which has confirmed this effect.
FIG. 5. Measurement of position of holes traversed by an elecAharonov and Bohnj9] have suggested in 1959 that there
tron. (a) Determination of position by electron-light scatterirfh) should be an observable difference between classical and
Determination of position by measuring recoil direction and mo-quantum mechanics when a charged particle interacts with a
mentum of movable screen. magnetic field. In particular, when the magnetic fiGltkal-
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ized corresponds to an infinitely long, infinitesimally thin M detector
flux tube (solenoid, then outside of the flux tube the mag-

netic fieldB=0, but the vector potential is nonzefa = 1/r

in spherical coordinatgsDue to the particular geometry of

the magnetic field, which is independent of theoordinate

(the flux tube is assumed to be parallel to thexis), we

have an effective two-dimensiond@D) system in any plane

perpendicular to the flux tube.
Now consider a charged particlehargeq) passing by X solenoid
[ >

(scattering from the solenoid. Classically, the Lorentz force
is zero. But quantum mechanically, the electron wave func-
tion is affected by the nonvanishing vector potential. Aha-
ronov and Bohm[9] have computed the cross section for
scattering from an infinitesimally thin flux tube with fluk
Choosing the gauge of the vector potential such that the vec-

tor potential takes the form
L] source

A,=0, A,=/2mr, (19)

FIG. 7. Schematic quantum path from source to detector wind-

they find the cross sectiaiin the notation of Ref[10]) _ _
ing around solenoid.

do 1 sid(ma) a¢ _ . .
40 2ak sor2)’ ¢ 2ahc’ (200 between quantum mechanics and classical mechanics, and
moreover, the vector potential is a real physical quantity.
wherek is the wave number. In the Aharonov-Bohm experiment, as described above
The Aharonov-Bohm effect has been confirmed by exthe quantum effects come from the phase change of the wave
periment[11]. The setup corresponds to a two-slit interfer- function due to the presence of t_he vector potential. In order
ence experimentsee Fig. 6. A very thin solenoid is placed to better understand the .experlment suggested bglow, we
perpendicular to the plane in the region between the two slit§€€d to take a closer look into the quantum mechanics of the

and the detectofregion between the two classical trajecto- Aharonov-Bohm effect. It actually turns out that the above
ries. Then the interpretation is as follow42]. One com- explanatlo_n in terms of phase cha_lnge of the wave function is
pares two cases@ The solenoid is turned offflux and ~ Valid only in the case when the distarieéetween the sole-
vector potential are zefoThen there is interference due to N0id and the classical trajectoriésee Fig. §is large com-
scattering from two sources. This is due to a difference in thé@red to the de Broglie wavelength Note that the classical
phase of the wave functiof(B=0), corresponding to the '€9i0N is given byAx>#/p=M2m, and the region of quan-

two trajectories(b) The solenoid is turned offlux and vec- tum mechanics is given b&x%h/p=)\/2w. In general, the
tor potential are nonzerpThen quantum mechanics says presence of the vector potential creates a phase change plus a

that the wave function experiences a change of phase due t?é]alr;?e Or]:Q]ogr?éuzf()tfr]:ahilz\;\;as,\'/(?aflutrr];'ttle?:%r-'rehsls'slsclsc())s:éntop?r:;a
the presence of the vector potential given by curar, W ; J es |

solenoid. This is just the situation, which will play an impor-
. q L tant role in our experimental proposal.
6=46(B=0)+ 7c J dl-A, (21) Schulman[13] was the first to point out the connection
¢ between quantum mechanics and topology in the Aharonov-
whereC denotes the closed curve formed by the two tra'ec-BOhm effect. This holds in the strict sense only in the ideal-
) ) . } ) y o 1€C5zed situation of an infinitely thin and long flux tube. Quan-
tories, S is the area of the interior of this curvé, is the  ,n, paths can go by either to the left or to the right side of
vector potential B is the magnetic fieldg is the magnetic  the solenoid. Mathematically, this is equivalent to a plane
flux, and q is the charge of the particle. Thus the phasewith a hole at the position of the solenoid. Quantum-
change of the interference amplitude due to the presence @fiechanical propagation proceeds forward in time but for-
the vector potential is basically given by the flux through theward and backward in both space dimensi¢zigzag trajec-

regions, tories. Thus paths can occur, which wind around the
é solenoid(see Fig. 7. The classical Hamiltonian in the pres-
Ad=6—5(B=0)= % f a7 A= % 43 B= ‘;L_C ence of the vector potential is given by
c s
(22 1 (. q.\2
H=5 1P Al (23

This change of phas#é shifts the maximum of the interfer-
ence patterrisee Fig. 6. Again, classically there is no such
effect, because the magnetic field is practically zesactly

zero for an idealized solengisdutside of the solenoid and
hence everywhere on the classical trajectory. In summary, :j m 24 q. R(g
the Aharonov-Bohm effect shows that there is a difference S dt 2 X C R-AXY). 24

and the action is given by
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Thus, when considering quantization by path integral, EqNow one allows§' and 6 to correspond to different winding

(6), there occurs an Aharonov-Bohm phase factor due to theumber sectors. One defind=6¢'—6+2mn,,. The free

vector potential present in the action. This factor ispropagator is periodic irf between—a and 7. Then one

exdi (6, — 6, +2mn,)] [see Eq.(29) below], when the definesk™¢(\) by Fourier transformation ok"¢(6),

path windsn,=0,+1,+2,... times around the solenoid, _ 7 de

and a=q¢/27hc. This factor depends only upon the initial Kfree()\)zf — exd —ix0]K™E(9)

and final azimuthal anglé and the number of windings, but ~w 2m

otherwise it is independent of the path. In other words, paths 7 dg  u

can be classified by their winding number; they fall into =j —

homotopy classes. —w 2m 2mAT
Now let us consider the Aharonov-Bohm propagator. For- F{ ;

X ex

i
tunately, this expression can be computed analytically. We A~ [r'2+r2=2r'r cog 0)]}

follow the presentation by WilczeKLO]. The idea is to start 2hT

from the free propagator, and decompose it into classes cor- u i wrr’
responding to winding numbers,=0,+1,+2, ... +x, =T ex;{ﬁ (r'’+r?) l'*(ﬁ)’
Then one takes the free propagator in each winding class,

multiplies it by the Aharonov-Bohm phase factor, and finally (26)

sums over all windings. The free propagatoiDin-2 dimen-

sions is given bysee Ref[14]) wherel ,(z) is the modified Bessel function. Thus the free

propagator in the winding secta, is given by

Kee=(Xgnlexd —iHT/A]|Xn) - NI
Khe(©)= f dr exin@ K™

= e Ir (Xfin—Xin)?
2mihT 24T \fin Sin P

+ o
=J d\ exdiN(@'—6+27n,)] AT

— H I,lL 12 2_ ’ ’r_
=5 T ex;{—zm_ [r"“+r“—2r'r cog 6 0)]}. »
12 2

xexp{—zﬁ_l_ (r'<+r9) . (27)

urr’
"W T
In order to avoid confusion with the magnetic quantum num-The total free propagator, being the sum over all windings is
ber m, the particle mass is denoted yin the following.  then

(29)

| urr’
2mhT AT N TAT

o[ -

+ oo too |
Kree(r',6"r,0)= > f A\ exdin(0 — 6+ 2mn,)] —o ;{—“ (r'24r2)
ny=—® — o0

+o0 ;
_ H r_ H T 12 2
= 2 exdim(6'—6)] AT ex;{—zm_ (r's+r°)

m=—oo

This is the free propagator, as given by E2p), expressed in a more complicated way. However, now it is easy to write down

the Aharonov-Bohm propagator. The Aharonov-Bohm propagator is the sum over all paths, where each path is weighted with
the phase eXpS/#]. The paths can be decomposed into classes with a given winding nampbeheren,,=0,+1,+2, ... .

Thus the Aharonov-Bohm propagator for a given winding nunmhgis just the free propagator for winding numbegy times

the Aharonov-Bohm phase factor. For the vector potential given by, this phase factor given by

iJTdtqﬁ‘{ﬁ\— iq fxfi”d*ﬁ
ex 7 o P . =exX ﬁC . X

Thus one finds the Aharonov-Bohm propagator for winding nunmer

=exfdia(0' —0+2mn,)]. (29

Kﬁf()=fwd>\ exdi(A+a)@]K™N). (30)

The total Aharonov-Bohm propagator is finally given by

+ oo

KAB(r,0;r,0)= 2 Fwdx exgi(N+a) (0 — 0+2mn,) K™\ = D exdim(8'— 6)]K™(\ —a)
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+ oo

— : r_ M I,L,L 12 2
—m:E_w exflim(6'— 6)] 5= exp[—zm(r +r?)

|m_a(%>. (31)

The Aharonov-Bohm propagator, when lettind, r—e«  the cutoffm,,=50. From the convergence test of the free
yields the Aharonov-Bohm differential cross section givenpropagator, we estimate that,,,,=20 should be sufficient to
by Eq.(20) (see Ref[10]). Inspection of the free propagator guarantee stability in the sixth significant decimal digit when
and the Aharonov-Bohm propagator show the followingh=<10. The absolute value of the real part of the difference
structure: Apart from a common dimensionful prefactorbetween the semiclassical and Aharonov-Bohm propagator is
uml2miAT, they are both functions of dimensionless argu-displayed in Fig. &). The corresponding results for the
mentsu(r'2+r2)/25T and ur'r/AT. The Aharonov-Bohm imaginary part are plotted in Fig. 10. As in Fig. 8, this set of
propagator further depends on the dimensionless quantityarameters corresponds to the de Broglie wavelengthOm=
a=qa¢/l27hc. When we consider’ =r large, then we have and the crossing of the quantum-mechanical region to the
velocity v=(r"+r)/T, momentump= v, and the de Bro- classical region occurs &t=5. One observes that when the
glie wavelengthn =2=#%/p=7hT/ur. Then the dimension- distance h becomes large, the difference between the
less argument of the exponential function and the Bessel
function becomesrr/\.

As mentioned above, the interpretation of the Aharonov-
Bohm interference experiment is based on the phase change
of the wave function, making the assumption that the sole-
noid is far away from the classical trajectories. Because we
have the exact expression for the Aharonov-Bohm propaga- °°*
tor at hand, we are able to test this assumption. We introduce
a semiclassical propagator, defined by the product of the free
propagator multiplied with the Aharonov-Bohm phase factor
computed along the classical trajectgsjraight line between
Xin, and X, , zero winding 000316192

0.00316192

Re

Ksemiclasgrr g'-r @)=K™(r’ 0" :r,0)exdia( 6’ — 6)].
(32

Firstly, we have tested the free propagator expansion in
terms of Bessel functions. We have compared the exact ex-
pression, Eq(25), with the expansion in the magnetic quan-
tum numberm, Eq. (28). We have imposed a cutoffi,,
letting the sum run over-m,,=m=m,,.. We have kept
fixed the values of parametefis=1, x;,, Xsn, L=2, T=10,
p=1.L is the length of a straight line betweep andXx;,,
which is the trajectory of classical propagation. We have
chosen the origiriof spherical coordinatego be located at
some distancé from the trajectory of classical propagation

and equidistant fror;, andx;,, . We have variedh from O to -0.0155882
10 andm,,,, from 5 to 15. The reference value, EQS), is
independent fromh and mg,. It has the value -

K™€=0.00316129-10.0155982. This set of parameters cor-
responds to the de Broglie wavelengtk 107 If we iden-
tify the distanceh of the origin with the resolutioi x, then
we cross ah=5 from the quantum-mechanical region to the
classical region. Figure(8 shows the real part; Fig.(8)
corresponds to the imaginary part. One observes rapid con-
vergence inmy,,y.

We have tested the assumption on the asymptotic behav-
ior of the Aharonov-Bohm propagator by evaluating numeri- (b 10
cally the Aharonov-Bohm propagator and the semiclassical
propagator. We have chosen the parameters as in Fig. 8; Now g|G. 8. Free propagator. A comparison of exact result,(ES),
we have variedh anda. The results are plotted in Figs. 9 and with expansion in Bessel functions, E@8). (a) Real part as func-
10. Figure 9a) shows the real part of the semiclassicaltion of distanceh from classical path and of cutoffn,,,
propagator, Eq(32). Figure 4b) shows the real part of the 5<m,,,,<15.(b) Same for imaginary part. For other parameters see
Aharonov-Bohm propagator, E(B1). Here we have chosen text.

-0.0155983
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Semiclassical propagator Semiclassical propagator

Aharenov-Bohm propagator Aharonov-Bohm propagator

Difference between AB and semiclassical propagator

(©
FIG. 9. (&) Real part of semiclassical propagator, E8R). (b)

Real part of Aharonov-Bohm propagator, E®1). (c) Absolute

value of the difference of both. Dependence on distémarad onc.

Other parameters as in Fig. 8, cutoff,,=50. FIG. 10. Same as Fig. 9, but for the imaginary part.
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slitB | _ s classical trajectory
4 s~ -
source - S--l
’ il detector D P
<\\ ______3/ «— ho shift
Sl TN
slit A 1
solenoid

FIG. 11. Setup of Gedanken experiment I. Similar to Aharonov-

Bohm experiment, but the solenoid is placed outside the region
bounded by the classical trajectories.
. shift
Aharonov-Bohm propagator and the semiclassical propaga-
tor tends to zero. Moreover, one observes that the difference
between these propagators is most pronounced for small dis-
tanceh (h—0).

V. GEDANKEN EXPERIMENT | TO SEARCH FIG. 12. Gedanken experiment |, similar to Fig. 11. Sketch of
FOR ABERRATION FROM CLASSICAL PATH interference pattern if there were only two contributing quantum-
IN QUANTUM-MECHANICAL TRAJECTORIES mechanical pathén the neighborhood of the two classical paths

Now | want to suggest a Gedanken experiment in order téf the solenoid is situated outside of the region bounded by the two
show that not only is there a difference between classical angrantum paths, there is no shift in interferertag otherwise there
. IS a shift(b).
guantum mechanics, but that quantum effects come from thé

zigzagness of quantum-mechanical trajectories. The setup is . . . . .
gzag q ) P odulus will show up in the interference amplitude. Its in-

based on the Aharonov-Bohm experiment. But there is somg tation i oll ) i hani di
modification. Contrary to the original experiment, where the erpretation is as follows: Quantum mechanics, expressed in

solenoid was placed in the interigcentey of the region the language of path integrals, tells us that there are contri-

bounded by the two classical trajectories, now | suggest p|aé?““°f?5 from all p05_3|ble paths_. There are paths (_:Ios_e to the
ing the solenoid in the region outsidsee Fig. 1L Let h classical pati{see Fig. 12that give dominant contributions.

denote the distance of the solenoid from the classical trajecThere are paths. far. away from the classical path that give
ery small contributions. There are also paths crossing the

tory A—D. Then we let the solenoid approach the classical’ ; o .
trajyectory(h—>0). Again we consider th%pcaga) when the &rea of the solenoi@in the_ case of finite gxtens@nAs long
solenoid is turned off antb) when the solenoid is turned on. as all paths of propagation between glitand detectoD

The Gedanken experiment measures the change of the intél;"-ziss] bt{] the s_lzligwe side ﬁf the _solﬁn@skdze dFigs.dlll a_ndth
ference pattern between cagasand (b). (a)], there will be zero change in phase and modulus in the

Let us discuss what results we expect to find in this Scei_nterfefence amplitude. B.Ut yvhen paths occur, which pass on
nario, based on our knowledge of the Aharonov-Bohm effecPOth sides of the solenoifFig. 12b)], or eventually wind

and the numerical calculation of the propagator. Firstlyhlet around the solenoid as quantum mechanics predicts, then in-

be large compared to the de Broglie wavelengtiWhenh terference is described by the Aharonov-Bohm propagator

is large, the Aharonov-Bohm propagator and the semiclass{-Or route A—-D and.by the sem|cIaSS|ca! propagator for the
route B—D, producing a change of the interference pattern.

cal propagator coincide. Then as in the Aharonov-Bohm ex- i .
periment, the wave function of an electron experiences ‘J;‘n other words, any difference between the interference pat-

change of phase, given by E{R1). However, the phase terns for magneti(_: fieldB=0 andB+#0 indicates_ that there
change of the interference amplitude, given by @8), now must _be contributions from paths that have deviated from the
has the outcomés=0, because there is no magnetic flux classical pathA—D by at least a distanck. Thus the pro-
through the regionS (between the classical trajectofies posal of expenmerlt | is as follow$l) Measure the interfer-
Thus switching off and on the magnetic field will not pro- €nce pattern wheB=0. (2) Measure the interference pat-
duce a change in the interference pattern. tern whenB+#0, as a function oh. Any difference between
Now suppose the solenoid approaches the classical trajett) and(2) signals that quantum paths have fluctuated at least
tory A-D, but we assume that its distance from the othemby a distancén from the classical trajectory.
classical trajectonB—D is still large. Then the propagator In Figs. 9 and 10 we have presented results in dimension-
corresponding to the trajectorA—D is given by the less units. Now we want to take a look at the behavior of the
Aharonov-Bohm propagator, while the propagator correpropagator for a more physical choice of parameters. We
sponding to the trajectol—D is given by the semiclassical takeh=c=1, thuszic=197 MeV fm=1, and express every
propagator. Our previous numerical results show a markeduantity in(powers of fm. The electron mass ig,=0.511
difference between the Aharonov-Bohm propagator and th&leV/c?=0.259<10 2 fm . We chooseL =2 cm=2x10"
semiclassical propagatéfor propagation between the same fm, T=1 s=3x10?% fm. The diameter of an elementary so-
pointy. There is a difference not only in phase, but also inlenoid used in an Aharonov-Bohm experiment is of the order
modulus. Thus we expect for the interference experimenipf di,~5 wum=5x10° fm. We have variedh from
when h becomes small and when the magnetic field ish=d.,=5x10° fm to h=100d.,=5%10" fm. This set of
switched on and off, that a change of phase as well as gbarameters corresponds to a de Broglie wavelength
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Semiclassical propagator

(a) 5 *1011

Anharonov-Bohm propagator

(b) 5 xlollo

Dillerence between AB and semiclassical propagalor

0.75

Re
0.5

0.25

FIG. 13. Same as Fig. 9, after division by facie®2wiAT. For
physical parameters see text.

A=3.63x10" fm. If we again identifyh=Ax, then we have
27Ax/IN=0.86x10"3 for h=d,, and 2rAx/\=0.86x10"*

detector D

FIG. 14. Setup of Gedanken experiment Il. Same as Gedanken
experiment |, but there are many solenoids.

tion of flux from a Dirac string attached to a magnetic
monopole is given by16] q¢/2rhc=a=n, n=0,1,2 ...
Thus it is reasonable to vagyin the order of unity. We have
varied « from 0 to 3. We have plotted the propagators after
dividing by the common factop/2#i#T. Figure 13a) dis-
plays the real part of the semiclassical propagator; Fig)13
shows the real part of the Aharonov-Bohm propagator, and
in Fig. 13c) we have plotted the absolute value of the real
part of their difference. Figure 18 shows that when the
solenoid has a distance from the classical trajectory in the
order of severatl, there is a marked difference in particu-
lar for «=~1/2,3/2 ..., i.e., half integer. This quantum-
mechanical effect should be observable experimentally.

Summarizing this section, a change in the interference
pattern can only occur due to contributions of paths, which
aberrate from the classical path, in such a way that the sole-
noid is in the interior of the region bounded by the two paths
(coming from the two slits Thus the observation of a
change of the interference pattern in this Gedanken experi-
ment shows directly the necessity to take into account con-
tributions from paths aberrating from the classical path. But
it does not necessarily show that the paths zigzag. The aber-
ration could be a smooth one like a sin curve. In order to get
more information on the geometry of those paths, in particu-
lar on average length, scaling behavior, critical exponent,
i.e., Hausdorff dimension, we suggest another Gedanken ex-
periment.

VI. GEDANKEN EXPERIMENT Il TO MEASURE THE
FRACTAL DIMENSION OF QUANTUM-MECHANICAL
TRAJECTORIES

A. Setup

This setup is a generalization of the setup of Gedanken
experiment |. As discussed above, one needs an elementary
length scaleAx and one has to measure the length of the
trajectory in terms of this elementary length scale. | suggest
taking as an elementary length scale the distance between
two neighboring solenoids in an array of solenoigse Fig.

14). The array of solenoids is placed such that the classical
trajectory coming from sliA passes through this array, while
the classical trajectory coming from the diitdoes not pass
through this array. For example, the array could be placed in
the lower half plane bounded by a line of points that are

for h=100d,,. Thus we are in the quantum-mechanical re-equidistant from the two slits.
gion. Experimentally, the magnetic flux can be varied con- As pointed out above, analytical and numerical calcula-

tinuously in a certain rangel5]. Dirac’s quantization condi-

tions have given Hausdorff dimensiody=2 for free
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guantum-mechanical motion. This is valid for motion in
D=1,2,3 space dimensions. In this sense the trajectory
shown in Fig. 3 is not quite correct: The motion zigzags in
the longitudinal as well as the transversal direction, while in
Fig. 3 zigzagness is shown only in the transversal direction.

This experiment will be sensitive only to zigzagness in the @
plane perpendicular to the flux tubes. The reason is as fol-

lows: The massive charged particle interacts with the vector <=
potential corresponding to the magnetic field of the sole-

noids. The solenoids represdittealized infinitely long and

thin flux tubes. The system is invariant with respect to trans- @
lations parallel to the flux tubes. Any zigzagness of motion in
this direction does not show up in the phase factor
exflig/ficf-d%-A] and hence does not show up in the inter-
ference pattern.

From Gedanken experiment | we have learned that ob-
servable quantum effects occur when quantum paths deviate
from the classical path such that quantum paths go by both
sides of the solenoid. As a consequence, this experiment is
sensitive only to zigzagness on a length scale larger than the
minimal distance between two solenoids i%&x. This is due
to the topological character of our experiment. Thus we ask:
What are the topologically differerthomotopy classes of
paths, corresponding to the given geometry of selonoids as-
suming we haveNg solenoids positioned in a regular array
with next-neighbor distancAx? The topological class of a
path depends on the starting poigt, the endpoinks,,, and
the way it winds around the individual solenoids. One should
note that this does not depend on the sequential order of
winding around individual solenoids. Equivalent paths with L
the same winding but different sequential order are shown in A
Fig. 15. Mathematically, this is characterized by the phase
factor expig/icfcdx-A], corresponding to the patg. If,
e.g., the pathC is closed and winds around solenoids

1,...Ng, respectively, with winding numbers w(i't)=f [AX]exp(i/ASRD) |5 k.t (35)
Ny, ... Ny this phase factor yields oo

> |o
—|o

—lo »[_

> [

FIG. 15. Topologically equivalent paths.

iq representing all paths betwegg,t, andx,t. For the purpose
exr{_ [Nyy+---nny_dn] |- (33)  of the interference experiment one would chogget, cor-
fc s s ; = ;
responding to the source arg corresponding to the detec-

tor. All paths go through either one of the two slits. The
?htegral is a sum over paths. By splitting the action into a
kinetic and a magnetic part the wave function can be ex-
ressed as

From the knowledge of this phase factor one can extract th
winding numbers of solenoids in a unique way, if the flux
valuesg, to ¢, are incommensurable, i.e., their ratios are not
rational numbers. In practice, however, quantum effects i
the amplitude due to high winding numbers become very
small and eventually fon,, larger than some cutoffi w(vT/,t)=Z exp/h Syed Cl
they are no longer detectable in an experiment. Thus we can ¢
allow the ratio of fluxes

i N
Zj: n_j, N ,Nj > Neyoff (34)
The wave function is a superposition of phase factors. Each
The experiment consists of measuring the interferencehase factor has been split into a term representing the
pattern, once when all solenoids are turned off and oncaeight of the free action and a term representing the phase of
when all solenoids are turned on. Any change in the interfera line integral of the vector potential. If we would retain in
ence pattern is due to a change of wave function, thaEg.(36) only one pathC, passing through slit 1 and one path
traverses the array of solenoids. How is the change of th€, passing through slit Zwhich is of course unphysical
phase and modulus of the wave function related to the flux ofhen the interference pattern, given by the absolute amplitude
the solenoids? This is answered by the rules of quantursquared, would be determined by the difference of the phases
mechanics expressed in terms of the path integral: The waweorresponding t&C, andC, (see Ref[12]). But the differ-
function is given by the path integral ence of two line integrals, both going fromy,ty to X,t,

(36)

i "
X exp % deR-A(i,t)

x,t;x0 ,to
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corresponds to a line integral along a closed cutvéfol- on the value ;. From the experiment we know the total flux
lowing C; and returning byC,). Then the second phase fac- R. Thus we can determine in a unique way the winding num-
tor in Eq. (36) would describe the total flux going through bersn; .

the areaS interior to C, as given in Eqs(21) and (22).

. C. Reconstruction of paths: case of many paths
B. Reconstruction of paths: case of two paths .
The above procedure allows one to reconstruct the path, if

The Gedanken experiment measures the interference pahere is a single path. In quantum mechanics there are infi-
tern and hence the change of the phase and modulus of thgely many paths that contribute to the amplitude. How can
wave function. The question is how to extract from this in-ye reconstruct the average path from the knowledge of the
formation about the geometry of paths, and in particulafnterference pattern in the general case? The idea is to take
about the length of the average path. We want to treat thiggyantage of the connection between quantum mechanics
problem in two steps: Firstly, suppose there is only one pathng topology. Recall the discussion of the Aharonov-Bohm
corresponding to each slit. The shift of the phdseof the  effect: The quantum-mechanical free propagator can be writ-
wave function is then given by the sum of fluxes of theten as a decomposition of the free propagator into winding
solenoids in the interior are8. In Fig. 14, those are the nymper sectors and then summing over all winding numbers
fluxes of solenoids 1 to 6, 10, 11, 13, and 14. Suppose Wgeq. (28)]. The Aharonov-Bohm propagator has a similar
know the shiftAé and hence the total flux. How can we tell gecomposition. However, now the contribution from a given
from that which particular solenoids have contributed to theyinding sector is the product of the free propagator in this
flux? This information is necessary in order to trace the trayinging sector times the Aharonov-Bohm phase factor
jectory. It can be answered in the following way: We mustey(j (6’ — 6+ 27n,)] [Eq. (31)]. One aspect of this is im-
assign to each solenoid a particular flux, such that knowingyortant in the following: If one varies the magnetic flux in
the total flux allows one to reconstruct which individual the solenoidp— ¢’ and hencer—«’, this changes of course
fluxes have contributed. This is certainly not possible whenpe total Aharonov-Bohm propagator. It also changes the
all individual fluxes have the same value. This problem ispnaronov-Bohm phase factor in each winding sector. But it
mathematically equivalent to the following problem in num- goes not changehe free propagator in each winding sector.

ber theory: Given is a finite set of real numbers, All this carries over to the generalized Aharonov-Bohm
i=1,...N, and a real numbeR. Suppose we know that the setting with the array oNg solenoids. Again the full propa-
equation gator decomposes into homotopy classes. The contribution

from each homotopy class is the free propagator in this ho-
motopy class times a generalized Aharonov-Bohm phase fac-
tor,

nll’l+"'nNI’N=R (37)

possesses a solution for a set of integer numbers..,ny .
We want to know the following: Under what conditions is iq
this solution unique? A possible answer is the following: eXF{ZWﬁC {(0"=0) pror+ 27Ny + - Ny b |,
One chooses;, i=1,... N as the ratio of large integer num-

bers, which do not possess a common integer divisor. One

imposes a cutoff on the integer numbers<n,;, Where bo= b1+ g (40)
Neutoff IS SMall compared to the integers occurring in the nu-

merators and denominators @f. Then the solution is

unique. Let us give an example;=97/99, r,=101/111, The important aspect is again: Changing the fluxgs

R=8463/10989. Then changes the full propagator, but does not change the free
propagator in each homotopy class.
8463 97 101 Thus experimentally, we have a way to determine the free

(38)  propagator corresponding to a given homotopy class. We
introduce a cutoff in the winding numbers<<n.. What

. . value would one attribute ta.«? In a Gedanken experi-
possesses the solution=—2, n,=3, but no other intéger o0t one considers an idealized situation neglecting experi-
solution for say—3<n;<3. _ . mental errors. In such a situation one would consitlgf,
_Here we have made the following association between thgq 5 harameter that should be increased until the Hausdorff
integer numbers and our experiment: dimension of the quantum pattSec. V) converges. In a
more realistic situation one faces experimental errors or more

10089 M99 M2 111

Retotal flux, precisely thresholddimits) of experimental resolution. One
expects that winding numbers beyond the cutoff give contri-
rj=«flux of individual solenoidj, butions to the amplitude that are of the order of experimental
errors and hence cannot be detected. The relation between a
n;=winding number of path given experimental threshold and the corresponding value of
Neutoff COUI be estimated via a numerical simulation of the
around solenoid. (39  path integral.

This cutoff makes the number of homotopy classes finite.
Suppose we have tuned the magnetic field of the individualet us enumerate the homotopy classesnhy 1,2,...Ny.
solenoidj, such that the corresponding individual flux takes The experimenter chooses a set of fluxes of the solenoids:
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oM, i= 1,...Ng. Then he measures the corresponding interfor N different sets of fluxes. The gathered information is
ference pattern, saly”. Then the experimenter chooses an-then sufficient to determine the free propagators in the ho-
other set of fluxes of the solenoid${®, i=1,...Ng, and  motopy classesi,=1,...N,,. The wave function for emis-
measures again the interference pattefh, This is repeated sion from the source at,,t, is given by

i _
P(X,t)= ; exp’/ﬁSﬁee[C]exr{% fcdi-A(z,t)

X,t;XO,to

iq ,
:ﬂZh Kg:eex;{zﬂﬁc {(0"=0) pror+ 27Ny by + - -ny by I} |- (41)
The interference pattern is given by the squared modulus of the wave function
I =|g(X,1)]2. (42
Thus considerindNg different sets of fluxes, one has
(f)_— free iq ’ (f) (f) (f) ? _
1= K%exg ——[(6'— 0) i) +2m(ni el '+ -ny U N]|| . F=1,...Ng. (43
np h 2mwhce S S

Because a given set of fluxes and a given homotopy class factor of the vector potential does not distinguish the paths,
determines the generalized Aharonov-Bohm phase factoguch as, e.g., in Figs. (& and 1%b). These two paths be-
and the free propagator in each homotopy cm%? isinde- long to the same class. These two paths can be transformed

pendent of the fluxes, this equation allows one to determindtC_€ach other by deformation of paths and applying the
L free _ ollowing rule: When two oriented paths cross each other,
the unknown coe1‘f|C|entsKnh , n,=1,...Ny. Because

they can be cut at the vertex such that each each piece has an
KL’:e are complex numbers, and the flux¢sand vector po- incoming and an outgoing line relative to the vertex. For
s ofach class we define a representative path, which passes in
d the middle between two neighboring solenoids. Then one
" draws a straight line from the middle of one of those pairs to
the middle of the next of those paifsee Fig. 16 Each of
those representative paths is defined by a given sequence of
D. Length of paths pairs of solenoids. What representative path do we as(sociate,
. .g., to those topologically equivalent paths of Figs(al5
Suppose we know by now from experiment the values Ofaemd 1%b)? Because the length of the curve is expected to go
n, corresponding to a given homotopy clasg. What o infinity, whenAx—0, we are experimentally on the con-
length of path would we assign to it? Consider the array ofservative side, if we choose the shortest path from those of
solenoids with distancAx between neighboring solenoids. Figs. 15a) and 18b), that is, the path that goes forward in
Homotopy classes are distinguished by the phase factor dhe longitudinal direction, except for loops around individual

the vector potential eXjm/ic/-dx-A]. We start by grouping solenoids(this is shorter than doing one loop around two
paths Occurring in the path integraL H@G), into classes: SOlenOid$ Thus the rule for representative path is as fol-
Two paths are in the same class, if they can be made identiows: It starts atx;, and arrives aky,. It goes by pieces of
cal by stretching and deforming without crossing a solenoidstraight lines always passing in the middle of a pair of sole-
This reflects the fact that we cannot resolve any structure oR0ids. The representative path is determined by the winding

a scale smaller than the resolutiax. Moreover, the phase Nnumbers corresponding to the solenoids of the array. Among
several paths compatible with the same winding numbers,

the shortest path is taken as the representative path. That
. means that each loop goes around at most one solépasd
e Solenoid . . . .
contributing to flux sibly several times An example of such a path is shown in
Fig. 16. In this sense, we associate to each homotopy class a

tentialsA are real, we need at least twice as many set
fluxes as the numbeN, of homotopy classes considere
Ng>2Ny .

Solenoid . 4
" n::ec'::tribuung representative path. Let us denote those representative paths
to flux by C,. Then we define the classical length of the trajectory
as follows:

Lcr(Ax)zsum of length of pieces of straight line.

44
FIG. 16. Gedanken experiment Il. Prescription how to associate (44
a length to a particular quantum path corresponding to Fig. 14. Finally, we want to obtain a quantum-mechanical expression
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for the length of paths. The general expression is a weightedefinition Eq.(46) proposed to be applied in the experiment.

average given by the transition element These definitions differ in two aspect§) While Eq. (45
describes the continuum limit and takes into account infi-
. nitely many paths, Eq46) is an approximation, taking into
2 Lc expliS[CJ/A} account only a finite number of paths. This is the same kind
(L)= ; (45) of approximation as is done when replacing an ordinary in-
2 exp{iS[C]/A} tegral by a finite sum. When lettingx go to zero, the num-
C

ber of paths tends to infinityii) The more serious difference
is the fact that while Eq(45) represents all paths, E(#6)
chooses only one representative path for each homotopy
class, although there may be several topologically inequiva-
lent paths in the same homotopy class. An example is shown
n Fig. 15.
Finally, let us suppose the experiment were performed
and the experimenters would have extraatgd=1.5 = 0.1.
What would one conclude from this? Firstly, such a result
@ould establish that guantum paths are fraci@sything
with d,>1). But then one would ask the following: For
fieoretical reasons, would one expect to fihd=2. What is
the reason for this difference? As pointed out above, the
theoretical resuld,;=2 is not rigorously established. Thus it
E |_Cr expliS[n,]/A} may be thatdy=1.5 is the correct answer ard{,=2 is
(L(AX))= Cr (46) wrong. However, this is quite unlikely. Nevertheless, it is
) ' very desirable to get a firm theoretical answer. This could be
; expiS[nn]/A} done by proving Eq(13) or at least by solving the path
' integral by computer simulation in real time and extracting
where dy=2. Suppose the latter had been achieved. Then one
would conclude that the proposed experiment is incomplete,
) free iq ) in the following sense: It shows that quantum paths zigzag,
expiS[ny ]/} =Kp, "exg 5 1(6" — 0) duor but the experiment “does not capture all zigzagness.” Pos-
sible errors are as followga) The upper limit of winding
number imposed in the experiment is too smdd). The dis-
(47 tance between solenoidsx is too large.(c) The chosen
definition of representative path in a given homotopy class,

and K7°® has been determined from our experiment. Thisnamely the shortest connected path among topologically in-
ylelds(L) for a given array of solenoids, characterized byequwalent paths within a homotopy class, is incorrect. Errors

AX, in the presence of the vector potential of the solen0|ds( a) ar;)d (b) alr)etqutes;uonsblof expherlmdental preC|IS|on Wh'Cht
But we can also obtain the length in the absence of the vectr%fay € a substantial problem when doing a real experimen

where the sum goes over all possible pathshat go from
the source att, to the detector af;,. This is meant to be the
same length definition as given in E3@.5), but takingN—o»
and introducing a normalizing factor. In the discussion of;
experiment Il we have introduced an elementary length scale
Ax. In order to obtain an operational length definition for the
experiment, we replace the infinite sum over all paths in Eq
(45) by a finite sum over the representative paths and th
weight factor exfiS/#] is given by the action in the homo-
topy class corresponding to the representative path. Thus
obtain

+2m{nygy+ Ny oy

potential, i.e., corresponding to free propagation: The lengt owever, we do not consider it a serious conceptual problem

I Eq.(46). But th ht f in a Gedanken experimeniThe most serious point and pos-
Lisnztgllg;migsb;-zg (isﬁihe# t the action weight factor, put sibly the weakest part in our view {g). If the definition of
| 1

the representative path is incomplete, one cannot test quan-
exp{iS[nh]/ﬁ}=KL'ee. (48  tum mechanics. In order to verify the propos_ed length de_fi-

h nition of a representative path, we suggest doing a numerical
simulation of path integrals in the presence of the solenoids
and computing the quantum-mechanical length as defined by
Eq. (46) with that defined by Eq(45).

Finally, in order to extract the Hausdorff dimensidp, we
have to measure the length(Ax)) for many values ofAx,
look for a power law behavior wheax—0, and determine
the critical exponent and thud, .

At the end of this section we discuss limitations and er-
rors. As a consequence of the fact that this experiment is not
sensitive to the zigzagness parallel to the solenoids, we do We have made a proposal of how to observe experimen-
not measure the length of the path but only its projectiortally the zigzag motion of quantum-mechanical paths. We
onto the plane perpendicular to the solenoids, i.eDin2  have suggested two experiments: Experiment | is conceived
dimensions. Nevertheless, the length as such is physicallp show the existence of zigzagness. Experiment Il is con-
not so interestingit depends o\ x anyway. The physically ceived to determine the average length of path, its scaling
important quantity is the critical exponeftiausdorff dimen-  behavior whenAx—0, and eventually the corresponding
sion), which corresponds to taking the limix—0. But the  Hausdorff dimension. Finally we want to return to the
latter should be the same in any space dimension. Heisenberg uncertainty principle, as discussed in Sec. Il in

Let us comment on the two length definitions employedthe context of the multislit experiments. It says the follow-
here: Firstly, there is the general definition, E¢5) ex-  ing: The higher the precision in measuring positions to de-
pressed as a path integral. Secondly, there is an operatiortgifmine a quantum path, the more it will change the interfer-

VIl. SUMMARY
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ence pattern of the quantum amplitude. What relevance doege do not determine the holésr pairs of solenoidsthat the

this have to our experiment? What does our experiment havelectron has passed, but relative amplitudes for classes of
in common with the multislit experiment of Sec. 11I? Where quantum-mechanical paths.

does it differ? Firstly, in the multislit experiment the spatial  Finally, let us comment on the practical feasibility of our
resolution is given by the distance between holes and thgroposed experiments. Certainly experiment | is much sim-
wavelength of light. In our experiment the spatial resolutionpjer. Assuming the diameter of a realistic small solenoid to
is giVen by the distance between solenoids. Thus the arl’ay (H:e of the order OﬂSO|:5 pum, we have seen that quantum_
multiple screens with multiple holes corresponds to the arraynechanical effects should be clearly observable when the
of solenoids. This is a common feature between our experisplenoid is placed in a wide range of distantesg).,h=d,
ment and the multislit eXperiment. However, the rest is dlf'to h= 100jsol for the particu|ar choice of the paramemrs
ferent: In the multislit experiment, by interaction with light, from the classical trajectory, provided that the flux is such
one determines the holes passed by the electron, but at thgat « takes values in the neighborhood of half integer num-
same time modifies its quantum path and hence its interfelhers. The second experiment is more difficult. However, part
ence pattern. In our experiment, for each set of solenoidsf the experiment can be tested by comparison with theory:
with a given set of fluxes, corresponding to time-independentor the case of one single solenoid, the homotopy classes
vector potentials, one does not measure the position, but thghd the free propagator in each homotopy class are known

undisturbed interference pattern of the electron propagatingnalytically. This can be compared with the results of the
in the vector potential. Then one changes the set of fluxegxperiment.

(but not the position of solenoifisand measures again the

interference pattern. This is repeated a number of times. The

crucial point is this: Changing the fluxes of the solenoids ACKNOWLEDGMENTS

(and hence the vector potenjiadoes not change the free
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