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Perfect quantum-error-correction coding in 24 laser pulses
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An efficient coding circuit is given for the perfect quantum-error correction of a single quantuigubit)
against arbitrary one-qubit errors within a five-qubit code. The circuit presented employs a double “classical”
code, i.e., one for bit flips and one for phase shifts. An implementation of this coding circuit on an ion-trap
guantum computer is described that requires 26 laser pulses. Another circuit is presented requiring only 24
laser pulses, making it an efficient protection scheme against arbitrary one-qubit errors. In addition, the
performances of two error-correction schemes, one based on the quantum Zeno effect and the other using
standard methods, are compared. The quantum Zeno error correction scheme is found to fail completely for a
model of noise based on phase diffusip81050-29477)03902-4

PACS numbd(s): 03.65—w, 89.70+c, 89.80+h, 02.70—c
INTRODUCTION EFFICIENT CODING

Various authors[4,5,8 have presented circuits imple-

_ Quantum-error-correction schemiels-g| hold the prom- menting five qubits that protects one qubit of quantum infor-
ise of reliable storage, processing, and transfer of quantum

. . . 5 mation. This code is described as “perfect” since it allows
information. They actively “isolate” a quantum system from for the complete correction of arbitrary single-qubit errors
perturbations, which would otherwise decohere the stat b y single-q '

[9,10]. How quickly this decoherence occurs depends, to he term qub|t[15]_represent_s the amount of “quantum
large extent, on what degrees of freedom are inVolvedlnformatlon stored in an arbitrary two-state quantum sys-

single- or many-body, electronic, nuclear, etc. In principle,tem_') In th's §ecthn a simpler ver5|on.of the Laflameteal
however, the development of quantum-error correction gicoding circuit[5] is presented. We discuss the structure of

lows one to decouple a quantum state from arbitrary fewﬂ_‘e circuit and cpnsider its efficiency. The measure_of effi-

particle perturbations. ciency used 16] is the number of laser pulses required to
The decoupling in quantum error correction schemes igmplement the scheme on an ion-trap quantum computer. A

achieved by unitarily “rotating” the state into one involving Second circuit yielding a slightly different version of this

a larger number of degrees of freedom. In this larger spacgode was found by a computer search and is the most effi-

the information about the original state is recorded only incient circuit so far constructed for one-bit encoding.

multiparticle correlations. Thus, if only a few particles un-  Figure 1 shows our simplification of the five-bit coding

dergo decohering perturbations, the multiparticle correlation§ircuit of Laflamme et al. [5]. This circuit uses single-

are not destroyed, but only mixed among each other. Afteparticle rotations

determining which few-particle perturbation has occurred we

can unmix the multiparticle correlations and hence recon-

struct the original state. If, by contrast, decohering perturba- W) [T e—

tions accumulate over too many particles then the multipar-

ticle correlations are no longer isolated and the error

correction begins to break down. |0> —{o]+—D
In this paper an efficient coding circuit for arbitrary

single-quantum-bitqubit) errors is given. lts efficiency is |0> T o)

quantified relative to a specific quantum computer model:
Cirac and Zoller's ion-trap modgll1]. Next, two schemes

. - . . - |0> Fan a
designed to protect against single-qubit phase noise are stud- N % A%
ied. One scheme relies on the quantum Zeno effeé2113
and uses two qubits to protect against “slow” perturbations |0) &b &

of the system; the other is a more conventional quantum-

error-correction schem(®,7,14 that requires three qubits to £ 1. Efficient quantum five-qubit error correction circuit. The
protect against arbitrary single-particle dephasing. The poogystem starts at the left and is successively processed through each
behavior of the Zeno schemes is discussed and explained.qf the elementary gates proceeding from left to right. Here the qubit
|) is rotated into a protective five-particle state by the unitary
operations represented by the elements of this circuit. The three-
*Permanent address. qubit gates shown are simply pairs of controlled-NOT gates.
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represented by the square “one-qubit” gates in the circuit
and two-particle controlled-NOT gates |0>
1000
0) EHe H
0100 @
= = ; 2
b 0001 0) o3 [} [ H7]
0010 FIG. 2. Circuit from Fig. 1 rewritten in terms of the gate primi-

tives of an ion-trap quantum computelrl]. The single two-qubit

here the® notation is chosen because of the equality of theoate is the conditional, operation defined in Eq2) and pairs of
controlled-NOT  operaton and the mathematical them are drawn as three-qubit gates. Each single-qubit rotation re-

. . A .. quires one laser pulse, the two-qubit gate requires three pulses, and
exclusive-OR operation. The conditiona} operation itself the three-qubit gates, if implemented as single elements, require

is given by only four laser pulses eaghi6]. This circuit, therefore, uses a total
100 0 of 26 laser pulses.
_ 010 0 . 3 —]01010 —|01100 —|10000 +|10110 +|11003
o: 001 0 +|11113)
000 —1 = a(|b2)[00) +[bs)|01) +[b7)| 10) + | by)[11))

Here these elements are represented in the basis where +B(|b1)[11) —[bg)[10) + |bg)[01) — [b2)|00)), )

10)=(0),1)=(3), and
where the| b;) are the three-particle Bell states defined by

00)=(1,000" Laflammeet al.[5]. Here we have dropped the normalization

- constant. This code is clearly idential to the Laflameteal.
09)=(0,100" , code up to the relabeling of the Bell states.

T How efficient is this coding scheme? One measure is ob-
110=(0,01,0" (4) tained by asking how many ‘“clock cycles” are required to

T execute the scheme on a quantum computer. The most prom-
111)=(0,0,0,1" , ising device, at least for relatively small numbers of two-

o . : .. state systems, is a linear ion-trap model suggested by Cirac
etc. Decoding is executed by running the coding circuitryang zolier[11]. In this model the basic clock frequency is
backward, f|.naIIy recovering the original state after a fewjited by that of the center-of-mass mode of the trapped
extra operation$s, 17]. , _ . ions as they undergo coupled oscillations. This limitation
_ The circuitin Fig. 1 has an interesting structure: The cod-yjses from the requirement that the laser linewidths be nar-
ing initially entangles four auxiliary particles and then ex- o\ver than the lowest vibrational mode of the ions, thus en-
ecutes a double “classical” code on the state 10 be protected;ing that only the correct energy levels are addressed by
This “stores” the degrees of freedom f) in the correla-  yhe |aser pulses. The energy-time uncertainty relation there-
tions of a five-particle entangled state. The classical codeg, e implies that the duration of the laser pulses must exceed
each consist of a simple triple redundancy of the qubit on thene jnyerse frequency of this lowest vibrational mode. We
upper line of Fig. 1: The first classical code may be inter-en conclude that for ion-trap computers the number of laser
preted as protecting against random bit flips and the secondses required to complete a particular algorithm is a rea-
against random phase shifts. This double code was motivated) aple measure of its efficienyg).
by theorem 6 of Steanff]. He found, however, that such  paiher than directly using the circuit in Fig. 1, we opti-

double coding required a minimum of seven qubits for ayze it for the particular primitive instruction set of the ion-
linear quantum code. The circuit in Fig. 1 produces a code[rap quantum computer in the manner shown in FigNaite

that is not lineaf5}. éhat the three-qubit operations, the controlled doubjep-

To see that the above circuit reproduces the Laflamm . .
et al. code it is sufficient to consider how this circuit acts on eraﬂons, reqlélr)c(e) only four laser pulses each, as demonstrated
' in the Appendi

g.n a.rb_lfcrary_qubm 'ﬂ>:a|0>+'8|1.>' W'th the auxiliary qu- A simple counting of the requirements for the circuit of
its initially in the state$0) the circuit generates the super- _. : S P
Fig. 2 yields 26 laser pulses. By contrast the original circuit

position of Laflammeet al. [5] appears to require at least 41 laser

00000 + 100110 + 01001 — 01111 + | 1001 pulses. Another scheme using six two-qubit controlled-NOT
o] 0+ 0+] b h+| ) gates and five one-bit gates was mentioned in R&f. its

+]1010D +|11010 —|11100) + B(]00012 — 00102 unoptimized form requires 35 laser puldas].
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|¥) 2 ) —
0) 3 0) AT=—
1-qubit dephasing
0) —{v} .
FIG. 4. Quantum Zeno error correction schef®,13. Both
coding and decoding circuits are showfihe shaded region repre-
IO) 5. T @'— sents one-qubit dephasing.
|0y 7] . arbitrary one-qubit dephasing. How do these schemes com-

- . . o are?
FIG. 3. Best known circuit for encoding a single qubit in a pare . . .
five-qubit error correction code. As shown, 24 laser pulses would be Figures 4 and 5 show complete coding and decoding cir-

required to implement this circuit on an ion-trap quantum computer.CUItS for both schem_es. Clearly, the Zeno scheme use_s fewer
resources and requires fewer gates to operate so it has a

distinct implementational advantage over the more conven-

It is worth noting here that short of trying all possible

circuits it is not known in general how to determine the ional schemes. _ _
optimal circuit. Much of the optimization achieved here is  ©ur model for dephasing assumes that the phase in each

actually hidden in the choice of the circuit in Fig. 1, where adubit undergoes an independent random walk according to

number of rearrangements were tried by hand to yield the
“simplest” circuit. More efficient circuits than shown in Fig.

2 can be found by computer search. In fact, we show ouK
current best in Fig. 3, where we define two new one-bit op

2|0)+ B|1)— a|0) + pe' V| 1) (7

up to normalization where the perturbing phaseégt) are
‘given by the Ito stochastic calcul(i2g0] with

erations
. $(0)=0,
L 11 —|> f e
V= E( i g W=VUTL (6) ((de(1)))=0, (8)
As shown, it requires only 24 laser pulses, not counting fur- ((de(t) de(t)))=25(t—t")dt,

}Psegﬁgi?td;gfe?mh as paralleling the operation of several 8{0., whered ¢(t) is the Ito differential and the doubled an-

An alternative method of error correction has been Suggular brackets represent stochastic averages. !Equéjlbon_
gested by Vaidmast al.[13]. Its operation involves a circuit therefore describes our model of the shaded regions in Figs.

that can provide only error detectiamot error correction; 4 and 5. . N .
however, by sufficiently rapid operation of the circuit the H.OW do each of the above error correction CII’CU!'[S work if
guantum Zeno effect allows it to “turn off” the relatively apphed only after_ the er_he}smg has acted for a ifnee-
slow errors. Using the quantum Zeno effect it corrects fo#ay”ﬁg th_e decoding circuit in Fig. 4 for a timeafter the
small single-particle perturbations of the system rather thar{;OdIng yields

the arbitrary single-particle errors of the standard schemes. <|a|2

Nonetheless, quantum Zeno error correction has the advan- =

Ez) <|a|2 e Ba
- e

aB 182 " \etap |/s|2)’ ©

tage of only requiring four qubits. Further, we find that the
coding and decoding may each be executed using as few as A
16 laser pulses with possibly only one extra for the auxiliarywherepy is the initial density matrix for the qublt); i.e.,
qubit resetting. How effective are these error correctionthere is no improvement using the Zeno error correction
schemes that rely on the quantum Zeno effect? We shall noscheme for this model of noise even for short times. A simi-
evaluate their performance for correcting phase-diffusiorar result was noted by Chuang and Laflamh2]. By con-

noise. trast, a delay for time in circuit 5 before decoding yields
ZENO VERSUS STANDARD QUANTUM-ERROR po—(2+3e~'—e™) pola+(2+e"*—3e™") g, po 0,/4,
CORRECTION (10)

In this section we compare the performance of Zeno and

standard methods for quantum-error correction. Rather than [¢p) —— P— |¥)

considering the schemes discussed in the preceding section,

however, we study simpler schemes that protect only against |0> —4

one-qubit dephasing. In particular, we compare a compact

two-qubit code given by Chuang and Laflamifi], and |0> —q

independently by Vaidmaret al. [13] versus a standard

three-qubit cod§6,7,14]. The two-qubit scheme relies on the 1-qubit dephasing

guantum Zeno effect to correct f@mmall deviations in the FIG. 5. Standard quantum one-bit dephasing correction scheme

system’s state, whereas the three-qubit code can correct fgr4]. Both coding and decoding circuits are shown.
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are repeatedly used at a rate faster than the typical time be-
tween random steps of the phase: the phase-diffusion time
itself is already much too slow. How fast does this need to be
in practice? That depends on the detailed source of the phase
diffusion: For instance, it might be relatively slofthough
still faster than the phase diffusion tilng&hen the principle
source of noise is due to external mechanical noise. Other
models, however, are very much faster: Unry®bstudy of
decoherence due to vacuum fluctuations in the electromag-
0 05 1 15 ) netic field coupling to a qubit yielded a time scale compa-
rable to x-ray frequencies.

¢ It is worth mentioning two error “stabilization” schemes
_ FIG. 6. Measure of coherence for no error correctisolid o\ iilize the Zeno effect: ZurdR3] has outlined a scheme
line), the Zeno error correction scheme of Fig. 4 at timésolid

) ) ) ) : that averages several copies of a computation and Berthi-
line), the three-qubit scheme of Fig. 5 at timmédashed line, repre- . . .
senting the lower boundand the tenfold repetition of the three- aumeet al. [24,29 have considered in some detail a scheme

qubit scheme by timé (dotted line, representing the lower bojyind t.hat projects several copies of a computation to the symmet-
ric state. Because these schemes evenly spread errors over

ith o= (0 1y pei f the standard Pauli matri several copies of a computation rather than attempt to correct
with o= (3 o) being one of the standard Pauli matrices. o it may be that they circumvent the problem with

_ Ameasure ofrelativg coherence betwgen a pair of SFatesdephasingl discussed here. We leave this question open for
is given by the absolute value of the off-diagonal terms in th%rther study.

038
0.6

C(t)
04

02

density matrixp(t) [21], Quantum-error correction of arbitrary single-qubit errors
N is rather costly of computing resources: a minimum of five

ce) (1lp(1)]0) 11) qubits and possibly 24 laser pulses for codidgcoding be-

<1|;)o(t)|0> : ing only slightly more expensivgl7]). This might be com-

pared with the resources required to execute a moderate un-

The two-qubit Zeno error correction scheme y|e|ds protected calculation; Beckmagt al[16] show that the Shor
algorithm could be implemented on 6 trapped ions using

Coquoilt) =€, (120 only 38 laser pulses to factor the number[22]. Alternate

_ error correction schemes based on the quantum Zeno effect
whereas the standard three-qubit scheme has a cohereng@ much more efficient to implement. However, they fail for
bounded by its worst case simple models of decoherence, such as the model of phase

diffusion considered here.
CS—qubil(t)B(3e_t_e_3t)/2 . (13

Finally, we note thah evenly spaced repetitions in a time CONCLUSION
t of an error correction scheme will yield an improved co-

. In conclusion, because error correction is virtually as ex-
herenceC according to

pensive as the simplest error-correction-free computations, it
M shorey =ret/n) 1 14 appears unlikely that full _quantum-error _correct_|on will be
t=[ct/n)] (14 implemented for computational purposes in the first few gen-

The performances of the Zeno two-qubit scheme, converrations of quantum computers. Instead, quantum-error cor-

tional three-qubit scheme, and a tenfold repetition of the latfection will probably initially play an important role in the

ter are displayed in Fig. 6. long-term storage of quantum information: implementing a
Why does the Zeno-error-correction scheme fail to work{fué quantum memory.

for the noise model of E(7) even at short times? Put sim-

ply, the random-walk model for dephasing implies that the ACKNOWLEDGMENTS
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sumes that the former of these time scales is so short as to be

negligible. This means that in this model of noise, no matter APPENDIX: QUANTUM NETWORKS ON ION TRAPS

how quickly we operate the Zeno-error-correction scheme ~

many stochastic steps have occurred. The averaging over In this appendix we describe how controlled doublg

these many random steps in phase produces a pertubabtioperations may be performed in four laser pulses on a Cirac-

that overwhelms the linear correction to the state. HoweverZoller ion-trap quantum computgt1]. These operations are

the Zeno-error-correction schemes discussed app2e3  thethreequbitoperations seen in Fig. 2. Labeling the ground

require that the change in the system’s state be dominated and excited states of idnas|g); and|e);, respectively, and

linear terms. The implications are that phase diffusionds  the Fock state of the center-of-mass vibrational mode of the

corrected by these Zeno-error-correction schemes unless theyap as|n).,, we summarize two important operations: A
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suitably tuneds pulse on ioni yields the operatiofil1,16 where 7= (1— 7). Reading from left to right, this circuit
19)il0)cm—19)il0)cm. decomposes t/{IVESVAWQD | where now we must ex-

190 D) em— —i[€);]0) plicitly add the numbers of the ions. Since these circuits only

W) - 97ilZlem. neem (A1)  involve conditional phase changes it is sufficient to ask what

Prot 1€)i[0)cm— —19)il L)e.m. phases accumulate as we operate the various pulses. We see

le)i| D em—1e)1)em. » that whenever there is aaven number of phases to be
o o flipped (i.e., an even number of pulses the phases accu-

whereas a differently tuned=”pulse on ionj yields[11,16] mulated from pulses on the control bits are unwanted and

|9>j|0>c.mﬁ|9>j|0)c.m. need to be canceled by applying the inverse f)peration the
19)1|1) —lg)i|1) second time around. In particular, here we amNg(hon the
c.m c.m

(A2)  second time since we applieﬁiphOn the first. Similarly, be-
|e>j|0>c.m._’|e>j|0>c.m. v
low where we make use df'phon for a second and further

&)/ Lem—le)|Lem. - control bit, we must use/phon the second time whenever

Finally, another appropriately tuned pulse on ionj yields there is an even number of bits to have their phases flipped

(11,16 (i.e., an even number o&f’s).
We now give two more example constructions
|g>j|0>c.m._>|g>j|0>c.m. g s P WT
\”/(j) ) |g>j|1>c.m._’_i|e,>j|o>c.m. (A3) phim phon
P 1€)i10)em—1€);|0)cm. Vohon Vohon
|e>j|1>c.m._’|e>j|1>c.m. ) Vphon - f/]:hon -
where|e'); is adifferentexcited state of ion). 1%
Using these operations and taking the trap’s vibrational = R
mode intially in the ground stat®) ,, we find 1% (A6)
W ()T \ V k)V J)W(lh()n' |6>i| 771>J| 772>k—>( - 1) 71€ — (—Z.)El (—i)€2€] (_i)€35251 (_1)771636261
X ( - 1) ”26| €>i | 771>j| 772>k . (A4) X (_1)ﬁ2€362€1 (+Z')€3€261 (+Z‘)E261 (+i)€1

PN — —- mes€2er M2€3€2€1
This completes the construction of the controlled doubje = (=1) (1) ’

operation. We note that this construction requires only four
laser pulses as opposed to the six required to perform the two

In order to see how to generalize this approach let us
introduce a different notation. We start by labeling the states
to be acted on bye;, €, ..., 71, 7, .. .), where thee; .
represents thgth control bit andz, represents thth con-  and as a final example

1) t\7(2) T (3) T\ (5 4)\/(3 2
WSRO R T (AT

trolled bit. When only a single of either kind of bit occurs we —Wohon = Wphon—
drop the corresponding subscript. Then we introduce a . .
space-timadiagram of events on the ion trap to replace the — Vohon ™ Vphon ——
usual circuit notation. In these space-time diagrams the hori- .
zontal lines represent the world lines of the idits an ex- |4
actly analogous way that they do in the usual cirquits- v
nally, we superpose on these world lines the events =
corresponding to an appropriately tuned laser on each ion. In 14
this way Eq.(A4) becomes
(A8)
- Aphon thon - = (_i)el(_i)gzel(_1)7—“€2€1
V X(_l)ﬁ25251(_1)ﬁ352€1( )6261( 2)61
V — (_1)7716261(_1)7726261(_1)7735251 ,

= (=) (=D (=1)P(+0)
= (=D)™(=1)™,

which correspond to the series of laser pulses

(A5) Mho V:J%)o V<5)V \A/(S)\’\/( Mhon ' (A9)
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