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Aharonov-Bohm interference in the presence of metallic mesoscopic cylinders

Silviu Olariu
Institute of Physics and Nuclear Engineering, Sectia a III-a, 76900 Magurele, Casuta Postala MG-6, Bucharest, Romania

~Received 3 June 1996!

This work studies the interference of electrons in the presence of a line of magnetic flux surrounded by a
normal-conducting mesoscopic cylinder at low temperature. It is found that, while there is a supplementary
phase contribution from each electron of the mesoscopic cylinder, the sum of these individual supplementary
phases is equal to zero, so that the presence of a normal-conducting mesoscopic ring at low temperature does
not change the Aharonov-Bohm interference pattern of the incident electron. It is shown that it is not possible
to ascertain by experimental observation that the shielding electrons have responded to the field of an incident
electron, and at the same time to preserve the interference pattern of the incident electron. It is also shown that
the measuring of the transient magnetic field in the region between the two paths of an electron interference
experiment with an accuracy at least equal to the magnetic field of the incident electron generates a phase
uncertainty which destroys the interference pattern.@S1050-2947~97!03501-4#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

In an Aharonov-Bohm~AB! experiment@1#, the incident
electrons are prevented from entering the region of the m
netic flux by certain shields. If these shields are superc
ducting cylinders or mesoscopic cylinders at low tempe
ture, the shielding electrons occupy states which pos
phase coherence around the line of magnetic flux. Th
shielding electrons could in principle bring an addition
phase contribution to the conventional AB phase shift of
incident electrons. Experiments carried out by Lischke@2#
and Tonomuraet al. @3# have demonstrated, however, th
persistence of the conventional AB shift in the presence
metallic shields.

The absence of a supplementary phase shift due to
shielding electrons has been explained in the case of a
tallic shield at normal temperature by Peshkin@4#, who
pointed out that one could imagine the conductor as be
cut, so that the vector potential of the enclosed flux wh
acts on theshielding electrons can be gauged away. R
cently, Peshkin@5# has shown that a macroscopic norm
conductor can experience no AB effect, by assuming o
that a normal conductor lacks off-diagonal long-range ord
which means that the electrons lack long-range phase co
ence. Moreover, Goldhaber and Kivelson@6,7# have shown
that there are no additional phase shifts due to the elect
of a superconducting shield, because of the 2e charge of the
electron pairs and of the quantization of the magnetic flu

The case when the shield is a metallic mesoscopic cy
der at low temperature is studied in the present work. I
mesoscopic ring, the phase coherence length may be co
rable to or larger than the circumference of the ring, as de
onstrated by the oscillations of the magnetoconductan
with a magnetic flux periodh/2e @8–11#. It is found in this
work that, although there is a supplementary phase contr
tion from each electron of the mesoscopic cylinder, the s
of these individuals supplementary phases is equal to z
so that the presence of a normal-conducting mesoscopic
inder at low temperature does not change the AB inter
ence pattern of the incident electron.
551050-2947/97/55~1!/94~6!/$10.00
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The shields in the AB experiments are supposed to p
vent the overlap between the incident electrons and the
of magnetic fluxand to screen the electromagnetic fields
the incident electrons. It is shown that it is not possible
ascertain by experimental observation that the shielding e
trons have responded to the field of an incident electron,
at the same time to preserve the interference pattern of
incident electron. It is also shown that the measuring of
transient magnetic field in the region between the two pa
of an electron interference experiment with an accuracy
least equal to the magnetic field of the incident electron g
erates a phase uncertainty which destroys the interfere
pattern.

The discussion in Sec. II of the classical interaction of
incident electron with a charged rotator and a line of ma
netic flux serves as basis for the determination in Sec. III
the supplementary quantum-mechanical phase shift du
the interaction of an electron with the line of magnetic fl
and in the presence of the charged rotator. The interactio
an incident electron with a line of magnetic flux in the pre
ence of a circular metallic string at 0 K is discussed in Sec
IV. In Sec. V it is shown that the supplementary phase s
for a metallic circular string decreases exponentially w
temperature above 0 K. In Sec. VI it is found that the supp
mentary contribution averages to zero in the case of a me
lic mesoscopic hollow cylinder of nonzero thickness a
height. The limitations inherent to the process of observat
of weak transient magnetic fields are discussed in Sec. V

II. CLASSICAL INTERACTION
OF AN INCIDENT ELECTRON

WITH A LINE OF MAGNETIC FLUX
AND A CHARGED ROTATOR

The interaction of an incident electron with a line of ma
netic flux in the presence of a mesoscopic ring is schem
cally represented in Fig. 1. The electric field of an incide
electron exerts an action on the electrons of the mesosc
cylinder, so that the motion of these shielding electrons
correlated, or coherent with the motion of the incident ele
94 © 1997 The American Physical Society
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55 95AHARONOV-BOHM INTERFERENCE IN THE PRESENCE . . .
tron on one or the other side of the line of enclosed fl
Supplementary flux-dependent phase shifts could then be
pected in principle from these shielding electrons, in addit
to the conventional AB phase shift due to the interaction
the incident electron with the line of magnetic flux. The sim
pler case which will be analyzed in this section is the cl
sical interaction of an incident particle of chargeq and ve-
locity v.0 which moves along a straight line passing a
distanced from the axis of the enclosed magnetic fluxF,
while a chargeQ uniformly distributed and rigidly attache
to a ring of radiusR can freely rotate with angular velocit
V round the axis of the magnetic flux, as shown in Fig.
For d@R, the Lagrange function of this system is, in Sy
tème International~SI! units,

FIG. 1. Electron interference experiment in the presence o
tube of magnetic flux and of a normal-conducting mesoscopic
inder.

FIG. 2. Incident particle of chargeq moving with velocityv
along a straight line which interacts with an enclosed magnetic
F and with a ring of uniformly distributed chargeQ, rotating with
angular velocityV.
.
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L~v,V!5
1

2
mv21

1

2
MR2V21

qQR2dVv
8pe0c

2~x21d2!3/2

1
qFdv

2p~x21d2!
1

1

2p
QFV, ~1!

wherem is the mass of the incident particle andM the mass
of the charged rotator. The last three terms in Eq.~1! repre-
sent, respectively, the interaction between the charged
and the incident particle; between the magnetic flux and
incident particle; and between the magnetic flux and
charged ring. These contributions are obtained as the pro
of a charge, of a vector potential, and of a velocity, t
vector potential of the charged ring being calculated in
magnetic dipole approxination, valid as long asd@R. It can
be shown from the Lagrange equations that

V1
a~x!v
MR2 5V0 , ~2!

v2F12
a2~x!

mMR2G5v0
2 , ~3!

wherea5a(x) is given by

a~x!5
qQR2d

8pe0c
2~x21d2!3/2

, ~4!

and whereV0 andv0 are, respectively, the angular veloci
of the charged ring and the velocity of the incident partic
when the distance between the ring and the particle is v
large. Ifq andQ are equal to the electron charge2e,0 and
the massesm,M are equal to the electron mass, it resu
from Eqs.~2!–~4! that the parametera(x) is proportional to
the classical electron radiusr 052.8310215 m, so that the
variationV2V0 of the angular velocity of the ring is pro
portional tor 0, while the variationv2v0 of the velocity of
the incident electron is proportional tor 0

2. Therefore, in a
first-order approximation with respect tor 0, we can consider
that the velocity of the incident electron is constant. T
enclosed magnetic fluxF does not appear in Eqs.~2!–~4!,
which means that there are no observable classical effec
an enclosed magnetic flux.

III. SUPPLEMENTARY FLUX-DEPENDENT
PHASE SHIFT IN THE PRESENCE

OF A CHARGED ROTATOR

In Fig. 3 is represented a system composed of an incid
particle of chargeq moving along a straight line, of a tube o
magnetic fluxF, and of a particle of chargeQ and massM
which can move on a circle of radiusR. The nonrelativistic,
quantum-mechanical evolution of this system will be an
lyzed by assuming that the incident particle is moving w
constant velocityv along its straight path. The phase sh
will be determined by considering that the magnetic field
the incident particle and the vector potential of the enclo
flux are given functions of space and time, and shall neg
the irrotational component of the electric field of the incide
particle.

The Schro¨dinger equation for the wave functionC(u,t)

a
l-

x



e

on

s

at
e

th
e

by

lt
the

ch
ng
he
ec-
he
c.
e-

is
on
s

r
lar
s
ft in
es-
q.

der
l are

nd

96 55SILVIU OLARIU
of the particle of chargeQ is, in a first-order approximation
with respect to the parameterqQ/(4pe0Mc2),

i\
]C

]t
5

1

2MR2 S 2 i\
]

]u
2
QF

2p D 2
2

qQdv
8pe0Mc2~v2t21d2!3/2S 2 i\

]

]u
2
QF

2p D .
~5!

The quantity (2 i\]/]u2QF/2p)/MR2 is the operator for
the angular velocity of the particle of chargeQ, and the last
term in Eq.~5! corresponds to the energy of interaction b
tween the magnetic moment of the rotating chargeQ and the
magnetic field of the incident particle, written as a functi
of time. The solutions of Eq.~5! are of the form

Cn~u,t !5einu2 iFn~ t !, ~6!

where the phaseFn(t) is given by

Fn~ t !5
\

2MR2 S n2
QF

2p\ D 2t
2
qQ~n2QF/2p\!

8pe0Mc2d

vt
~v2t21d2!1/2

, ~7!

n being an integer. Thus, as the particle of chargeq passes
from the incidence region (t52`) to the observing region
(t5`), Eq. ~7! shows that there is a supplementary pha
shift dn given by

dn52
qQ

4pe0Mc2d S n2
QF

2p\ D . ~8!

If the incident particle of chargeq is moving along a
straight line situated to the left of the enclosed flux, a p
represented by the dashed line of Fig. 3, then the supplem
tary phase shift due to the action of this particle on
chargeQ, which is rotating in the presence of the enclos

FIG. 3. Incident particle of chargeq and velocityv interacting
with an enclosed magnetic fluxF, and a particle of chargeQ which
can move on a circle of radiusR. The dashed line shows the seco
possible path of the chargeq from the incidence region to the
observing region.
-

e

h
n-
e
d

flux F, will be 2dn . If both q andQ are electrons, then the
interference pattern of the incident electron will be shifted

Dn5DAB
~e!2

2r 0
d S n2

QF

2p\ D , ~9!

whereDAB
(e)52eF/\ is the conventional AB shift for the

incident electron. The shift in Eq.~9! is independent of the
radiusR of the string. An alternative way to obtain this resu
would be to regard the incident electron as moving in
applied vector potential of the enclosed fluxF and of the
charged rotator.

IV. SUPPLEMENTARY FLUX-DEPENDENT
PHASE SHIFT IN THE PRESENCE OF A CIRCULAR

METALLIC STRING AT 0 K

A circular chain of atoms having the property that ea
atom contributes one electron which can move freely alo
the chain will be referred to as a circular metallic string. T
analysis in this section of the interaction of an incident el
tron with a tube of magnetic flux in the presence of t
one-dimensional circular metallic string will be used in Se
VI to study the AB interactions in the presence of real m
tallic rings.

The state of the electrons in the circular metallic string
described by a multielectron antisymmetric wave functi
Cmeso(u1 ,u2 , . . . ,uN0,t) depending on the angular variable

u1 ,u2 , . . . ,uN0 which give the positions of theN0 electrons.

The wave functionCmeso is a solution of the Schro¨dinger
equation

i\
]Cmeso

]t
5

1

2meR
2(
j51

N0 S 2 i\
]

]u j
1
eF

2p D 2Cmeso

2
e2dv

8pe0mec
2~v2t21d2!3/2

3(
j51

N0 S 2 i\
]

]u j
1
eF

2p DCmeso, ~10!

where the charge and the mass of the electron are2e,0
andme . The wave functionCmesocan be written as a Slate
determinant involving the single-electron states of angu
momentam1 ,m2 , . . . ,mN0

. Since the single-electron state
are the charged-rotator states of Sec. III, the phase shi
the interference pattern of the incident electron in the pr
ence of the circular metallic string can be obtained from E
~9! as

DN5DAB
~e!2

2N0r 0
d

SN , ~11!

where

SN5
1

N0
(
j51

N0 Smj1
eF

2p\ D . ~12!

At 0 K the single-electron states are occupied in the or
of increasing energy, and the states above the Fermi leve
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55 97AHARONOV-BOHM INTERFERENCE IN THE PRESENCE . . .
empty. The supplementary phase shiftDN2DAB
(e) written in

Eqs. ~11! and ~12! is a periodic function of the enclosed
magnetic fluxF, the period beingh/e. If the number of
electronsN0 is odd andeuFu/2p\,1/2, the occupied state
have at 0 K the angular momentum numbe
0,61, . . . ,6@N0/2#, where @N0/2# is the integer part of
N0/2, so that

SN5eF/2p\ for N0 odd and euFu/2p\,1/2. ~13!

If N0 is even and 0,eF/2p\,1/2, the occupied stated hav
the quantum numbers 0,61, . . . ,6(N0/221),2N0/2, so
that

SN521/21eF/2p\ for N0 even and 0,eF/2p\,1/2,
~14!

and if N0 is even and21/2,eF/2p\,0, the occupied
states have the quantum numbers 0,61, . . . ,6(N0/
221),N0/2, so that

SN51/21eF/2p\ for N0 even and21/2,eF/2p\,0 .
~15!

The functionSN is represented in Fig. 4 as a function
the magnetic fluxF for a circular string at 0 K, assuming tha
the number of electrons appearing in Eq.~12! is very large. It
can be seen from Fig. 4 thatSN , and with it the phase shif
in Eq. ~11!, is different for circular strings containing a
even number of electrons or an odd number of electrons

FIG. 4. Phase functionSN for a metallic mesoscopic string a
T50 K, for ~a! even values of the number of electronsN0 and ~b!
odd values ofN0, for magnetic fluxesueF/2p\u,1/2. SN is a pe-
riodic function ofF, of periodh/e.
The maximum value of the supplementary phase shift
from Eq. ~11!, r 0 /d per electron of the circular string. Fo
d51 mm, this maximum value is 2.831029 rad per electron.

V. TEMPERATURE DEPENDENCE
OF THE SUPPLEMENTARY PHASE SHIFT

FOR A CIRCULAR METALLIC STRING AT 0 K

The expression of the phase shift given in Eqs.~11! and
~12! is valid provided that the occupation number for t
electron states changes abruptly from 1 below the Fe
level to 0 above the Fermi level. For temperatures of
metallic string above 0 K, the occupation numbers are giv
by the Fermi-Dirac distribution, and the phase shift in t
interference pattern of the incident electron will be

DT5DAB
~e!2

2r 0
d

CT , ~16!

where

CT5 (
n52`

`
n1eF/2p\

expF ~\2/2meR
2!~n1eF/2p\!22E0

kT G11

,

~17!

andE0 is the energy of the Fermi level for the circular strin
containingN0 electrons. If the temperature of the string
such that

N0\
2

4p2kmeR
2 !T!

N0
2\2

8pkmeR
2 , ~18!

wherek is the Boltzmann constant, the sum in Eq.~17! can
be evaluated with the aid of the Poisson sum formula@12# as

CT52
4pmeR

2kT

\2 sin~2eF/\!expS 2
4p2meR

2kT

N0\
2 D .

~19!

Due to the condition~18!, the factorCT is exponentially
small, and unlike the functionSN , Eq. ~12!, CT is not pro-
portional to the number of electrons of the string. Thus
supplementary phase shift due to the global interaction of
incident electron, magnetic flux, and metallic string vanish
rapidly with increasing temperature of the string. The A
shift is, of course, independent of temperature. If we consi
thatN052pR/a0, wherea0 is the interatomic distance, the
the lower and upper limits in Eq.~18! are, for
a052.5310210 m and R51026 m, N0\

2/(4p2kmeR
2)

50.56 K andN0
2\2/(8pkmeR

2)52.23104 K @13#.

VI. CANCELLATION OF THE SUPPLEMENTARY
PHASE SHIFT FOR A REAL METALLIC

MESOSCOPIC CYLINDER

In the case of a mesoscopic cylinder of nonzero thickn
and height having the axis along thez direction there are, in
addition to the angular momentum quantum number, t
quantum numbers resulting from boundary conditions on
motion in the radial and thez directions. For each pair o
these radial andz quantum numbers, the number of substa
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98 55SILVIU OLARIU
depending on the angular momentum quantum number
be even or odd, as discussed in Sec. IV. The phase sh
the interference pattern of the incident electron will be

D I5DAB
~e!2

2Nr0
d

SI , ~20!

whereN is the number of free electrons of the mesosco
ring, andS is the average ofSN with the weightseuFu/p\
for an even number of substates and (12euFu/p\) for an
odd number of substates, where we have assumed
euFu/p\,1/2. The weighteuFu/p\ is obtained as the ratio
of the energy separation between the two sublevels with
samem, which is proportional to 2emuFu/p\, and the en-
ergy separation between the substates of magnetic qua
numbersm21 andm, this separation being proportional t
2m. These weights and Eqs.~13!–~15! then give

S50 , ~21!

which means that, due to averaging, the AB interference
tern of the incident electron is not changed by the prese
of the metallic mesoscopic cylinder.

VII. MEASURABILITY OF WEAK TRANSIENT
MAGNETIC FIELDS

IN ELECTRON INTERFERENCE EXPERIMENTS

The primary function of a shield in an AB experiment
of separating the region of space accessible to the inci
electrons from the region of the magnetic flux. At the sa
time, a metallic cylinder of sufficient thickness is expected
prevent the electric and magnetic fields of an incident e
tron from entering the region of the magnetic flux. In a cla
sical picture, this screening action is explained by the mot
of the electrons of the metallic shield produced by the tr
sient electric field of the incident electron.

The part of the electric field of the incident electron ha
ing a nonzero circulation is of the order o
ev2/(4pe0c

2d2), for a velocityv and at a distanced. If the
distance between the incident electron and a shielding e
tron is of the order ofd, and the velocity of the inciden
electron isv, the displacement of the shielding electron u
der the action of the aforementioned part of the incident e
tric field is, for a time 2d/v, of the order of 2r 0, the classical
electron radius, thus being extremely small.

If N electrons are taking place in the shielding proce
then in order to be able to ascertain that they have ind
responded to the field of the incident electron, their aver
position must be known with a precision better than 2r 0. The
uncertainty in the total momentum of theN electrons will be
\/4r 0, and the uncertainty in the magnetic field generated
these electrons orbiting on circles of radiusR will be of the
order ofe\/(16pe0c

2mer 0R
2), so that the uncertainty of th

magnetic flux associated with the shielding electrons ove
areapR2 will be of the order ofp\/4e, which produces a
phase uncertainty ofp/4, which is sufficient to wipe out the
interference pattern of the incident electron. Thus it is
possible to ascertain by experimental observation that
shielding electrons have indeed responded to the field o
incident electron, and at the same time to preserve the in
ference pattern of the incident electrons. This analysis
ay
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close to that of Furry and Ramsey@13#, who have discussed
the relation between the AB effect and Bohr’s compleme
tarity principle, and is related to the more general problem
measurability of fields in quantum mechanics@14#.

A similar limitation exists when we try to measure th
transient magnetic field extant in the region between the
paths of an electron interference experiment in the abse
of any shielding. These measurements could be condu
for example with the aid of a magnetic semistring carryi
the flux F, which can move freely along thez direction, as
shown in Fig. 5. If a magnetic fieldB acts for a time 2d/v on
the test semistring, thez momentum transferred to the sem
string is 2e0c

2FBd/v. At the same time, the flux uncertaint
due to the uncertainty in thez position of the extremity of the
semistring isFDz/pd, which entails a phase uncertain
DF5eFDz/p\d. As it is necessary tha
2e0c

2FBd/v.\/2Dz, it follows that BDF.Be , where
Be5ev/(4pe0c

2d2). Thus a measurement of the magne
field in the region between the interference paths with
accuracy better thanBe destroys the interference pattern
the incident electron. This shows that the AB effect is no
vector potential versus magnetic field case, but rather it is
example of a global phase effect in quantum mechanics.

VIII. CONCLUSIONS

In quantum mechanics, the state of a system compose
several parts is described by a wave function having asingle
phase. Contributions to this phase arising from the inter
tion of various parts of the system may become observabl
interference experiments involving only apart of the system.
Thus details of the interaction mechanisms which are
evant from the viewpoint of the classical description, such
a transient magnetic field in a certain region or a transi

FIG. 5. Measurement of the transient magnetic field extan
the region between the arms of an electron interference experim
with the aid of a magnetic semistring carrying the fluxF. The
semistring can move freely along thez direction, and the uncer-
tainty in the momentum of the string and the phase difference
the two paths are complementary.
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55 99AHARONOV-BOHM INTERFERENCE IN THE PRESENCE . . .
change in the velocity of an electron, are not always obse
able in quantum mechanics.

From this perspective, the Aharonov-Bohm effect appe
to be relevant not so much for the problem of the descript
of the electromagnetic continuum by field strengths or el
tromagnetic potentials, but rather it demonstrates the glo
character of the states in quantum mechanics.
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