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Aharonov-Bohm interference in the presence of metallic mesoscopic cylinders
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This work studies the interference of electrons in the presence of a line of magnetic flux surrounded by a
normal-conducting mesoscopic cylinder at low temperature. It is found that, while there is a supplementary
phase contribution from each electron of the mesoscopic cylinder, the sum of these individual supplementary
phases is equal to zero, so that the presence of a normal-conducting mesoscopic ring at low temperature does
not change the Aharonov-Bohm interference pattern of the incident electron. It is shown that it is not possible
to ascertain by experimental observation that the shielding electrons have responded to the field of an incident
electron, and at the same time to preserve the interference pattern of the incident electron. It is also shown that
the measuring of the transient magnetic field in the region between the two paths of an electron interference
experiment with an accuracy at least equal to the magnetic field of the incident electron generates a phase
uncertainty which destroys the interference patt€81.050-294®7)03501-4

PACS numbds): 03.65.Bz

[. INTRODUCTION The shields in the AB experiments are supposed to pre-
vent the overlap between the incident electrons and the line
In an Aharonov-Bohn{AB) experimen{ 1], the incident of magnetic fluxandto screen the electromagnetic fields of
electrons are prevented from entering the region of the maghe incident electrons. It is shown that it is not possible to
netic flux by certain shields. If these shields are superconascertain by experimental observation that the shielding elec-
ducting cylinders or mesoscopic cylinders at low temperairons have responded to the field of an incident electron, and
ture, the shielding electrons occupy states which posseg¥ the same time to preserve the interference pattern of the
phase coherence around the line of magnetic flux. Thescident electron. It is also shown that the measuring of the
shielding electrons could in principle bring an additional transient magnetic field in the region between the two paths
phase contribution to the conventional AB phase shift of theof an electron interference experiment with an accuracy at
incident electrons. Experiments carried out by Liscfigg  least equal to the magnetic field of the incident electron gen-
and Tonomuraet al. [3] have demonstrated, however, the €rates a phase uncertainty which destroys the interference
persistence of the conventional AB shift in the presence opattern. o o _
metallic shields. The discussion in Sec. Il of the classical interaction of an
The absence of a supplementary phase shift due to thigcident electron with a charged rotator and a line of mag-
shielding electrons has been explained in the case of a méetic flux serves as basis for the determination in Sec. Il of
tallic shield at normal temperature by PeshKii, who the supplementary quantum-mechanical phase shift due to
pointed out that one could imagine the conductor as bein§he interaction of an electron with the line of magnetic flux
cut, so that the vector potential of the enclosed flux whichand in the presence of the charged rotator. The interaction of
acts on theshie|ding electrons can be gauged away. Re-an incident electron with a line of magnetic flux in the pres-
cently, Peshkin5] has shown that a macroscopic normal €nce of a circular metallic stringg & K is discussed in Sec.
conductor can experience no AB effect, by assuming onlyV- In Sec. V it is shown that the supplementary phase shift
that a normal conductor lacks off-diagonal long-range orderfor a metallic circular string decreases exponentially with
which means that the electrons lack long-range phase cohéiemperature above 0 K. In Sec. VI itis found that the supple-
ence. Moreover, Goldhaber and Kivelsf#7] have shown mentary contribution averages to zero in the case of a metal-
that there are no additional phase shifts due to the electrorls mesoscopic hollow cylinder of nonzero thickness and
of a superconducting shield, because of tieecBarge of the height. The limitations inherent to the process of observation
electron pairs and of the quantization of the magnetic flux. of weak transient magnetic fields are discussed in Sec. VII.
The case when the shield is a metallic mesoscopic cylin-

der at Iow_ temperature is studied in the present work. In a Il CLASSICAL INTERACTION
mesoscopic ring, the phase coherence length may be compa- OF AN INCIDENT ELECTRON
rable to or larger than f[he.cwcumference of the ring, as dem- WITH A LINE OF MAGNETIC FLUX
onstrated by the oscillations of the magnetoconductance, AND A CHARGED ROTATOR

with a magnetic flux periodh/2e [8—11]. It is found in this

work that, although there is a supplementary phase contribu- The interaction of an incident electron with a line of mag-
tion from each electron of the mesoscopic cylinder, the summetic flux in the presence of a mesoscopic ring is schemati-
of these individuals supplementary phases is equal to zeraally represented in Fig. 1. The electric field of an incident
so that the presence of a normal-conducting mesoscopic cy&lectron exerts an action on the electrons of the mesoscopic
inder at low temperature does not change the AB interfercylinder, so that the motion of these shielding electrons is
ence pattern of the incident electron. correlated, or coherent with the motion of the incident elec-
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wherem is the mass of the incident particle akdthe mass

of the charged rotator. The last three terms in @¢.repre-
sent, respectively, the interaction between the charged ring
and the incident particle; between the magnetic flux and the
incident particle; and between the magnetic flux and the
charged ring. These contributions are obtained as the product
of a charge, of a vector potential, and of a velocity, the
vector potential of the charged ring being calculated in the
magnetic dipole approxination, valid as longdsR. It can

be shown from the Lagrange equations that

incidence

. a(xX)v
region + =
2+ re = o, @
a%(x)
FIG. 1. Electron interference experiment in the presence of a vi1— = =v(2), 3
tube of magnetic flux and of a normal-conducting mesoscopic cyl- mM
inder. L
wherea=a(x) is given by
tron on one or the other side of the line of enclosed flux. qQRd
Supplementary flux-dependent phase shifts could then be ex- a(x)= 8me,C2(x2+d?)7? 4

pected in principle from these shielding electrons, in addition

to the conventional AB phase shift due to the interaction ofand whereQ), andv are, respectively, the angular velocity
the incident electron with the line of magnetic flux. The sim-of the charged ring and the velocity of the incident particle
pler case which will be analyzed in this section is the claswhen the distance between the ring and the particle is very
sical interaction of an incident particle of chargeand ve- large. Ifg andQ are equal to the electron chargee<<0 and
locity v>0 which moves along a straight line passing at athe massesn,M are equal to the electron mass, it results
distanced from the axis of the enclosed magnetic flgx ~ from Egs.(2)—(4) that the parametea(x) is proportional to
while a chargeQ uniformly distributed and rigidly attached the classical electron radiug=2.8x10"*° m, so that the

to a ring of radiusk can freely rotate with angular velocity Variation)—0, of the angular velocity of the ring is pro-

Q round the axis of the magnetic flux, as shown in Fig. 2 portional tor, while the variatiorv —v, of the velocity of

For d>R, the Lagrange function of this system is, in Sys- the incident electron is proportional t@ Therefore, in a
téme InternationalSl) units first-order approximation with respect tg, we can consider

that the velocity of the incident electron is constant. The
enclosed magnetic fluk does not appear in Eq§2)—(4),
which means that there are no observable classical effects of

rotator of .Q an enclosed magnetic flux.

charge Q
RSN Ill. SUPPLEMENTARY FLUX-DEPENDENT
R PHASE SHIFT IN THE PRESENCE
OF A CHARGED ROTATOR

d In Fig. 3 is represented a system composed of an incident
\&J d y particle of charge) moving along a straight line, of a tube of
v magnetic fluxF, and of a particle of charg® and masi
< A which can move on a circle of radil& The nonrelativistic,

magnetic guantum-mechanical evolution of this system will be ana-

flux lyzed by assuming that the incident particle is moving with

X J,q constant velocityy along its straight path. The phase shift
will be determined by considering that the magnetic field of
the incident particle and the vector potential of the enclosed

FIG. 2. Incident particle of chargg moving with velocity v flux are given functions of space and time, and shall neglect

along a straight line which interacts with an enclosed magnetic fluthe irrotational component of the electric field of the incident

F and with a ring of uniformly distributed charg®, rotating with ~ particle.

angular velocity(Q). The Schrdinger equation for the wave functiok(,t)
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magnetic
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FIG. 3. Incident particle of chargg and velocityv interacting
with an enclosed magnetic flux, and a particle of charg® which
can move on a circle of radil®. The dashed line shows the second
possible path of the chargg from the incidence region to the
observing region.

of the particle of charg® is, in a first-order approximation
with respect to the parametgQ/(4me,Mc?),
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The quantity i%d/90— QF/27)/MR? is the operator for
the angular velocity of the particle of char@e and the last
term in Eq.(5) corresponds to the energy of interaction be-
tween the magnetic moment of the rotating cha@gand the
magnetic field of the incident particle, written as a function
of time. The solutions of Eq5) are of the form

Wo(0,t) =€, (6)

where the phasé(t) is given by
QF \?
- 2mh t

qQ(n—QF/27h)
8meMc?d

h
‘I’n“):m(”

vt
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n being an integer. Thus, as the particle of chaggeasses
from the incidence regiont & — ) to the observing region
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flux F, will be — &,,. If both g andQ are electrons, then the
interference pattern of the incident electron will be shifted by

2
n

27h
where A= —eF/# is the conventional AB shift for the
incident electron. The shift in Eq9) is independent of the
radiusR of the string. An alternative way to obtain this result
would be to regard the incident electron as moving in the
applied vector potential of the enclosed flux and of the
charged rotator.

2rg
d

(e)

(€)

IV. SUPPLEMENTARY FLUX-DEPENDENT
PHASE SHIFT IN THE PRESENCE OF A CIRCULAR
METALLIC STRING AT 0 K

A circular chain of atoms having the property that each
atom contributes one electron which can move freely along
the chain will be referred to as a circular metallic string. The
analysis in this section of the interaction of an incident elec-
tron with a tube of magnetic flux in the presence of the
one-dimensional circular metallic string will be used in Sec.
VI to study the AB interactions in the presence of real me-
tallic rings.

The state of the electrons in the circular metallic string is
described by a multielectron antisymmetric wave function
Vesd 01,62, - .. ,aNo,t) depending on the angular variables

61,62, ....0n, which give the positions of thH electrons.

The wave function?’ ., is a solution of the Schdinger
equation

N
C0Wiese 10 9 eF\?
—_— = — _+_

K" 2meR2j§::1 'ﬁaaj 27 ¥ meso
e2dv
8meomeCi(v2t?+d?)%?

Ng
d eF
Xj21 (—Iﬁﬁ‘f‘z \I,meso- (10)
= ]

where the charge and the mass of the electron-aeec0
andm,. The wave function¥ ,.s,can be written as a Slater
determinant involving the single-electron states of angular
momentamg, My, ... ,My,. Since the single-electron states

are the charged-rotator states of Sec. lll, the phase shift in
the interference pattern of the incident electron in the pres-
ence of the circular metallic string can be obtained from Eq.
(9) as

(t==), Eq. (7) shows that there is a supplementary phase

shift &, given by

. qQ
4mregMc?d

QF
n_277h

0= ®)

o=z

If the incident particle of chargeg is moving along a

straight line situated to the left of the enclosed flux, a path

2Ngr
Ay=AE— do %s,, (11)
where
No
eF

represented by the dashed line of Fig. 3, then the supplemen-
tary phase shift due to the action of this particle on the At 0 K the single-electron states are occupied in the order
chargeQ, which is rotating in the presence of the enclosedof increasing energy, and the states above the Fermi level are
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FIG. 4. Phase functioi®y for a metallic mesoscopic string at
T=0 K, for (a) even values of the number of electraNg and (b)
odd values ofN,, for magnetic fluxese F/27#|<1/2. Sy is a pe-

(a) Sy N, éven
1/2
0 1/2
-1/2 eF/h
-1/2
b N, odd
( ) SN 0
~1/2
-1|/2 1{2
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riodic function ofF, of periodh/e.

empty. The supplementary phase shiff— A written in
Egs. (11) and (12) is a periodic function of the enclosed
magnetic fluxF, the period beingh/e. If the number of
electronsN, is odd ande|F|/27% < 1/2, the occupied states
momentum
0,£1,...,2[Ny/2], where [Ny/2] is the integer part of

have & O

No/2, so that

Sy=eFl2nh for Ny odd ande|F|/2nhi<1/2. (13)

If Ng is even and &eF/27#<1/2, the occupied stated have
the quantum numbers 81, ...,=(Ny/2—1),—Ny/2, so

that

Sy=—1/2+eF27h for Ny even and &eF/27h<1/2,

and if Ny is even and—1/2<eF/27w# <0, the occupied
states have the quantum numbers=0D,...,

2—1),Ng/2, so that
Sy=1/2+eF/27h for Ny even and—1/2<eF/27#<0.

The functionSy is represented in Fig. 4 as a function of
the magnetic fluxe for a circular string at 0 K, assuming that
the number of electrons appearing in EtR) is very large. It
can be seen from Fig. 4 th&, and with it the phase shift
in Eqg. (112), is different for circular strings containing an
even number of electrons or an odd number of electrons.

K

angular

The maximum value of the supplementary phase shift is,
from Eq. (11), ro/d per electron of the circular string. For
d=1 um, this maximum value is 2:810° rad per electron.

V. TEMPERATURE DEPENDENCE
OF THE SUPPLEMENTARY PHASE SHIFT
FOR A CIRCULAR METALLIC STRING AT 0 K

The expression of the phase shift given in Edd) and
(12) is valid provided that the occupation number for the
electron states changes abruptly from 1 below the Fermi
level to O above the Fermi level. For temperatures of the
metallic string above 0 K, the occupation numbers are given
by the Fermi-Dirac distribution, and the phase shift in the
interference pattern of the incident electron will be

2rg
Ar=ALg— TCT’ (16)
where
oo i n+eF2wh
T 2. [(B%2mRY)(n+eFl2nh)2—E,|
ex T +1

(17)

andEj, is the energy of the Fermi level for the circular string
containingNg electrons. If the temperature of the string is
such that

Nofi? _ NZ#?
8mkmgR?’

(18)

wherek is the Boltzmann constant, the sum in Efj7) can
be evaluated with the aid of the Poisson sum forniilg as

47rmeR?KT 4°mgR?KT
Ci=— ——>—sin(2eFlh)exp — ———>—
h No#

(19

Due to the condition(18), the factorC+ is exponentially
small, and unlike the functio®y, Eq. (12), C is not pro-
portional to the number of electrons of the string. Thus the
supplementary phase shift due to the global interaction of the
incident electron, magnetic flux, and metallic string vanishes
rapidly with increasing temperature of the string. The AB
shift is, of course, independent of temperature. If we consider
thatNy=2m7R/ay, whereag is the interatomic distance, then
the lower and upper limits in EQ.(18) are, for
ap=2.5x10" m and R=10"% m, NgA?/(47*km,R?)
=0.56 K andN3#?/ (8 mkm,R?)=2.2x 10" K [13].

VI. CANCELLATION OF THE SUPPLEMENTARY
PHASE SHIFT FOR A REAL METALLIC
MESOSCOPIC CYLINDER

In the case of a mesoscopic cylinder of nonzero thickness
and height having the axis along thalirection there are, in
addition to the angular momentum quantum number, two
quantum numbers resulting from boundary conditions on the
motion in the radial and the directions. For each pair of
these radial and quantum numbers, the number of substates
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depending on the angular momentum quantum number may

be even or odd, as discussed in Sec. IV. The phase shift in observing
the interference pattern of the incident electron will be region
Nrg

A=A%- S, (20)

d

whereN is the number of free electrons of the mesoscopic
ring, andS is the average o8y with the weightse|F|/ 7%

for an even number of substates and—gF|/=#) for an

odd number of substates, where we have assumed that
e|F|/mf<1/2. The weighte|F|/w# is obtained as the ratio

of the energy separation between the two sublevels with the
samem, which is proportional to @mF|/ =7, and the en-
ergy separation between the substates of magnetic quantum
numbersm—1 andm, this separation being proportional to
2m. These weights and Eq&l3)—(15) then give

incidence
region

S=0, (21)

which means that, due to averaging, the AB interference pat-

tern of the incident electron is not Changed by the presence FIG. 5. Measurement of the transient magnetic field extant in
of the metallic mesoscopic cylinder. the region between the arms of an electron interference experiment

with the aid of a magnetic semistring carrying the flex The
semistring can move freely along tlzedirection, and the uncer-
tainty in the momentum of the string and the phase difference for
the two paths are complementary.

VII. MEASURABILITY OF WEAK TRANSIENT
MAGNETIC FIELDS
IN ELECTRON INTERFERENCE EXPERIMENTS

The primary function of a shield in an AB experiment is close to that of Furry and Ramsg33], who have discussed
of separating the region of space accessible to the incidetine relation between the AB effect and Bohr's complemen-
electrons from the region of the magnetic flux. At the sametarity principle, and is related to the more general problem of
time, a metallic cylinder of sufficient thickness is expected tomeasurability of fields in quantum mechanjds}].
prevent the electric and magnetic fields of an incident elec- A similar limitation exists when we try to measure the
tron from entering the region of the magnetic flux. In a clas-transient magnetic field extant in the region between the two
sical picture, this screening action is explained by the motiorpaths of an electron interference experiment in the absence
of the electrons of the metallic shield produced by the tranof any shielding. These measurements could be conducted
sient electric field of the incident electron. for example with the aid of a magnetic semistring carrying

The part of the electric field of the incident electron hav-the flux F, which can move freely along thedirection, as
ing a nonzero circulation is of the order of showninFig.5.If a magnetic field acts for a time &/v on
ev?/(4me,c?d?), for a velocityv and at a distancd. If the  the test semistring, the momentum transferred to the semi-
distance between the incident electron and a shielding elestring is 2¢,c?FBd/v. At the same time, the flux uncertainty
tron is of the order ofd, and the velocity of the incident due to the uncertainty in theposition of the extremity of the
electron isv, the displacement of the shielding electron un-semistring isFAz/wd, which entails a phase uncertainty
der the action of the aforementioned part of the incident elecA® =eFAz/ 7w d. As it is necessary  that
tric field is, for a time @//v, of the order of 2,, the classical 2e,c’FBd/v>#/2Az, it follows that BA®>B,, where
electron radius, thus being extremely small. B.=ev/(4me,c?d?). Thus a measurement of the magnetic

If N electrons are taking place in the shielding processfield in the region between the interference paths with an
then in order to be able to ascertain that they have indeedccuracy better thaB, destroys the interference pattern of
responded to the field of the incident electron, their averagéhe incident electron. This shows that the AB effect is not a
position must be known with a precision better thag.Z'he  vector potential versus magnetic field case, but rather it is an
uncertainty in the total momentum of tieelectrons will be  example of a global phase effect in quantum mechanics.
hl4r 5, and the uncertainty in the magnetic field generated by
these electrons orbiting on circles of radiRswill be of the
order ofefi/(16me,c®mgr gR?), so that the uncertainty of the
magnetic flux associated with the shielding electrons over an In quantum mechanics, the state of a system composed of
areawR? will be of the order ofw#/4e, which produces a several parts is described by a wave function havisingle
phase uncertainty of/4, which is sufficient to wipe out the phase. Contributions to this phase arising from the interac-
interference pattern of the incident electron. Thus it is notion of various parts of the system may become observable in
possible to ascertain by experimental observation that thterference experiments involving onlypart of the system.
shielding electrons have indeed responded to the field of afihus details of the interaction mechanisms which are rel-
incident electron, and at the same time to preserve the inteevant from the viewpoint of the classical description, such as
ference pattern of the incident electrons. This analysis is transient magnetic field in a certain region or a transient

VIIl. CONCLUSIONS
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change in the velocity of an electron, are not always observ- ACKNOWLEDGMENTS

able in quantum mechanics.
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