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Nonunitary connection between explicitly time-dependent and nonlinear approaches
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Caldirola[Nuovo Cimentol8, 393(1941)] and Kanai's|Prog. Theor. Phys3, 440(1948] time-dependent
approach for dissipative systems can be traced back to the conventional system-plus-reservoir approach;
however, it apparently violates the uncertainty principle. This discrepancy can be avoided by considering a
consistent transition between the Caldirola-Kanai formalism and a logarithmic nonlineadBgemoequation
that requires not only a transformation of the operators, but also a nonunitary transformation of the wave
function. This procedure also shows the equivalence of three at first sight incompatible approaches to describe
dissipative quantum systen{$1050-2947)03102-9

PACS numbd(s): 03.65.Bz, 03.65.Ca, 05.70.Ln

I. INTRODUCTION degrees of freedom, more phenomenologically motivated ap-
proaches have been proposed that do not take the environ-
Although irreversibility and dissipation are the rule in the mental degrees of freedom explicitly into account, but try to
perceivable macroscopic world, these phenomena do not extescribe the system of interest with the help of some kind of
plicitly enter the microscopic equations of motion on eithereffective Hamiltonian(see, e.g.[4] and references cited
the classical or the quantum-mechanical level. The questiotherein. These Hamiltonians can be either explicitly time
of how to modify the classical Lagrangian and Hamiltoniandependent or they may contain additional nonlinear friction
formalisms and the corresponding quantization methods iterms, thus leading to NLSEs.
order to include these aspects has not yet been answered in aThe historically first and most frequently used time-
unigue way that would be generally accepted. Different apdependent Hamiltonian was proposed by Caldif@hand
proaches exist in the literature that have their peculiar advarKanai[6]; a similar approach, using an expanding coordinate
tages and shortcomings and most of them seem to be incoraystem and a Hamiltonian that is a time-dependent invariant,
patible with each other. In this paper three types of thesétas been discussed by the present auffibrBoth models
apparently incompatible approaches that are frequently agan be connected on the classical level via a canonical trans-
plied in the literature shall be discussed and it will be showrformation. The application alinear time-dependent Hamil-
that they are actually intimately connected. These aptonians would permit the direct use of standard schemes of
proaches arg(i) the system-plus-reservoir modelj) at- quantization. Although the classical Hamiltonian function of
tempts to use explicitly time-dependent Lagrangians andCaldirola and Kanai,
Hamiltonians, and(iii) nonlinear Schrdinger equations

(NLSES. The existence of a unique transformation between 1 =2 7
the latter two approaches will be explicitly shown and it will Hek=5,€ "PekterV(x), @
become clear how presumed shortcomings can be dispensed
with if the problem is properly treated. with friction constanty, yields the proper equation of motion
for a system under the influence of a linear velocitgps
Il. PROBLEMS WITH THE CALDIROLA-KANAI momentum} dependent frictional force
APPROACH
The system-plus-reservoir ansatz is based on conventional mX-+myx-+ (%(V(X) =0, 2

conservative quantum mechanics. It couples the system of

interest with a large number of environmental degrees of . : o .

freedom. Subsequent elimination of these degrees of freé: prpblem arises after canonical quantization. Since the ca-

dom reduces the entire conservative system to a “relevant’nonlcal momentum

dissipative system. Well-known models of this kind have - o .

been proposed by Caldeira and Legg&ttand by Forcet al. Pck=mxe”"=pe”, ©)

[2]. However, the consideration of a large number of degrees — . )

of freedom, each of which is governed by a partial differen-Which corresponds to the operatoy,=(%/i)(d/0x), differs

tial equation|[3] might, in certain cases, e.g., for the study of from the physical kinetic momentum=mx, the commuta-

the quantum limit of chaotic dissipative systems, exhaust otor of physical momentum and position, and hence the un-

even go beyond the power of the largest and fastest computertainty product, decay exponentially. This apparent viola-

ers. tion of the uncertainty principle gave rise to serious
Since the main interest is usually focused only on a fewcriticisms [8—10] as well as attempts to avoid 1,12 or
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explain [13] this peculiarity of the Caldirola-KanaiCK)  which is a complex quantity, if ¥ is complex, i.e.,
model.(For a review, see alsd4].) Sc=Sg+ S, . Obviously, the mean value @f. is identical to

Studying the literature carefully, one is under the impresthat of the quantum-mechanical momentum operator
sion that the explanations given for the violation of the un-py,=(%/i)(d/9x),(pc)={(%/i)(d/IX)). The density
certainty principle are not totally convincing and that the o =¥*W¥ obeys the continuity equatioiCE)
critics might be correct. However, a different aspect was re-
cently added, when Sun and Yi5,16 were able to show d 19
that it is possible to obtain the CK Hamiltoniasperator, EQJF Eﬂ(epR):O’ ©
starting with the conventional system-plus-reservoir ap-
proach. This leads to the paradoxical situation where avhere only thereal part of pc, namely, pg=(%/2mi)(d/
Hamiltonian operator, which can be traced back to convengx)In(W/¥*), occurs. A comparison shows, however, that
tional quantum mechanics, apparently causes violation of also has the same mean valuepgsand Pop Since the
one of the most fundamental principles of this theory, themean value of the imaginary past=(%/2mi)(a/dx)Ine al-
uncertainty principle. After a brief discussion of the third ways vanishes.
type of approach, the NLSEs, it will be shown how this |n the most-often-discussed and “rederived” nonlinear
paradox can be eliminated. approach, Kostifi17] clearly uses only the real pguk, thus

arriving at the real friction term
11l. NONLINEAR APPROACHES

: (10

A way to circumvent the problem of finding a classical Wy = 75( Inw— < Inq?>
Hamiltonian for dissipative systems that can be canonically

guantized is to add a friction term directly to the Hamﬂtomanm1ere the mean value occurring guarantees {ha)=0

Operator, and thus(E)=(H, ) is still valid. As stated in the literature
82 52 [4], this term leads to results that are difficult to explain in
Hyo=— o (?—2+V(x)+W:H|_+W. (4)  physical terms, as it also admits the stationary states of the
m 9x

undamped harmonic oscillatdHO) as solutions and yields

o ) the unshifted frequency instead of the reduced classical one.
There are several attempts of this kind in the literaise, | addition, the density (x,t) fulfills the reversibleCE, al-

e.g.,[4,17-19). Most of them use as a guideline to finding {14,qh the system displayseversible dvnamics
the proper form oW, that Ehrenfest’'s theorem in the form g y pays y

d 9 IV. CONNECTION BETWEEN THE LOGARITHMIC NLSE
a( p)+ ¥{p)+ <&V> =0 (5) AND THE CALDIROLA-KANAI APPROACH

It has been showf21,27 that all these problems can be
has to be fulfilled, wherg )=[¥*...W¥dx denotes mean solved or avoided by an approach starting with a modified
values calculated with the help of the wave functionirreversible density equation and using a separation method,
W (x,t) and its complex conjugaté* . From the Heisenberg which was introduced by Madeluri@3] and Mrowka[24],
equations of motion it follows then that the additional termto rederive the conventional linear SchHimger equation
W is defined via (SB), without applying Hamilton’s form of classical mechan-

ics, but only Newton’s form. The modification consists of an

2 W) =ypp) ©) additional diffusion term to the CE, thus arriving at the
aX ). Fokker-Planck-type equatiofifPE)
This definition, however, is by far not unique as it contains d 190 9
only the mean value of the derivative ¥¥. In addition, EQ+ EQ(QDR)_DWQZO' (12)
different definitions of momenta occur in quantum mechan-
ics, all of which have the same mean value. The inclusion of a diffusion current density was later sup-
In Schralinger’s first communication on wave mechanicsported by group-theoretical argumenf5]. In order to
[20] he starts with the Hamilton-JacolilJ) equation achieve separation into two equations for the complex wave
5 J amplitudes¥ andW¥*, the additional condition
—Sc+H([ x,—=S¢,t]=0, (7) 92/ X2
~ x —D%wune—ane» (12

with the action function S and the momentum

pc=(d/9x)Sc. He introduces the wave functiow(x,t) has to be fulfilled, where the mean value on the right-hand
throughSc= (%/i)InV and arrives, via a variational ansatz, side guarantees normalizability. After separation, the SE
at the Hamiltonian operatdd, . With his definition ofS¢, contains an additional logarithmic nonlinear tefthe loga-
the momentum reads rithmic NLSE)

fi i (319%) W
= —In¥=—

. 4d h
pc—i—gn | T, (8) Iﬁa‘y— H|_+7i—(ln‘l'—<|n\lf)) v, (13)
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When Ehrenfest’s theorem is considered, the physical mean- the connection between the momentum ar# Imas the
Ing Of the nonlllnea(.NL) term bec‘?mes 0bypus, as the_loga- consequence thefr(x,t) in the transformed system differ-
rithmic term gives rise to the additional friction terpgp) in entfrom W (x,t) in the physical system

the classical equation of motion. Here, however, the NL term Ex ressin,~ in terms of the canonic.al momentl

in the NLSE is not derived from the classical friction term, P 9 e

but, to the contrary, the correct classical friction term results ~>
- . . . . . . —~ - B p c
from the additional irreversible diffusion term in connection H(X,Pe,t)=e "= +e"V(x) (19)
with the separation conditiofl2). For further details see 2m
[21,22.

The connection between our logarithmic NLSE and theand following Schrdinger’'s quantization procedure, but
time-dependent CK approach shall now be elucidated. Foghow using the canonical momentupg, finally yields
this purpose, we reverse the procedure of Sdimger's
original quantization method, divide the NLSE Wy, and
use the definition of actio., yielding

2 2
e’t( — % W) +e"V (¥

L d~ ~ =
|ﬁﬁ\lf(x,t)=Hop\If(x,t)=

Sct+H=—¥%So). 19 ~Hoxopt: @0

J
FraRd N
o ) ) . _ where the Hamiltoniaoperator Hy, is identical to the one of
This is, of course, as little rigorous as Sotlimger’s first  ck andPop= (A/i)(1x).
attempt was; however, it follows his way of thinking of how  Here it 'is remarked thap2 in Eq. (19) would actually
teoqsgggﬁa the classical HJ theory with a waweechanical lead to a term proportional t@(ﬁ/&x)‘l’/‘lf]2 that differs
Equation(14) now shows some similarity to an approach from (5°/ (9X2)\p~ by a term propqrtpnal to o’(/.(?x.) Pe
used by Razavy26] and also discussed by Wagn7]. =((9/o"x)[(0/ax)}1f/\lf;|. Following Schralinger’s va.rlatllonal
However, in agreement with Kostin, these authors also us@nsaiz for the time-independent case, the contribution from
only the real partSg of the complex action functiorse . the latter term must d|§appear, which leads to restrictions in
S, enters a(rea) HJ-type equatioriwith an additional so- the behav_|or of the variation of the wave fun_ct|0|j at infinity.
called quantum potentialif Madelung’s hydrodynamical For the time-dependent case, when considering problems
form of quantum mechanics is used. The imaginary part idVith Gaussian wave-packet solutiof@d these are the ones
ignored, as it would yield an additional term to the CE andthat will be discussed in detail in this pape(d/dx)pc is
might thus violate the normalizability of the wave functions. &ither zero or a mere time-dependent function that can be
The above-mentioned FPE shows that this is not necessaril(?f'uded in the normalization factor of the wave packet.
the case as it still allows normalization. urther details are under investigation and are planned to be
The term— y(Sc) is necessary mainly for normalization discussed in forthcoming papers.
purposes and shall be neglected for the moment. Multiplyingt] N.B. The major difference between E@0) and the CK
the remaining left-hand side of E€L4) by e” and using the (h€0rY is that in the latter, the operatBic o acts on the
definitions wave function¥ (x,t) in physical space, instead of acting on
_ _ WP(x,t) in the transformed system. However, for consistency
Sc=e"S;, H=e"H (150  reasons it is necessary, if the momentum is transformed ac-
_ _ _ cording topc—Ppc, that the wave function also has to be
finally yields the HJ equation transformed  accordingly, ¥ —W, since pc=(%/i)(d/
P X)) INW—pe=(A/i)(dlX)In¥, whereW and¥ are connected
St SctH=0. (16)  via Eq.(17). _
Since the connection betwedn and ¥ is not unitary, it

From the definitions of the action functions, it follows that follows that if the solutior¥ of Eq. (20) is normalized, the

the wave functionV in the transformed system is connected s_oluti_on\If after_transformation, ie., t_he solution o_f the loga-
with the wave function¥ in the physical system via rithmic NLSE without the termy(S¢), is not normalized. So,
for normalization purposesy(Sc) has to be subtracted from

INW=e’inw. (17)  theright-hand side of the equation fér, thus leading to the
NLSE (13). In Fig. 1 the connection between the different
Consequently, the complex momenta in the two systems arevels of description, classicdeft) as well as quantum me-

connected via chanical, is shown schematically.
Considering effective Hamiltonians for dissipative sys-
~ ha ~ fi 9 tems, one has to distinguish between two levels of descrip-
= e | =N ) ' . . . .
Pc i axln\lf € i axln\l’ € Pc, (18) tion: (i) the physical level with physical coordinaie and

kinetic momentunp [and wave functionl (x,t) ] and(ii) the
which is equivalent to the connection between canonical andanonical level with canonical coordinake (which in our

kinetic momentum in the CK theory. Thencanonicaton-  example is identical to the physical coordinate and ca-
nection between the classical variablesp) and x,pck) nonical momentunp.

corresponds to th@onunitary connection betweer¥ and On the physical level, these dissipative systems cannot be
. Although¥ and ¥ both depend explicitly only ox and  described by the canonical formaligiend probably also not
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Classical Quantum Mechanical

¥ normalized, canonical level

.
. . o . . ¢ = ;n¥
25+ H (0,p=V51) 20— 5 ¥(et) = {gre ", + "V (2)} ¥ (a5t -
(z,p=e"'p) r i
] §=emns Sc =St
non-canonical non-unitary
TR FIG. 1. Connections between the canonical
(244)5 4+ H=0 iR W (2,8) = {Hyp + 720V} (2,1) s and the physical .Ievel in classical as well as in
Po» =7 3 guantum mechanics.
W' not normalized , physical level
E=zE|
Se = %ln\Il
ih2 W(z,t) = {H+~E(In¥- < In¥ >)}¥(z,t
ot (2 t) = {H+7%( ¥ (2,1) V8o = VS,
-k 8
¥ normalized, physical level Pop =7 5
? s
with g(t) = e {go — [ ey < In¥ > dt'}
0
by a linear effective Hamiltonian operajoHowever, via a 1
i i - i Ax2)  —(y2 2 _
noncanonical transformatiofconnected with a nonunitary (AX%) ck={(X")ck— (X)ex=—=" (22)
transformation of the wave functipna level can be reached Yi

where the description within the canonical formalism can be . -
possible. where the subscript CK indicates that the mean values are

calculated using¥cy, i.e., ()ck=JVYex: - - Pekdx. Simi-
larly, the fluctuation of theanonicalmomentum is given by
V. UNCERTAINTY PRODUCTS IN CANONICAL
AND PHYSICAL DESCRIPTIONS — > - ) Y2+y?2
(AP gp)ek=(P ogp'ck—(Popl ek =1t 5 (29
|

As an example it shall be shown that the apparent viola-
tion of the uncertainty principle vanishes if operatansd _
wave functions are transformed consistently. For this purhence the uncertainty product
pose we consider exact analytic Gaussian wave pduXE}
solutions of the damped HO. On the canonical level, i.e., Uck=(2xD) cr(AP 2) k=
where the CK Hamiltonian is applied, the WP.(x,t) is o T oG 4
proportional to

2

2 2

2
= — 4

Y

1+(yR

obviously does not violate Heisenberg’s principle.
i The violation seems to occur if the canonical momentum
E’CK(th)“exp{ iV (x—(x)(1))%+ —(p)x |, (21) operatorpopf (ﬁ/i)(a/&x} is replaced by the kinetic momen-
fi tum, according t@,,=e€ Wﬁop, and the momentum fluctua-
tion is calculated using theameWPs W as used for
wherey(t) =Yx(t) +i¥,(t) is complex(x) is the mean value Pop. i-€., (AP5) k=€ 2""(AP5)ck - However, the operator
of position andp)=(pc)=(Pop =me"'(d/dt)(x) is identi-  p,, is not defined on the space to whitth belongs, but on
cal to the classicatanonicalmomentumpgk of Caldirola  the physical space. Therefore, to be consistent, if the opera-
and Kana{see Eq(3)]. The physical momentum is therefore tors are transformed, the WPs have to be transformed accord-
given by(p)=m(d/dt)(x) and, since inserting’c«(x,t) in  ingly.
Eq. (20) shows that(x)(t) fulfills the classical equation of ~ The WPs that apply to the physical level are, as shown
motion (2) including friction, the mean value of the physical above, the solutions of the logarithmic NLSE3). These
momentum, due to dissipation, decreases in the same way ¥¢Ps can be written in a form equivalent to Eg1),
the corresponding classical quantity. i
The mean-square deviation of position is inversely pro- iy 2, _
portional to the imaginary part gf(t), ‘PNL(XJ)“QXP('Y(X OO+ zCppx |, (29
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but Y has to be replaced by(t)=e "y(t) and (p) cal relevance. These questions are still under investigation
=(Pc){Pop) =M(d/dt)(x) is identical to the classic&linetic ~ and a final answer cannot yet be given.
momentump, since(x) still fulfills the classical equation of At least the following can already be stated about the

motion (2). physical relevance of the logarithmic NLS&S3). In [29]
The fluctuations of position ankinetic momentum, cal- Gisin and Rigo discuss what they call an “interesting”
culated withW¥y (x,t), are now given by NLSE [see Eqs(4)—(7) thereinl, which can be associated

with a master equation of Lindblad form for the time evolu-
tion of density operators. However, this interesting NLSE is
also deterministic, whereas the master equation is stochastic
in the sense that it turns pure states into mixed states. These

1 _
=e"—==e"(AX?) (26)

=
(AX)nL ™ 4,

. yé+ y|2 ')7§+')7|2 authors then show that, by adding randomness to the NLSE,
(Apopz),\,L:h2 ——|=e " — the master equation can be recovered and the NLSE becomes
Yi Yi “relevant” in the sense that the contradiction with relativity
:e,yt(m 27 no longer occurs. For further details on the quantum state
op/CK- diffusion equation obtained in this way or similar stochastic

So the uncertainty product does not violate Heisenberg'du@ntum state evolution equations §@9-39 and refer-

principle ences cited therein. Since the logarithmic NLEB) can
also be written in a form similar to that of the interesting

h? Yr|? #2 NLSE of Gisin and Rigo[see, e.g.[36], especially for

Un=7 |1+ v =Uck= 7 (28)  Gaussian WPs in a form similar to their §d)], analogous

addition of noise to our NLSE would avoid the signaling
but is identical to the one on the canonical level, as only theproblem and turn it into an equation that is physically rel-

ratio of yr andy, occurs. evant according to Gisin and Rigo’s definition.
In conclusion, it can be stated that the many-body prob-
VI. DISCUSSION AND CONCLUSIONS lem of a system dissipating energy due to contact with an

environment can, at least in certain cases, be reduced to a
It shall be mentioned here briefl{details will be dis-  description with the help of an effective Hamiltonian for the
cussed elsewheréhat the discussed transition from a non- system of interest. This Hamiltonian can be explicitly time
linear theory on conventional spaces over conventional fielddependent, like the one of CK, allowing canonical quantiza-
to a linear theory on generalized spaces over generalizegbn to yield alinear effective Hamiltonian operator. In this
fields is a specific example for the so-called isolinearizatiorcase, thecanonical variablesare connected to thghysical
(here because of irreversibility in particular genolineariza-ones, classically, via aoncanonical transformatiorConse-
tion), introduced by Santilli in the framework of hadronic quently, the wave functions that belong to the domain of
mechanicgsee, e.g.[28]). definition of the canonical operators are connected to the
In a recent paper by Gisin and Ri§29] it is claimed that  wave functions of the physical operators viananunitary
“any deterministic nonlinear Schdinger equation allows transformation An equivalent description can be achieved
one to send signals in a finite time over arbitrarily largepy directly using the conventional operators corresponding to
distances” and hence should be considered non-physicathe physical variablesand the respective wave functions.
Considering our logarithmic NLSEL3) in this context, there  This advantage has as a consequence the disadvantage of the
are two kinds of nonlinearity to be distinguished. One is duecorresponding Hamiltonian operator beingnlinear In any
to the occurrence of the mean vale= f¥* - - - Wdxinthe case, both descriptions do not yield unphysical results if op-
equation, but this is mainly for normalization purposes; theeratorsand wave functions are both properly considered on
other, a true nonlinearity, is the appearance of the logarithnthe same level, either canonical or physical. A more detailed
of the wave function. This term, however, can be linearizeddiscussion is planned for forthcoming papers.
as shown above if wave functions and operators are trans-
formed simultaneously in a nonunitary way. This lineariz- ACKNOWLEDGMENTS
ability might also have an effect on the problem of superlu-
minal communication. There might further be close The author would like to thank Professor R. J. Jelitto for
connections with nonlinear gauge theories discussed by Gohis support of and interest in this work and Professor R. M.
din [30] in connection with a family of NLSEs and its physi- Santilli for stimulating discussions.
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