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Nonunitary connection between explicitly time-dependent and nonlinear approaches
for the description of dissipative quantum systems
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Caldirola@Nuovo Cimento18, 393 ~1941!# and Kanai’s@Prog. Theor. Phys.3, 440 ~1948!# time-dependent
approach for dissipative systems can be traced back to the conventional system-plus-reservoir approach;
however, it apparently violates the uncertainty principle. This discrepancy can be avoided by considering a
consistent transition between the Caldirola-Kanai formalism and a logarithmic nonlinear Schro¨dinger equation
that requires not only a transformation of the operators, but also a nonunitary transformation of the wave
function. This procedure also shows the equivalence of three at first sight incompatible approaches to describe
dissipative quantum systems.@S1050-2947~97!03102-8#

PACS number~s!: 03.65.Bz, 03.65.Ca, 05.70.Ln
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I. INTRODUCTION

Although irreversibility and dissipation are the rule in th
perceivable macroscopic world, these phenomena do no
plicitly enter the microscopic equations of motion on eith
the classical or the quantum-mechanical level. The ques
of how to modify the classical Lagrangian and Hamiltoni
formalisms and the corresponding quantization method
order to include these aspects has not yet been answere
unique way that would be generally accepted. Different
proaches exist in the literature that have their peculiar adv
tages and shortcomings and most of them seem to be inc
patible with each other. In this paper three types of th
apparently incompatible approaches that are frequently
plied in the literature shall be discussed and it will be sho
that they are actually intimately connected. These
proaches are~i! the system-plus-reservoir model,~ii ! at-
tempts to use explicitly time-dependent Lagrangians
Hamiltonians, and~iii ! nonlinear Schro¨dinger equations
~NLSEs!. The existence of a unique transformation betwe
the latter two approaches will be explicitly shown and it w
become clear how presumed shortcomings can be dispe
with if the problem is properly treated.

II. PROBLEMS WITH THE CALDIROLA-KANAI
APPROACH

The system-plus-reservoir ansatz is based on conventi
conservative quantum mechanics. It couples the system
interest with a large number of environmental degrees
freedom. Subsequent elimination of these degrees of f
dom reduces the entire conservative system to a ‘‘releva
dissipative system. Well-known models of this kind ha
been proposed by Caldeira and Leggett@1# and by Fordet al.
@2#. However, the consideration of a large number of degr
of freedom, each of which is governed by a partial differe
tial equation,@3# might, in certain cases, e.g., for the study
the quantum limit of chaotic dissipative systems, exhaus
even go beyond the power of the largest and fastest com
ers.

Since the main interest is usually focused only on a f
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degrees of freedom, more phenomenologically motivated
proaches have been proposed that do not take the env
mental degrees of freedom explicitly into account, but try
describe the system of interest with the help of some kind
effective Hamiltonian~see, e.g.,@4# and references cited
therein!. These Hamiltonians can be either explicitly tim
dependent or they may contain additional nonlinear frict
terms, thus leading to NLSEs.

The historically first and most frequently used tim
dependent Hamiltonian was proposed by Caldirola@5# and
Kanai@6#; a similar approach, using an expanding coordin
system and a Hamiltonian that is a time-dependent invari
has been discussed by the present author@7#. Both models
can be connected on the classical level via a canonical tr
formation. The application of~linear! time-dependent Hamil-
tonians would permit the direct use of standard scheme
quantization. Although the classical Hamiltonian function
Caldirola and Kanai,

HCK5
1

2m
e2gt p̃ CK

2 1egtV~x!, ~1!

with friction constantg, yields the proper equation of motio
for a system under the influence of a linear velocity-~or
momentum-! dependent frictional force

mẍ1mg ẋ1
]

]x
V~x!50, ~2!

a problem arises after canonical quantization. Since the
nonical momentum

p̃CK5mẋegt5pegt, ~3!

which corresponds to the operatorp̃op5(\/ i )(]/]x), differs
from the physical kinetic momentump5mẋ, the commuta-
tor of physical momentum and position, and hence the
certainty product, decay exponentially. This apparent vio
tion of the uncertainty principle gave rise to serio
criticisms @8–10# as well as attempts to avoid@11,12# or
935 © 1997 The American Physical Society
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explain @13# this peculiarity of the Caldirola-Kanai~CK!
model.~For a review, see also@14#.!

Studying the literature carefully, one is under the impr
sion that the explanations given for the violation of the u
certainty principle are not totally convincing and that t
critics might be correct. However, a different aspect was
cently added, when Sun and Yu@15,16# were able to show
that it is possible to obtain the CK Hamiltonianoperator,
starting with the conventional system-plus-reservoir
proach. This leads to the paradoxical situation where
Hamiltonian operator, which can be traced back to conv
tional quantum mechanics, apparently causes violation
one of the most fundamental principles of this theory,
uncertainty principle. After a brief discussion of the thi
type of approach, the NLSEs, it will be shown how th
paradox can be eliminated.

III. NONLINEAR APPROACHES

A way to circumvent the problem of finding a classic
Hamiltonian for dissipative systems that can be canonic
quantized is to add a friction term directly to the Hamiltoni
operator,

HNL52
\2

2m

]2

]x2
1V~x!1W5HL1W. ~4!

There are several attempts of this kind in the literature~see,
e.g.,@4,17–19#!. Most of them use as a guideline to findin
the proper form ofW, that Ehrenfest’s theorem in the form

d

dt
^p&1g^p&1 K ]

]x
VL 50 ~5!

has to be fulfilled, wherê &5*C* •••Cdx denotes mean
values calculated with the help of the wave functi
C(x,t) and its complex conjugateC* . From the Heisenberg
equations of motion it follows then that the additional te
W is defined via

K ]

]x
WL 5g^p&. ~6!

This definition, however, is by far not unique as it conta
only the mean value of the derivative ofW. In addition,
different definitions of momenta occur in quantum mech
ics, all of which have the same mean value.

In Schrödinger’s first communication on wave mechani
@20# he starts with the Hamilton-Jacobi~HJ! equation

]

]t
SC1HS x, ]

]x
SC ,t D50, ~7!

with the action function SC and the momentum
pC5(]/]x)SC . He introduces the wave functionC(x,t)
throughSC5(\/ i )lnC and arrives, via a variational ansat
at the Hamiltonian operatorHL . With his definition ofSC ,
the momentum reads

pC5
\

i

]

]x
lnC5

\

i

~]/]x! C

C
, ~8!
-
-

-

-
a
-
of
e

ly

-

which is a complex quantity, if C is complex, i.e.,
SC5SR1SI . Obviously, the mean value ofpC is identical to
that of the quantum-mechanical momentum opera
pop5(\/ i )(]/]x),^pC&5^(\/ i )(]/]x)&. The density
%5C*C obeys the continuity equation~CE!

]

]t
%1

1

m

]

]x
~%pR!50, ~9!

where only thereal part of pC , namely,pR5(\/2mi)(]/
]x)ln(C/C* ), occurs. A comparison shows, however, th
pR also has the same mean value aspC and pop since the
mean value of the imaginary partpI5(\/2mi)(]/]x)ln% al-
ways vanishes.

In the most-often-discussed and ‘‘rederived’’ nonline
approach, Kostin@17# clearly uses only the real partpR , thus
arriving at the real friction term

WK5g
\

2i S ln C

C*
2 K ln C

C* L D , ~10!

where the mean value occurring guarantees that^WK&50
and thuŝ E&5^HL& is still valid. As stated in the literature
@4#, this term leads to results that are difficult to explain
physical terms, as it also admits the stationary states of
undamped harmonic oscillator~HO! as solutions and yields
the unshifted frequency instead of the reduced classical
In addition, the density%(x,t) fulfills the reversibleCE, al-
though the system displaysirreversible dynamics.

IV. CONNECTION BETWEEN THE LOGARITHMIC NLSE
AND THE CALDIROLA-KANAI APPROACH

It has been shown@21,22# that all these problems can b
solved or avoided by an approach starting with a modifi
irreversible density equation and using a separation meth
which was introduced by Madelung@23# and Mrowka@24#,
to rederive the conventional linear Schro¨dinger equation
~SE!, without applying Hamilton’s form of classical mechan
ics, but only Newton’s form. The modification consists of
additional diffusion term to the CE, thus arriving at th
Fokker-Planck-type equation~FPE!

]

]t
%1

1

m

]

]x
~%pR!2D

]2

]x2
%50. ~11!

The inclusion of a diffusion current density was later su
ported by group-theoretical arguments@25#. In order to
achieve separation into two equations for the complex w
amplitudesC andC* , the additional condition

2D
~]2/]x2! %

%
5g~ ln%2^ ln%&! ~12!

has to be fulfilled, where the mean value on the right-ha
side guarantees normalizability. After separation, the
contains an additional logarithmic nonlinear term~the loga-
rithmic NLSE!

i\
]

]t
C5SHL1g

\

i
~ lnC2^ lnC&! DC. ~13!
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55 937NONUNITARY CONNECTION BETWEEN EXPLICITLY . . .
When Ehrenfest’s theorem is considered, the physical me
ing of the nonlinear~NL! term becomes obvious, as the log
rithmic term gives rise to the additional friction termg^p& in
the classical equation of motion. Here, however, the NL te
in the NLSE is not derived from the classical friction term
but, to the contrary, the correct classical friction term resu
from the additional irreversible diffusion term in connectio
with the separation condition~12!. For further details see
@21,22#.

The connection between our logarithmic NLSE and
time-dependent CK approach shall now be elucidated.
this purpose, we reverse the procedure of Schro¨dinger’s
original quantization method, divide the NLSE byC, and
use the definition of actionSC , yielding

S ]

]t
1g DSC1H52g^SC&. ~14!

This is, of course, as little rigorous as Schro¨dinger’s first
attempt was; however, it follows his way of thinking of ho
to connect the classical HJ theory with a wave~mechanical!
equation.

Equation~14! now shows some similarity to an approa
used by Razavy@26# and also discussed by Wagner@27#.
However, in agreement with Kostin, these authors also
only the real partSR of the complex action functionSC .
SR enters a~real! HJ-type equation~with an additional so-
called quantum potential! if Madelung’s hydrodynamica
form of quantum mechanics is used. The imaginary par
ignored, as it would yield an additional term to the CE a
might thus violate the normalizability of the wave function
The above-mentioned FPE shows that this is not necess
the case as it still allows normalization.

The term2g^SC& is necessary mainly for normalizatio
purposes and shall be neglected for the moment. Multiply
the remaining left-hand side of Eq.~14! by egt and using the
definitions

S̃C5egtSC , H̃5egtH ~15!

finally yields the HJ equation

]

]t
S̃C1H̃50. ~16!

From the definitions of the action functions, it follows th
the wave functionC̃ in the transformed system is connect
with the wave functionC in the physical system via

lnC̃5egtlnC. ~17!

Consequently, the complex momenta in the two systems
connected via

p̃C5
\

i

]

]x
lnC̃5egt

\

i

]

]x
lnC5egtpC , ~18!

which is equivalent to the connection between canonical
kinetic momentum in the CK theory. Thenoncanonicalcon-
nection between the classical variables (x,p) and (x,p̃CK)
corresponds to thenonunitary connection betweenC and
C̃. AlthoughC andC̃ both depend explicitly only onx and
n-

s

e
or

e

is

.
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g
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d

t, the connection between the momentum and lnC has the

consequence thatC̃(x,t) in the transformed system isdiffer-
ent from C(x,t) in the physical system.

ExpressingH̃ in terms of the canonical momentump̃C ,

H̃~x,p̃C ,t !5e2gt
p̃ C
2

2m
1egtV~x!, ~19!

and following Schro¨dinger’s quantization procedure, bu
now using the canonical momentump̃C , finally yields

i\
]

]t
C̃~x,t !5H̃opC̃~x,t !5Fe2gtS 2

\2

2m

]2

]x2D1egtVGC̃
5HCK,opC̃, ~20!

where the Hamiltonianoperator H̃op is identical to the one of
CK and p̃op5(\/ i )(]/]x).

Here it is remarked thatp̃ C
2 in Eq. ~19! would actually

lead to a term proportional to@(]/]x)C̃/C̃#2 that differs
from (]2/]x2)C̃ by a term proportional to (]/]x) p̃C
5(]/]x)@(]/]x)C̃/C̃#. Following Schro¨dinger’s variational
ansatz for the time-independent case, the contribution fr
the latter term must disappear, which leads to restriction
the behavior of the variation of the wave function at infinit
For the time-dependent case, when considering probl
with Gaussian wave-packet solutions~and these are the one
that will be discussed in detail in this paper!, (]/]x) p̃C is
either zero or a mere time-dependent function that can
included in the normalization factor of the wave pack
~Further details are under investigation and are planned t
discussed in forthcoming papers.!

N.B. The major difference between Eq.~20! and the CK
theory is that in the latter, the operatorHCK,op acts on the
wave functionC(x,t) in physical space, instead of acting o
C̃(x,t) in the transformed system. However, for consisten
reasons it is necessary, if the momentum is transformed
cording topC→ p̃C , that the wave function also has to b
transformed accordingly,C→C̃, since pC5(\/ i )(]/
]x)lnC→p̃C5(\/i)(]/]x)lnC̃, whereC andC̃ are connected
via Eq. ~17!.

Since the connection betweenC andC̃ is not unitary, it
follows that if the solutionC̃ of Eq. ~20! is normalized, the
solutionC after transformation, i.e., the solution of the log
rithmic NLSE without the termg^SC&, is not normalized. So,
for normalization purposes,g^SC& has to be subtracted from
the right-hand side of the equation forC, thus leading to the
NLSE ~13!. In Fig. 1 the connection between the differe
levels of description, classical~left! as well as quantum me
chanical, is shown schematically.

Considering effective Hamiltonians for dissipative sy
tems, one has to distinguish between two levels of desc
tion: ~i! the physical level with physical coordinatex and
kinetic momentump @and wave functionC(x,t)# and~ii ! the
canonical level with canonical coordinatex̃ ~which in our
example is identical to the physical coordinatex) and ca-
nonical momentump̃.

On the physical level, these dissipative systems canno
described by the canonical formalism~and probably also no
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FIG. 1. Connections between the canonic
and the physical level in classical as well as
quantum mechanics.
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by a linear effective Hamiltonian operator!. However, via a
noncanonical transformation~connected with a nonunitar
transformation of the wave function!, a level can be reache
where the description within the canonical formalism can
possible.

V. UNCERTAINTY PRODUCTS IN CANONICAL
AND PHYSICAL DESCRIPTIONS

As an example it shall be shown that the apparent vio
tion of the uncertainty principle vanishes if operatorsand
wave functions are transformed consistently. For this p
pose we consider exact analytic Gaussian wave packet~WP!
solutions of the damped HO. On the canonical level, i
where the CK Hamiltonian is applied, the WPC̃CK(x,t) is
proportional to

C̃CK~x,t !}expS i ỹ„x2^x&~ t !…21
i

\
^ p̃&xD , ~21!

whereỹ(t)5 ỹR(t)1 i ỹ I(t) is complex,̂ x& is the mean value
of position and̂ p̃&5^ p̃C&5^ p̃op&5megt(d/dt)^x& is identi-
cal to the classicalcanonicalmomentump̃CK of Caldirola
and Kanai@see Eq.~3!#. The physical momentum is therefor
given by^p&5m(d/dt)^x& and, since insertingC̃CK(x,t) in
Eq. ~20! shows that̂ x&(t) fulfills the classical equation o
motion ~2! including friction, the mean value of the physic
momentum, due to dissipation, decreases in the same wa
the corresponding classical quantity.

The mean-square deviation of position is inversely p
portional to the imaginary part ofỹ(t),
e

-

r-

.,

as

-

~Dx2!CK5^x2&CK2^x&CK
2 5

1

4ỹI
, ~22!

where the subscript CK indicates that the mean values
calculated usingC̃CK , i.e., ^ &CK5*C̃CK* •••C̃CKdx. Simi-
larly, the fluctuation of thecanonicalmomentum is given by

~D p̃ op
2 !CK5^ p̃ op

2 &CK2^ p̃op&CK
2 5\2S ỹ R

21 ỹ I
2

ỹI
D , ~23!

hence the uncertainty product

UCK5~Dx2!CK~D p̃ op
2 !CK5

\2

4 F11S ỹR
ỹI

D 2G>
\2

4
~24!

obviously does not violate Heisenberg’s principle.
The violation seems to occur if the canonical moment

operatorp̃op5(\/ i )(]/]x) is replaced by the kinetic momen
tum, according topop5e2gt p̃op, and the momentum fluctua
tion is calculated using thesameWPs C̃CK as used for
p̃op, i.e., (D̄pop

2 )CK5e22gt(D̄p̃op
2 )CK . However, the operato

pop is not defined on the space to whichC̃CK belongs, but on
the physical space. Therefore, to be consistent, if the op
tors are transformed, the WPs have to be transformed acc
ingly.

The WPs that apply to the physical level are, as sho
above, the solutions of the logarithmic NLSE~13!. These
WPs can be written in a form equivalent to Eq.~21!,

CNL~x,t !}expS iy„x2^x&~ t !…21
i

\
^p&xD , ~25!
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but ỹ has to be replaced byy(t)5e2gtỹ(t) and ^p&
5^pc&^pop&5m(d/dt)^x& is identical to the classicalkinetic
momentump, since^x& still fulfills the classical equation o
motion ~2!.

The fluctuations of position andkineticmomentum, cal-
culated withCNL(x,t), are now given by

~Dx2!NL5
1

4yI
5egt

1

4ỹI
5egt~Dx2!CK, ~26!

~Dpop
2!NL5\2S yR21yI

2

yI
D 5e2gtS ỹ R

21 ỹ I
2

ỹI
D

5e2gt~D p̃ op
2 !CK . ~27!

So the uncertainty product does not violate Heisenbe
principle

UNL5
\2

4 F11S yRyI D
2G5UCK>

\2

4
, ~28!

but is identical to the one on the canonical level, as only
ratio of yR andyI occurs.

VI. DISCUSSION AND CONCLUSIONS

It shall be mentioned here briefly~details will be dis-
cussed elsewhere! that the discussed transition from a no
linear theory on conventional spaces over conventional fie
to a linear theory on generalized spaces over general
fields is a specific example for the so-called isolinearizat
~here because of irreversibility in particular genolineariz
tion!, introduced by Santilli in the framework of hadron
mechanics~see, e.g.,@28#!.

In a recent paper by Gisin and Rigo@29# it is claimed that
‘‘any deterministic nonlinear Schro¨dinger equation allows
one to send signals in a finite time over arbitrarily lar
distances’’ and hence should be considered non-phys
Considering our logarithmic NLSE~13! in this context, there
are two kinds of nonlinearity to be distinguished. One is d
to the occurrence of the mean value^ &5*C* •••Cdx in the
equation, but this is mainly for normalization purposes;
other, a true nonlinearity, is the appearance of the logari
of the wave function. This term, however, can be lineariz
as shown above if wave functions and operators are tr
formed simultaneously in a nonunitary way. This linear
ability might also have an effect on the problem of super
minal communication. There might further be clo
connections with nonlinear gauge theories discussed by
din @30# in connection with a family of NLSEs and its phys
’s

e

s
ed
n
-

al.

e

e
m
d
s-
-
-

l-

cal relevance. These questions are still under investiga
and a final answer cannot yet be given.

At least the following can already be stated about
physical relevance of the logarithmic NLSE~13!. In @29#
Gisin and Rigo discuss what they call an ‘‘interesting
NLSE @see Eqs.~4!–~7! therein#, which can be associate
with a master equation of Lindblad form for the time evol
tion of density operators. However, this interesting NLSE
also deterministic, whereas the master equation is stoch
in the sense that it turns pure states into mixed states. T
authors then show that, by adding randomness to the NL
the master equation can be recovered and the NLSE beco
‘‘relevant’’ in the sense that the contradiction with relativi
no longer occurs. For further details on the quantum s
diffusion equation obtained in this way or similar stochas
quantum state evolution equations see@29–35# and refer-
ences cited therein. Since the logarithmic NLSE~13! can
also be written in a form similar to that of the interestin
NLSE of Gisin and Rigo@see, e.g.,@36#, especially for
Gaussian WPs in a form similar to their Eq.~7!#, analogous
addition of noise to our NLSE would avoid the signalin
problem and turn it into an equation that is physically r
evant according to Gisin and Rigo’s definition.

In conclusion, it can be stated that the many-body pr
lem of a system dissipating energy due to contact with
environment can, at least in certain cases, be reduced
description with the help of an effective Hamiltonian for th
system of interest. This Hamiltonian can be explicitly tim
dependent, like the one of CK, allowing canonical quanti
tion to yield alinear effective Hamiltonian operator. In this
case, thecanonical variablesare connected to thephysical
ones, classically, via anoncanonical transformation. Conse-
quently, the wave functions that belong to the domain
definition of the canonical operators are connected to
wave functions of the physical operators via anonunitary
transformation. An equivalent description can be achieve
by directly using the conventional operators corresponding
the physical variablesand the respective wave function
This advantage has as a consequence the disadvantage
corresponding Hamiltonian operator beingnonlinear. In any
case, both descriptions do not yield unphysical results if
eratorsandwave functions are both properly considered
the same level, either canonical or physical. A more deta
discussion is planned for forthcoming papers.
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