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Microscopic theory of quantization of radiation in molecular dielectrics.
II. Analysis of microscopic field operators

Gediminas Juzeliūnas*
State Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, 2600 Vilnius, Lithuania

~Received 29 January 1996!

The microscopic operators have been investigated for radiation and polarization fields within a discrete
molecular medium. The medium comprises atoms~or molecules! each containing an arbitrary number of
energy levels. Explicit mode expansions have been derived for the quantized microfields in terms of normal
Bose operators for polariton creation and annihilation. These microscopic operators have been demonstrated to
yield the correct macroscopic and local field operators presented in part I@Phys. Rev. A53, 3543~1996!#. On
the other hand, the commutation relations between the expanded microfields differ from the exact commutation
relationships. This happens because the microfields have been described in terms of a continuous refractive
index. Hence the expanded field operators do not extend to modes with extremely high frequencies ranging
over the photon umklapp frequenciescG. In spite of that, the proper commutation relations hold between the
resultant macroscopic~averaged! fields. This justifies separate quantization of the slowly modulated~macro-
scopic! part of the radiation field in linear dielectrics: such an approach is utilized in phenomenological
quantization schemes. Finally, although the microscopic operators presented are not complete, the mode ex-
pansions adequately represent the quantized microfields associated with the optical modes in condensed mo-
lecular media.@S1050-2947~97!02302-0#

PACS number~s!: 12.20.Ds, 42.50.2p, 71.36.1c, 32.80.2t
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I. INTRODUCTION

The quantum nature of light plays an important role in
number of distinctive phenomena, such as squeezing@1,2#
and spontaneous emission@3–7#. In vacuum, the light is
quantized by means of a standard procedure as depicte
textbooks on quantum electrodynamics~QED! @8–10# or
quantum optics@11#. The quantization of radiation in a con
densed medium is a less established issue. Traditionally
~macroscopic! radiation field is quantized phenomenolog
cally taking into account the influences of the polariza
medium implicitly through the linear@12–17# or nonlinear
@18–21# susceptibilities. Although such a procedure is ve
convenient for utilitarian purposes, the phenomenolog
approach lacks a rigorous justification. Furthermore, the p
nomenological quantization suffers from some difficultie
such as violation of microcausality in a dispersionless m
dium ~as discussed in Refs.@22–26#!, or the possible appear
ance of unphysical photon modes in the case of a nonlin
dispersive medium@20#.

In several recent publications@3,22–26#, another scheme
has been investigated for quantization of the radiation fiel
linear dielectrics. The approach treats the matter explicitly
invoking the polariton concept@27–33#. Specifically, the
electromagnetic field and the matter are considered to c
stitute a single dynamical system: The quanta of the nor
modes for such a system are known as polaritons. The in
theories concentrated on either macroscopic@22–25# or local
@3# fields. In the previous paper@26#, a combined analysis
has been carried out of the macroscopic and local fields
molecular dielectric. The molecular medium was conside
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to be discrete and represented by an arbitrary numbe
energy levels for each constituent molecule~for mode details
see part I@26#!. Explicit normal-mode expansions have be
derived for both local and macroscopic fields. Hence the f
malism developed provides a tool for the analysis of pro
gation of the quantized radiation in molecular dielectrics,
well as consideration of molecule-radiation processes, s
as spontaneous emission and linear absorption@34# or bimo-
lecular multiphoton processes@35# in condensed media. Her
the previous theory is extended to include the microsco
field operators, in addition to the macroscopic and lo
ones: This will provide a deeper understanding of the int
play between the microscopic and macroscopic approac
to the quantization of radiation in dielectrics.

The outline of the paper is as follows. In Sec. II the mo
expansions are derived for the quantized microfields in te
of normal Bose operators for polariton creation and ann
lation. The results are then analyzed in Sec. III. In Sec. II
the microscopic operators are demonstrated to produce
correct macroscopic~averaged! and local field operators
Section III B considers the commutation relations betwe
the expanded microfields, highlighting the deviation from t
true commutation relations and giving its explanation . T
commutation relations between the averaged~macroscopic!
fields are also discussed in Sec. III B. Finally, Sec. IV co
tains the concluding remarks. Technical details of the cal
lation of the local polarization field are placed in the Appe
dix.

II. MICROSCOPIC FIELD OPERATORS

In this section the normal-mode expansions will be o
tained for the microscopic operators of radiation and po
ization fields in a discrete molecular medium. We shall d
with a nonmagnetic molecular dielectric as described
929 © 1997 The American Physical Society
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930 55GEDIMINAS JUZELIŪNAS
more detail previously@26#. The system is characterized b
zero magnetization, i.e.,

b'~r !5m0h
'~r !, ~2.1!

h'(r ) and b'(r ) being the microscopic operators for th
magnetic field and induction. On the other hand, the mic
scopic operator for the transverse displacement fieldd'(r ) is
related to the electric and polarization fields in a usual w
as @9#

d'~r !5«0e
'~r !1p'~r !, ~2.2!

where the full polarization field is, under the electric dipo
approximation adopted in part I,

p~r !5(
z

m~z!d~r2r z!, ~2.3!

p'(r ) being the transverse~divergence-free! component of
p~r !. Herem(z) is the operator for the electric dipole mo
ment of moleculez positioned atr z , and the summation is
over the moleculesz of the system.

The starting point of the present analysis will be the p
viously derived@26# normal-mode expansion of the averag
~i.e., macroscopic! polarization field:

p̄~r !5 i(
k

(
m

(
l51

2 S «0\vk
~m!vg

~m!

2cV0n
~m! D 1/2@~n~m!!221#e~l!~k!

3~eik–rPk,m,l2e2 ik–rPk,m,l
† !, ~2.4!

with k!2p/a (a being the distance of intermolecular sep
ration!. HereV0 is the quantization volumePk,ml

† (Pk,m,l) is
the Bose operator for creation~annihilation! of a polariton
characterized by a wave vectork, a polarizationl, and an
extra indexm, e(l)(k) being a unit vector for the polariton
polarization. The indexm labels the branches of polarito
dispersion: Altogether there areMmol11 dispersion branche
~depicted in Fig. 2 of part I@26#!, whereMmol is a number of
excitation frequencies contained by each individual molec
of the medium. Here also

n~m![n~vk
~m!! ~2.5!

is the refractive index, presented explicitly in part I, and

vg
~m!5cH d@vn~v!#

dv J 21U
v5v

k
~m!

5
dvk

~m!

dk
~2.6!

is the group velocity, both quantities being calculated at
polariton frequencyvk

(m) :

vk
~m!5ck/n~vk

~m!!. ~2.7!

At this juncture a couple of remarks need to be made c
cerning the macroscopic polarization field~2.4!. First, the
averaged field~2.4! has been determined from first principle
on the basis of a microscopic model@26#. Second, the expan
sion ~2.4! accommodates the transverse normal modes@e(l)

3(k)'k,l51,2# characterized by the first Brillouin zon
wave vectorsk with k!2p/a ~i.e., large wavelengths
-

y

-

-

le

e

-

|51/k@a) @36#. The excluded longitudinal excitonlike
modes (l53), or the modes with greaterk do not play a
significant role for most of the optical processes of intere
Furthermore, for modes withk>p/a neither macroscopic
smoothing can be carried out to average the field over
elementary cell of the medium, nor is a description in ter
of continuous refractive index relevant. In this way, Eq.~2.4!
represents the operator for the transverse@ p̄(r )[p̄'(r )#
macroscopic field slowly varying from molecule to mo
ecule.

Due to translational symmetry imposed on the molecu
medium @26#, the following relationship holds between th
microscopic polarization field~2.3! and its macroscopic
componentp̄(r ):

p~r !5(
G

p̄~r !eiG•r, ~2.8!

where the summation extends over the inverse lattice vec
G. Substituting Eq.~2.4! for p̄(r ) into the above equation
provides the explicit mode expansion of the microscopic
erator:

p~r !5 i(
k,G

(
m

(
l51

2 S «0\vk
~m!vg

~m!

2cV0n
~m! D 1/2@~n~m!!221#e~l!~k!

3~ei ~k1G!•rPk,m,l2e2 i ~k1G!•rPk,m,l
† ! ~2.9!

for k!2p/a, i.e., we are again concentrating on the optic
modes: In what follows this conditions is mostly kept im
plicit. It is noteworthy that although the macroscopic pola
ization field ~2.4! is completely transverse, its microscop
counterpart~2.9! acquires a longitudinal contribution due t
extra short-wavelength terms withGÞ0. Extracting the
transverse component from Eq.~2.9!, one finds

p'~r ,t !5 i(
k,G

(
m

(
l51

2 S «0\vk
~m!vg

~m!

2cV0n
~m! D 1/2@~n~m!!221#

3g~l!~k,G!~ei [ ~k1G!•r2vk
~m!t]Pk,m,l

2e2 i [ ~k1G!•r2vk
~m!t]Pk,m,l

† !, ~2.10!

g~l!~k,G!5 (
l151

2

e~l1!~k1G!@e~l1!~k1G!•e~l!~k!#,

~2.11!

with g(l)(k,0)5e(l)(k), the time variable emerging throug
replacement of the initial Schro¨dinger representation by th
Heisenberg one, as

Pk,m,l→e2 ivk
~m!tPk,m,l and Pk,m,l

† →eivk
~m!tPk,m,l

† .
~2.12!

Other field operators can then be determined by exploit
the quantum Maxwell equations for the microscopic fie
operators in the Heisenberg representation:

“3h'~r ,t !5
]d'~r ,t !

]t
, ~2.13!
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“3e'~r ,t !52
]b'~r ,t !

]t
. ~2.14!

Combining Eqs.~2.1!, ~2.2!, ~2.13!, and~2.14! gives

S c2¹22
]2

]t2Dd'~r ,t !5c2¹2p'~r ,t !, ~2.15!

«0S c2¹22
]2

]t2De'~r ,t !5
]2p'~r ,t !

]t2
~2.16!

so that calling on Eq.~2.10! for p'(r ,t) one arrives at the
mode expansions for the microscopic operators for the
placement and electric fields:

d'~r ,t !5 i(
k,G

(
m

(
l51

2 S «0\vk
~m!vg

~m!

2cV0n
~m! D 1/2~n~m!!2

3
c2k22~vk

~m!!2

c2k2
c2uk1Gu2

c2uk1Gu22~vk
~m!!2

g~l!~k,G!

3~ei [ ~k1G!•r2vk
~m!t]Pk,m,l

2e2 i [ ~k1G!•r2vk
~m!t]Pk,m,l

† ! ~2.17!

and

e'~r ,t !5 i(
k,G

(
m

(
l51

2 S \vk
~m!vg

~m!

2«0cV0n
~m!D 1/2

3
c2k22~vk

~m!!2

c2uk1Gu22~vk
~m!!2

g~l!~k,G!

3~ei [ ~k1G!•r2vk
~m!t]Pk,m,l

2e2 i [ ~k1G!•r2vk
~m!t]Pk,m,l

† !. ~2.18!

Here use has been made of the following:

@~n~m!!221#5~n~m!!2
c2k22~vk

~m!!2

c2k2
5
c2k22~vk

~m!!2

~vk
~m!!2

.

~2.19!

The magnetic field operator may now be found utilizi
Eqs.~2.1!, ~2.14!, and~2.18!:

h'~r ,t !5 i(
k,G

(
m

(
l51

2 S \vk
~m!vg

~m!n~m!

2m0cV0
D 1/2c2k22~vk

~m!!2

ck

3
c~k1G!3g~l!~k,G!

c2uk1Gu22~vk
~m!!2

~ei [ ~k1G!•r2vk
~m!t]Pk,m,l

2e2 i [ ~k1G!•r2vk
~m!t]Pk,m,l

† !. ~2.20!

Finally, since

e'~r ,t !52
]a'~r ,t !

]t
~2.21!

the expanded operator for the vector potential takes the f
s-

m

a'~r ,t !5(
k,G

(
m

(
l51

2 S \vg
~m!

2«0cvk
~m!V0n

~m!D 1/2
3

c2k22~vk
~m!!2

c2uk1Gu22~vk
~m!!2

g~l!~k,G!

3~ei [ ~k1G!•r2vk
~m!t]Pk,m,l

2e2 i [ ~k1G!•r2vk
~m!t]Pk,m,l

† !, ~2.22!

completing a list of the microscopic operators of interest
the Heisenberg representation. Transformation back
Schrödinger representation can be carried out easily by
ting t50, so thatp'(r ,0)[p'(r ),d'(r ,0)[d'(r ), etc.

III. ANALYSIS OF THE RESULTS

A. Macroscopic and local fields

One can readily ensure that the microscopic field ope
tors provide the correct macroscopic and local operators.
eraging the fields over the elementary cell, only theG50
terms remain in the above mode expansions. The resu
macroscopic operators are obviously equivalent to those
sented in part I@26#. Consider now the local fields, i.e., th
field operators calculated at the molecular sitesr z . The op-
erator for the local polarization field, analyzed in the Appe
dix, reads

p'~r z!5
i

3(k (
m

(
l51

2 S «0\vk
~m!vg

~m!

2cV0n
~m! D 1/2@~n~m!!221#e~l!

3~k!~eik•rzPk,m,l2e2 ik•rzPk,m,l
† !, ~3.1!

i.e.,

p'~r z!5 1
3 p̄

'~r z!. ~3.2!

On a similar basis, the microscopic expansion~2.17! pro-
duces the local displacement field

d'~r z!5 i(
k

(
m

(
l51

2 S «0\vk
~m!vg

~m!

2cV0n
~m! D 1/2F ~n~m!!212

3 G
3e~l!~k!~eik•rzPk,m,l2e2 ik•rzPk,m,l

† !, ~3.3!

which is in agreement with the previous result ford'(r z)
@26# obtained through bypassing explicit analysis of the m
croscopic fields. Finally, the remaining fields are charac
ized by the same local and macroscopic operators,
e'(r z)5ē'(r z),h

'(r z)5h̄'(r z), etc. Thus one may write
using Eqs.~2.2! and ~3.2!,

d'~r z!5«0ē
'~r z!1 1

3 p̄
'~r z!. ~3.4!

Equations~3.2! and ~3.4!, connecting the local and macro
scopic fields, represent the relationships familiar from clas
elctrodynamics@37#. It is noteworthy that the relationship
have been established at quantum level in the present for
ism.
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932 55GEDIMINAS JUZELIŪNAS
B. Commutation relations

Consider next the equal-time commutators between
microscopic fields. The polariton operatorsPk,m,l and
Pk,m,l
† obey the Bose commutation relations. Hence, expl

ing the normal-mode expansions~2.17!, ~2.18!, and ~2.22!,
one finds

@al
'~r ,t !,dj

'~r 8,t !#52
i\

cV0
(
G,G8

(
k

(
l51

2

Sad~k,G,G8!

3gl
~l!~k,G!

3gj
~l!~k,G8!ei ~k1G!•re2 i ~k1G8!•r8

~3.5!

and

@al
'~r ,t !,«0ej

'~r 8,t !#

52
i\

cV0
(
G,G8

(
k

(
l51

2

Sae~k,G,G!gl
~l!~k,G!

3gl
~l!~k,G8!ei ~k1G!•re2 i ~k1G8!•r8, ~3.6!

where

Sad~k,G,G8!5(
m

vg
~m!n~m!

c2k2
@c2k22~vk

~m!!2#2

c2uk1Gu22~vk
~m!!2

3
c2uk1G8u2

c2uk1G8u22~vk
~m!!2

~3.7!

and

Sae~k,G,G8!5(
m

vg
~m!

n~m!

@c2k22~vk
~m!!2#2

c2uk1Gu22~vk
~m!!2

3
1

c2uk1G8u22~vk
~m!!2

. ~3.8!

On the other hand, the commutation relationships betw
the microfields should read, according to the general p
ciples of molecular quantum electrodynamics@9#,

@al
'~r ,t !,dj

'~r 8,t !#5@al
'~r ,t !,«0ej

'~r 8,t !#

52 i\d l j
'~r2r 8!, ~3.9!

whered l j
'(r2r 8) is the transverse delta function.@8–10,38#

The latter function may be represented as

d l j
'~r2r 8!5

1

V0
(
k,G

@ uk1Gu2d l j2~k1G! l~k1G! j #

uk1Gu2

3ei ~k1G!•~r2r8!. ~3.10!

It is apparent that the relationships~3.5! and ~3.6! differ
from the exact commutation relations~3.9! and ~3.10!. This
happens because our normal-mode expansions, desc
through the refractive index, are not complete. The the
concentrates on the modes with the frequenciesvk

(m) much
e

t-

n
-

ed
y

less than the photon umklapp frequenciescG (GÞ0) @39#.
In other words, the modes with extremely high frequenc
(vk

(m)>cG) have not been accommodated in the norm
mode expansions. Consequently the commutators~3.5! and
~3.6! contain incomplete short-wavelength parts~the terms
with G,G8Þ0). Nevertheless, since@24,26,40#

(
m

vg
~m!n~m!5(

m
vg

~m!/n~m!5c ~3.11!

one has

Sae~k,0,0!5Sad~k,0,0!5c ~3.12!

so that both the transformed~3.5! and ~3.6! and the original
~3.9! and ~3.10! commutators are characterized by the sa
slowly oscillating ~macroscopic! parts, represented by th
terms withG,G850 andk!2p/a. Accordingly, the incom-
plete microscopic commutators~3.5! and ~3.6! give the cor-
rect macrocommutators, considered previously@26#:

@ āl
'~r ,t !,d̄ j

'~r 8,t !#5@ āl
'~r ,t !,«0ēj

'~r 8,t !#

52 i\d̄ l j
'~r2r 8!, ~3.13!

where

d̄ l j
'~r2r 8!5

1

V0
(
k

~d l j2 k̂l k̂ j !e
ik•~r2r8! ~3.14!

is the smoothed~coarse-grained! transverse delta function
the summation being over the first Brillouin zone wave ve
tors with k!2p/a. It is noteworthy that both the macro
scopic and microscopic transversed functions, when acting
on a smooth functionF̄ l(r ), produce the equivalent results

E F̄ l~r 8!d̄ l j
'~r2r 8!dr 8'E F̄ l~r 8!d l j

'~r2r 8!dr 85F̄ j
'~r !.

~3.15!

The same applies to the smoothened~coarse-grained! delta
function d̄(r2r 8) featured in Eqs.~3.18! and ~3.19! below:

E F̄~r 8!d̄~r2r 8!dr 8'E F̄~r 8!d~r2r 8!dr 85F̄~r !,

~3.16!

whered(r2r 8) is an ordinary microscopic delta function.
The above analysis can be extended to other commuta

as well. Since

b'~r ,t ![m0h
'~r ,t !5“3a'~r ,t ! ~3.17!

the microcommutators @dj
'(r ,t),bl

'(r 8,t)# and
@ej

'(r ,t),bl
'(r 8,t)# may be found straightforwardly utilizing

Eqs.~3.5! and ~3.6!. Again, the microcommutators obtaine
are not complete, yet contain the proper macroscopic pa

@ d̄ j
'~r ,t !,b̄l

'~r 8,t !#5«0@ ēj
'~r ,t !,b̄l

'~r 8,t !#

5 i\« j lp

]

]r p8
d̄~r2r 8!, ~3.18!

with
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55 933MICROSCOPIC THEORY OF . . . . II. . . .
d̄~r2r 8!5
1

V0
(
k
eik•~r2r8!, ~3.19!

« j lp being the Levi-Civita` unit tensor of rank 3. Note that th
macroscopic commutators~3.13! and ~3.18! are of the same
form as the corresponding microscopic commutators@41#,
the microscopicd functions being now replaced by th
coarse-grained ones. Finally, the expanded microfie
d',e' and p' ~as well as the corresponding macrofiel
d̄',ē', andp̄') commute at equal times between each oth
as required. We conclude that disregard of the hi
frequency normal modes does not affect the commuta
relationships between the transverse macroscopic fields.

IV. CONCLUSION

The miscroscopic operators for radiation and polarizat
fields have been investigated from first principles in a d
crete molecular medium. Explicit expansions have been
rived for the quantized microfields in terms of normal Bo
operators for polariton creation and annihilation. The mic
scopic operators have been demonstrated to produce the
rect macroscopic and local field operators. On the ot
hand, the commutation relations between the expanded
crofields differ from the true commutation relationships. Th
happens because the normal-mode expansions of the
crofields, described through the refractive index, are
complete. The modes with extremely high frequencies~rang-
ing over photon umklapp frequenciescG) have not been
included. Furthermore, our mode expansions cover the tr
verse normal modes characterized by relatively small w
vectors k!2p/a, a being the distance of intermolecula
separation.

In spite of that, the proper commutation relations hold
the resultant macroscopic~the averaged! fields. This makes it
possible to quantize separately the slowly modulated~the
macroscopic! part of the radiation field in linear dielectrics
In fact, such an approach has been utilized in phenome
logical schemes@15–17# of the field quantization. It is note
worthy that the macrocommutators have been preserved
to the relationships~3.11! involving summations over the
dispersion branchesm51,2,Mmol11, whereMmol is the
number of molecular frequencies accommodated. There
it is the correspondence of more than one normal freque
vk
(m) to each wave vectork which is essential for retaining

the correct macrocommutators@24–26#. Finally, although the
microfields presented are not complete, the omitted mo
do not play a significant role for most optical processes
interest. That is, the mode expanions represent adequ
the quantized microfields associated with the optical mo
in condensed molecular media.
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APPENDIX A: LOCAL POLARIZATION FIELD

SinceeiG•rz51, the operator of the local polarization fiel
reads in Schro¨dinger representation, through Eq.~2.10!,

p'~r z!5 i(
k

(
m

(
l51

2 S «0\vk
~m!vg

~m!

2cV0n
~m! D 1/2@~n~m!!221#

3A~l!~k!~eik•rzPk,m,l2e2 ik•rzPk,m,l
† !, ~A1!

with

A~l!~k!5(
G

g~l!~k,G!. ~A2!

Performing summation overl1 in g(l)(k,G), given by Eq.
~2.11!, one has for the Cartesian components ofA(l)(k)

Aj
~l!~k!5 (

p51

3

ep
~l!~k!(

G
f jp~k1G!, ~A3!

where

f jp~k8!5~ 1
3d jp2 k̂ j k̂p!1 2

3d jp , ~A4!

with k̂8[k8/k8. The sum overG can be expressed as

(
G

f jp~k1G!5
1

N (
rz8Þ0 F(

k8
f jp~k8!eik8•rzGe2 ik•rs,

~A5!

wherek8 is no longer restricted to the first Brillouin zone
The sum overk8 in the square brackets may be identified
the tensor for the dipole-dipole coupling. Accordingly, E
~A5! represents the familiar dipole sum@33,37# in which the
omitted r z850 term is due to an infinite self-field.

For k!2p/a the sum overr z8 may be replaced by the
integral in Eq. ~A5!, so that one finds from the resultan
double Fourier integral

(
G

f jp~k1G!5 1
3d jp2 k̂ j k̂p . ~A6!

Here the contribution from the second term of Eq.~A4! has
been excluded, as this term generates ad fucntion at the
origin r z850. Sincee(l)(k)'k for l51,2, substituting Eq.
~A6! into Eq. ~A2! one arrives at

A j
~l!~k!5 1

3 e
~l!~k!, ~A7!

which, together with Eqs.~A1!, leads to the required result
~3.1! or ~3.2!.
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