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Microscopic theory of quantization of radiation in molecular dielectrics.
[I. Analysis of microscopic field operators

Gediminas Juzelinas
State Institute of Theoretical Physics and Astronomy, At&bs 12, 2600 Vilnius, Lithuania
(Received 29 January 1996

The microscopic operators have been investigated for radiation and polarization fields within a discrete
molecular medium. The medium comprises atofms moleculey each containing an arbitrary number of
energy levels. Explicit mode expansions have been derived for the quantized microfields in terms of normal
Bose operators for polariton creation and annihilation. These microscopic operators have been demonstrated to
yield the correct macroscopic and local field operators presented in [finy$. Rev. A53, 3543(1996]. On
the other hand, the commutation relations between the expanded microfields differ from the exact commutation
relationships. This happens because the microfields have been described in terms of a continuous refractive
index. Hence the expanded field operators do not extend to modes with extremely high frequencies ranging
over the photon umklapp frequencie&. In spite of that, the proper commutation relations hold between the
resultant macroscopi@veraged fields. This justifies separate quantization of the slowly moduléateatro-
scopig part of the radiation field in linear dielectrics: such an approach is utilized in phenomenological
guantization schemes. Finally, although the microscopic operators presented are not complete, the mode ex-
pansions adequately represent the quantized microfields associated with the optical modes in condensed mo-
lecular media[S1050-294@7)02302-Q

PACS numbgs): 12.20.Ds, 42.50-p, 71.36+c, 32.80-t

[. INTRODUCTION to be discrete and represented by an arbitrary number of
energy levels for each constituent molec(ita mode details
The quantum nature of light plays an important role in asee part [26]). Explicit normal-mode expansions have been
number of distinctive phenomena, such as squeefing]  derived for both local and macroscopic fields. Hence the for-
and spontaneous emissigB8—7]. In vacuum, the light is Malism developed provides a tool for the analysis of propa-
quantized by means Of a standard procedure as depicted g@tion of the quantized radiation in molecular dielectriCS, as
textbooks on quantum electrodynami¢®ED) [8—10] or well as consideratiqn Qf molecgle—radiation processes, such
quantum optic$11]. The quantization of radiation in a con- &S SPontaneous emission and linear absorp8dhor bimo-
densed medium is a less established issue. Traditionally, t{gcular multiphoton processg85] in condensed media. Here

(macroscopig radiation field is quantized phenomenologi- the previous thepry is .e>'<tended to include the. microscopic
field operators, in addition to the macroscopic and local

cally taking into account the influences of the polarizable L ) . .
y 9 P ones: This will provide a deeper understanding of the inter-

medium implicitly through the lineaf12—17 or nonlinear X ! 4
[18-21] susceptibilities. Although such a procedure is veryplay between the microscopic and macroscopic approaches
) }o the quantization of radiation in dielectrics.

convenient for uti!itarian purposes, the phenomenologica The outline of the paper is as follows. In Sec. Il the mode
approach lacks a rigorous justification. Furthermore, the pheg, 3 nsions are derived for the quantized microfields in terms
nomenological quantization suffers from some difficulties, 3¢ ,ormal Bose operators for polariton creation and annihi-
such as violation of microcausality in a dispersionless Meyation. The results are then analyzed in Sec. IIl. In Sec. IIl A
dium (as discussed in Refi22-26), or the possible appear- {he microscopic operators are demonstrated to produce the
ance of unphysical photon modes in the case of a nonlineaiorrect macroscopid¢averagel and local field operators.
dispersive mediunh20]. Section Ill B considers the commutation relations between
In several recent publicatior}8,22—26, another scheme the expanded microfields, highlighting the deviation from the
has been investigated for quantization of the radiation field inrue commutation relations and giving its explanation . The
linear dielectrics. The approach treats the matter explicitly bycommutation relations between the averagecroscopig
invoking the polariton concepf27-33. Specifically, the fields are also discussed in Sec. Il B. Finally, Sec. IV con-
electromagnetic field and the matter are considered to conains the concluding remarks. Technical details of the calcu-
stitute a single dynamical system: The quanta of the normahtion of the local polarization field are placed in the Appen-
modes for such a system are known as polaritons. The initiadix.
theories concentrated on either macrosc¢p-25 or locall
[3] fields. In the previous papél6], a combined analysis
has been carried out of the macroscopic and local fields in a
molecular dielectric. The molecular medium was considered In this section the normal-mode expansions will be ob-
tained for the microscopic operators of radiation and polar-
ization fields in a discrete molecular medium. We shall deal
*Electronic address: gj@itpa.lt with a nonmagnetic molecular dielectric as described in

II. MICROSCOPIC FIELD OPERATORS
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more detail previously26]. The system is characterized by x=1k>a) [36]. The excluded longitudinal excitonlike
zero magnetization, 1.e., modes §=3), or the modes with greatdr do not play a
n | significant role for most of the optical processes of interest.
b=(r)=uoh™(r), (2.1 Furthermore, for modes with=m/a neither macroscopic
smoothing can be carried out to average the field over the

h(r) and b*(r) being the microscopic operators for the lementary cell of the medium. nor is a description in term
magnetic field and induction. On the other hand, the micro<i€mentary cell of tn€ medium, nor s a descriptio erms

scopic operator for the transverse displacement téla) is of continuous refractive index relevant. In this way, E2}4)

related to the electric and polarization fields in a usual Wa))'epresents.thg operator for the transvefp¢r)=p-(r)]
as[9] macroscopic field slowly varying from molecule to mol-

ecule.
d-(r)=eoe (1) +p*(r), (2.2 Due to translational symmetry imposed on the molecular
medium[26], the following relationship holds between the
where the full polarization field is, under the electric dipole microscopic polarization field2.3) and its macroscopic
approximation adopted in part I, componenp(r):

p(r)=§ (O S(r=ry), (2.3 p<r>=§ p(neer, 2.9

p"(r) being the transverselivergence-freecomponent of  where the summation extends over the inverse lattice vectors
p(r). Here () is the operator for the electric dipole mo- G. Substituting Eq(2.4) for p(r) into the above equation
ment of moleculel positioned at,, and the summation is provides the explicit mode expansion of the microscopic op-

over the moleculeg of the system. erator:
The starting point of the present analysis will be the pre-
viously derived 26] normal-mode expansion of the averaged S S gohwf(m)vg“) 12 2 N
. L —j — - = -1 k
(i.e., macroscopicpolarization field: p(r) & 2 24 2CVon™ [(n"™)*=1]e™ (k)
X(ei(k+G)~rPk’m‘)\_e—i(k+G)~rPl’m’)\) (2.9)

2 ( soﬁw(km)vém)

1/2
) [(n™)2—1]eM (k)
m A=1
‘ _ for k<2m/a, i.e., we are again concentrating on the optical
X(€* TPy ma—e M TPL ), (2.4 modes: In what follows this conditions is mostly kept im-
. ] . . plicit. It is noteworthy that although the macroscopic polar-
with k<27/a (a being the distance of intermolecular sepa-jzation field (2.4) is completely transverse, its microscopic
ration). HereV is the quantization volumey ., (Pxm») IS counterpart2.9) acquires a longitudinal contribution due to
the Bose operator for creatid@nnihilation of a polariton  extra short-wavelength terms witts#0. Extracting the
characterized by a wave vectkr a polarizationk, and an  transverse component from E@.9), one finds
extra indexm, e™ (k) being a unit vector for the polariton
polarization. The indexn labels the branches of polariton 2 [ eghoMym)| 12
dispersion: Altogether there ak,,+ 1 dispersion branches ~ p*(r,0)=i> > > (Tn(mg)> [(n™)2-1]
(depicted in Fig. 2 of part[126]), whereM,, is @ number of kG m A=l Vo
excitation frequencies contained by each individual molecule N Tkt G 1 — oMy
of the medium. Here also X g (k,G) (TS ATIPy

. ™
nM=n(w{™) (2.5 —e lkrerralipl O, (2.10

2
gM(k,G)= X éM(k+G)[eM(k+G)-eM(k)],
(m) 1=

doy (2.11)
=k (2.6)
k

is the refractive index, presented explicitly in part I, and

Ol[wn(w)]]l

(m) _
=C
Vg [ dw

w=w

with g™ (k,0)=eM(k), the time variable emerging through
eplacement of the initial Schdinger representation by the

is the group velocity, both quantities being calculated at the =",
group Y g 9 eisenberg one, as

polariton frequencyn(™ :
(™ ()
w(km)zck/n(w(km)). (2.7 Pema—€ ' Py and Pl,m,x_)el k tpl,m,x-

(2.12
At this juncture a couple of remarks need to be made con-
cerning the macroscopic polarization fiefd.4). First, the  Other field operators can then be determined by exploiting
averaged field2.4) has been determined from first principles the quantum Maxwell equations for the microscopic field
on the basis of a microscopic mod&b]. Second, the expan- operators in the Heisenberg representation:
sion (2.4) accommodates the transverse normal mdees "
X(k)Lk,N=1,2] characterized by the first Brillouin zone Vxhi(r )= ad™(r,1) 2.13
wave vectorsk with k<2w/a (i.e., large wavelengths ’ ot '
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ul
VxeL(r,t):—M. (2.19
ot
Combining Egs(2.1), (2.2, (2.13), and(2.14 gives
2
(CZVZ i )di(r t)=c2V2pi(r,t), (2.15
2
SO(CZVZ )eL(r t)= i(z—) (2.16

so that calling on Eq(2.10 for p*(r,t) one arrives at the

placement and electric fields:

soﬁwkm)v(m) 2
" _ (m)2
d(rt) |EZE< zcvn(m (n )
212 ¢ (M)2 2 2
ck (wk ) c |k+G| g(A)(k G)
k2 cIk+ G2 (w™)2 '
><(ei[<k+e)-rw(km)tlpkmx
_e—i[(k+G).r—w§<m)t]Plymy}\) (2.17
and
2 (m)_ (m) \ 1/2
h(l)k v
e-(r,1) S
( IkG % )21 (ZSOCVOn(m)
zkz_( (m))Z
% gM(k,G
Skt 6P (apd (K®
x(ei[(k+G)'r7“’kmt]Pk,m,>\
efi[(k+G)-r7w|((m)t]pl‘m‘)\)_ (2.18

Here use has been made of the following:

C2k2_ (wf(m))z

C2k2_ (wE(m))Z
(wl((m))z
(2.19

[(n(™)?

The magnetic field operator may now be found utilizing

Egs.(2.1), (2.14, and(2.18:

ho (m)
( 2uoCVo

m)n(m)) 1/2C2k2_ (w(km))z

wwHEEE

=1 ck

c(k+G)xgM(k,G)

[(k+G)-r— a)(m)t]Pk N
,m,

c?lk+G[2 = (w™)?
i el
—e i[(k+G)-r—awy tlpl,m,)\)' (2.2()
Finally, since
ga-(r,t
e-(r,t)y=— <9(t ) (2.21

931
2 (m) 172
fiv
r e % )\21 2eoCo™Von™
202/ (M2
cke—(wy")
2 2 (o™ gM(k,G)
c?lk+ G| )
x(e‘“"*G“*‘”(km)”Pkmx
, (m)
e llirG - Mpl (222

completing a list of the microscopic operators of interest in

4 ) . . the Heisenberg representation. Transformation back to
mode expansions for the microscopic operators for the dISS

chralinger representation can be carried out easily by set-
ting t=0, so thatp*(r,0)=p*(r),d*(r,0)=d*(r), etc.

I1l. ANALYSIS OF THE RESULTS
A. Macroscopic and local fields

One can readily ensure that the microscopic field opera-
tors provide the correct macroscopic and local operators. Av-
eraging the fields over the elementary cell, only te0
terms remain in the above mode expansions. The resultant
macroscopic operators are obviously equivalent to those pre-
sented in part [26]. Consider now the local fields, i.e., the
field operators calculated at the molecular sites The op-
erator for the local polarization field, analyzed in the Appen-
dix, reads

. 2 (m). (m)\ 1/2
| tha)k Ug
Lo Ve & (My2_ 176N
mm3§m;(hwm)w> 1]e
X(K) (€K TPy —e R TPl ), (3.2
ie.,
pr(r)=3p"(ry. (3.2

On a similar basis, the microscopic expansi@rL?) pro-
duces the local displacement field

(ntM)2+2
3

&MHEEE

A=1

e ﬁw(km)v(m) 1/2]
2cVon™

V() (e TPy my—e T TPE L), (33
which is in agreement with the previous result td)lr(rg)
[26] obtained through bypassing explicit analysis of the mi-
croscopic fields. Finally, the remaining fields are character-
ized by the same local and macroscopic operators, i.e.,
e-(ry)=e"(ry).h*(r)=h"(r)), etc. Thus one may write,
using Egs(2.2) and(3.2),
d-(r)=epe"(ry)+ 5 pt(ry). (3.9
Equations(3.2) and (3.4), connecting the local and macro-
scopic fields, represent the relationships familiar from classic
elctrodynamicq37]. It is noteworthy that the relationships
have been established at quantum level in the present formal-

the expanded operator for the vector potential takes the forrism.
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B. Commutation relations

Consider next the equal-time commutators between th

microscopic fields. The polariton operatoBy .,, and

less than the photon umklapp frequenai€s (G+#0) [39].
In other words, the modes with extremely high frequencies

(0{™=cG) have not been accommodated in the normal-

P{ ., Obey the Bose commutation relations. Hence, exploit/Mode expansions. Consequently the commuta@s and

ing the normal-mode expansio2.17), (2.18), and (2.22),
one finds

. 2
ih
[af(r,0),di (', )]=— =2 > 2 Si(k,G,G")
CVOG,G’ K r=1
xgiM(k,G)
><gj()\)(k'G/)ei(k+G)-re—i(k-%—G')~r'
(3.5
and
[af (r,t),e08 (r',1)]
i 2
T oVo& ; gl Sae(k,G,G)giM (k,G)
xgM(k,G")el kO e il (3
where
§.(kG.G=S Y [ (o)
ad( 1y )_ = CZkZ CZ|k+G|2_(w(km))2
c?lk+G'|? 3
c?lk+G'|>— (w(™)? (3.7
and
kGG . LK (T
ael K, 9, - — n(m cz|k+G|2—(wf<m))2
1
(3.8

X .
Cz|k+G'|2—(w|((m))2

On the other hand, the commutation relationships between
the microfields should read, according to the general prin-

ciples of molecular quantum electrodynamijes,
[ai (r,t),di (r',t)]1=[ay (r,t),808] (r',1)]
=—ifg;(r—r'), (3.9

where 5,ij(r—r’) is the transverse delta functiof8—10,39
The latter function may be represented as

. 1 o [[k+G|?8;—(k+G)(k+G);]
5lj(r_r,):_ 2
VokG |k+G]

Xei(k+G)‘(r—r’)_

(3.10

It is apparent that the relationshif3.5 and (3.6) differ
from the exact commutation relatioi3.9) and(3.10. This

happens because our normal-mode expansions, described
through the refractive index, are not complete. The theory

concentrates on the modes with the frequenaif¥ much

(3.6) contain incomplete short-wavelength paftke terms
with G,G’ #0). Nevertheless, sinde4,26,4Q

> vyn(m= > vy"InM=c
m

m

(3.11

one has

Sae(k,0,0)=S,4(k,0,0)=c (3.12

so that both the transforme@.5) and(3.6) and the original
(3.9 and (3.10 commutators are characterized by the same
slowly oscillating (macroscopig parts, represented by the
terms withG,G’ =0 andk<2s/a. Accordingly, the incom-
plete microscopic commutato(8.5 and(3.6) give the cor-
rect macrocommutators, considered previoJg§:

[af (r.t),df (r',0)]=[a (r.t),e0e] (r',1)]

=—ifis;(r—r'), (3.13

where
oL ' 1 T \aik-(r=r")
Shr—r)=-2> (8;—kkje*! (3.14
Vo*k

is the smoothedcoarse-grainedtransverse delta function,
the summation being over the first Brillouin zone wave vec-
tors with k<2sx/a. It is noteworthy that both the macro-
scopic and microscopic transverédunctions, when acting
on a smooth functiorr|(r), produce the equivalent results:

f F_l(r')Fﬁ(r—r')dr'mfF_l(r')aﬁ(r—r')dr'zlr_ji(r).
(3.15

The same applies to the smoother(edarse-graingddelta
function 8(r—r") featured in Egs(3.18 and (3.19 below:

J F_(r’)?(r—r’)dr’%fF_(r’)é(r—r’)dr’=F_(r),
(3.1
where8(r—r') is an ordinary microscopic delta function.

The above analysis can be extended to other commutators
as well. Since

bt (r )= peht (r,t)=V xa-(r,t) (3.17

the microcommutators  [dj (r,t),by (r',t)] and

[ (r.t).by (r',t)] may be found straightforwardly utilizing
Egs. (3.5 and(3.6). Again, the microcommutators obtained
are not complete, yet contain the proper macroscopic parts:

[ (r,t),bf (1 )] =eo[€] (r,t).bf (1" ,1)]

. Jd—
:|h8j|pﬂ5(r_r ),

(3.18

with
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— 1 ) , APPENDIX A: LOCAL POLARIZATION FIELD
S(r—r)=g-2>, ek, (3.19 s o

Vok Sincee® "t=1, the operator of the local polarization field
reads in Schidinger representation, through Eg.10),

&jip being the Levi-Civitaunit tensor of rank 3. Note that the

2 (m)_(m)\ 1/2
macroscopic commutato(8.13 and(3.18 are of the same I eoftwy Vg (m)y2_
3.13 . prr)=i2 X X @] [(n™)2-1]
form as the corresponding microscopic commutafeis|, K r=1\ 2¢cVpn

the microscopicé functions being now replaced by the ™) e r T

coarse-grained ones. Finally, the expanded microfields XAM(K) (€5 TP my— Py ), (AL

d*,e* and p* (as well as the corresponding macrofields

d*,e’, andp’) commute at equal times between each otherwith

as required. We conclude that disregard of the high-

frequency normal modes does not affect the commutation

relationships between the transverse macroscopic fields. AM(K)=D gM(K,G). (A2)
G

Performing summation ovex; in g™ (k,G), given by Eq.

(2.1, one has for the Cartesian components\6¥ (k)
The miscroscopic operators for radiation and polarization

fields have been investigated from first principles in a dis- 3

crete molecular medium. Explicit expansions have been de- AJ(U(k)z 2 ew(k)z fip(k+G), (A3)

rived for the quantized microfields in terms of normal Bose p=1 G

operators for polariton creation and annihilation. The micro-

scopic operators have been demonstrated to produce the cQfpere

rect macroscopic and local field operators. On the other

hand, the commutation relations between the expanded mi-

crofields differ from the true commutation relationships. This fin(K") = (38— kikp)+358,,, (Ad)

happens because the normal-mode expansions of the mi-

crofields, described through the refractive index, are not .

complete. The modes with extremely high frequenéiaag- ~ With k’=k’/k’. The sum oveG can be expressed as

ing over photon umklapp frequenciess) have not been

included. Furthermore, our mode expansions cover the trans- 1 o _

verse normal modes characterized by relatively small wave E fip(k+G)= N E {2 fjp(k’)e'k TrlgTikeTs,

vectors k<27/a, a being the distance of intermolecular frF0 K

separation. (A5)
In spite of that, the proper commutation relations hold for

the resultant macroscopithe averagexfields. This makes it wherek’ is no longer restricted to the first Brillouin zone.
possible to quantize separately the slowly modulatib®  The sum ovek’ in the square brackets may be identified as
macroscopig part of the radiation field in linear dielectrics. the tensor for the dipole-dipole coupling. Accordingly, Eq.

In fact, such an approach has been utilized in phenomenqas) represents the familiar dipole sy®3,37 in which the
logical scheme$15-17 of the field quantization. It is note- gmitted r,=0 term is due to an infinite self-field.

worthy that the macrocommutators have been preserved due For k<27#/a the sum over, may be replaced by the
to the relationshipg3.11) involving summations over the ntegral in Eq.(A5), so that one finds from the resultant
dispersion branchesn=1,2Mpq+1, where M is the  double Fourier integral

number of molecular frequencies accommodated. Therefore

it is the correspondence of more than one normal frequency

w(km) to each wave vectok which is essential for retaining 2 f (k+G)=165 —kik (AB)
the correct macrocommutatdi24—26. Finally, although the c P $Tp e

microfields presented are not complete, the omitted modes

do not play a significant role for most optical processes of I
interest. That is, the mode expanions represent adequat I|-|ere the contribution from the second term Of.E'q4) has
een excluded, as this term generates &ucntion at the

the quantized microfields associated with the optical modeOrigin =0, Sincee™ (k) Lk for \=1,2, substituting Eq.

i lecul ia. X g
in condensed molecular media (AG) into Eq. (A2) one arrives at

IV. CONCLUSION

AN (k) =3 €M (K), (A7)
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