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Resummation of anisotropic quartic oscillator: Crossover from anisotropic
to isotropic large-order behavior
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We present an approximative calculation of the ground-state energy for the anisotropic oscillator with a
potential

V~x,y!5
v2

2
~x21y2!1

g

4
@x412~12d!x2y21y4#.

Using an instanton solution for the isotropic limitd50, we obtain the imaginary part of the ground-state
energy for small negativeg as a series expansion in the anisotropy parameterd. From this, the large-order
behavior of theg expansions accompanying each power ofd are obtained by means of a dispersion relation in
g. The g expansions are summed by a Borel transformation, yielding an approximation to the ground-state
energy for the region near the isotropic limit. This approximation is found to be excellent in a rather wide
region ofd aroundd50. Special attention is devoted to the immediate vicinity of the isotropy point. Using a
simple model integral we show that the large-order behavior of ad-dependent series expansion ing undergoes
a crossover from an isotropic to an anisotropic regime as the orderk of the expansion coefficients passes the
valuekcross;1/udu. @S1050-2947~97!08801-X#

PACS number~s!: 03.65.Fd, 03.65.Ca, 02.90.1p
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I. INTRODUCTION

Phase transitions in anisotropic systems with cubic sy
metry have attracted much interest in the literature@1–5#.
Especially well studied are corresponding models in qu
tum mechanics. To gain an analytic insight into the latt
Banks, Bender, and Wu~BBW! @6# investigated a Hamil-
tonian with a potential

V~x,y!5
v2

2
~x21y2!1

g

4
@x412~12d!x2y21y4#. ~1!

Using multidimensional WKB techniques they derived t
large-order behavior of the perturbation series for
ground-state energy

E5(
k
Ek~d!gk ~2!

as a function of the anisotropy parameterd.
Janke@7# obtained the same results with more efficien

from a path integral for the imaginary part of the energyE.
The imaginary part contains information on the tunneli
decay rate of the ground state forg,0, and determines di
rectly the large-order behavior of the perturbation coe
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cientsEk(d) via a dispersion relation in the complex co
pling constant plane. Both BBW and Janke find a differe
large-order behavior of the isotropic systemd50 and the
anisotropic systemdÞ0. They do not discuss, however, th
interesting question of how the latter goes over into
former asd tends to zero.

It is the purpose of this paper to fill this gap. For a
optimal understanding of the expected behavior we shall
attack directly the path integral involving the potential~1!,
but first only the corresponding simple integral. For this
tegral, a perturbation expansion of the form~2! yields exact
d-dependent perturbation coefficients. The coefficie
Ek(d) are shown to have a large-order behavior which u
dergoes a crossover between the earlier derived isotropic
anisotropic behaviors when the orderk passes the crossove
value kcross;1/udu. A small anisotropyd'0 is hence only
reflected in very high orders of perturbation theory.

The expansion terms of a model integral with the pote
tial ~1! count the number of Feynman diagrams in a pert
bation expansion of quantum mechanical and field-theor
path integrals. Since this number grows factorially, the b
model integral is sufficient to derive nontrivial informatio
on the large-order behavior of the eventual object of inter
quantum field theory. It turns out that for resumming theg
series, asymptotic large-order estimates for thed-dependent
coefficients can be used only in the anisotropic regi
kudu@1. In the isotropic regimekudu!1, on the other hand
it is impossible to truncate the large-order expansion of
perturbation coefficients after a finite number of terms. Th
the neighborhood of the isotropic systemd50 needs an ex-
tra investigation. In the context of quantum field theory, th
was recently presented in@8#.
915 © 1997 The American Physical Society
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The imaginary parts of physical quantities at small ne
tive g can be calculated with the help of classical solutio
called instantons. In systems sufficiently close to the iso
pic point it is not necessary to know the exact instan
solutions for alld. The knowledge of the solution at th
symmetry pointd50 is perfectly sufficient, and the imag
nary parts can be expanded around it in powers ofd.

After having understood the model integral, we shall p
form the same analysis for an anisotropic quantum mech
cal system, which represents a one-dimensionalf4-field
theory with cubic anisotropy.

The paper is organized as follows. In Sec. II we review
simple resummation procedure@9# by which the divergent
power-series expansion of a functionZ(g)5(kZkg

k is con-
verted into an almost convergent series(papI p(g). Here
I p(g) are certain confluent hypergeometric functions wh
possess power-series expansions ing with the same leading
large-order behavior as the system under study. In Sec
we shall analyze the above-mentioned crossover in the la
order behavior for the simple model integral. In particul
we shall justify the resummation procedure of Sec. II and
methods in@8# to be perfect tools in approximating the int
gral for the region near the isotropic limitd→0. In Sec. IV,
finally, we present a similar calculation for the ground-st
energy of the anharmonic potential with cubic anisotropy

In addition to this more standard resummation proced
we analyze the model also within the variational perturbat
theory developed in@10–13#. Variational perturbation theory
yields uniformly and exponentially fast converging expa
sion for quantum mechanical systems with quartic potent
@14#. The uniform convergence was first proven for the p
tition function of the anharmonic integral, and later for t
quantum mechanical anharmonic oscillator with coupl
strengthg in several papers@15#. Recently, the proof was
sharpened and carried from the partition function to the
ergies@16#.

The input for the quantum mechanical model is provid
by the exact Rayleigh-Schro¨dinger perturbation coefficient
of the ground-state energy which we derive from an ext
sion of recursion relations due to Bender and Wu~BW! @17#.

II. RESUMMATION

We begin by describing a practical algorithm@9# for a
Borel resummation of a divergent perturbation series

Z~g!5(
k
Zkg

k. ~3!

The method will be most efficient under the following co
ditions.

~1! From low-order perturbation theory we know the e
pansion coefficientsZk up to a certain finite orderN.

~2! From semiclassical methods we are in the posses
of the high-order information in the form

Zk→
k→`

g~21!kk!kbskS 11
g1

k 1
g2

k2
1••• D . ~4!

~3! By some scaling arguments we are able to assu
power behavior in the strong-coupling limit
-
s
-
n

-
i-

a

III
e-
,
e

e
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a

Z~g! →
g→`

kga. ~5!

The idea of the algorithm is the following: It is possible
construct an infinite, complete set of Borel summable fu
tions I p(g) which satisfy the high-order and strong-couplin
conditions~4! and~5!. These functions can be used as a n
basis in which to reexpandZ(g):

Z~g!5 (
p50

`

apI p~g!. ~6!

The series~6! should be such that the knowledge of the fi
(N11) coefficients in the power-series expansion~3! is suf-
ficient to determine directly the first (N11) coefficients
ap , yielding an approximation

Z~g!'Z~N!~g![ (
p50

N

apI p~g!. ~7!

This would then be a new representation of the funct
Z(g) with the same power series up togN, which makes
additional use of large-order and strong-coupling inform
tions ~4! and ~5!. In the limit of largeN, the series~7! is
expected to be applicable for much larger values ofg than
the original series~3!.

The functionsI p(g) being Borel summable have a Bor
representation

I p~g!5E
0

`

dte2ttb0Bp
b0~gt!, ~8!

parametrized by someb0 and integerp. What are the condi-
tions onBp

b0(gt), such thatI p(g) satisfies Eqs.~4! and~5! for
all p? The answer is most easily found with the help of t
hypergeometric functions

2F1~a,b;c;2sgt!5 (
k50

`
~a!k~b!k

~c!k

~2sgt!k

k!
, ~9!

with appropriate parametersa, b, andc. The Pochhammer
symbol (a)k stands for (a)k5G(a1k)/G(a). These func-
tions have the following virtues: First, they are standard s
cial functions of mathematical physics whose properties
well known. Second, they have a cut running fro
t521/usgu to minus infinity which is necessary to genera
the large-order behavior~4!. Third, they have enough fre
parameters to fit all input data. The first property permits
immediate calculation of the Borel integral~8!, which is sim-
ply a Laplace transformation oftb02F1(a,b;c;2sgt),

E
0

`

dte2ttb02F1~a,b;c;2sgt!

5
G~c!

G~a!G~b!
E~a,b,b011:c:1/sg!. ~10!

The resultingE(a,b,b011:c:1/sg) is MacRobert’sE func-
tion. Using its asymptotic expansion~see Ref.@18#, p. 203! it
is easy to verify that our ansatz reproduces the large-o
behavior~4!. Indeed, for largek the power series
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G~c!

G~a!G~b!
E~a,b,b011:c:1/sg![(

k50

`

ekg
k ~11!

has coefficients which grow like

ek→
k→` G~c!

G~a!G~b! ~21!kk!ka1b2c1b021sk. ~12!

Moreover, this property is unchanged if the original hyp
geometric function is multiplied by a power (sgt)p. A pos-
sible set of Borel functions is therefore

Bp~gt!5~sgt!p2F1~a,b;c;2sgt!. ~13!

Looking at Eq.~12! we see that the functions~13! are not
completely fixed by a given large-order behavior. The p
rameterb in Eq. ~4! merely imposes the following relatio
upon the parametersa, b, c, andb0:

a1b2c1b0215b, ~14!

and there are many different ways to satisfy this. A spec
choice will be suggested by practical considerations. On
that theI p’s should possess a simple integral representa
in order to avoid complicated numerical work. In additio
we would like to work with parametersa, b, and c, for
which the hypergeometric function2F1 reduces to simple
algebraic functions. This happens only for special sets of
parameters. A simple possibility is, for instance~see Ref.
@19#, p. 556!,

2F1S a,a1
1

2
;2a11;2zD54a~11A11z!22a, ~15!

which arises by choosing the parametersa, b, andc to be
related by

a1b2c52
1

2
; c22b50. ~16!

With this, the relation~14! can be satisfied for an arbitrar
value of the parametera by choosing

b05b1
3

2
, ~17!

and we are left with only one free parameter. This param
may be used to accommodate the strong-coupling beha
of Z(g) if it is known. Equation~7! yields the condition
I p(g)→const3ga on the functionsI p(g). From Eq.~8! we
see that such a power behavior emerges if all Borel functi
Bp satisfy Bp(z)→const3za and thus
2F1(a,b;c;2z)→const3z2p1a @see Eq.~13!#. The explicit
representation~15! shows that the parametera has to be
taken as

a5p2a. ~18!

We thus obtain the approximationZ(N)5(p50
N apI p , with

the expansion functions
-

-

c
is
n

e

er
ior

s

I p~g!5E
0

`

dt
e2ttb0

G~b011!

~sgt!p

4p

32F1S p2a,p2a1
1

2
;2~p2a!11;2sgtD

5E
0

`

dt
e2ttb0

G~b011! S 121
1

2
A11sgtD 2a

3
~sgt!p

~11A11sgt!2p
, ~19!

where the Borel parameterb0 is fixed by Eq.~17!. The nor-
malization constant 1/4pG(b011) in front of the expansion
functions was introduced for convenience.

Let us now derive equations for the expansion coefficie
ap in terms of the perturbation coefficientsZk . All one has
to do is take the asymptotic expansions

I p~g!5 (
k50

`

I k
pgk, ~20!

insert these into Eq.~7!, collect terms of equal powergk, and
compare these with the perturbation series~3!. This gives the
(N11) algebraic equations

Zk
~N![ (

p50

N

I k
pap5Zk ; k50,1, . . . ,N. ~21!

By assumption, the series on the left hand side contains o
the coefficientsap with p<N. Thus theap’s can be com-
puted, in principle, by inverting the (N11)3(N11) matrix
(I )kp5I k

p . Even though this may be done recursively for a
given case, it is preferable to find an explicit algebraic so
tion for ap in terms ofZk . This is possible using the follow
ing trick. We rewrite the asymptotic expansion ofZ(N) in
Borel form,

Z~N!~g![ (
p50

N

apI p~g!5 (
k50

`

Zk
~N!gk

5E
0

`

dte2ttb0(
k50

` Zk
~N!~gt!k

G~k1b011!
, ~22!

insert the expression~19! for I p(g), and compare directly
both integrands,

(
p50

N

ap
~ 1
2 1 1

2A11sgt!2a

G~b011! F sgt

~11A11sgt!2
G p

5 (
k50

` Zk
~N!~gt!k

G~k1b011!
. ~23!

Introducing the new variable

w[
sgt

~11A11sgt!2
5

A11sgt21

A11sgt11
, ~24!

we obtain from Eq.~23! the relation valid for alla:
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(
p50

N

apw
p5 (

k50

` Zk
~N!

~b011!k
S 4s D k wk

~12w!2~k2a! . ~25!

In order to compare equal powers inw, we expand on the
right hand side

~12w!22~k2a!5(
l50

` S 22~k2a!

l D ~2w! l , ~26!

which gives after a shift of the summation index froml to
p5k1 l the first (N11) coefficientsap in terms of the per-
turbation coefficientsZk

ap5 (
k50

p
Zk

~b011!k
S 4s D kS 22~k2a!

p2k D ~21!p2k ~27!

~recall thatZk
(N)5Zk for k50,1, . . . ,N). Finally, rewriting

the binomial coefficients by means of the identity

S xpD 5~21!pS p2x21

p D , ~28!

we obtain the more convenient expression

ap5 (
k50

p
Zk

~b011!k
S 4s D kS p1k2122a

p2k D . ~29!

Thus, we have solved the original matrix inversion proble
~21! by translating it to a simple problem in function theor
namely, that of inverting the functionw(sgt) in Eq. ~24!.
For the purpose of calculating the integralsI p(g) numeri-
cally, we may use the variablew itself as a variable of inte-
gration, and rewrite the integral representation forI p(g) in
the form:

I p~g!5S 4

sgD
b011E

0

1

dw
~11w!wb01p

G~b011!~12w!2b012a13

3expF2
4w

~12w!2sgG . ~30!

Together with the explicit formula~29! for the coefficients
ap we thus have solved the resummation problem, and
now straightforward to calculate the approximation~7!.

III. MODEL INTEGRAL

In order to set up an approximation method for an ani
tropic model in the neighborhood of the isotropic po
d50, we study first, as mentioned in the Introduction,
simple toy model whose partition function is defined by
two-dimensional integral:

Z[
1

2pE E
2`

1`

dxdy expH 2
1

2
~x21y2!

2
g

4
@x412~12d!x2y21y4#J . ~31!

This can be interpreted as a partition function of af4 theory
in zero space-time dimensions with cubic anisotropy. T
is

-

e

integral ~31! is well defined for allg.0 and2`,d,2.
Introducing polar coordinatesx5r cosw and y5r sinw, we
obtain the more convenient form of this integral:

Z5
1

2pE0
`E

0

2p

drdw exp@2r2G~g,d,w!r2#, ~32!

with r5r 2/2 and

G~g,d,w!5gF12
d

2
sin2~2w!G . ~33!

After an integration over the anglew, we find the integral

Z5E
0

`

dr expF2r2gS 12
d

4D r2G I 0S d

4
gr2D , ~34!

where I 0(x) is a modified Bessel functionI n(x) for n50.
Equation ~34! is useful for a numerical calculation o
Z(g,d). It will serve as a testing ground for our approxim
tions.

Thanks to the special space-time dimensionality of
model, the perturbation expansion ofZ(g,d) can be obtained
explicitly, and we can calculate the large-order behav
without doing a saddle point approximation, which is u
avoidable in quantum mechanics and field theory.

At first glance it seems useful to expandZ(g,d) in the
form

Z~g,d!5 (
k50

`

Zk~d!gk, ~35!

where the perturbation coefficients depend on the anisotr
parameterd. The coefficientsZk(d) may be found by ex-
panding the integrand of Eq.~32! in powers ofg and per-
forming the integral term by term, yielding

Zk~d!5
~21!k

k!
G~2k11!S 12

d

2D k/2PkS 42d

2A422d
D ,

~36!

wherePk(x) are Legendre polynomials.
In the isotropic limitd50, this reduces to

Zk~0!5
~21!k

k!
G~2k11!5

~21!k

Ap
4kGS k1

1

2D
5

~21!k

Ap
4kk!k21/2@11O~1/k!#, ~37!

showing that in the rotationally symmetric case, the larg
order parameterb takes the valueb521/2. To obtain~37!,
use was made of the duplication formula for gamma fu
tions,

G~2z!5~2p!21/222z21/2G~z!GS z1
1

2D , ~38!

and the expansion
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G~k1«11!5k!k«@11O~1/k!#, ~39!

yielding the large-k behavior ofG(2k11),

G~2k11!5p21/24k~k! !2k21/2@11O~1/k!#. ~40!

In Fig. 1 we have plotted the order dependence of
coefficients~36! for the anisotropy parameterd51022. What
we can see is a crossover of the large-order behavior from
isotropic to an anisotropic regime in the vicinity of a spec
crossover valuekcross;1/udu5102. In the anisotropic regime
kudu@1, the large-order parameterb has the valueb521.
For kudu!1, however, we can read off the large-order b
havior of the isotropic case, i.e.,b521/2 ~see also Fig. 2!.

In order to understand the different large-order behav
for dÞ0 we note that an approximation of the Legend
polynomialsPk(x) for largek including contributions of the
order O(1/k) can be derived from Hobson’s formula~see
Ref. @20#, p. 305!:

FIG. 1. Crossover of large-order behavior of the expansion c
ficientsZk in Eq. ~35! from the isotropic regime (b521/2) to the
anisotropic regime (b521). Plotted is the function
f (k)5 ln@Zk /(24)kk!# for the anisotropyd51022. In this case the
crossover value is given bykcross;1/udu5102 (lnkcross'4.6).

FIG. 2. Example for the two different large-order regimes
Zk in Eq. ~35!, where f (k) is the same function as in Fig. 1.~a!:
Isotropic regime (d 5 1024, kcross5104, b521/2). ~b!: Aniso-
tropic regime (d 5 1, kcross51, b521).
e

an
l

-

r

Pk~x!5~2pk!21/2~x221!21/4~x1Ax221!k11/2

3F11
12Ax221~x1Ax221!

8kAx221~x1Ax221!
1O~1/k2!G .

~41!

Substituting

x5
42d

2A422d
, ~42!

we obtain for 0,d,2

PkS 42d

2A422d
D 5A2

p
k21/2d21/2S 1

12d/2D k/2
3F11

1

kd S 423d

8 D 1OS 1

k2d2D G .
~43!

The combination of Eqs.~40! and~43! yields the large-order
behavior of the perturbation coefficientsZk(d) for
0,d,2:

Zk~d!5
21/2

p
~21!k4kk!k21d21/2H 11

1

kd F121O~d!G
1OS 1

k2d2D J . ~44!

A similar calculation can be done ford,0 with the result:

Zk~d!5
~22d!1/2

p
~21!k~422d!kk!k21~2d!21/2

3H 12
1

kd F121O~d!G1OS 1

k2d2D J , ~45!

in perfect agreement with the general symmetry relation

Z~g,d!5Z~ ḡ,d̄ !; ḡ5g~22d!/2; d̄52
2d

22d
,

~46!

which mapsd,0 onto 0, d̄,2. This relation follows from
a simple change of variables,

x̄5~x1y!/A2, ȳ5~x2y!/A2, ~47!

in Eq. ~31!.
It is easy to verify that the large-order expansions~44!

and ~45! agree with the results derived by means of t
steepest descent method by Janke@7#. For resumming the
series~35!, these large-order expansions can be used only
kudu@1. In the regimekudu!1, on the other hand, it is im
possible to truncate the series in Eqs.~44! and ~45! after a
finite order of 1/kudu@1. Thus, the isotropic regime canno
be described by resumming the perturbation series~35! using
the asymptotic results~44! and ~45!. Being interested in the

f-

f
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region close to the isotropic limit, we therefore use an
pansion different from Eq.~35!, and rewriteZ(g,d) as

Z~g,d!5 (
k50

`

(
n50

k

Zkng
kdn. ~48!

Then, for the reason given in@8#, reliable results should be
obtained by resumming theg series accompanying eac
powerdn. The explicit form of the coefficientsZkn is given
by

Zkn5p21/2~21!k1n
G~n1 1

2 !G~2k11!

2nG~n11!2G~k2n11!
, ~49!

andZkn50 for k,n. For these coefficients, the expansion
the gamma functions yields the behavior for largek@n:

Zkn5~21!n
G~n1 1

2 !

2nG~n11!2
~21!k

4k

p
k!kn21/2@11O~1/k!#.

~50!

In the following we shall calculate the coefficients~50! by
means of the steepest descent method using the saddle p
of the limit d→0. This will serve as a preparation for th
analogous method in quantum mechanics and quantum
theory.

As a function of the anisotropy parameterd,2 and the
complex couplingg, the integral~31! is only defined in the
half-plane Reg>0. For Reg,0, the integral can be calcu
lated by an analytic continuation from the right into the le
half-plane, keeping the integrand in Eq.~31! real. This con-
tinuation can be achieved by a joint rotation in the comp
g plane and of the integration contour in therW5(x,y) plane.
The convergence of the integral is maintained by the sub
tution g→gexp(iu) and rW→rWexp(2iu/4), whereu is the ro-
tation angle in the complexg plane. Let us assume that th
functionZ(g,d) is analytic in theg plane, with a cut along
the negativeg axis, and a discontinuity forg,0. Then the
rotation in the complexg plane by an angleu56p yields
on the upper~lower! lip of the cut:

Z6~2ugu,d!5Z~ ugue6 ip,d!. ~51!

The corresponding rotated integration contours (G7) are
drawn in Fig. 3. The discontinuity across the cut is given

FIG. 3. Analytic continuationg→uguexp(6ip): ~a! Rotation by
angles6p in the cut complexg plane.~b! Two rotated paths of
integration in ther plane (r.0).
-

f

ints

ld

x

ti-

y

discZ5E
0

2pdw

2pEG
rdr expF2

r 2

2
2G~g,d,w!

r 4

4 G , ~52!

where the combined contourG5G12G2 runs for r.0 en-
tirely through the right half-plane.

In a perturbatively expansion in powers ofd, the discon-
tinuity can be computed from an expansion around
saddle point

r 05A 1

ugu
~53!

of the isotropic cased50. Since r.0, only the positive
square root contributes, the negative one is automatic
taken into account by the integration over the anglew. Now,
the contour of integrationG in the right half-plane can be
deformed to run vertically across the saddle point~see Fig.
4!, i.e., we can integrate along a straight line:

r5A 1

ugu
2 i j. ~54!

The exponent in Eq.~52! plays the role of an action, and th
deviationsj may be considered as radial fluctuations arou
the extremal solution. The anglew is analogous to a collec
tive coordinate along the motion of the instanton in the is
tropic limit. Expanding the action up to the second order
j around the extremum of the isotropic action, we obtain

discZ52
i

2p S 1

ugu D 1/2E2`

1`E
0

2p

djdw expF2
1

4ugu

2
d

8ugu
sin2~2w!2j21OS d

Augu
D G . ~55!

Integrating out the radial fluctuationsj and the azimuthal
collective coordinatew, and using the equation

ImZ5
1

2i
discZ, ~56!

we obtain the following imaginary part forZ:

ImZ52 (
n50

`

~21!ndn
G~n1 1

2 !

2nG~n11!2 S 1

4ugu D
n11/2

3expS 2
1

4ugu D @11O~g!#. ~57!

FIG. 4. Deformation of the contours of integration to make the
pass through the saddle pointr 0.
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55 921RESUMMATION OF ANISOTROPIC QUARTIC . . .
Each powerdn has its ownn-dependent imaginary par
Given such an expansion, the large-order estimates for
coefficientsZkn ~with k@n) follows from a dispersion rela
tion in g @see, for example, Eq.~6! in Ref. @7##,

Zkn5
1

pE2`

0

dg
ImZ~n!~g1 i0!

gk11 , ~58!

whereZ(n)(g) is the coefficient ofdn. In general, if a real
analytic function F(g) has on top of the cut alongg
P(2`,0) an imaginary part

ImF~g1 i0!52pgS 1

sugu D
b11

expS 2
1

sugu D @11O~g!#,

~59!

then a dispersion relation of the form~58! leads to the
asymptotic behavior

Fk5g~21!kskkbk! @11O~1/k!#. ~60!

With s54 andb5n21/2, we obtain again the result~50!.
Thus, the steepest descent method using the isotr

saddle point is a perfect tool for calculating the large-or
behavior of the expansion coefficientsZkn in the expansion
~48!. An important advantage of this method with respect
the exact calculation~49! is the fact that it can be generalize
to quantum mechanics and field theory where exact calc
tions would be impossible.

Before applying the resummation algorithm of the pre
ous section we have to study the strong-coupling behav
i.e., the limit of largeg. This can simply be done by resca
ing the integral~32!

Z5E
0

`

dyE
0

2pdw

2p
G~g,d,w!21/2expS 2

y

AG~g,d,w!
2y2D

~61!

with G from Eq.~33! andy5rAG. Taking the limit of large
g ~i.e., largeG) and integrating out the anglew, we find

Z~g,d!) →
g→`

k~d!g21/2, ~62!

with

k~d!5
p1/2

2 (
n50

`
~2n!! 2

~n! !425n
dn. ~63!

Now, a resummation of theg series in Eq.~48! yields a
generalization of Eq.~7!:

Z~N!~g,d![ (
n50

N S (
p5n

N

apnI pn~g!D dn, ~64!

with the complete set of Borel summable functions
he

ic
r

o

a-

-
r,

I pn~g!5S 4

sgD
b0~n!11E

0

1

dw

3
~11w!wb0~n!1p

G@b0~n!11#~12w!2b0~n!12a13

3expF2
4w

~12w!2sgG , ~65!

and the coefficients

apn5 (
k5n

p
Zkn

„b0~n!11…k
S 4s D kS p1k2122a

p2k D , ~66!

where the perturbation coefficientsZkn are given by Eq.~49!.
The parametersb0(n), s, anda follow from the large-order
behavior ~50! and the strong-coupling expansion~62!, re-
spectively:

b0~n!5n11,

s54,

a52
1

2
. ~67!

From Eq.~66! it is possible to derive the following close
formula for the coefficientsapn :

apn5
2n

p

G~n1 1
2 !2G~n12!

G~2n12!

3~21!p
~2p!n~p2n!!

p!n! S 2a11

p2n D . ~68!

Inserting the exact strong-coupling parametera521/2, we
obtain

apn5H 1

8n
~n11!

~2n11!

~2n!!

~n! !2
for p5n,

0 else.

~69!

Thus we have the general result that for the integral mo
~31! the approximants(p5n

N apnI pn(g) in Eq. ~64! posses no
terms withp.n, wheren is the power ofd. In such a way
the n-dependent functions ofg associated with eachdn are
recovered exactly.

The approximationZ(N)(g,d) may then be compared with
the numerically calculated integral~34!. In Figs. 5 and 6 we
show the result for variousN and coupling constantsg/4.
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IV. QUANTUM MECHANICS

Having understood the model integral, we now turn to
f4 theory in one space-time dimension with a cubic anis
ropy, which is equivalent to the quantum mechanics of
anisotropic anharmonic oscillator.

A. Recursions relations for the ground-state
perturbation coefficients

Consider an anharmonic oscillator with cubic anisotro
and a Hamiltonian

H52
1

2 S ]2

]x2
1

]2

]y2D1
v2

2
~x21y2!

1
g

4
@x412~12d!x2y21y4#. ~70!

Introducing reduced variables by a rescaling

x→A1

v
x, y→A1

v
y,

g→v3g, E~n!→vE~n!, ~71!

renders a dimensionless time-independent Schro¨dinger equa-
tion

FIG. 5. Partition functionZ of the simple integral model as
function of the anisotropy parameterd with the coupling constan
g/450.25. Comparison is made between the exact result obta
by numerical integration of Eq.~34! and the resummed perturbatio
seriesZ(N) @see Eq.~64!# for various ordersN.
e
t-
n

y

F2
1

2 S ]2

]x2
1

]2

]y2D1
1

2
r 21

g

4
~r 422dx2y2!GCn~x,y!

5E~n!Cn~x,y!, ~72!

with the boundary condition

uCn~x,y!u→0, for r5Ax21y2→`. ~73!

The boundary condition selects only the discrete energy
genvaluesE(n). We now consider the ground-state ener
E(0)5E, whose perturbation expansion has the form

E5 (
m50

`

(
l5m

`

ElmS g4D
l

~2d!m, ~74!

whereE0051 is the unperturbed ground-state energy. In
following, we refer to Eq.~74! as the Rayleigh-Schro¨dinger
series, and toElm as a Rayleigh-Schro¨dinger coefficients.

In general, the ground-state energy is available from
sum of all connected Feynman diagrams with no exter
legs. For an efficient computation of the Rayleig
Schrödinger coefficients at large orders we shall derive
cursions for theElm extending a method due to Bender a
Wu @17#. In this way we obtain a difference equation for th
Rayleigh-Schro¨dinger coefficients.

Separating out the unperturbed ground-state wave fu
tion, C0(x,y)5exp@2(x21y2)/2#, we expand

C~x,y!5 (
n50

`

(
k5n

` S 2
g

4D
k

~2d!n

3exp@2~x21y2!/2#Fkn~x,y!, ~75!

whereFkn(x,y) are polynomials inx,y with F00[1. Insert-
ing the perturbation expansions~74!, ~75! into the differen-
tial equation~72!, and collecting powers ofg andd, we find

FIG. 6. The same functions as in Fig. 5, but withg/452.5.

ed
2
1

2 S ]2

]x2
1

]2

]y2DFkn1S x ]

]x
1y

]

]yDFkn2r 4Fk21,n1x2y2Fk21,n215(
l51

k

~21! lEl0Fk2 l ,n1 (
m51

n

(
l5m

k

~21! lElmFk2 l ,n2m .

~76!
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Finally, the ansatz

Fkn~x,y!5 (
i , j50

2k2n

Ai j
knx2i y2 j ~77!

with

Ai j
kn50 for i , j.2k2n; i , j ,k,n,0; k,n ~78!

gives the difference equation

2~ i1 j !Ai j
kn5~2i11!~ i11!Ai11,j

kn 1~2 j11!~ j11!Ai , j11
kn

1Ai22,j
k21,n1Ai , j22

k21,n12Ai21,j21
k21,n 2Ai21,j21

k21,n21

2(
l51

k

~A10
l01A01

l0!Ai j
k2 l ,n

2 (
m51

n

(
l5m

k

~A10
lm1A01

lm!Ai j
k2 l ,n2m . ~79!

TheAi j
kn yield the desired Rayleigh-Schro¨dinger coefficients

Ekn via the simple formula

Ekn52~21!k~A10
kn1A01

kn!. ~80!

These can be determined recursively via Eq.~79!. The recur-
sion must be initiated with

A00
kn5dk0dn0 , ~81!

and solved for increasingk50,1,2,. . . ; n50,1,2,. . . ,k
and, at eachk and n, for decreasingi52k2n, . . . ,0;
j52k2n, . . . ,0 ~omitting i5j50!. The procedure is mos
easily performed with the help of an algebraic compu
program.1 The list of the first Rayleigh-Schro¨dinger coeffi-
cients up tok512 (n50, . . . ,k) is given in Table I.

B. Large-order coefficients

Working with Langer’s formulation@21# ~which is related
to Lipatov’s @22# by a dispersion relation! and making use of
known results for the isotropic anharmonic oscillator, w
now derive the large-order behavior of perturbation exp
sion for the ground-state energy.

The method is based on the path-integral representatio
the quantum partition function

Z5E DxDy exp@2A~x,y!# →
b→`

exp~2bE!, ~82!

where

1The program can be obtained from the World Wide Web pag
the following address: http://www.physik.fu-berlin.de/;kleinert/
kleiner_re245/preprint.html
r

-

of

A5E
2b/2

1b/2

dtH 12 ~ ẋ21 ẏ2!1
1

2
~x21y2!

1
g

4
@x412~12d!x2y21y4#J ~83!

is the Euclidean action corresponding to the Hamilton
~70!. For g.0, the system is stable andZ is real. On the
other hand, if the coupling constantg is negative the system
becomes unstable andZ develops an exponentially sma
imaginary part related to the decay-rateG of the ground-state
resonance. The imaginary part of the ground-state ene
may be obtained by taking the largeb limit in Eq. ~82!,

ImE5
1

2
G52

1

b

ImZ

ReZ
, b→`. ~84!

In the above equation the fact was used that ImZ
}exp(2b)exp@21/(sugu)# is much smaller than
ReZ5exp$2b@11O(g)#%. For small g,0, this imaginary
part can be computed perturbatively in the anisotropy par
eterd by an expansion around the isotropic instanton so
tion r c(t):

S xyD 5S coswsinw D ~r c1j!1S 2sinw

cosw Dh,

r c5A 2

ugu
1

cosh~t2t0!
. ~85!

For brevity, we shall sett050 in the sequel. In Eq.~85! we
have separated out the rotation anglew of the isotropic in-
stanton in the (x,y) plane and denoted the radial and a
muthal degrees of freedom byj andh. Inserting the expan-
sion ~85! into the action~83!, we obtain the expression

A5
4

3ugu
1

d

ugu
2sin2~2w!

3
1
1

2E dtF jS 2
d2

dt2
11

2
6

cosh2t D j1hS 2
d2

dt2
112

2

cosh2t D hG1OS d

Augu
D ,

~86!

where we have split the action into terms responsible for
leading contributions in an expansion of the form~57!, and a
remainderO(d/Augu). Then thed dependence of the azi
muthal quadratic fluctuations belongs to the omitted term
Expanding Eq.~82! in d and integrating out the quadrati
fluctuations we obtain

at
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TABLE I. CoefficientsEkn in the perturbation series~74! for the ground-state energy up tok512 (n50, . . .,k).

k n Ekn k n Ekn

0 0 1 9 1 24840190554455/512
1 0 2 9 2 785448510795415/124416
1 1 21/4 9 3 2172109470699495/62208
2 0 29 9 4 5484677894663731/6635520
2 1 9/4 9 5 22714832036203789/15925248
2 2 23/16 9 6 1910496739715441/79626240
3 0 89 9 7 2468820318449871/212336640
3 1 2267/8 9 8 1223678377567247/10192158720
3 2 177/32 9 9 229878788733243/10192158720
3 3 211/32 10 0 234427971992123/128
4 0 25013/4 10 1 172139859960615/512
4 1 5013/8 10 2 2757445337006448801/2985984
4 2 29943/64 10 3 95243865818145949/746496
4 3 2465/128 10 4 226657139955813121627/597196800
4 4 2973/1024 10 5 6619289843855618939/597196800
5 0 88251/4 10 6 218688108386867852767/9555148800
5 1 2441255/32 10 7 287396519063579707/1194393600
5 2 874757/192 10 8 26016110774357344761/305764761600
5 3 2216751/256 10 9 588950135128273907/611529523200
5 4 171049/2048 10 10 252319976745196951/2446118092800
5 5 220987/6144 11 0 1196938085820951/128
6 0 23662169/8 11 1 213166318944030461/1024
6 1 10986507/32 11 2 484953641311740249799/44789760
6 2 2327063703/2304 11 3 2122498739278392549037/19906560
6 3 81133049/2304 11 4 273164737489274832749/110592000
6 4 264093757/12288 11 5 28576021167229490768493/11943936000
6 5 31487347/73728 11 6 485748876580259709683/3185049600
6 6 24401593/294912 11 7 211098068163230668731/471859200
7 0 86716929/8 11 8 786108601809348099491/305764761600
7 1 2607018503/64 11 9 2385711575108432009551/2038431744000
7 2 32603176343/6912 11 10 7631665291905150913/90596966400
7 3 240534191905/27648 11 11 212593952190067271863/73383542784000
7 4 32089547489/110592 12 0 2179761724871375777/512
7 5 215794879119/442368 12 1 539285174614127331/1024
7 6 4423646695/1769472 12 2 2658487704407131831592119/1343692800
7 7 2135064261/1769472 12 3 83537029566207575386361/268738560
8 0 218380724429/64 12 4 21870114571495468628478319/13271040000
8 1 18380724429/64 12 5 4208267075207850881725247/89579520000
8 2 26932983533833/41472 12 6 216737064308714173333404777/143327232000
8 3 216189163547/3456 12 7 38348532616813953055927/17694720000
8 4 26865860756773/442368 12 8 227234664511494120875149389/9172942848000
8 5 847050762955/331776 12 9 1339555446357501564974269/458647142400
8 6 2951145969207/3538944 12 10 253129831724844951147579/27179089920000
8 7 116411434099/7077888 12 11 70291727826145874647867/8806025134080
8 8 2151575359341/339738624 12 12 252920213881686076606297/3522410053632000
9 0 537798950495/64
Z5 f j f hE
0

2p

dw (
n50

`
~2d/4!n

n!
@2sin2~2w!#nS 4

3ugu D
n

3expS 2
4

3ugu D @11O~g!#. ~87!

The angle integral can be done with the result
E
0

2p

dw@2sin2~2w!#n58n2

G2S n1
1

2D
G~2n11!

58n2BS n1
1

2
,n1

1

2D , ~88!
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55 925RESUMMATION OF ANISOTROPIC QUARTIC . . .
whereB(z,w) is the beta function. The contributionf j and
f h from the quadratic radial and azimuthal fluctuations co
cide with those appearing in the isotropic oscillator proble
and are therefore known. With the isotropic classical act
A0c54/(3ugu), the well-known results are

f j52
i

2
AA0c

2p
bUdet8~2d2/dt21126/cosh2t!

det~2d2/dt211!
U21/2

Zosc

52
i

2
AA0c

2p
bA12exp~2b/2! ~89a!

and

f h5A3A0c

2p Fdet8~2d2/dt21122/cosh2t!

det~2d2/dt211! G21/2

Zosc

5A3A0c

2p
2exp~2b/2!, ~89b!

where we have used the partition function of the harmo
oscillator,
th

n

m

-
,
n

c

Zosc[det~2d2/dt211!21/25
1

2sinh~b/2!
→

b→`

exp~2b/2!,

~90!

to normalize the determinants. In the upper determinants,
zero eigenvalues are excluded. This fact is recorded by
prime.

The radial fluctuations in the variablej contain a negative
eigenmode, this being responsible for the factor2 i /2 and the
absolute value sign, and a zero eigenmode associated
the translation invariance which is spontaneously broken
the special choicet050. The separation of this zero eigen
mode in the framework of collective coordinates yields t
factor bAA0c /(2p) ~see Chap. 17 in Ref.@12#!. Collecting
the contributions of the negative and all positive eigenmo
one obtains the remaining factorA12 in ~89a!.

In contrast to the radial case the azimuthal fluctuatio
h do not contain a negative mode. The azimuthal fluctuat
operator has one zero eigenvalue due to the rotational inv
ance in the limitd→0. The associated eigenmode is e
tracted from the integration measure via the change of v
ables ~85!. The Jacobian of this coordinate transformati
can be deduced from the isotropic system. It contributes
factorA3A0c /(2p). The remaining factor 2 results from a
other modes with positive eigenvalues in~89b!.

Collecting all contributions to the imaginary part of th
ground-state energy~84!, a cancellation of allb-dependent
factors leads to
ImE →
g→02 2u f ju f h

bexp~2b! (
n50

`
~22d!n

n! BSn1
1
2 ,n1

1
2D S 4

3ugu D n expS 2
4

3ugu D5
6
p (
n50

`
~22d!n

n! BSn1
1
2 ,n1

1
2D S 4

3ugu D n11

3expS 2
4

3ugu D . ~91!
n

the
ral
Finally, by means of the dispersion relation~58! we find the
corresponding large-order behavior of the coefficients in
expansion~74!:

Ekn→
k→`

2
6

p2

~22!n

n! BSn1
1
2 ,n1

1
2D ~21!kS34D kk!kn.

~92!

C. Resummation

After having derived the large-order behavior ofEkn and
the low-order perturbation coefficients via the Bender a
Wu-like recursions~79! and ~80!, we are in the position to
resum theg series accompanying each powerdn in the ex-
pansion~74!.

The remaining strong-coupling expansion follows fro
Symanzik scaling@23#:

E~g,d!5 (
m50

`

km~d!g~122m!/3, ~93!
e

d

i.e., the power behavior in the strong-coupling limit is give
by

E~g,d! →
g→`

k0~d!g1/3, ~94!

where the exponent 1/3 coincides with that appearing in
one-dimensional oscillator problem. Similar to the integ
model, thed dependence enters only in the prefactork0.

Combining Eq.~17! and the formulas~64!, ~65!, and~66!,
the resummation proceeds with the parameters

b0~n!5n1
3

2
,

s5
3

4
,

a5
1

3
. ~95!

In Figs. 7 and 8 we have plotted thed dependence of the
resummed ground-state energyE for two different values of
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926 55H. KLEINERT, S. THOMS, AND W. JANKE
the coupling constantg/4 and various ordersN. As N in-
creases, the curves approach the extremely accurate d
curve obtained numerically from the variational perturbat
theory described in the next subsection.

C. Variational perturbation theory

It is useful to compare the above results with those
another recently developed resummation procedure kn
as variational perturbation theory~for an introduction see
Ref. @12#, Chap. 5!. Consider the Rayleigh-Schro¨dinger ex-
pansion of the ground-state energy:

E~g,d!5v(
l50

`

(
m50

l

Elm~2d!mS g/4v3 D l , ~96!

where the Rayleigh-Schro¨dinger coefficientsElm are ob-
tained from the recursion relation~79! via Eq. ~80!.

A variational parameterV is introduced as follows: First
the potential is separated into an arbitrary harmonic term
a remainder:

FIG. 7. Ground-state energyE of the anisotropic anharmoni
oscillator withg/450.1 as a function of the anisotropy parame
d. Shown are the resummed perturbation series for various orde
approximationN and the approximationW5(V5) @see the text after
Eq. ~103!# from the variational perturbation theory~VPT!. Differ-
ences betweenW5(V5) and the exact ground-state energy are ex
tent only on a finer energy scale.

FIG. 8. The same functions as in Fig. 7, but withg/451.0.
ted

f
n

d

v2

2
~x21y2!5

V2

2
~x21y2!1

v22V2

2
~x21y2!. ~97!

In contrast to ordinary perturbation theory, an interacting p
tentialVint is defined by

V~x,y!5
V2

2
~x21y2!1Vint~x,y!, ~98!

such that

Vint~x,y!5
g

4
~rr 21r 422dx2y2!; r5

2

g
~v22V2!.

~99!

Perturbing around the trial oscillator of frequencyV, an ex-
pansion is now found in powers ofg at fixedr andd:

EN~g,d,r!5V(
l50

N

« l~r,d!S g/4V3 D l . ~100!

The calculation of the new coefficients« l(r,d) up to a spe-
cific orderN does not require much additional work, sinc
they are easily obtained from the ordinary perturbation se
~96!. We simply replacev by the identical expression

v5AV21v22V25AV21gr/2, ~101!

reexpandE(g,d) in powers ofg, and truncate the series afte
an orderl.N. This yields the reexpansion coefficients

« l~r,d!5(
j50

l

(
n50

j

Ejn~2d!nS ~123 j !/2

l2 j D ~2rV! l2 j .

~102!

The truncated power-series

WN~g,d,V!:5EN@g,d,2~v22V2!/g# ~103!

is certainly independent ofV for N going to infinity. How-
ever, at any finite order it does depend onV. The optimal
value ofV is found by calculating all extrema and the tur

FIG. 9. The functionW5 at constant coupling strengt
g/450.1 for various anisotropy parametersd.
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55 927RESUMMATION OF ANISOTROPIC QUARTIC . . .
ing points. The smallest among these order-dependent p
is used as an optimal trial value and is denoted
VN(g,d). The associated energyWN@g,d,VN(g,d)# consti-
tutes the desired approximation to the ground-state ene
In Figs. 9 and 10 we have plotted theV dependence ofW5
andW6 for various anisotropy parametersd at the coupling
constantg/450.1. The shape of the curves depends little
d. Only in the case of oddN does a minimum exist. For eve
N, there is no extremum and the optimalV value lies at a
turning point.

For an isotropicgx4 model, the precision of the varia
tional perturbation method has been illustrated by a comp
son with accurate numerical energies@14#. At increasingN
the approach ofWN to the exact energy is quite rapid and
mechanism is well understood@16#.

In Table II we display the ground-state energies for o
N, which we have obtained for the anisotropic model at va
ous d and g/4. The speed of convergence to fixed ener
values is comparable to that for a simplegx4 interaction. So
we may safely assume that these numbers coincide with
exact ground-state energy values at least up to the first
digits.

FIG. 10. The functionW6 for g/450.1 and variousd.

TABLE II. Convergence of the ground-state energy in the va
tional perturbation expansion for various anisotropy parametersd.

g/450.1
N \d 22.5 21.5 20.5 0.5 1.5

1 1.222923 1.19626 1.167751 1.137 1.1034
3 1.217193 1.192062 1.164807 1.134739 1.1006
5 1.217109 1.192032 1.164801 1.134734 1.1006
7 1.217107 1.192033 1.164803 1.134735 1.1006
9 1.217107 1.192034 1.16481 1.134736 1.1006
11 1.217107 1.192035 1.16481 1.134739 1.1006

g/451.0
N \d 22.5 21.5 20.5 0.5 1.5

1 1.969986 1.88556 1.791636 1.684863 1.5594
3 1.941934 1.863112 1.773978 1.669261 1.5368
5 1.941196 1.862803 1.773867 1.669156 1.5356
7 1.941172 1.862806 1.773888 1.669172 1.5354
9 1.941172 1.862815 1.773909 1.669188 1.5354
11 1.94118 1.862823 1.773924 1.669199 1.5354
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V. SUMMARY

With the help of a simple model integral containing
quadratic and two quartic terms of different symmetry, w
have investigated in detail the large-order behavior of
d-dependentg series in a functionf (g,d)5(kf k(d)g

k for
the region near the isotropic limitd→0. We have shown tha
the large-order behavior off k(d) undergoes a crossover from
an effectively isotropic to the anisotropic regime near t
order of perturbation theorykcross'1/udu.

In quantum mechanics, the extreme large-order beha
of perturbation theory for the anisotropic regimekudu@1 is
identical with earlier results of BBW@6# and Janke@7#. In
displaying the crossover behavior we have gone bey
these earlier works.

In particular, our resummation algorithm is shown
work very well in the vicinity of d50 and for d.0, the
latter being relevant to the question of a stable cubic fix
point in field theory. With increasing coupling consta
g/4, the error of the result for the ground-state energy
comes larger. However, forN56 ~this is the largest avail-
able order for theb functions in quantum field theory, se
Ref. @5#! and in the wide regiondP(20.5,2) andg/4
P(0,1), the error remains smaller than 0.8%. The increas
error for large negative values ofd can intuitively be under-
stood by comparing the first two terms in the action~86!: For

FIG. 11. The same functions as in Fig. 7 (g/450.1), but with
the large-order parameters53 ~explained in the text!.

FIG. 12. The same functions as in Fig. 8 (g/451.0), but with
the large-order parameters53.
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d,0, the ‘‘tunneling paths’’ of extremal action are obv
ously straight lines along the two diagonals in the (x,y)
plane (w5p/4). Along these diagonals, the basic fact
exp@21/(cugu)# related to the decay rate disappears
d→22, and the ensuing expansion of Eq.~82! in powers
dn becomes meaningless. An improved fit ford,0 can be
obtained by choosing larger values of the large-order par
eters. In Figs. 11 and 12 we display the result fors53 and
N56, where forg/450.1 the accurate and the resumm
curve coincide.
. B

iz.
-

cs
,

r

-

To obtain the correct description of the neighborhood
the isotropic systemd50, we have used the method deve
oped in the context of an anisotropic quantum field theory
@8#: By replacing the series(kf k(d)g

k by (n(kf kng
kdn and

resumming theg series accompanying each powerdn, we
obtain very good results for the model integral and t
ground-state energy of the anisotropic anharmonic oscilla
In this way our results justify the earlier field-theoretic ana
sis, and should be useful for understanding similar proble
in other systems.
t
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