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Resummation of anisotropic quartic oscillator: Crossover from anisotropic
to isotropic large-order behavior
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We present an approximative calculation of the ground-state energy for the anisotropic oscillator with a

potential
o? g
VoY) =2 0¢HyA)+ 5 DX 2(1- ey +y']

Using an instanton solution for the isotropic limt=0, we obtain the imaginary part of the ground-state
energy for small negativg as a series expansion in the anisotropy param&térom this, the large-order
behavior of theg expansions accompanying each powebafre obtained by means of a dispersion relation in
g. The g expansions are summed by a Borel transformation, yielding an approximation to the ground-state
energy for the region near the isotropic limit. This approximation is found to be excellent in a rather wide
region of § aroundé=0. Special attention is devoted to the immediate vicinity of the isotropy point. Using a
simple model integral we show that the large-order behavior&Hapendent series expansiorgimndergoes
a crossover from an isotropic to an anisotropic regime as the @rdéthe expansion coefficients passes the
value kg oss~ 1/ 8]. [S1050-294{@7)08801-X]

PACS numbeps): 03.65.Fd, 03.65.Ca, 02.99p

[. INTRODUCTION cientsE,(6) via a dispersion relation in the complex cou-
pling constant plane. Both BBW and Janke find a different
Phase transitions in anisotropic systems with cubic symlarge-order behavior of the isotropic systefs-0 and the
metry have attracted much interest in the literatfte5].  anisotropic systend+0. They do not discuss, however, the
Especially well studied are corresponding models in quaninteresting question of how the latter goes over into the
tum mechanics. To gain an analytic insight into the latterformer asé tends to zero.

Banks, Bender, and W(@BBW) [6] investigated a Hamil- It is the purpose of this paper to fill this gap. For an
tonian with a potential optimal understanding of the expected behavior we shall not

attack directly the path integral involving the potenti),
w2 g but first only the c_orrespondi_ng simple integra_ll. For this in-
V(X,y)= 7(x2+y2)+ Z[x4+ 2(1-0)x%y?+y*]. (1) tegral, a perturbation expansion of the fo(® yields exact
o-dependent perturbation coefficients. The coefficients
. o . . . E«(6) are shown to have a large-order behavior which un-
Using multidimensional WKB techniques they derived thejgrges a crossover between the earlier derived isotropic and
large-order behavior of the perturbation series for theynisotropic behaviors when the ordepasses the crossover
ground-state energy value kg oss~1//8]. A small anisotropys~0 is hence only
reflected in very high orders of perturbation theory.
EIE E (8)gk () _ The expansion terms of a model inte_gral With_ the poten-
K tial (1) count the number of Feynman diagrams in a pertur-
bation expansion of quantum mechanical and field-theoretic
as a function of the anisotropy parameter path integrals. Since this number grows factorially, the bare
Janke[7] obtained the same results with more efficiencymodel integral is sufficient to derive nontrivial information
from a path integral for the imaginary part of the eneE)y  on the large-order behavior of the eventual object of interest,
The imaginary part contains information on the tunnelingguantum field theory. It turns out that for resumming the
decay rate of the ground state fgr<0, and determines di- series, asymptotic large-order estimates for dhdependent
rectly the large-order behavior of the perturbation coeffi-coefficients can be used only in the anisotropic regime
k| 8|>1. In the isotropic regimé| 8| <1, on the other hand,
it is impossible to truncate the large-order expansion of the

“Electronic address: kleinert@physik.fu-berlin.de perturbation coefficients after a finite number of terms. Thus
TURL:http://www.physik.fu-berlin.de;Lkleinert the neighborhood of the isotropic systets 0 needs an ex-
iElectronic address: thoms@physik.fu-berlin.de tra investigation. In the context of quantum field theory, this
Electronic address: janke@miro.physik.uni-mainz.de was recently presented [8].
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The imaginary parts of physical quantities at small nega-
tive g can be calculated with the help of classical solutions
called instantons. In systems sufficiently close to the isotr0=|-
pic point it is not necessary to know the exact instanto
solutions for all 5. The knowledge of the solution at the
symmetry point6=0 is perfectly sufficient, and the imagi-
nary parts can be expanded around it in powers.of

After having understood the model integral, we shall per-
form the same analysis for an anisotropic quantum mechani- o
cal system, which represents a one-dimensiopéffield Z(g)=2, aplp(9). (6)
theory with cubic anisotropy. p=0

The paper is organized as follows. In Sec. Il we review
simple resummation proceduf8] by which the divergent
power-series expansion of a functidiig) ==,Z,g* is con-
verted into an almost convergent seriEga,l,(g). Here
I,(g) are certain confluent hypergeometric functions which

2(9) — kg® ®)

he idea of the algorithm is the following: It is possible to

Tconstruct an infinite, complete set of Borel summable func-
tions|,(g) which satisfy the high-order and strong-coupling

conditions(4) and(5). These functions can be used as a new
basis in which to reexpand(g):

%rhe serieg6) should be such that the knowledge of the first
(N+1) coefficients in the power-series expans{8his suf-
ficient to determine directly the firstN(+1) coefficients
a,, yielding an approximation

possess power-series expansiong with the same leading N
large-order behavior as the system under study. In Sec. llI Z(g)~zN(g)= >, apl p(9). 7
we shall analyze the above-mentioned crossover in the large- p=0

order behavior for the simple model integral. In particular,_ . _ .
we shall justify the resummation procedure of Sec. Il and the NiS would then be a new representation of the function
methods i8] to be perfect tools in approximating the inte- Z(g) with the same power series up o', which makes
gral for the region near the isotropic lim#—0. In Sec. I, additional use of large-order and strong-coupling informa-
finally, we present a similar calculation for the ground-statgions (4) and (5). In the limit of largeN, the series(7) is
energy of the anharmonic potential with cubic anisotropy. €XPected to be applicable for much larger valueg dhan

In addition to this more standard resummation procedurdne original serie¢3).
we analyze the model also within the variational perturbation '€ functionsl,(g) being Borel summable have a Borel
theory developed ifil0—13. Variational perturbation theory f€presentation
yields uniformly and exponentially fast converging expan- "
sion for quantum mechanical systems with quartic potentials |p(g)=f dte*ttboBbO(gt), (8)
[14]. The uniform convergence was first proven for the par- 0 P
tition function of the anharmonic integral, and later for the ) ) ]
quantum mechanical anharmonic oscillator with Coup“ngparametnbzed by somie, and integerp. What are the condi-
strengthg in several paperfl5]. Recently, the proof was tions onB °(gt), such that ,(g) satisfies Eqs4) and(5) for
sharpened and carried from the partition function to the enall p? The answer is most easily found with the help of the

ergies[16]. hypergeometric functions
The input for the quantum mechanical model is provided . )
by the exact Rayleigh-Schiinger perturbation coefficients (a)k(b) (—agt)
{ e ¢ hich - Fi(abici-ogh=3 )

of the ground-state energy which we derive from an exten- 5 () k!
sion of recursion relations due to Bender and ¥BW) [17].
with appropriate parametees b, andc. The Pochhammer
Il. RESUMMATION symbol @), stands for &) =I"(a+k)/I'(a). These func-
tions have the following virtues: First, they are standard spe-

We begin by describing a practical algorithi®] for a  igl functions of mathematical physics whose properties are

Borel resummation of a divergent perturbation series well known. Second, they have a cut running from
t=—1/|og| to minus infinity which is necessary to generate
7 :E Z.gk 3 the large-order behavio@). Third, they have enough free
(9) k9" (€©)) B , .
K parameters to fit all input data. The first property permits an

immediate calculation of the Borel integi@), which is sim-
The method will be most efficient under the following con- ply a Laplace transformation afo,F,(a,b;c; — ogt),
ditions.
(1) From low-order perturbation theory we know the ex-
pansion coefficientZ, up to a certain finite ordeN.
(2) From semiclassical methods we are in the possession

f dte"'tPo,F,(a,b;c; — ogt)
0

of the high-order information in the form ~ TI'(o) .
T E@bbot Licllog). (10)
Ze =~ DKo 14+ T 2 @)
k ' kT2 ' The resultingg(a,b,by+ 1:c:1/og) is MacRobert'sE func-

tion. Using its asymptotic expansigsee Ref[18], p. 203 it
(3) By some scaling arguments we are able to assure & easy to verify that our ansatz reproduces the large-order
power behavior in the strong-coupling limit behavior(4). Indeed, for large&k the power series
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I'(c) - ) » )_J it e 't (ogt)P
mE(&,b,bo'F l:c:llog)= 2 e (11 pld)= o T(bp+1) 4P
- . : 1
has coefficients which grow like X oF4| p—a,p— a+§;2(p— a)+1;—agt)
k= I'(C) Ky a+b—c+by—1 _k e ttb
ekﬁm(_l) klk? 0 “g. (12) J 1o
b+ 1) F(bo+1) 212 SV ogt
Moreover, this property is unchanged if the original hyper- p
geometric function is multiplied by a powetr¢t)P. A pos- x& (19)
sible set of Borel functions is therefore (1+ 1+ ogt)?P
Bp(gt)=(agt)P,Fy(a,b;c; —ogt). (13)  where the Borel parametéy, is fixed by Eq.(17). The nor-

malization constant 1P4' (by+1) in front of the expansion
Looking at Eq.(12) we see that the functiond3) are not  functions was introduced for convenience.
completely fixed by a given large-order behavior. The pa- Letus now derive equations for the expansion coefficients
rameterg in Eq. (4) merely imposes the following relation a, in terms of the perturbation coefficienZg . All one has
upon the parametews, b, ¢, andby: to do is take the asymptotic expansions

atb—c+by—1=p, (14 p(g)—z 1P, 20
and there are many different ways to satisfy this. A specific

choice will be suggested by practical considerations. One ifhsert these into Eq7), collect terms of equal powe*, and
that thel ;’s should possess a simple integral representatiogompare these with the perturbation set@s This gives the
in order to avoid complicated numerical work. In addition, (N+ 1) algebraic equations

we would like to work with parametera, b, andc, for

which the hypergeometric functiogF, reduces to simple

algebraic functions. This happens only for special sets of the ZﬁN)Epzo lka,=2Z,; k=0,1,...N. (21)
parameters. A simple possibility is, for instantsee Ref.
[19], p. 556, By assumption, the series on the left hand side contains only

1 the coefficientsa, with p<N. Thus thea,’'s can be com-
. e _a [T\ -2a puted, in principle, by inverting theN+1)X (N+ 1) matrix
2P| aatzi2atl—z|=4%1+y1+2) =, (19 (1)kp=1§ . Even though this may be done recursively for any
given case, it is preferable to find an explicit algebraic solu-
which arises by choosing the parametarsh, andc to be tion for a, in terms ofZ,.. This is possible using the follow-
related by ing trick. We rewrite the asymptotic expansion &V in
Borel form,

a+b—c=—§; c—2b=0. (16

N )
Z(N)(g = Z ):kzo 7(N) gk

With this, the relation(14) can be satisfied for an arbitrary

value of the parametex by choosin % c o zZWMN(gt)k
P y g —f dte oy K9 oy
3 0 =0 I'(k+bp+1)
bo=B+ 7, 1 : : .
0=h 2 A7 insert the expressiofl9) for 1,(g), and compare directly

both integrands,
and we are left with only one free parameter. This parameter

n}a§(b()a %s.?d' tokaccomrlgoda?a tf(17e) strolrclig—ctﬁuplingdbtghavior % (+1 1+ oat ogt)2e ogt r
of Z(g) if it is known. Equation(7) yields the condition a, >
1,(g)—const<g* on the functiond ,(g). From Eg.(8) we p=0 I'(by+1) (1+V1+ogt)
see that such a power behavior emerges if all Borel functions = Z(N(ghk
B satisfy Bp(z) —consix z* and thus E L L 23

p K (23
,Fi(a,b;c; z)—>const><z Pta[see Eq(13)]. The explicit 0 ['(k+bo+1)’
representatior(15) shows that the parameter has to be ) .
taken as Introducing the new variable

=p— t V1l+ogt—1
a=p—a. (19 W= og B og (24

(1+V1+ogt)? Jitogt+l’
We thus obtain the approximatiocfi®™=3}_;a,l,, with
the expansion functions we obtain from Eq(23) the relation valid for alla:
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N * (N) k k

Zy 4 w
S awi=3, o 2
p=0 k=0 (bo+ 1)y (1-w)

In order to compare equal powersw we expand on the
right hand side

(29

* [ —2(k—
(1—w)_2“‘_“>=2( (I :

=0

))<—w)', (26)

which gives after a shift of the summation index franto
p=k+1 the first N+ 1) coefficientsa, in terms of the per-
turbation coefficientZ,

p k
B Zx 4\ —2(k—a)
_go(bo+1)k ;) ( p—k

)(—1)"_k (27)

(recall thatZ(kN)=Zk for k=0,1,...,N). Finally, rewriting
the binomial coefficients by means of the identity

e
=(—1 , 28
p p
we obtain the more convenient expression

p k

Z, pt+tk—1-2«
apzz —| = _ ) (29
k=0 (b0+ 1)k g p k
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integral (31) is well defined for allg>0 and —oo<§<2.
Introducing polar coordinates=r cosp and y=r sing, we
obtain the more convenient form of this integral:

1 o (2
= —f dpde exd —p—G(9,6,¢)p?], (32
mJo Jo
with p=r2/2 and

(33

K
G(g,5,¢)=g[1— Esinz(Zcp) .

After an integration over the anglge, we find the integral

* 6
ZZJ dp exp{—p—g(l——>p2
0 4

wherely(x) is a modified Bessel functioh,(x) for »=0.
Equation (34) is useful for a numerical calculation of
Z(g,96). It will serve as a testing ground for our approxima-
tions.

Thanks to the special space-time dimensionality of the
model, the perturbation expansion&(g, §) can be obtained
explicitly, and we can calculate the large-order behavior
without doing a saddle point approximation, which is un-
avoidable in quantum mechanics and field theory.

At first glance it seems useful to expaddg,5) in the

S 2
o 7902). (34

Thus, we have solved the original matrix inversion problemform

(21) by translating it to a simple problem in function theory,

namely, that of inverting the functiow(ogt) in Eq. (24).
For the purpose of calculating the integralfg) numeri-
cally, we may use the variable itself as a variable of inte-
gration, and rewrite the integral representation Ifgg) in
the form:

4 \botl (1+w)w

(@)= — J'dW o\ 2bgF2a+3
o9 o I'(bp+1)(1—w)=Po
Xexp{—

Together with the explicit formul&29) for the coefficients

bo+p

4w

(T-wog] %

Z<g,5>=k§0 Zi(9)d%, (35)

where the perturbation coefficients depend on the anisotropy
parameters. The coefficientsZ,(5) may be found by ex-
panding the integrand of Eq32) in powers ofg and per-
forming the integral term by term, yielding

(— )k

s\* [ a-s
Z(8)= Pkn| i3] P a=s).

(36)

a, we thus have solved the resummation problem, and it isvhereP,(x) are Legendre polynomials.

now straightforward to calculate the approximati@h.

Ill. MODEL INTEGRAL

In order to set up an approximation method for an aniso-
tropic model in the neighborhood of the isotropic point
6=0, we study first, as mentioned in the Introduction, a
simple toy model whose partition function is defined by a

two-dimensional integral:

Z—lffmdd Ly
-y » xdy ex E(X +y%)

—%[x4+ 2(1-8)x%y?+y*];. (3D

This can be interpreted as a partition function apatheory

In the isotropic limité=0, this reduces to

Z(0 —(_ )kr 2k+1 (_1)k4kr(k+3
(0)= ( )= = 5
(_ 1) k u
——4Mk Y1+ 0(1K)], (37

v

showing that in the rotationally symmetric case, the large-
order parameteB takes the valug= —1/2. To obtain(37),

use was made of the duplication formula for gamma func-
tions,

['(22)=(2m) Y22V ()T | z+ %) (39

in zero space-time dimensions with cubic anisotropy. Theand the expansion
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of . Pk(X)Z(ZﬂTk)_l/z(XZ—1)_1/4(X+ m)k+1/2

1—X2—1(x+x?>—1)
1 O(1Kk3)|.
T 8k X% —1(x+ x?—1) 00

(41
Substituting
4-6
X=——, (42
2\4—-26
0 2 4 8 8
Ink we obtain for 0<6<2
FIG. 1. Crossover of large-order behavior of the expansion cof- 4-5 2k*1’25* 1o 1 k2
ficientsZy in Eq. (35) from the isotropic regime= —1/2) to the Pl m7—=|=V\V= 1T_ <o
anisotropic  regime @=-1). Plotted is the function 2V4-26 m 1= 012
f(k)=In[Z/(—4)K!] for the anisotropys=10"2. In this case the 1(4-35 1
crossover value is given bioss 1/ 8| = 107 (Inkyose=4.6). x| 1+ — +0| —
ks| 8 k?5*
I'(k+e+1)=klk?[1+0O(1/k)], (39 (43

The combination of Eq940) and(43) yields the large-order

yielding the largek behavior ofl’(2k+1), behavior of the perturbation coefficientg,(s) for
0<6<2:
[(2k+1)=m"Y24k!)%k Y{1+0(1K)].  (40) o112 101
Z(8)=— (= 1)kakkik 1o~ Y2 1+ % E+0(5)}
In Fig. 1 we have plotted the order dependence of the
coefficients(36) for the anisotropy parametée=10"2. What 1
we can see is a crossover of the large-order behavior from an +0 k252 | (44)

isotropic to an anisotropic regime in the vicinity of a special
crossover valudoss~ 1/ 6|=10%. In the anisotropic regime A similar calculation can be done f@<0 with the result:
k|8|>1, the large-order parametgrhas the valugg=—1.
For k| 8|<1, however, we can read off the large-order be- (2—6)12 ‘ K1 1
havior of the isotropic case, i.e8=—1/2 (see also Fig. 2 Zi( 5)27(_1) (4=28)'ktk (= 9)

In order to understand the different large-order behavior

for 6+0 we note that an approximation of the Legendre 1|1 1
polynomialsP,(x) for largek including contributions of the 117G §+O(5) 0|z |- (49)
order O(1/k) can be derived from Hobson's formulaee
Ref.[20], p. 305: in perfect agreement with the general symmetry relation
— — 26
oF : : : : 2(9,0)=2(9,9); 9=9(2-9)/2; o=—5—%,

(46)

f=-1/2

which mapss<0 onto 0< 6<2. This relation follows from
a simple change of variables,

X=(x+y)I\2, y=(x-y)/\2, (47)

in Eq. (31).
It is easy to verify that the large-order expansiqid)
and (45 agree with the results derived by means of the
steepest descent method by JafiRg For resumming the
Ink series(35), these large-order expansions can be used only for
k|8|>1. In the regimek| 5| <1, on the other hand, it is im-
FIG. 2. Example for the two different large-order regimes of POssible to truncate the series in E¢$4) and (45) after a
Z, in Eqg. (35), wheref(k) is the same function as in Fig. (a): finite order of 1k|8|>1. Thus, the isotropic regime cannot
Isotropic regime § = 1074, kg 10%, B=—1/2). (b): Aniso-  be described by resumming the perturbation s€@8susing
tropic regime ¢ = 1, Kgose=1, B=—1). the asymptotic result&t4) and (45). Being interested in the
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@ v Q)
j:f\ _____ o

FIG. 4. Deformation of the contours of integration to make them

. . . ) ) pass through the saddle point
FIG. 3. Analytic continuatiorg— |g|exp(*iw): (a) Rotation by

angles= 7 in the cut complexg plane.(b) Two rotated paths of 2nde r2 p4
integration in ther plane ¢>0). diS(ZZJ' _f rdr exg — = —G(g,6,¢)—|, (52
0 27T 2 4

region close to the isotropic limit, we therefore use an ex-

pansion different from Eq(35), and rewriteZ(g, 5) as vyhere the combingd contolir=I", —I" _ runs forr>0 en-
tirely through the right half-plane.

» k In a perturbatively expansion in powers 8f the discon-
2(9,0)= 2, X, Zing<s" (48)  tinuity can be computed from an expansion around the
k=0n=0 saddle point
Then, for the reason given {i8], reliable results should be 1
obtained by resumming thg series accompanying each ro= ol (53
power 8". The explicit form of the coefficientZ,, is given
by of the isotropic case¥=0. Sincer>0, only the positive
square root contributes, the negative one is automatically
I'(n+ 3)T'(2k+1) taken into account by the integration over the angléNow,

Zin=m YA -1)" (49

the contour of integratiod” in the right half-plane can be
deformed to run vertically across the saddle pdsee Fig.

andz,,,=0 for k<n. For these coefficients, the expansion of4). i-€., we can integrate along a straight line:
the gamma functions yields the behavior for lakgen: I
r=/——Iié&. (54)
T(n+ 1) ol ¢

k
zkn=(—1)”ﬁ(—1)k4—k!k“—1’2[1+ O(1k)].

2"T(n+1) ™ The exponent in Eq52) plays the role of an action, and the

(50 deviations¢ may be considered as radial fluctuations around

the extremal solution. The angle is analogous to a collec-
tive coordinate along the motion of the instanton in the iso-
ﬂjgpic limit. Expanding the action up to the second order in
r%laround the extremum of the isotropic action, we obtain

2'T(n+1)T(k—n+1)’

In the following we shall calculate the coefficiet&0) by
means of the steepest descent method using the saddle poi
of the limit §—0. This will serve as a preparation for the
analogous method in quantum mechanics and quantum fie

theory. i [ 1\ Y e p2n 1

As a function of the anisotropy parameté&<2 and the disz=— _(_> f déde exp{ -
complex couplingg, the integral(31) is only defined in the 2\ |g| — 49|
half-plane Rg=0. For Rg<0, the integral can be calcu-
lated by an analytic continuation from the right into the left —isinz(z )—£2+0 i (55)
half-plane, keeping the integrand in E§1) real. This con- 8|g] ¢ Jal/ |

tinuation can be achieved by a joint rotation in the complex

g plane and of the integration contour in the (x,y) plane.  Integrating out the radial fluctuations and the azimuthal
The convergence of the integral is maintained by the substicollective coordinatep, and using the equation

tution g—gexp(6) andr—rexp(—ié/4), whereé is the ro- 1
tation angle in the compleg plane. Let us assume that the ImZ= —discZ, (56)
function Z(g, 6) is analytic in theg plane, with a cut along 2i
the negativeg axis, and a discontinuity fog<<0. Then the
rotation in the complexg plane by an angl@= = = yields

on the uppeflower) lip of the cut:

we obtain the following imaginary part fat:

Imz i Lngn LMF D) (1 )”“’2
Z.(~gl,9)=2(|gle*", ). (51) mz=-2 (Do 12| 4y

The corresponding rotated integration contoufs;) are xex;{— 1 )[l+0(g)] (57)

drawn in Fig. 3. The discontinuity across the cut is given by 49|
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Each powerd" has its ownn-dependent imaginary part. 4 \bo(m+1

Given such an expansion, the large-order estimates for the Ipn(g):(o__) f dw
coefficientsZ,,, (with k>n) follows from a dispersion rela- g 0

tion in g [see, for example, Ed6) in Ref.[7]], (1+w)wPo(m+p

IIby(n)+11(1—w 2bg(n)+2a+3
L (o ImZ"(g+i0) LBo(n)+ LI =w)

Zin=— | g—gk+1—, (59 4w 65
XexXp ~ T wZag | (65
whereZ(M(g) is the coefficient ofs". In general, if a real
analytic function F(g) has on top of the cut alon@ and the coefficients
e (—,0) an imaginary part
1 \A*t 1 3 Zkn k p+k—1—2“)
(0)= — o —— _ ., (66
I (g+i0)= =y o exp( Sl [1+0@], 2 o D | o ok (66)

where the perturbation coefficierdg, are given by Eq(49).
The parameterby(n), o, anda follow from the large-order
behavior (50) and the strong-coupling expansi@62), re-
spectively:

then a dispersion relation of the forifb8) leads to the
asymptotic behavior

Fi=y(— D)X kPKkI[1+ O(1k)]. (60)

With =4 andB=n—1/2, we obtain again the resyB0). bo(nN)=n+1,
Thus, the steepest descent method using the isotropic
saddle point is a perfect tool for calculating the large-order
behavior of the expansion coefficierfg, in the expansion o=4,
(48). An important advantage of this method with respect to
the exact calculatiofd9) is the fact that it can be generalized
to quantum mechanics and field theory where exact calcula- w=— E 67)
tions would be impossible. 2°
Before applying the resummation algorithm of the previ-

ous section we have to study the strong-coupling behavior
i.e., the limit of largeg. This can simply be done by rescal- lfrom Eq.(66) it is possible to derive the following closed

ing the integral(32) formula for the coefficients,,,:
= (27de _ y 2" T(n+ 3)?TI'(n+2)
= dyf 5—G(9,6,¢) l’Zexp( - ——yz) 2 2
fo 0o 2m JG(g,6,¢) < &= T T T(2n+2)
61
— —n)! (2a+1
| , N w(—1yp PPN 69
with G from Eq.(33) andy=p\/G. Taking the limit of large p!n! p—n
g (i.e., largeG) and integrating out the angle, we find
g Inserting the exact strong-coupling parameter —1/2, we
-12 .
2(9,6)) — «(0)g™ ", (62)  obtain
Wi G G L
71_1/2 * (2n)|2 apn= 8" (2n+1) (n!)Z , (69)
Kk(8)= Tnzo W&”. (63) 0 else.

Now, a resummation of thg series in Eq.(48) yields a Thus we have the general result that for the integral model

generalization of Eq(7): (31) the apprOX|mant§p napn pn(Q) in Eq. (64) posses no
terms withp>n, wheren is the power ofs. In such a way
N N the n-dependent functions af associated with each" are
zZN(g,8)=> ( > apl pn(g)) " (64)  recovered exactly.
=0 \p=n The approximatioZ)(g, §) may then be compared with

the numerically calculated integréd4). In Figs. 5 and 6 we
with the complete set of Borel summable functions show the result for varioul and coupling constanty/4.
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FIG. 6. The same functions as in Fig. 5, but withl=2.5.

FIG. 5. Partition functionZ of the simple integral model as a

function of the anisotropy parametérwith the coupling constant _ E 4 1r 2,2 (r4 2 5x2 2) (%)
g/4=0.25. Comparison is made between the exact result obtained 2 &_2 Y
by numerical integration of Eq34) and the resummed perturbation
seriesz(N) [see Eq(64)] for various orders\. Wa(Xy), (72)
IV. QUANTUM MECHANICS with the boundary condition
Having understood the model integral, we now turn to the |¥.(X,y)|—0, for r=yx?+y?—c. (73

¢* theory in one space-time dimension with a cubic anisot-
ropy, which is equivalent to the quantum mechanics of anrhe poundary condition selects only the discrete energy ei-
anisotropic anharmonic oscillator. genvaluesE(™. We now consider the ground-state energy
E©=E, whose perturbation expansion has the form
A. Recursions relations for the ground-state w w |
perturbation coefficients E= 2 E E (9
- Im
Consider an anharmonic oscillator with cubic anisotropy m=91= 4
and a Hamiltonian

(29", (74)

whereEy,=1 is the unperturbed ground-state energy. In the
102 &2 i foIIc_)Wing, we refer to Eq.(74) as the Rayleigh-Sg:F_lctinger
_ —(—z 7) + —(x2+y2) series, and td,,, as a Rayleigh-Schdinger coefficients.
2\9x° dy In general, the ground-state energy is available from the
sum of all connected Feynman diagrams with no externel
+ g[x4+2(1— S)X2y2+y4]. (70) legs. For an e_ff_icient computation of the Ray_leigh-
4 Schralinger coefficients at large orders we shall derive re-
cursions for theE,, extending a method due to Bender and
Wu [17]. In this way we obtain a difference equation for the
Introducing reduced variables by a rescaling Rayleigh-Schrdinger coefficients.

Separating out the unperturbed ground-state wave func-
\F \F
X— —X, y—> _y, o o0 K
w w
Vixy)=2 2 (——) (29)"

tion, ¥o(x,y) =exd — (x*+y?)/2], we expand
g—wiyg, EM_uEM, (72) X exg — (x*+y?)/2]®yn(X,y), (75)

. where®,,(x,y) are polynomials irx,y with ®y,=1. Insert-
renders a dimensionless time-independent Stihger equa- ing the perturbation expansiorig4), (75) into the differen-

tion tial equation(72), and collecting powers af and §, we find
1{ 9 2 9 k n k
—5((?)(2 T,z Pt | XSty y)q)kn P T 1—2 (—1)'Ejo®y— In+2: ;m(_l)lElmq)k—l,n—m-

(76)
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Finally, the ansatz

2k—n
Dyn(x,y)= X Alfx?y2 (77)
=
with
Aik]_n:O for i,j>2k—n; 1i,j,k,n<0; k<n (78

gives the difference equation
2(i+j)A:<j”=(2i+1)(| +1)A|+1]+(21 +1)(j+1)Ak i1

k—1,n k=1, k=1n _ apAk—1n-1
AI 2]+AIJ 2+2Aifl,j 1 AI 1j-1

_2 (AR+AY Ak n

S35 S (aeApALTT

=1l=m

(79)
The Aikjn yield the desired Rayleigh-Schtimger coefficients
Ey, via the simple formula

= —(— DXAR+AG. (80)

These can be determined recursively via &§). The recur-
sion must be initiated with

A= 5oBho, (81)
and solved for increasingk=0,1,2,...; n=0,1,2,... kK
and, at eachk and n, for decreasingi=2k—n, ...,0;

j=2k—n, ... 0 (omitting i =]

=0). The procedure is most

923

+BI2 1., . 1
A=j dr(—(x2+y2)+—(x2+y2)
- B2 2 2

(83

+ %[x4+ 2(1- 8)x%y?+y4]

is the Euclidean action corresponding to the Hamiltonian
(70). For g>0, the system is stable arl is real. On the
other hand, if the coupling constagitis negative the system
becomes unstable and develops an exponentially small
imaginary part related to the decay-r&tef the ground-state
resonance. The imaginary part of the ground-state energy
may be obtained by taking the largklimit in Eq. (82),

11Imz

ImE——F——E@ ,8—)00 (84)

In the above equation the fact was used thatZIm
xexp(—pBexd—1/(olg|)] is much smaller than
ReZ=exp[—B[1+0(g)]}. For small g<O0, this imaginary
part can be computed perturbatively in the anisotropy param-
eter § by an expansion around the isotropic instanton solu-

tion r(7):
(X) (CSWP) (

_ 2 1
=\ lg cosi{7—7g)

—sing
cosp

(89

easily performed with the help of an algebraic computer

program® The list of the first Rayleigh-Schdinger coeffi-
cients up tok=12 (n=0, ... k) is given in Table I.

B. Large-order coefficients

Working with Langer’s formulatioi21] (which is related

to Lipatov's[22] by a dispersion relatigrand making use of
known results for the isotropic anharmonic oscillator, we
now derive the large-order behavior of perturbation expan-aA=

sion for the ground-state energy.

The method is based on the path-integral representation of

the quantum partition function
B—x
Z=f DxDy exd —A(x,y)] — exp(—BE), (82

where

For brevity, we shall set;=0 in the sequel. In Eq85) we
have separated out the rotation angleof the isotropic in-
stanton in the X,y) plane and denoted the radial and azi-
muthal degrees of freedom liyand #. Inserting the expan-
sion (85) into the action(83), we obtain the expression

1 d?
EJdT 3 —F'Fl

2
- s 7|t
1 Ccos 7')77

4 8 2sirf(2¢)

E T
6 d?

 cosHr &t

d7'2+

g/’
(86)
where we have split the action into terms responsible for the

leading contributions in an expansion of the fo{®7), and a
remainderO(48/+\/[g]). Then thes dependence of the azi-

The program can be obtained from the World Wide Web page afnuthal quadratic fluctuations belongs to the omitted terms.

the following address: http://www.physik.fu-berlin.eddleinert/
kleiner_re245/preprint.html

Expanding Eq.(82) in & and integrating out the quadratic
fluctuations we obtain
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TABLE |. CoefficientsEy, in the perturbation seriegg4) for the ground-state energy up ka=12 (n=0,...Kk).

k n Exn k n Exn

0 0 1 9 1 —4840190554455/512

1 0 2 9 2 785448510795415/124416

1 1 —1/4 9 3 —172109470699495/62208

2 0 -9 9 4 5484677894663731/6635520

2 1 9/4 9 5 —2714832036203789/15925248

2 2 —3/16 9 6 1910496739715441/79626240

3 0 89 9 7 —468820318449871/212336640

3 1 —267/8 9 8 1223678377567247/10192158720

3 2 177/32 9 9 —29878788733243/10192158720

3 3 —11/32 10 0 —34427971992123/128

4 0 —5013/4 10 1 172139859960615/512

4 1 5013/8 10 2 —757445337006448801/2985984

4 2 —9943/64 10 3 95243865818145949/746496

4 3 2465/128 10 4 —26657139955813121627/597196800

4 4 —973/1024 10 5 6619289843855618939/597196800

5 0 88251/4 10 6 —18688108386867852767/9555148800

5 1 —441255/32 10 7 287396519063579707/1194393600

5 2 874757/192 10 8 —6016110774357344761/305764761600

5 3 —216751/256 10 9 588950135128273907/611529523200

5 4 171049/2048 10 10 —52319976745196951/2446118092800

5 5 —20987/6144 11 0 1196938085820951/128

6 0 —3662169/8 11 1 —13166318944030461/1024

6 1 10986507/32 11 2 484953641311740249799/44789760

6 2 —327063703/2304 11 3 —122498739278392549037/19906560

6 3 81133049/2304 11 4 273164737489274832749/110592000

6 4 —64093757/12288 11 5 —8576021167229490768493/11943936000

6 5 31487347/73728 11 6 485748876580259709683/3185049600

6 6 —4401593/294912 11 7 —11098068163230668731/471859200

7 0 86716929/8 11 8 786108601809348099491/305764761600

7 1 —607018503/64 11 9 —385711575108432009551/2038431744000

7 2 32603176343/6912 11 10 7631665291905150913/90596966400

7 3 —40534191905/27648 11 11 —12593952190067271863/73383542784000

7 4 32089547489/110592 12 0 —179761724871375777/512

7 5 —15794879119/442368 12 1 539285174614127331/1024

7 6 4423646695/1769472 12 2 —658487704407131831592119/1343692800

7 7 —135064261/1769472 12 3 83537029566207575386361/268738560

8 0 —18380724429/64 12 4 —1870114571495468628478319/13271040000
8 1 18380724429/64 12 5 4208267075207850881725247/89579520000
8 2 —6932983533833/41472 12 6 —16737064308714173333404777/1433272320000
8 3 216189163547/3456 12 7 38348532616813953055927/17694720000
8 4 —6865860756773/442368 12 8 —27234664511494120875149389/91729428480000
8 5 847050762955/331776 12 9 1339555446357501564974269/45864714240000
8 6 —951145969207/3538944 12 10 —53129831724844951147579/27179089920000
8 7 116411434099/7077888 12 11 70291727826145874647867/880602513408000
8 8 —151575359341/339738624 12 12 —52920213881686076606297/35224100536320000
9 0 537798950495/64

ar o (=8 4 \" 1
z=1, f”JO dqpnon[zsurF(zw]“(@) 27 o g i+
. dQD[ZSI (ZQD)] =8 Zm
Xexy{—w [1+0O(g)]. (87 1 1
=8"2B I’H’E,FH‘E), (88

The angle integral can be done with the result
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whereB(z,w) is the beta function. The contributidry and B
f,, from the quadratic radial and azimuthal fluctuations coin- 7 . =de{ —d?/d7?+ 1) 2= — exp(—Bl2),
C|de with those appearing in the isotropic oscillator problem, 2sint(B12)
and are therefore known. With the isotropic classical action (90)
Aoc=41(3|g|), the well-known results are to normalize the determinants. In the upper determinants, the
zero eigenvalues are excluded. This fact is recorded by the
prime.
i [Ay. |det(—d¥d7?+1—6/cosRr)| 12 The radial fluctuations in the variabfecontain a negative
fe=— A de(—dZd2+ 1) Zose eigenmode, this being responsible for the factaf2 and the

absolute value sign, and a zero eigenmode associated with
i Ao the translation invariance which is spontaneously broken by
= —,6’\/1—Zexr(—,8/2) (893 the spemal choice,=0. The separation of this zero eigen-
2N 2w mode in the framework of collective coordinates yields the
factor B\Ap:./(27) (see Chap. 17 in Ref12]). Collecting
the contributions of the negative and all positive eigenmodes
and one obtains the remaining factqtl2 in (893.
In contrast to the radial case the azimuthal fluctuations
7 do not contain a negative mode. The azimuthal fluctuation
\/3T0c[det'(_d2/d7-2+ 1—2/cosRr)] 12 operator has one zero eigenvalue due to the rotational invari-
f, = T osc ance in the limit6—0. The associated eigenmode is ex-
7 2 | det( —d¥/dr?+1) . , . :
tracted from the integration measure via the change of vari-

3Aq. ables(85). The Jacobian of this coordinate transformation
=1/ 2exp — B12), (89p  can be deduced from the isotropic system. It contributes the
2m factor V3Ay:/(27). The remaining factor 2 results from all
other modes with positive eigenvalues(B9b).
Collecting all contributions to the imaginary part of the
where we have used the partition function of the harmoniground-state energ¢84), a cancellation of al|3-dependent
oscillator, factors leads to

n+1

e 2 5 2 3 o5, ol o

X ex;{ - 3—%[) . (91)

Finally, by means of the dispersion relati®B) we find the i.e., the power behavior in the strong-coupling limit is given
corresponding large-order behavior of the coefficients in thdoy
expansion(74):

E(g, 8 — Ko( 8)g*?, (94)

ke 6 (—2)"

Epp s — . B(n+ 2.+ ?)( 1) ( ) KK where the exponent 1/3 coincides with that appearing in the

one-dimensional oscillator problem. Similar to the integral
(92 model, thed dependence enters only in the prefactgr
Combining Eq(17) and the formulag64), (65), and(66),
the resummation proceeds with the parameters

C. Resummation

3
After having derived the large-order behaviorf, and bo(n)=n+3,
the low-order perturbation coefficients via the Bender and

Wu-like recursiong79) and (80), we are in the position to 3
resum theg series accompanying each pow#rin the ex- 7=
pansion(74).
The remaining strong-coupling expansion follows from 1
Symanzik scalindg23]: a=z. (95
E(g,8)= 2 K 8)gt2mA, (93) In Figs. 7 and 8 we have plotted thedependence of the

m=0 resummed ground-state energyfor two different values of
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2 2 w?—02

Q
S O +Y2) = - (@t y?) + T (Y2, (97)

In contrast to ordinary perturbation theory, an interacting po-
tential V;,; is defined by

QZ
VXy) = = (Y2 +Vin(xy), (99)

such that

6

9 2
Vin(.y) = 7 (pré+ri=20x%?);  p= §(w2—92).

(99
FIG. 7. Ground-state enerdgy of the anisotropic anharmonic
oscillator withg/4=0.1 as a function of the anisotropy parameter Perturbing around the trial oscillator of frequen@y an ex-

6. Shown are the resummed perturbation series for various orders ?fansion is now found in powers of at fixedp and 6:
approximationN and the approximatiokVs({)s) [see the text after

Eqg. (103/] from the variational perturbation theofyPT). Differ-
ences betweeW;s({)5) and the exact ground-state energy are exis-

E ) —Q% é 9/4) 100
tent only on a finer energy scale. n(9,0.p)= = &1(p,9) 03/ (100

e calculation of the new coefficientg(p, ) up to a spe-

¢ order N does not require much additional work, since
they are easily obtained from the ordinary perturbation series
(96). We simply replacev by the identical expression

the coupling constang/4 and various orderdl. As N in- ¢
creases, the curves approach the extremely accurate dottga
curve obtained numerically from the variational perturbation
theory described in the next subsection.

C. Variational perturbation theory 0=+ 02— Q2= \/Qz+gp/2 (10D
It is useful to compare the above results with those of
another recently developed resummation procedure knowgsexpandE(g, s) in powers ofg, and truncate the series after

as variational perturbation theorfor an introduction see g, orderl>N. This yields the reexpansion coefficients
Ref.[12], Chap. 5. Consider the Rayleigh-Schiimger ex-

pansion of the ground-state energy: (1-3j)/2

L
eilp.8)=2 > E,-n<26>“< I )<2pm'1.
9/4 | J]=0 n=0

E(g,5)=w|§o mZ:O Elm(25)m(zg) , (96) (102

The truncated power-series

% |

where the Rayleigh-Schdinger coefficientsg,, are ob-
tained from the recursion relatigi@9) via Eq. (80).

A variational parametef) is introduced as follows: First, g certainly independent d® for N going to infinity. How-
the potential is separated into an arbitrary harmonic term angd, o, 4t any finite order it does depend @n The optimal

a remainder: value ofQ is found by calculating all extrema and the turn-

Wy(9,8,Q):=E\[g,8,2(w?—0?)/g] (103

0.5

FIG. 9. The function Wy at constant coupling strength
FIG. 8. The same functions as in Fig. 7, but wight=1.0. g/4=0.1 for various anisotropy parametefs
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122 Ra. feeileeel N=2

1.16 =
1.14

112

1.08

§

FIG. 11. The same functions as in Fig. @/4=0.1), but with

FIG. 10. The functions for g/4=0.1 and various. the large-order parameter=3 (explained in the text

ing points. The smallest among these order-dependent points

is used as an optimal trial value and is denoted by V. SUMMARY

(g, 9). The associated energyn[ g, J,(2n(9,9)] consti- With the help of a simple model integral containing a

tutes the desired approximation to the ground-state energyyadratic and two quartic terms of different symmetry, we

Ia?ndFl\%/S.fgra\?griigswe‘fnihs?)\':r?ogyl/ogg(rjatrﬁgtdepetntcrj\inggu?)ﬁ}/r?g have investigated in detail the large-order behavior of the
6 ebsa . 5-dependent series in a functiorf(g, 8) ==, f(5)gk for

constantg/4=0.1. The shape of the curves depends little ONpe region near the isotropic limit—0. We ha\k/ekshown that

8. Only n the case of odtll does a minimum exist. .For CVeN the large-order behavior df(5) undergoes a crossover from
N, there is no extremum and the optinfal value lies at a . . : . . :
. . an effectively isotropic to the anisotropic regime near the
turning point. X
order of perturbation theor, s 1/ 4.

For an isotropicgx* model, the precision of the varia- | hani h | der behavi
tional perturbation method has been illustrated by a compari- " duantum mechanics, the extreme large-order behavior

son with accurate numerical energidst]. At increasingN of perturbation theory for the anisotropic regirkjes|>1 is

the approach o, to the exact energy is quite rapid and its Identical with earlier results of BBW6] and Jankg7]. In
mechanism is well understodds]. displaying the crossover behavior we have gone beyond

In Table 1l we display the ground-state energies for odd1€S€ earl_lerlworks. on aldorithm is sh
N, which we have obtained for the anisotropic model at vari- " Particular, ‘our resummation algorithm is shown to

ous & and g/4. The speed of convergence to fixed energyVO'K Very well in the vicinity of 5=0 and for 5>0, the

values is comparable to that for a simgle* interaction. So Iat;er pelr;g I(rjeler:/ ant tovt?eh q.uestlon_ of a stallqle cubic fixed
we may safely assume that these numbers coincide with tHe2!Nt I field theory. With increasing coupling constant

exact ground-state energy values at least up to the first f0L9j4’ the error of the result for the _grpund-state energy be-
digits. comes larger. However, fad=6 (this is the largest avail-

able order for theB functions in quantum field theory, see
TABLE Il. Convergence of the ground-state energy in the varia-Ref' [5]) and in the wide regionde(—0.5,2) andg/4

tional perturbation expansion for various anisotropy parameters € (0,1), the error remains smaller thap 0'_8./0' The increasing
error for large negative values éfcan intuitively be under-

g/l4=0.1 stood by comparing the first two terms in the acti8): For
N\& -25 -15 -0.5 0.5 1.5
1 1.222923 1.19626 1.167751  1.137  1.103438 2
3 1.217193 1.192062 1.164807 1.134739 1.100658
5 1.217109 1.192032 1.164801 1.134734 1.100607 18
7 1217107 1.192033 1164803 1.134735 1.100604 p
9 1.217107 1.192034 1.16481 1.134736 1.100604
11 1.217107 1.192035 1.16481 1.134739 1.100604 17
g/4=1.0
N\é -25 -15 -0.5 0.5 1.5 s
1 1.969986 1.88556 1.791636 1.684863 1.559412 15
3 1.941934 1.863112 1.773978 1.669261 1.536823 .
5 1.941196 1.862803 1.773867 1.669156 1.535609 3 2 A 0 i 2
7 1.941172 1.862806 1.773888 1.669172 1.535454 s
9 1.941172 1.862815 1.773909 1.669188 1.535425
11 1.94118 1.862823 1.773924 1.669199 1.535418 FIG. 12. The same functions as in Fig. §/4=1.0), but with

the large-order parameter= 3.
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6<0, the “tunneling paths” of extremal action are obvi-  To obtain the correct description of the neighborhood of
ously straight lines along the two diagonals in they the isotropic systend=0, we have used the method devel-
plane (=/4). Along these diagonals, the basic factoroped in the context of an anisotropic quantum field theory in
exd—1/(c|g|)] related to the decay rate disappears for[8]: By replacing the serie&,f.(5)g* by =, f 06" and

5— —2, and the ensuing expansion of E§2) in powers resumming they series accompanying each pow&l, we

8" becomes meaningless. An improved fit <0 can be obtain very good results for the model integral and the
obtained by choosing larger values of the large-order paranground-state energy of the anisotropic anharmonic oscillator.
etero. In Figs. 11 and 12 we display the result f8=3 and  In this way our results justify the earlier field-theoretic analy-
N=6, where forg/4=0.1 the accurate and the resummedsis, and should be useful for understanding similar problems

curve coincide. in other systems.

[1] A. Aharony, Phys. Rev. B, 4270(1973. [14] W. Janke and H. Kleinert, Phys. Rev. Let6, 2787 (1995;

[2] I. J. Ketley and D. J. Wallace, J. Phys.6A1667(1973. Phys. Lett. A199 287 (1995.

[3] E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. B[15] I. R. C. Buckley, A. Duncan, and H. F. Jones, Phys. Re¥.7D
10, 893 (1974. 2554(1993; C. M. Bender, A. Duncan, and H. F. Jonésid.

[4] 1. O. Mayer and A. I. Sokolov, Izv. Akad. Nauk SSSR Ser. Fiz. 49, 4219(1994; A. Duncan and H. F. Jonesyid. 47, 2560
51, 2103(1987; I. O. Mayer, A. |. Sokolov, and B. N. Sha- (1993; R. Guida, K. Konishi, and H. Suzuki, Ann. Phy11,
layev, Ferroelectric95, 93 (1989. 152 (1995.

[5] H. Kleinert and V. Schulte-Frohlinde, Phys. Lett. 32, 284 [16] H. Kleinert and W. Janke, Phys. Lett. 206 283 (1995; R.
(1995. Guida, K. Konishi, and H. Suzuki, Ann. Phyg49, 109
[6] T. Banks, C. M. Bender, and T. T. Wu, Phys. Rev8[8346 (1996

. &/932“ kTé B;\:;Ss irt:tjt 241\2. fg;:iggg- 8, 3366(1973. [17] C. M. Bender and T. T. Wu, Phys. Re¥84, 1231 (1969;
- Janke, . . - Phys. Rev. D7, 1620(1973.
[8] H. Kleinert and S. Thoms, Phys. Rev. 32, 5926 (1995. [18] Higher Transcendental Functions Bateman manuscript

[9] W. Janke and H. Kleinerunpublishegl . . L .
[10] R. P. Feynman and H. Kleinert, Phys. RevaA 5080(1986 project, edited by A. Erdegi et al. (McGraw-Hill, New York,
’ ' ' 1953, Vol. I.

[11] R. Giachetti and V. Tognetti, Phys. Rev. Leib, 912(1985; . )
Int. J. Magn. Matteb4-57, 861(1986; Phys. Rev. B33, 7647 [19] See, for exampletHandbook of Mathematical Functioned-
(1986. ited by M. Abramowitz and I. A. StegutDover, New York,

[12] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics 1965.
and Polymer Physics2nd ed.(World Scientific, Singapore, [20] E. W. Hobson,The Theory of Spherical and Ellipsoidal Har-
1995. monics(Chelsea, New York, 1955

[13] H. Kleinert, Phys. Lett. AL73 332(1993; Phys. Lett. B300,  [21] J. S. Langer, Ann. Phyg.1, 108 (1967).
261 (1993; R. Karrlein and H. Kleinert, Phys. Lett. A87,  [22] L. N. Lipatov, JETP Lett25, 104(1977; L. N. Lipatov, Sov.
133(1994; H. Kleinert and H. Meyeribid. 184, 319(1994; Phys. JETR5, 216 (1977.
see also H. Kleinert, Phys. Lett. 207, 133(1995; Phys. Lett.  [23] B. Simon, Ann. Phys58, 76 (1970.
B 360, 65 (1995.



