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Quantum error correction will be necessary for preserving coherent states against noise and other unwanted
interactions in quantum computation and communication. We develop a general theory of quantum error
correction based on encoding states into larger Hilbert spaces subject to known interactions. We obtain nec-
essary and sufficient conditions for the perfect recovery of an encoded state after its degradation by an
interaction. The conditions depend only on the behavior of the logical states. We use them to give a recovery-
operator-independent definition of error-correcting codes. We relate this definition to four others: the existence
of a left inverse of the interaction, an explicit representation of the error syndrome using tensor products,
perfect recovery of the completely entangled state, and an information theoretic identity. Two notions of
fidelity and error for imperfect recovery are introduced, one for pure and the other for entangled states. The
latter is more appropriate when using codes in a quantum memory or in applications of quantum teleportation
to communication. We show that the error for entangled states is bounded linearly by the error for pure states.
A formal definition of independent interactions for qubits is given. This leads to lower bounds on the number
of qubits required to corre@ errors and a formal proof that the classical bounds on the probability of error of
e-error-correcting codes applies &error-correcting quantum codes, provided that the interaction is domi-
nated by an identity componefi§1050-294{®7)07501-X]

PACS numbg(s): 03.65.Bz, 89.70tc, 89.80:+h, 02.70—c

I. INTRODUCTION At that time it was often said that classical computers would
not be very useful because errors in the computer itself
Within the past few years, quantum computation andwould render the result untrustworthy0]. These doubts dis-
communication have undergone a dramatic evolution. Fronappeared after the discovery of powerful error-correction
being subjects of primarily academic interest, they have betechniques. Similar doubts are being expressed about the fea-
come fields having an enormous potential for revolutionizingsibility of the large scale application of quantum computers.
computer science and cryptography, as well as an impact ofhese doubts are partially based on the belief that to perform
issues of national security, and even potentially commercialan error-correction step, knowledge of the exact state of the
izable applications. This has resulted not only from the decomputer is required. Such knowledge would destroy the
velopment of new algorithms such as quantum factofilly  quantum mechanical properties of the state. However, Shor
but also as a consequence of recent experimental work dii1] has shown that in a restricted model of errwisnilar to
implementations of individual quantum gates-4] and of  that which is assumed for classical error corredtitnis
guantum cryptographjs]. possible to restore a state using only partial knowledge of the
Unfortunately, the quantum states required to carry out &tate of the quantum computer. Many codes have since been
computation are very sensitive to the imperfections of thediscovered which correct for specific interactioi—18§.
hardware, and above all, to the decohereflecaused by As a result, it may now be possible to implement practical
interaction with the environmer{by environment we mean quantum memories and achieve very reliable quantum com-
all the degrees of freedom which can have unwanted intemunication. These ideas have opened the path to a general
actions with the computgrThis fragility of a quantum com- theory of quantum error correction: the subject of this paper.
puter[7—-9] is closely tied to its function: it acts as a sophis-  This manuscript is organized as follows: In Sec. I, we
ticated, nonlinear interferometer. The coherent interferencgive an intuitive approach to the theory of quantum error
pattern between the multitude of superpositions is essenti@orrection and introduce some simple examples of the basic
for taking advantage of quantum parallelism, which is theconcepts. These concepts are formalized in Sec. Ill, where
key feature allowing one to explore aspects of an exponenthe notions of fidelity and error of a code are introduced.
tially large number of possible solutions. Instead of considering explicit encoding and decoding opera-
To ensure that the fragility of quantum states does notors, we introduce recovery superoperators. These operators
destroy our ability to extract the desired interference pattermllow us to study the most general physical processes which
requires techniques for correcting errors. It is interesting tacan be used for error correction. Quantum error-correcting
draw a parallel between the state of the art in quantum comeodes which permit complete restoration of the encoded state
putation today and that of classical computers in the 1940san then be characterized. We give necessary and sufficient
conditions for being able to recover the state of a system
after it has evolved through a superoperator. These condi-
*Electronic address: knill@lanl.gov tions depend only on the subspace of the code. Several
"Electronic address: laf@time.lanl.gov equivalent characterizations are possible and we give four:
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one based on the existence of a left inverse of the interactiocation of quantum information. However, it has recently
superoperator, one using the explicit representation of thbeen realizedl11] that it is possible to correct a state against
coding space as a tensor product of the code with a quantugertain known errors by spreading the information over
error syndrome, one exploiting the effect of the operators omany qubits through an encoding. The goal is to find an
a completely entangled state, and, finally, one using an inencoding which behaves in a specific w@gscribed beloy
formation theoretic identity. In Sec. IV we discuss severalunder evolution by the interaction superoperator. The behav-
methods for implementing the recovery operator in practiceor is such that it permits recovery of the original state. This
and point out that if certain additional properties hold, theworks only for specific types of superoperators. In practice,
recovery operator can be substantially simplified. Next, inerror-correction schemes cannot correct all errors perfectly
Sec. V we discuss independent interactions for strings obut only a subset of them. The quality of a scheme can be
qubits (or other systems These types of interactions are the evaluated by its fidelity, i.e., the overlap between the cor-
natural generalization of classical independent errors. After aected state with the wanted one.

short discussion of the physical interpretation and relevance An essential part of the error-correction scheme is the
we give a proof that it is not possible to obtain a one-error-encoding of the quantum information. Consider the simplest
correcting code for one qubit using a coding space of onlynontrivial case of encoding a single qubit. In this case the
four qubits. This is generalized in a theorem about correctinggeneral state to be protected is of the fgr)=a|0)+ 5|1).

e errors and a characterization eferror-correcting codes. The idea is to mag¥) into a higher dimensional Hilbert
Finally we address the important issue of the fidelity ofspace(using ancilla qubits which are assumed to be in their
codes with imperfect recovery operators. We observe that ) states initially:

correct measure of fidelity must take into account any en-

tanglements of the state. We show that the fidelity of the («|0)+ B[1))|000 - ) — |0 )+ B|1,). )
recovery of an entangled state can be bounded below in

terms of the pure state fidelity. An example is provided toThjs defines the cod¢d, ) and|1, ) are called the logical zero

show that our bound is best possible. We end this section bynd the logical one of the qubit which we want to preserve,

proving a bound on the fidelity of codes where one of therespectively. The new state in E@) should be such that any

interaction operators is proportional to the identity. In Sec.error induced by an incorrect functioning of the computer

VI we conclude the paper with a final summary of the resultsmaps it into one of a family of two-dimensional subspaces

and their implications. which preserve the relative coherence of the quantum infor-
mation (i.e., in each subspace, the state of the computer
should be in a tensor product state with the environgment

Il. AN INTUITIVE APPROACH measurement is then performed which projects the state into

Coherent quantum states are used in quantum Commurﬁlne of these SubSpaceS. The Original state can be recovered
cation and quantum computation. Both situations involve thdy a unitary transformation which depends on which of these
manipulation of states by unitary operations where some desubspaces has been observed. A fact to be established in Sec.
sired information is eventually extracted from parts of thelV is that for every error-correcting code, the original state
state by measurement. Quantum communication involve§an be recovered by a measurement followed by a unitary
multiple parties with limited communication capabilities and operation determined by the outcome of the measurement.
focuses more on the transmission of states over potentially In order to find good encodings, it is essential to under-
noisy channels, while quantum computation involves on|ystand the types of error which can occur. We assume that the
one party and focuses on the unitary transformations |n|.n|t|a| state iS\Ifi , which undel’goes interaction with an envi-
volved in achieving the final state. In both cases, loss ofonment. This leaves the computer in the reduced density
coherence occurs while executing the necessary operatior@atrix
and when some of the systems are either transmitted or tem-
porarily preserved in memory. This loss of coherence results pi=$(|V))), (2
in a reduction of the probability of getting the correct answer
after completion of the required operations. For short diswhere $ is the superoperator associated with the interaction.
tance communication or small scale computations, the besh the case where the environment is not initially entangled
way to avoid errors is to minimize this loss by isolating thewith the systenp; can be written in the fornj21]
state as well as possible and improving the accuracy of the
unitary transformation used. For larger distances and long
calculations errors in the state are inevitable and it is neces- Pf=2 AapiA;- 3
sary to devise a scheme for returning the state to the desired a
one. Here we focus on the problem of preserving a coherent ) i
state subject to unwanted interactions in a quantum memory Choice of operator#, can be determined from an ortho-
or channel. normal basigu,) of the environment, the environment's ini-

In classical communication and computer memories, corti@! state|e), and the evolution operatdd of the whole
rupted information can be restored by introducing redunSYyStem as follows:
dancy, for example by copying all or part of the information
to be preservefl19]. Unfortunately, it is not possible to use Aa=(1alUle). (4)
a simple redundancy scheme for quantum states, primarily

because the “no-cloning” theoref20] prevents the dupli- With A, written in this way, it can be seen that
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. advance the state that will be used. We therefore use the
2 AlA=L (5 minimum fidelity (that is, the worst-case fidelity

a
. . Frin= miﬂ<‘l’|pf|‘l’>. 9
TheA, are linear operators of the Hilbert space of the system |¥)
and describe the effect of the environment. Pyeare called o _
interaction operators. Any family of operatokg which sat- ~ The best quantum code maximizeEg,,. Hereafter we will
isfies Eq.(5) defines a superoperator. Note that the choice ofirop the subscript min to denote the fidelity of a code.
interaction operators is not unique; they depend on the We now turn to a simple but important example to illus-
choice of the basidu,) of the environment. Two sets of trate some of the points mentioned above. We investigate
interaction operators which differ only by this choice aredecoherencg6], i.e., the randomization of the phase of the
physically equivalent. initial state|W;). The effect of decoherence is to decrease the
If there is no prior knowledge of the interaction operatorssize of the diagonal element of the density matrix in a basis
which Corrupt an encoded state, it is not possib|e to recove(aetermined by the .interaction Hamiltonian with the environ-
|¥,) consistently. However, in many physical systemsAhe ~Ment. For one qubit, decoherence takes the form

are of a restricted form. For example, a reasonable approxi- * * oy
mation for systems of qubits is that the interaction with the W)= al0)+ B|1)—p aa ape (10)
environment is independent for each qubit. In this case the ' a*pe”r  Bp* |’

interaction operators are tensor products of one-qubit inter-

action operators. For small error rates, it might also be thayheree”” (y=0) parametrizes the amount of decoherence.
one of the one-qubit interaction operators, sayis near the ~Decoherence can be understood in terms of the following

identity. One can then define the number of errors of arintéraction with the environment:

interaction by counting the number of operators in the tensor 1€)[0)— |eo)|0)
product which are no#,. If there is a sufficiently small LA
number of errors, it may be possible to retrieve the original le)|1)—|e,)|1) (11)

state just as for classical error correction.
Necessary and sufficient conditions for recovery of thewith (ey|e;)=e"?. Using the environment bas]g,)=|ey)

state|¥;) are(see Sec. Il and|u;)=(|e;)—e~"eg))/V1—e~2” we obtain the interac-
; tion operators
(OL|AZAL|1,)=0, (6)
1 0 0 0
Ao= A= .2
(0L |ATALI0L) = (1| AlAL|1,). (7 °"lo e ! Ji—e 27 (12

The first condition states that the logical zero and one must FOr @ single qubit which is corrupted by decoherence the

go to orthogonal states under any error. The second one inftinimum fidelity can be seen to be given by

plies that the length and inner products of the projections of 1te7

the corrupted logical zero and one should be the same. F= ~1— Z+ .
A sufficient but not necessary condition is that Ef. is 2 2

zero if A, and A, are different. This implies that each error where the last approximation is valid for smadl

maps the initial state to orthogonal subspaces. Obviously this In what follows we assume that the different qubits have

permits retrieval of the original state by projecting on these . ; X
subspaces. The more general Ed). leaves room for two independent environmen(a physically reasonable approxi-

different errors to be mapped on the same two-dimensionamat'or) SO that the interaction operators are tensor products
of the ones given in Eq12).

subspace. This possibility is allowed by the superposition A one-qubit code to correct this type of error by using

g:lrrgcrzlgge”()efcctqiléﬁntum mechanics but cannot occur in CI"’ISSIC‘E}Ihree qubits has been devised in R¢14,17. To understand
: how it works, it is better to change the basis state of the

For realistic quantum computers only a subset of possible ™" _ CYE Ry
errors can be corrected. An appropriate measure of the quael‘:_nwronment tol i) =(|€0)+[€1))/vV2(1+e?) and|pu-)

ity of a recovered code is the fidelifi22]. Fidelity is the =(|eo)—[e1))/y2(1~e™?). This gives the one-qubit inter-
overlap between the final stajg of a systemp and the @&ction operators
original state/'¥;). If the combined superoperator consisting

, (13

: : . : 10 1 0
of an interaction with the environment followed by a recov- A.=a, - A_=a_ ) (14)
ery operation is given byl={A,, . . .}, then the fidelity is 01 0 -1
wherea, =(1+e 7)/2 anda_=+/(1—e™?)/2. In this ba-
F(|W),A)=(Wi|pe| B =2, (F;| AT (P |Al W), sis, the effect of the environment is either to leave the system
a

alone or flip the sign if the qubit is in the statg). The
®) encoding has the form

It gives the probability that the final state would pass a test |0y =(]0Y+]1))(|O)+|1))(]OY+]|1)),
checking whether it agrees with the initial state. As we are
thinking of encoding arbitrary states, we do not know in |10)=(]0)—=|1))(]0)—|1))(]O)y—]|1)). (15)
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This code is such that if one qubit is corrupted by the envi- ll. QUANTUM ERROR-CORRECTING CODES
ronment, then it is possible to detect it by using a majority
rule.

Assuming at most one incorrect qubit, the interaction with It is now time to give a formal treatment of quantum
the environment maps the initial state to one of the followingcodes. We want to preserve &-d@mensional subspace

A. Fundamentals of quantum error-correcting codes

possibilities: against some known errors. This is accomplished by map-
ping the states into a larger-Bimensional Hilbert space.
A, |0y =a%3(|0)+[1))(|0)+]1))(|0) +]1)), First, let us define an n(k) quantum code as a

2“-dimensional subspace of aR-dimensional Hilbert space.
The latter is called the coding space and denote@byhe

Alloy=a%a]0)~[1))(|0)+]1))(|0)+]1)), symbolC is used for the code. An encoding operatordds
a unitary operatoE from a k-dimensional Hilbert spac®
AZ|0,)=a2a|0)+]1))(|0)—|1))(|0)+]1)), ontoC. A decoding operator is a right inverse of an encoding
operator.

The encoding operator can be implemented as a unitary
operator orQ®*® Q®" ¥ Q®2, where the last factor has
ancillary qubits whose state before and after the operation is
where the superscripts on the operafor indicate which intended to bg0). The ancillas can be used as scratch pad
qubit is being affected. A similar result applies|ip). The  memory during the process of measurement needed to re-
recovery operator is the superoperator determined by the irgover(. In this case, the spaa@ to be encoded is a “stan-
teractions dard” subspace of the coding space, and the encoding opera-

tor maps it to the intended code. Note that there are many
Ry =(00)(0[+10(1.L]), encoding operators which have the same effecQofThis is
because the encoding defines only a part of the unitary trans-
1 1 formation needed. Which choice is actually used depends on
R-=([00)(0.[+[1 (1)o7, efficiency (e.g., the number of gates in a physical situaltion
as well as the desired error-correcting properties.
RZ = (|0 )0, |+]1.)(1 ) o2, For the purpose of discussing error-correcting properties
of codes, instead of focusing on encoding and decoding op-
3 _ 3 erators, we introduce the recovery superoperator. A recovery
R = (|0 0. +[1)(1 ) o7, (17 (supejoperatorR is a superoperator on the coding space. A
) ) ] ] ] recovery operator is used to restore a state to the code after it
whereo is thez Pauli matrix for therth qubit. In practice  has been affected by an interaction with the environment.
the recovery operator is implemented by first performing ayote that except for their intended use, recovery and inter-
measurement to determine which error has occurred. Thigestion operators are the same type of object.
can be achieved by using a series of controhed- gates Use of a recovery operator instead of an explicit unitary
and measurementsvith the possible involvement of ancilla operator allows us to ignore many of the details of imple-
qubits [12]. The measurements establish the relative signs ifhenting a code which are not relevant to its error-correcting

Eq. (16). Note that these relative signs are the same for thggperties. It is general enough to represent potentially unin-
logical zero and one after the same operator has acted ajghded or unavoidable side effects of the more traditional
therefore the measurements collapse the system {0 Werecode-encode operations. In practice, a recovery operator
dimensional subspaces. Once the measurements reveal wh|,qﬂly be implemented by a combination of unitary operations
subspace has actually occurred, it is straightforward to reang classical measurements or by unitary operations alone.
cover the initial state with an appropriate unitary transforma- guantum error-correcting code is a pé&itR) consist-
tion. _ i ing of a quantum code and a recovery operator. The correct-
It is important to realize that this code corrects perfectlying properties of an error-correcting code depend on the in-
only if at most one error occurs. In general, however, deCoteraction with the environment. Let be a family of linear
herence can induce more than one efew can be deduced gperators as described in E@). The fidelity of the code is
from the fact that thé\, in Eq. (16) do not form a superop- getermined by the fidelity of the compositidA restricted

eratof]. As long as the decoherence is snia#., yis small, o ¢. The fidelity of the error-correcting code is thus defined
the probability of having two or more errors will be much ¢

smaller than that of having one error. The minimum fidelity
can be bounded below by

A%|0,)=a%a¥|0)+|1))(|0)+]1))(|0y—|1)), (16)

F(C,RA)= min F(|¥),RA)= min >, |(P|RA,¥)?,
[¥lecC [¥yec @
F=1—(a®+3a%a,)~1— 2%+ . (18)

where theR, are the interaction operators for the superop-
This scheme is thus an improvement over the single qubieratorR. It is useful to consider families of linear operators
evolution for a small enough. Using a Zh+1 bit generali- which do not necessarily satisfy the superoperator constraint
zation of the code in Eq15), it is possible to have fidelity Eq. (5). In that case the fidelity as defined above is not cor-
be given by :0(y"*?) for small y, but with a potentially  rectly normalized and instead we consider the error of the
large hidden constant. code. The error of the code is defined as
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B. Characterizations of .A-correcting codes

So far we have definedl-correcting codes both in terms
of the code and the recovery operator. One of the most im-
portant consequences of the characterizations of
A-correcting codes below is to allow definindrcorrecting
codes without reference to the recovery operator. |Let
denote the elements of an orthonormal basis of the code
The first characterization has proved the most useful so far
for finding good codes by systematic searches such as that in
[15] or by exploiting linear techniques from the classical
theory of error-correcting cod¢42,13.

Theorem 111.2. The codeC can be extended to an
A-correcting code iff for all basis elemenis), |j ) (i#])
and operatoré\,, Ay in A

. ’,‘ . — . T .
/{ContributiontoF (LlAGAl L) = (LI AALl L) (19

and

Contribution to E

R;A;|) {

FIG. 1. Geometric relation between fidelity and error. The fidel- (iL[AZAljL)=0. (20)

ity is the sum of the projectiongfor each interaction operator . ) .
along the state. The error gives the “distance” from the original 1 hese conditions are more general than the ones given in

state for each interaction operator. [23], which are sufficient but not necessary. Since they are
independent of a recovery operator, we can define an
A-correcting code as one which satisfies EtP) and Eq.
(20) for any one(and therefore evejybasis of the code.
Proof. Assume thaiC, R) is an .A-correcting code. We
compute(i, |AIA|j,) explicitly.
N

E(C,;RA) = max X, |(R A~ (V|RA, V)| W)]2.
[wyec @

Figure 1 gives a geometric picture of the notion of fidelity ,; (ata 11 \—_/i |at SR
and error of a code. The error of the code makes sense for<IL AdholiL) =(iLlAalApliL) ={ iL
arbitrary families A. For superoperators, it is given by

A;ﬂZ RIRA,

1-F(C,R.A), which is the worst-case probability of not ob- _ i IATRTRAT Y= IR
serving the desired state if we were to attempt to measure it Z (LARIRAl L) Z (L Rarkor L)
directly.

We first focus on the ideal case where the code corrects = Aapdij ,

all errors, i.e., when the initial state is recovered perfectly for )

all operators inA. The case of imperfect recovery will be Where we have used the superoperator propertieg ahd
discussed later. The pait,R) is an A-correcting code if Theorem lll.1. The forward direction of the theorem now
E(C,R.A)=0. Note that this is equivalent to saying that for follows by inspection.

eachA,, E(C;RA,)=0. Thus we can speak of-correcting Let us now show how to construct a recovery operator

codes even 4 is not finite. In the next subsection we use 9iven that Eq(19) and Eq.(20) hold. CallV' the isubspace
characterizations ofd-correcting codes to slightly modify SPanned byA,Ji) (for all a). By Eq. (20), the V' are or-
this definition by omitting explicit mention of the recovery thogonal subspaces. Lpt;) be an orthonormal basis for'.
operator. We shall shortly impose additional conditions on the).
Before we characterizd-correcting codes, let us turn the FOr now, observe that the;) are mutually orthogonal.
problem around and ask what the famiyC,R) of operators Hence_ there exist unitary, which return|v;) to the corre-
A for which (C,R) is A-correcting looks like. The next result SPonding statéi ):
gives an answetr.

Theorem IIl.1 The operatorA, is in A(C,R) iff when Vilvr)=lip). (21)
restricted toC, R,A,=\,;,l for each R, eR. The family o ) )
Proof. To beA, correcting requires that fgi') eC,
R={O,Ry,...R;,...}, (22
[(RAL— ((¥|RAL ¥ )| W)|=0. whereQ is the projection onto the orthogonal complement of

@®;V', i.e., the part of the Hilbert space which is not reached
by acting on the code with th&,, and
This implies thatR A, ¥)=\,(|¥))|¥). By linearity of
R/A,, \4(|¥)) cannot depend o). The rest of the theo- R=V,S [#){l]. 23)
rem is immediate. QED. roora AT
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ThatR is a superoperator follows from the observation that \/q_/2 0 0 0

it is a sum of orthogonal projections followed by unitary

operators where the projections span the Hilbert space. A= 0 0 0 \/q_/2
To show thatR recovers the state, we need unitary op- N \/q_/2 0 0 0 '

erators U; such that Uj|»%)=|»!) and for all A,,

UiA,l0 )=A,]i,). The existence of unitary operators satis- 0 0 0 —val2

fying the second condition follows from EL9), according for some fixed 82q<1. It is easy to check that these opera-

to which the inner-product relationships between A0, ) tors form a superoperator. They are linearly independent and

and theA,|i,) are identica[24]. Given suctl;, |»;) can be therefore cannot be reduced to a smaller, equivalent interac-
made to satisfy the remaining condition by choosing the ba: + €9

sis [12) of V° and defining|vi,)=Ui|v?>. tion. TheA; map the logical states as follows:

We show thatR does indeed recover the state, i.e., for . 1=2q 5
Yel, R A, V) is proportional to¥?. We can write 100) 1-2q00), a/2(/00)+[10)),

Va/2(100)—[10)),

11)—+1-2q|12), g/2(]01)+|11)),
E% aiUiIBgr|V?>:iE’r i Bal 1), (24) Jai2(|on —|11)). 27)

AdW)=A2 ailin) =2 aiAdli)=2 @iUiAg0)

where the identities define and 33, by expansion in terms Naively, one might expect that the states on the right hand
of the corresponding basis elements. The introduction of théides are linearly independent, but in fact, one of them is
operatordJ; is what allows us to obtain the expansion in the linearly dependent on the other two in each case. We there-
last line where the8's show no dependence dnWe can fore need only two recovery operators to retrieve the initial

now computeR A |¥) as state. They are given by

0 Ro=1]00)(00 +|11)(11]; R;=|00)(10/+|11)(01].
Z aiIBas (28)

RAI) =3 V{3

A)=S vl

Whether there are any such examples of practical signifi-
=> Blaii)=p82|¥). (25)  cance is under investigation.

' We return to the problem of characterizing quantum error-
correcting codes. I is a superoperator, then a simple char-
acterization ofA-correcting codes is in terms of left invert-
ible superoperators.

Theorem IIl.3. Let A be a superoperatorC is an
correcting code iff the restriction ofA to C has a left
peroperator inverse.

This implies thatiR, A, is a multiple of the identity operation
on C. Since O is null on all A,lj, ), the fact thatR is a
recovery operator fo4 follows. QED.

An interesting observation about E(.9) is that it does )
not require that the logical states have zero scalar producéJ

when two different interactions are applied, but merely that Proof. By Theorem IIl.1¢ is an A-correcting code if and
the scalar products are the same. For two-dimensional COde&nIy if t.here exists a éuperoperatdt such that onC

this means that parts of the subspaces spannéd[By) and RA.=\..| for all Thi h . .
A,l1,) to which the states are mapped may overlap. If we ' 2 Aral for all r anda. This means thaR.A is a super

. . . e . .. -operator equivalent to the identifpy a change of basis on
identify eachA, with a distinct error, then this possibility thpe enviror?mer)t QED by 9

a!lows .the correction of more than one error per two- Interestingly, to check that an operat®+=7RR.A has error O
dimensional subspace. This is a novel feature of quantu;?

. . o . .~ gn any state, it suffices to applwB to a completely en-
error-correcting codes which doe; not exist in _thelr Cl&.lss'c. angled state. In other words, checking that the operBtor
counterparts. The fact that nontrivial overlap is possible i

demonstrated by the following example $has zero error for all pure states of a system is equivalent to
. ' . checking only one state which is completely entangled with a
Let us consider the codg0, )=|00), |1, )=|11)} subject to g ony pietely 9

the int i i copy of the system.
€ Interaction operators Theorem 111.4. B has error 0 onC if and only if

L@BZ[i)|iL)=NZili)]iL).

\1=2q 0 0 0 The equality in the theorem is to be interpreted in terms of
3 0 10 0 state ensembles: Two state ensembles are equivalent iff they
Ao= 0 0 1 0 ' (26)  induce the same density matrix.
Proof. LetB, be a member oB. Thenl ®B, is a member
0 0 0 vi-2q of I®B. If B has error 0 orC, then
yg/2 0 0 O
l®B iplin= iL)B i )= I
0 Oom rEi|L>|L>Z|L>r|L>Z|L>r|L>
A = 1
Y"1Vgi2 0 0 o0 5
=\ i)
0 0 0 m r i | L>| L>
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This implies that the ensemble B, )|i, ) is equivalent o ([i )®|r?)) to |i,). Let O be the projection onter(D).

to a scalar multiple oE;|i )i, ). Then the conditions on tha, imply that R,A, is a scalar
Now suppose that the identity in the theorem holds. Thamultiple of the identity, which gives the desired result. QED.

fact that the left hand side is equivaldas a set of statgso Finally, we mention that for superoperato#s there is a

the right hand side implies that for each simple information theoretic characterization.fcorrecting

codes due to Nielsen and Schumacf#5)]. Let |e)
= (k)= i )i,) be the perfectly entangled state of the code

|®Br2| |'L>|'L>=>\rzi i) from which we can define the density matrices:
By applying the operatokr® B, to each summand and using — 1 C e At B +
the fact that theli )|i,) are independent, this gives P~ k ; AaliL)(iL|A; and P‘g l@Ale)(elA®l.
B,|i_)=N\|i_). The result follows. QED. (29)

An interesting and concise method of describing a code
which hides the recovery operator without removing it en-The entropy of a density matrix is denoted byS(o).
tirely involves expressing the coding space as a sum of two Theorem Ill.6.Let A be a superoperator. Thehis an
terms, the first of which is a tensor product of the code withA-correcting code if and only iS(p) — S(p) =log, k.
another space. As we will see, this perspective has several The quantityS(p) — S(p) is introduced as a natural notion
interesting consequences. One of these consequences is tifenutual information i 25]. The proof of the theorem can
explicit distinction between correctable versus detectable ebe found there.

rors.
The'orem !II.5.C is an A-correcting code if and only if IV. IMPLEMENTING RECOVERY OPERATORS

there is an isomorphisne:H—C®EDD such that for all _ _

A e A and|W)el, A,|¥V)=0(|P)®|E(a))) for some vector Let us begin by observing that the recovery operator con-

|&(a)) depending oA, alone. structed in Theorem 111.2 consists only of projections fol-

The idea is to ensure that under each interaction operatolewed by unitary operators conditional on the result of the
the effect of the environment is clearly separated from theprojections. Implementing such an operator is conceptually
state to be preserved. This is essential for the logical state w@iraightforward: First you perform a measurement corre-
keep their coherencél) is the wave function of a collective sponding to the set of projections, then, depending on the
degree of freedom which represents the logical state and treutcome of the measurement, you perform an appropriate
state of the remaining degrees of freedom is givefbg)).  unitary operation. However, in quantum computation, it is
£ takes up all the information from the environment and finalcustomary to assume that direct measurements can only be
state in€ encodes the environment’s effect on the code. Theperformed in a standard basis of each system. This means
final state€ is called the error syndrom@ is the summand that a suitable unitary transformations must be applied first in
of H, which is normally never reached by, but which can  order to rotate the measurement subspaces.
be used for error detection if so desired. A perfect quantum To discuss various methods for implementing the recov-
code is one for whictD is empty and théS(a)) spanf. Note  ery operator we need the notion of a unitary extension. Let
that in many cases of interest, a multiple of the identity mapV=2;V;P;, where theP; are orthogonal projections, and
is in A (given by A, for example. In this case, P]V]V;P;=0 fori#j. Then a unitary extension & is any

C=0(C®|&(0))). unitary W’ which agrees wittW on the range of th®; . The
Proof. LetC be an.4-correcting code ir{. We use the conditions ensure thal/’ exists.
notation from the proof of Theorem I111.2. L& be the or- Let R be described by the interaction operators

thogonal complement of the subspace spanned byuthe (UoPo,....Ur Pr ), where theP, are projections onto the

Let & be the Hilbert space spanned fly )}, . The isomor-  orthogonal subspace® , and theU, are unitary. LetM be
phism betweer{ and CefeD is established by letting 3 separatéancillary) system with standard bagis, ). LetV,
o(|i)|v?))=|v}) and definingo to be the identity map on pe a unitary operator onM with the property that
D. Let Ajed and |[W)=Ijejlj)eC.  Write v |0,)=|r,) (i.e.V, is a unitary extension dir y){Oyl).
A.l0)=5,B7.[v?). Applying the properties discussed in The operatoV=3,P,®V, is unitary and has the property

the proof of Theorem I11.2 gives that P, ®|0y) goes toP,®|ry,). (This is a generalization of
the standard controlledeT operations in quantum comput-

AWy = 0 [0\ — T 0.0 ing.) If M starts in the statf,,), then we can perforri® by
V) ; @ Barl ) U(; a‘|JL>®2r Barl v0) first applyingV, then measuring\ in the standard basis,

and finally applyingJ, to the coding space if the outcome of
20( |‘I’>®E B?JV?})- the measurement igy,). This is in fact the implgmentation
T of the recovery operator suggested ii,12. If it is neces-
sary to represent the recovery operator by unitary operators
Thus we can let&(a))==,82|v?) to prove the “only if”  without measurement, then the measurement and the final
part of the theorem. rotation step can be replaced by application of the unitary
For the other direction we show how to construct a recov-operators, U, ®|ry){ry|. However, note that with this pro-
ery operator which restores the code after actiondofLet  cedure, the information about the environment’s interaction
[v°) be a basis of€ and letR, be the projection onto with the coding space is transferred completelyMt The
a(C[v?) followed by a unitary operator which maps only effective way in whichM can be reused for subsequent
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operations is to dissipate that information by a measurementhe result of the projection is a correct state in an alternative
Usually when using a code, there will be a time when it iscode, so it is not necessary to follow up with a unitary op-

desirable to decode the state into a separate syétarhthe  erator. It is, however, necessary to keep track of the sequence

same dimension aéwith standard basi ). The purpose of of outcomes of the projections, since tbe change the re-

decoding the state in this fashion may be to measure it, or tquired interpretation of the logical basis ©f

perform unitary operations which cannot easily be applied in

the coding space directly, or as the first step in a recovery V. PROPERTIES OF CODES CORRECTING
operation where the second step is to reencode the state. INDEPENDENT INTERACTIONS
Given an implementation of the recovery operator, one can

perform this decoding by following the recovery operator A. Independent interactions

with the application of a unitary extension of the operator |t is difficult to discover quantum error-correcting codes
3|00 )(i|®]i)(0] to H®[0). This in effect swaps the state for general types of interactions. In the classical theory of
from C to C' after recovery. error correction, it is often assumed that errors occur inde-

Here is a potentially useful method for decoding withoutpendently for each symbol. This assumption seems physi-
use of ancillas. We use the notation from Theorem I11.2. Letcally reasonable in many situations. In cases where it is not
Q; be the projection ont®'. First apply a unitary extension strictly true it can still lead to a systematic approach for
of =,Q,®i)(0] to [$)®[0) in H&C'. Then apply=;U{  finding high-fidelity error-correcting codes. We now discuss
®|i)(i]. Finally (if desired measureH to put the coding the implications of a similar assumption for the quantum
system into a known state. As an alternative to the last unitheory. In this case, the set of symbols is replaced by a fixed
tary transformation, one can measutein a special basis system such as the qubit. The coding space is a tensor prod-
and follow the measurement by a unitary operationCobn uct of independent systems. To say that the interaction op-
One choice for such a basis is given by an arbitrary extensiosrator acts independently on each component system means
of the set that it is a tensor product of single system interactions. We

shall focus on the case where each system is a qubit to sim-
e, >:2 wij|vj> plify the discussion. Generalizations to larger systems are
" 7 o straightforward. LetH=0Q%'=0,®---®Q,. Given a one-
qubit superoperatorl, we say that4®" acts independently
where w is a kth root of unity (we have neglected normal- on each qubit with
ization factor$. If the outcome of the measurement|&, ), or
then the unitary transformatiadb; " |j)(j| needs to be ap- ATT={ALOAL® iy
plied to C’' to complete the decoding step. Ifka<k Had-
amard matri{19] exists, one can choose the coefficients of ~The assumption of independent interaction is reasonable
|vly and of|i)(i| to be 1 or—1. for the case of spontaneous emission where we canAatke

In many applications(’ is in fact a subsystem df, that ~ consist of
is, H=C'®£&'. In that case we can decode a state by using the
isomorphism of Theorem IIL.5. First identif§ with a sub- _ 1 0 (0P
space of¢’ and apply a unitary extensidd of the operator So= 0 \/ﬁf 1o o)
which takeso(|i Y|a)) to |i)|a). This can be followed by a
measurement of to dissipate the error. Note that in the casefFor phase randomizatiofdecoherendeindependence is a
where the identity map is corrected, such tfiato(C®an),  good approximation when the effective wavelength of the
we can applyD " to [¢)|a,) to perform the encoding opera- environment is smaller than the interspacing of the physical
tion. Now the same circuit can be used for both encoding andystem used as qubits. For example, if the environment is
decoding. Recovery can be accomplished by applying@  modeled by a bath at finite temperature, the condition is that
measurement of, a restoration of to |ag), and finally re-  the De Broglie wavelength is smaller than the qubit’s inter-
encoding usind® ~*. The first example of such a configura- spacing. The one-qubit phase randomization interactions
tion was given in[15]. were given in Eq(12).

We end this section by making a comment on codes such As in classical error correction with fixed error rates, it is
as the ones suggested by Stegh] and Calderbank and in general not possible to corredt® with error 0. And just
Shor [13]. These codes have the property thétcan be as in the classical case, it is useful to consider codes which
represented as in Theorem II1.5, with the additional propertyorrect well the “important” members oft®", that is, those

that for a basige,) of £ and unitary operator§;; , which strongly affect only a few of the qubits. This leads to
the study ofe-error-correcting quantum codes.
Ay - 1A An operatorA acting on is said to inducgat mosj e
Ao(|ple)) U( 2 U|J|‘/’>“a1|ej>) errors if it is anr-fold tensor product of one-qubit operators

where all bute of them are the identity. Ane-error-
independent of. This implies that each subspae&®|e;)) correcting code is one which can recover from all interaction
is an.A-correcting code. This property is particularly useful operators inducing at mosterrors.
in iterated applications of the code, where recovery operators To discusse error correction in more detail, we need a
and interactions alternate. Effectively, it suffices to projectlinear basis for the one-qubit interactions. One such basis
the state after the interaction onto the subspadé€s|e;)) with the additional property that each operator is unitary is
by using a recovery operator consisting of these projectiongjiven by
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10 1 0
Ao_0 1)’ Al_o -1

0 1 0 -1 i,
AZ:(l 0); A3=<1 0)_ (30) |1L>:ij§k:| Bijlijkl), (32

; |OL>:”§k:| aijkl|ijk|>1

and use the interaction operators described in(B#). Let

TheseA, operators physically correspond {@) leaving the
a OP physicaty b @) leaving us define the reduced density matrices

system unchanged]) changing the sign of the bit if it is in
the |1) state, (2) flipping the bit, (3) flipping the bit and

changing its sign if it was in thil) state. 0% = ot
Another useful basis for the one qubit interactions is i 4 Tk Tk
given by
1 _ *
_ 1 0 _ (0] Pirjrij= ﬁirjrmﬁijkl- (33
Ap= ;A= : ki
0 0 0 1

Using those operators which induce an error on the last

0 0 two qubits in Eq.(20) we get

1 ol (31

- 0 1 ~
Ao= D Ag=
2 001 3

The opera,tvorgxo agdxl implement an ideal measurement on
the qubit. A, and Az implement an ideal measurement fol-

iEj o 00Bij00=0,

lowed by a bit flip. z @ 1081 00=0
The basis in Eq(30) is the one used ifil5] to find the i]1071j 007
one-error-correcting five-qubit code.
B. Simple lower bound
One of the simplest lower bounds on the number of clas- 2 aﬁnﬁim: 0, (34)

sical code words given that at leasterrors are to be cor-
rected is the Hamming bound. It is obtained by counting the
numberb, of words withine errors of each code word. The from which we conclude that the density matrices are or-
product ofb and the number of code words cannot exceedhogonal, i.e.,
the size of the coding space.

For quantum codes, one can attempt a similar argument.

Assume that we have written the superoperatdn a mini- p°p )i ]'— >« aj; A @By Birjrierrr = 0.
mal form so that eacl, is independent. In the special case Wy .

where Eq.(19) is solved by setting both sides to 0, it is clear =0 b i:;q (34)

that all states of the fornd,|i ) are independent. This im- Y 54

plies that the total dimension of the space has to be at least (35

24| A]. This argument fails because no such independence is
implied by Eq.(19) and Eq.(20). One can, however, use On the other hand, Eq19) implies that these two density
Theorem II1.5 to see that the total dimension has to exceethatrices are equal: Using those operators which induce an
2¥e, wheree is the dimension of. If a lower bound on error in the first two qubits, we get
dim(AO|\If),...,Aam|\I'>) is known, then this is a lower
bound one. * B "
As an example, consider the question of whether there are %: @o0ij *00ij — ZJ: Boaj Boaij »
(2',2) codes withr <4 qubits such that any operator which
induces at most one error can be corrected. A natural basis
for this family of operators can be derived from the basis in * o= * B
Eq. (300 and consists of 43r operators. Solving IE “10) #1201 E PioiPaai
2(1+3r)<2" suggests that must be at least 5. S¢&5] for
an example of a code with=5. As was pointed out in the
previous paragraph, this argument is incomplete.
We present here a different argument which proves that
r=>5is the minimum for one-error-correcting codes. Assume 2 oy @i =Z By B (36)
a code withr =4 exists. We use the necessary and sufficient [
conditions given in Eqg19) and(20) and expand the logical
zero and one as from which we deduce
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0 . Here p and p, are the final density matrix after interaction
Piji /,-r:%: Akl ik and recovery if the initial state i¥) and|¥,), respectively.
Write the entangled state in the Schmidt basis|#s)

=3Vpil¥S)| ¢!t (the labelC characterizes the system on

:%: Bﬁklﬂi'j’kl which we want to do error correction and the lali¢lthe
system with which it is entanglédWe assume that only the
:pilji e (37)  systemC is affected by an interaction with the environment

and subsequent recovery and that the systérhas trivial
dynamics. In this case the interaction operators are tensor
products of the identity operator for the systémand the
pnes given by the interactions for the syst€mWe can
therefore rewrite Eq(39) as

Equation(35) and Eq.(37) are inconsistent and imply that no
such code exists.
The argument presented above can be generalized to t
following theorem.
Theorem V.1. fn,k) e-error-correcting quantum code
must satisfyn=4e+k. — n.{ € O\ € At C
The task of proving this theorem is much simplified by P uza Pipy(YilAd ¢'><¢'|Aal Vi 40
characterizing-error correction in terms of the reduced den-
sity matrices of the code words. Let the qubits of the coding To obtain the bound we calculate the pure state fidelity for
space be labeled by, 1.. r. ForUC{1,...r}, letp(|x),U)  a superposition of the form/p, 45+ e ’\/p,y5. Thus
be the reduced density matrix pf) on the qubits labeled by

elements ol. The complement ol is denoted byJ. . Fp=( Vp1 oS+ e \p,us)

Theorem V.2C is ane-error-correcting code if and only if
for all UC{1,...r} with |U|=2e: (i)_for all i, j, p(]i,),U) B c. e c AT c
=p(|i1),U) and(i) for i %], p(|iL),U)p(]jL),U)=0. =2 (VpuwiteVpaualAdlVpui+ e Vpavg)

The proofs of Theorems V.1 and V. 2 will be given else- A .
where using a straightforward generalization of the tech- X(Vpryi+e Ny ALl Vpavi + e \pays). (4D)
nigues in the earlier proof of the bound on one error correc-
tion. We can now average uniformly the last equation over all

values ofé to get

C. Relationship between the pure state c O ) Cl At oC
and entangled state fidelity Fp=Fet p1p2({ 1] Aal ¥2) 93| Adl 1) (42)

We have studied the recovery of corrupted states usin c O\ G CI ATl A C
error-correction codes. It is antic>i/pated tha? the states to bg (Wl Aal Y (vl Al2)).- (43
protected involve only a subset of the entangled qubits of the.. :
computer or communication channel. This means that in dis?-:'r.]a"y’ Ea. (5) puts a bound on the Igst term in E@B’)
cussions of fidelity and error, the whole state, not just theSing the normalization of the interaction operator, i.e.,
component being protected, must be considered. Naturally
we can compute the fidelity of a code taking into account any 2 (IS AL US| AL ) < 1. (44)
part of the state not directly involved in the interaction and ia
recovery. The worst-case fidelity for such states is referred to
as the entangled state fidelity to distinguish it from the pure(Note that the expression is a partial trace of a density ma-
state fidelity introduced earlier. trix. The trace is partial because the interactions may take the
If the pure state fidelity after recovery of the coded sub-original state into a larger space containtgBy expanding
system is one, then the entangled state fidelity is one also; the sum oveii and noting tha(1) the term withi=1 is at
does not matter if the state is pure or if it is entangled withleast 1-e€ by the definition of pure state fidelity an@) all
other systems. This observation is invalid if we have imperthe terms are positive, we conclude that the terms wih
fect fidelity. are bounded by. The largest achievable value fpgp, is
Theorem V.3If the pure state fidelity is=,=1—¢, then 1/4. This gives
the entangled state fidelity i5,=1—3e/2. There are ex-
amples where this bound is achieved.
Proof. We give the proof for the case where the system is
two-dimensional. We have

F=1——. (45)

For the example of decoherence in Sec. Il, it is possible to
show thatF.=F,. The following example shows however
that the bound in Eq(45) can be achieved. Consider the
interaction consisting of scalar multiples of the Pauli spin

and we would like to put a bound on the entangled state . .
fidelity matrices,

Fp= min(¥|p|¥)=1—¢, (38
lyyec

. 1 1 1
Fe= min (U |pg Vo). (39 A= o Ty, —
V3 V3

— o g, .
[¥e) e HRC V3
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We show that for this exampld; (A4)=1/3 andF(A)=0.
Let |u)=a|0)+€'’B|1) with « and B real, anda®+ B°=1.

The fidelity of A is obtained by maximizing the expression

s(Kulou)P+Kul oy u P+ Kul o u)?)

=3 {[2aB cog 0)]*+[2aB sin(0)]*+ (o~ B*)%}
1 2 2\27— 1
=3 [(a™+B9)7]=3.
HenceF(A)=1/3. To show thaf.(A)=0, apply A to the
second system of the completely entangled stpe

=1n2(|0)|0)+|1)|1)). We get

I®axle>=%(|0>|1>+|1>|0>),

19.0,/e)=— (0)[1)~ [1)]0)).

l@az|e>=é<|o>|0>—|1>|1>).

These states are all orthogonal (&, whenceF(A4)=0.
Thus this example achieves equality in E¢5 and our
bound is the best possible.

D. Bounds on the fidelity of error-correcting codes
for independent interactions

Let A be one-qubit interaction of the
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Au=(®;.ul)®(®; .y A") refer to the ensemble of operators
obtained by letting act on the qubits ilJ and A’ on the
qubits not inU. By the properties of the recovery operator,
for |U|<e, the error due toRAy is 0. Thus it suffices to
bound the error of the remaining terms in the sum for the
interaction. We do this by assuming that the error in each
summand is maximal. That is, the contribution to the total
error by A, is bounded by the strength of;, given by the
maximum value of Ay |x)|%. The strength of the tensor prod-
uct of operator ensembles can be computed using the next
lemma.

Lemma V.4Let B, and B, be operator ensembles. Then
|B1@Byf*= (B, B,

The lemma can be proved by diagonalizirlg{l’j‘l
=3;B];By; and B}B,=%B}By .

We deduce that the strength df, is p|U|. By evaluating
the sums over th&)’s we obtain the following result.

Theorem V.5.Let R be the recovery operator of an
e-error correcting codeC on n qubits and A
={J1-pl,A'} a superoperator on one qubit. Then

r
F(CRA®)=1-3 (k p{(1-p) "
k>e

Note that for applications involving entanglements, the
bound needs to be modified in consideration of the relation-
ship between pure state and entangled state fidelity.

VI. CONCLUSION AND FUTURE WORK

We have laid the foundations for a theory of quantum

form error-correcting codes by providing a general definition of

A={Aq,A;,...} with A, close to the identity in some sense. quantum codes and by characterizing those which can correct
In this case we would hope that @&rerror-correcting code known interactions with zero error. The main features of our
on n qubits reduces the error after independent interactiongpproach include treating a code solely in terms of its sub-
of each qubit with.A. That this does indeed hold is an im- space in a larger Hilbert space and defining decoding opera-
portant observation for the application of these error-tions in terms of general recovery superoperators. This al-
correcting codes. We are about to show that in the cas®ws studying codes and their properties for arbitrary
where A,=\1—pl, the classical bounds on the probability interaction superoperator and avoids explicitly dealing with
of error in the corrected code do apply, as has been discusséécoding and encoding issues when studying the fidelity of a
by Calderbank and Sh¢t 3], Steang12], and others. When code given its recovery operator. The treatment in terms of
A, is not a scalar multiple of the identity, then additional interaction operators directly leads to the characterizations of
terms must be added to the bounds. We defer the discussi@tror-correcting codes given in Sec. lll. The characterization
of this case to future papers. in terms of how the operators map individual stat€keo-

Assume then that A={J1-pl,A;,...}. rem 111.2) has proved useful for finding new codgkb] but
A'={A;,.. }. and note that the strength of is also gives the quantum analog to the classical notion of dis-
tance between code words.

Our approach is not confined to the study of codes which
allow perfect reconstruction of the encoded states. As an
example of what can be done, we defireedrror-correcting
Let CC Q" be anr-qubit e-error-correcting code with re- €0des on strings of qubits and considered the effect of inde-
covery operatorR. To estimate the error after recovering Pendent interactions. We showed that for interactions with an
from A%, write identity component, there is a natural way in which the clas-

sical bound on the error can be applied, as has been dis-
A®T={{1-pl,A"}®" cussed informally by other authors. This justifies the effort
that has been put into finding goeeerror-correcting codes.
We observe that this classical bound may be more pessimis-
tic than necessary, but leave a careful study of the fidelity of
various known codes to future work.
with the obvious interpretation of the tensor products and We brought up the important issue of how reliable a pre-
which system each factor is acting on. Letdictor the pure state fidelity is for error propagation in en-

Denote

A 2=5upS, (XIATA[X)=P.

‘X) 1=

= > > V1I=pX®ieuh)®(®;uA"),

O<ksr Uc{1,..r}|U|=k
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tangled systems and showed that the entangled state fidelityill remain valid in the context of large scale quantum cal-
is not much less than the pure state fidelity. The fact that itulations. It is therefore important to take into account the
can be less is an important observation, lest one be deceivédct that operations are imperfect. A step in this direction has
into believing that a fidelity of 1/3 might be adequate if not already been taken if26]. There the particular case of cor-
compounded by other errors on the same system. recting for decoherenc¢phase randomizatignusing the

The study of imperfect fidelity codes is far from complete. three-bit scheme presented in the Introduction has been in-
Both the sources of introduced error, and its propagatioRestigated.

when recovery is attempted many times, require further

study. Ultimately, these issues determine the circumstances

when an advantage may be gained from using error- ACKNOWLEDGMENTS
correction schemes.
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