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Theory of quantum error-correcting codes
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Quantum error correction will be necessary for preserving coherent states against noise and other unwanted
interactions in quantum computation and communication. We develop a general theory of quantum error
correction based on encoding states into larger Hilbert spaces subject to known interactions. We obtain nec-
essary and sufficient conditions for the perfect recovery of an encoded state after its degradation by an
interaction. The conditions depend only on the behavior of the logical states. We use them to give a recovery-
operator-independent definition of error-correcting codes. We relate this definition to four others: the existence
of a left inverse of the interaction, an explicit representation of the error syndrome using tensor products,
perfect recovery of the completely entangled state, and an information theoretic identity. Two notions of
fidelity and error for imperfect recovery are introduced, one for pure and the other for entangled states. The
latter is more appropriate when using codes in a quantum memory or in applications of quantum teleportation
to communication. We show that the error for entangled states is bounded linearly by the error for pure states.
A formal definition of independent interactions for qubits is given. This leads to lower bounds on the number
of qubits required to correcte errors and a formal proof that the classical bounds on the probability of error of
e-error-correcting codes applies toe-error-correcting quantum codes, provided that the interaction is domi-
nated by an identity component.@S1050-2947~97!07501-X#

PACS number~s!: 03.65.Bz, 89.70.1c, 89.80.1h, 02.70.2c
n
o
b
in
t
ia
de

t
th

te

is-
nc
nt
h
e

no
er
t

om
0

uld
self

ion
fea-
rs.
orm
the
the
hor

the
een

cal
om-
eral
er.
e
ror
asic
ere
d.
ra-
tors
hich
ing
tate
ient
em
ndi-
eral
our:
I. INTRODUCTION

Within the past few years, quantum computation a
communication have undergone a dramatic evolution. Fr
being subjects of primarily academic interest, they have
come fields having an enormous potential for revolutioniz
computer science and cryptography, as well as an impac
issues of national security, and even potentially commerc
izable applications. This has resulted not only from the
velopment of new algorithms such as quantum factoring@1#,
but also as a consequence of recent experimental work
implementations of individual quantum gates@2–4# and of
quantum cryptography@5#.

Unfortunately, the quantum states required to carry ou
computation are very sensitive to the imperfections of
hardware, and above all, to the decoherence@6# caused by
interaction with the environment~by environment we mean
all the degrees of freedom which can have unwanted in
actions with the computer!. This fragility of a quantum com-
puter@7–9# is closely tied to its function: it acts as a soph
ticated, nonlinear interferometer. The coherent interfere
pattern between the multitude of superpositions is esse
for taking advantage of quantum parallelism, which is t
key feature allowing one to explore aspects of an expon
tially large number of possible solutions.

To ensure that the fragility of quantum states does
destroy our ability to extract the desired interference patt
requires techniques for correcting errors. It is interesting
draw a parallel between the state of the art in quantum c
putation today and that of classical computers in the 194
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At that time it was often said that classical computers wo
not be very useful because errors in the computer it
would render the result untrustworthy@10#. These doubts dis-
appeared after the discovery of powerful error-correct
techniques. Similar doubts are being expressed about the
sibility of the large scale application of quantum compute
These doubts are partially based on the belief that to perf
an error-correction step, knowledge of the exact state of
computer is required. Such knowledge would destroy
quantum mechanical properties of the state. However, S
@11# has shown that in a restricted model of errors~similar to
that which is assumed for classical error correction! it is
possible to restore a state using only partial knowledge of
state of the quantum computer. Many codes have since b
discovered which correct for specific interactions@12–18#.
As a result, it may now be possible to implement practi
quantum memories and achieve very reliable quantum c
munication. These ideas have opened the path to a gen
theory of quantum error correction: the subject of this pap

This manuscript is organized as follows: In Sec. II, w
give an intuitive approach to the theory of quantum er
correction and introduce some simple examples of the b
concepts. These concepts are formalized in Sec. III, wh
the notions of fidelity and error of a code are introduce
Instead of considering explicit encoding and decoding ope
tors, we introduce recovery superoperators. These opera
allow us to study the most general physical processes w
can be used for error correction. Quantum error-correct
codes which permit complete restoration of the encoded s
can then be characterized. We give necessary and suffic
conditions for being able to recover the state of a syst
after it has evolved through a superoperator. These co
tions depend only on the subspace of the code. Sev
equivalent characterizations are possible and we give f
900 © 1997 The American Physical Society
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55 901THEORY OF QUANTUM ERROR-CORRECTING CODES
one based on the existence of a left inverse of the interac
superoperator, one using the explicit representation of
coding space as a tensor product of the code with a quan
error syndrome, one exploiting the effect of the operators
a completely entangled state, and, finally, one using an
formation theoretic identity. In Sec. IV we discuss seve
methods for implementing the recovery operator in prac
and point out that if certain additional properties hold, t
recovery operator can be substantially simplified. Next,
Sec. V we discuss independent interactions for strings
qubits~or other systems!. These types of interactions are th
natural generalization of classical independent errors. Aft
short discussion of the physical interpretation and releva
we give a proof that it is not possible to obtain a one-err
correcting code for one qubit using a coding space of o
four qubits. This is generalized in a theorem about correc
e errors and a characterization ofe-error-correcting codes
Finally we address the important issue of the fidelity
codes with imperfect recovery operators. We observe th
correct measure of fidelity must take into account any
tanglements of the state. We show that the fidelity of
recovery of an entangled state can be bounded below
terms of the pure state fidelity. An example is provided
show that our bound is best possible. We end this section
proving a bound on the fidelity of codes where one of
interaction operators is proportional to the identity. In S
VI we conclude the paper with a final summary of the resu
and their implications.

II. AN INTUITIVE APPROACH

Coherent quantum states are used in quantum comm
cation and quantum computation. Both situations involve
manipulation of states by unitary operations where some
sired information is eventually extracted from parts of t
state by measurement. Quantum communication invo
multiple parties with limited communication capabilities a
focuses more on the transmission of states over potent
noisy channels, while quantum computation involves o
one party and focuses on the unitary transformations
volved in achieving the final state. In both cases, loss
coherence occurs while executing the necessary operat
and when some of the systems are either transmitted or
porarily preserved in memory. This loss of coherence res
in a reduction of the probability of getting the correct answ
after completion of the required operations. For short d
tance communication or small scale computations, the
way to avoid errors is to minimize this loss by isolating t
state as well as possible and improving the accuracy of
unitary transformation used. For larger distances and l
calculations errors in the state are inevitable and it is ne
sary to devise a scheme for returning the state to the des
one. Here we focus on the problem of preserving a cohe
state subject to unwanted interactions in a quantum mem
or channel.

In classical communication and computer memories, c
rupted information can be restored by introducing red
dancy, for example by copying all or part of the informatio
to be preserved@19#. Unfortunately, it is not possible to us
a simple redundancy scheme for quantum states, prima
because the ‘‘no-cloning’’ theorem@20# prevents the dupli-
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cation of quantum information. However, it has recen
been realized@11# that it is possible to correct a state again
certain known errors by spreading the information ov
many qubits through an encoding. The goal is to find
encoding which behaves in a specific way~described below!
under evolution by the interaction superoperator. The beh
ior is such that it permits recovery of the original state. Th
works only for specific types of superoperators. In practi
error-correction schemes cannot correct all errors perfe
but only a subset of them. The quality of a scheme can
evaluated by its fidelity, i.e., the overlap between the c
rected state with the wanted one.

An essential part of the error-correction scheme is
encoding of the quantum information. Consider the simpl
nontrivial case of encoding a single qubit. In this case
general state to be protected is of the formuC&5au0&1bu1&.
The idea is to mapuC& into a higher dimensional Hilber
space~using ancilla qubits which are assumed to be in th
u0& states initially!:

~au0&1bu1&)u000•••&→au0L&1bu1L&. ~1!

This defines the code.u0L& andu1L& are called the logical zero
and the logical one of the qubit which we want to preser
respectively. The new state in Eq.~1! should be such that an
error induced by an incorrect functioning of the compu
maps it into one of a family of two-dimensional subspac
which preserve the relative coherence of the quantum in
mation ~i.e., in each subspace, the state of the compu
should be in a tensor product state with the environment!. A
measurement is then performed which projects the state
one of these subspaces. The original state can be recov
by a unitary transformation which depends on which of the
subspaces has been observed. A fact to be established in
IV is that for every error-correcting code, the original sta
can be recovered by a measurement followed by a uni
operation determined by the outcome of the measureme

In order to find good encodings, it is essential to und
stand the types of error which can occur. We assume tha
initial state isCi , which undergoes interaction with an env
ronment. This leaves the computer in the reduced den
matrix

r f5$~ uC ı&), ~2!

where $ is the superoperator associated with the interac
In the case where the environment is not initially entang
with the systemrf can be written in the form@21#

r f5(
a

Aar iAa
† . ~3!

A choice of operatorsAa can be determined from an ortho
normal basisuma& of the environment, the environment’s in
tial state ue&, and the evolution operatorU of the whole
system as follows:

Aa5^mauUue&. ~4!

With Aa written in this way, it can be seen that
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902 55EMANUEL KNILL AND RAYMOND LAFLAMME
(
a

Aa
†Aa5I . ~5!

TheAa are linear operators of the Hilbert space of the syst
and describe the effect of the environment. TheAa are called
interaction operators. Any family of operatorsAa which sat-
isfies Eq.~5! defines a superoperator. Note that the choice
interaction operators is not unique; they depend on
choice of the basisuma& of the environment. Two sets o
interaction operators which differ only by this choice a
physically equivalent.

If there is no prior knowledge of the interaction operato
which corrupt an encoded state, it is not possible to reco
uCi& consistently. However, in many physical systems theAa
are of a restricted form. For example, a reasonable appr
mation for systems of qubits is that the interaction with t
environment is independent for each qubit. In this case
interaction operators are tensor products of one-qubit in
action operators. For small error rates, it might also be
one of the one-qubit interaction operators, sayA0, is near the
identity. One can then define the number of errors of
interaction by counting the number of operators in the ten
product which are notA0. If there is a sufficiently small
number of errors, it may be possible to retrieve the origi
state just as for classical error correction.

Necessary and sufficient conditions for recovery of
stateuCi& are ~see Sec. III!

^0LuAa
†Abu1L&50, ~6!

^0LuAa
†Abu0L&5^1LuAa

†Abu1L&. ~7!

The first condition states that the logical zero and one m
go to orthogonal states under any error. The second one
plies that the length and inner products of the projections
the corrupted logical zero and one should be the same.

A sufficient but not necessary condition is that Eq.~7! is
zero if Aa andAb are different. This implies that each erro
maps the initial state to orthogonal subspaces. Obviously
permits retrieval of the original state by projecting on the
subspaces. The more general Eq.~7! leaves room for two
different errors to be mapped on the same two-dimensio
subspace. This possibility is allowed by the superposit
principle of quantum mechanics but cannot occur in class
error correction.

For realistic quantum computers only a subset of poss
errors can be corrected. An appropriate measure of the q
ity of a recovered code is the fidelity@22#. Fidelity is the
overlap between the final staterf of a systemr and the
original stateuCi&. If the combined superoperator consistin
of an interaction with the environment followed by a reco
ery operation is given byA5$A0, . . . %, then the fidelity is

F~ uC i&,A)5^C i ur f uC i&5(
a

^C i uAauC i&^C i uAa
†uC i&.

~8!

It gives the probability that the final state would pass a t
checking whether it agrees with the initial state. As we
thinking of encoding arbitrary states, we do not know
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advance the state that will be used. We therefore use
minimum fidelity ~that is, the worst-case fidelity!

Fmin5min
uC&

^Cur f uC&. ~9!

The best quantum code maximizesFmin . Hereafter we will
drop the subscript min to denote the fidelity of a code.

We now turn to a simple but important example to illu
trate some of the points mentioned above. We investig
decoherence@6#, i.e., the randomization of the phase of th
initial stateuCi&. The effect of decoherence is to decrease
size of the diagonal element of the density matrix in a ba
determined by the interaction Hamiltonian with the enviro
ment. For one qubit, decoherence takes the form

uC i&5au0&1bu1&→rS aa* ab* e2g

a*be2g bb* D , ~10!

wheree2g ~g>0! parametrizes the amount of decoheren
Decoherence can be understood in terms of the follow
interaction with the environment:

ue&u0&→ue0&u0&,

ue&u1&→ue1&u1&, ~11!

with ^e0ue1&5e2g. Using the environment basisum0&5ue0&
andum1&5(ue1&2e2gue0&)/A12e22g we obtain the interac-
tion operators

A05S 1 0

0 e2gD ; A15S 0 0

0 A12e22gD . ~12!

For a single qubit which is corrupted by decoherence
minimum fidelity can be seen to be given by

F5
11e2g

2
;12

g

2
1••• , ~13!

where the last approximation is valid for smallg.
In what follows we assume that the different qubits ha

independent environments~a physically reasonable approx
mation! so that the interaction operators are tensor produ
of the ones given in Eq.~12!.

A one-qubit code to correct this type of error by usin
three qubits has been devised in Refs.@11,12#. To understand
how it works, it is better to change the basis state of
environment toum1&5(ue0&1ue1&)/A2(11e2g) and um2&
5(ue0&2ue1&)/A2(12e2g). This gives the one-qubit inter
action operators

A15a1S 1 0

0 1D ; A25a2S 1 0

0 21D . ~14!

wherea15A(11e2g)/2 anda25A(12e2g)/2. In this ba-
sis, the effect of the environment is either to leave the sys
alone or flip the sign if the qubit is in the stateu1&. The
encoding has the form

u0L&5~ u0&1u1&)~ u0&1u1&)~ u0&1u1&),

u1L&5~ u0&2u1&)~ u0&2u1&)~ u0&2u1&). ~15!
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55 903THEORY OF QUANTUM ERROR-CORRECTING CODES
This code is such that if one qubit is corrupted by the en
ronment, then it is possible to detect it by using a major
rule.

Assuming at most one incorrect qubit, the interaction w
the environment maps the initial state to one of the follow
possibilities:

A1u0L&5a1
3/2~ u0&1u1&)~ u0&1u1&)~ u0&1u1&),

A2
1 u0L&5a1

2 a2
1/2~ u0&2u1&)~ u0&1u1&)~ u0&1u1&),

A2
2 u0L&5a1

2 a2
1/2~ u0&1u1&)~ u0&2u1&)~ u0&1u1&),

A2
3 u0L&5a1

2 a2
1/2~ u0&1u1&)~ u0&1u1&)~ u0&2u1&), ~16!

where the superscripts on the operatorA2 indicate which
qubit is being affected. A similar result applies tou1L&. The
recovery operator is the superoperator determined by the
teractions

R15~ u0L&^0Lu1u1L&^1Lu!,

R2
1 5~ u0L&^0Lu1u1L&^1Lu!sz

1,

R2
2 5~ u0L&^0Lu1u1L&^1Lu!sz

2,

R2
3 5~ u0L&^0Lu1u1L&^1Lu!sz

3, ~17!

wheres z
r is thez Pauli matrix for ther th qubit. In practice

the recovery operator is implemented by first performing
measurement to determine which error has occurred. T
can be achieved by using a series of controlled-NOT gates
and measurements~with the possible involvement of ancill
qubits! @12#. The measurements establish the relative sign
Eq. ~16!. Note that these relative signs are the same for
logical zero and one after the same operator has acted
therefore the measurements collapse the system to
dimensional subspaces. Once the measurements reveal w
subspace has actually occurred, it is straightforward to
cover the initial state with an appropriate unitary transform
tion.

It is important to realize that this code corrects perfec
only if at most one error occurs. In general, however, de
herence can induce more than one error@as can be deduce
from the fact that theAa in Eq. ~16! do not form a superop
erator#. As long as the decoherence is small~i.e.,g is small!,
the probability of having two or more errors will be muc
smaller than that of having one error. The minimum fidel
can be bounded below by

F512~a2
3 13a2

2 a1!'12 3
4 g21••• . ~18!

This scheme is thus an improvement over the single q
evolution for a small enoughg. Using a 2n11 bit generali-
zation of the code in Eq.~15!, it is possible to have fidelity
be given by 12O(gn11) for small g, but with a potentially
large hidden constant.
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III. QUANTUM ERROR-CORRECTING CODES

A. Fundamentals of quantum error-correcting codes

It is now time to give a formal treatment of quantu
codes. We want to preserve a 2k-dimensional subspac
against some known errors. This is accomplished by m
ping the states into a larger, 2n-dimensional Hilbert space
First, let us define an (n,k) quantum code as a
2k-dimensional subspace of an 2n-dimensional Hilbert space
The latter is called the coding space and denoted byH. The
symbolC is used for the code. An encoding operator forC is
a unitary operatorE from a k-dimensional Hilbert spaceQ
ontoC. A decoding operator is a right inverse of an encodi
operator.

The encoding operator can be implemented as a uni
operator onQ^k

^Q^n2k
^Q^a, where the last factor hasa

ancillary qubits whose state before and after the operatio
intended to beu0&. The ancillas can be used as scratch p
memory during the process of measurement needed to
coverC. In this case, the spaceQ to be encoded is a ‘‘stan
dard’’ subspace of the coding space, and the encoding op
tor maps it to the intended code. Note that there are m
encoding operators which have the same effect onQ. This is
because the encoding defines only a part of the unitary tr
formation needed. Which choice is actually used depends
efficiency ~e.g., the number of gates in a physical situatio!
as well as the desired error-correcting properties.

For the purpose of discussing error-correcting proper
of codes, instead of focusing on encoding and decoding
erators, we introduce the recovery superoperator. A recov
~super!operatorR is a superoperator on the coding space
recovery operator is used to restore a state to the code af
has been affected by an interaction with the environme
Note that except for their intended use, recovery and in
action operators are the same type of object.

Use of a recovery operator instead of an explicit unita
operator allows us to ignore many of the details of imp
menting a code which are not relevant to its error-correct
properties. It is general enough to represent potentially un
tended or unavoidable side effects of the more traditio
decode-encode operations. In practice, a recovery ope
may be implemented by a combination of unitary operatio
and classical measurements or by unitary operations alo

A quantum error-correcting code is a pair~C,R! consist-
ing of a quantum code and a recovery operator. The corr
ing properties of an error-correcting code depend on the
teraction with the environment. LetA be a family of linear
operators as described in Eq.~3!. The fidelity of the code is
determined by the fidelity of the compositionRA restricted
to C. The fidelity of the error-correcting code is thus defin
as

F~C,RA!5 min
uC%PC

F~ uC&,RA)5 min
uC&PC

(
r ,a

z^CuRrAauC& z2,

where theRr are the interaction operators for the supero
eratorR. It is useful to consider families of linear operato
which do not necessarily satisfy the superoperator constr
Eq. ~5!. In that case the fidelity as defined above is not c
rectly normalized and instead we consider the error of
code. The error of the code is defined as
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904 55EMANUEL KNILL AND RAYMOND LAFLAMME
E~C,RA!5 max
uC&PC

(
r ,a

z~RrAa2^CuRrAauC&!uC& z2.

Figure 1 gives a geometric picture of the notion of fidel
and error of a code. The error of the code makes sense
arbitrary familiesA. For superoperators, it is given b
12F~C,RA!, which is the worst-case probability of not ob
serving the desired state if we were to attempt to measu
directly.

We first focus on the ideal case where the code corr
all errors, i.e., when the initial state is recovered perfectly
all operators inA. The case of imperfect recovery will b
discussed later. The pair~C,R! is anA-correcting code if
E~C,RA!50. Note that this is equivalent to saying that f
eachAa , E~C,RAa!50. Thus we can speak ofA-correcting
codes even ifA is not finite. In the next subsection we us
characterizations ofA-correcting codes to slightly modify
this definition by omitting explicit mention of the recover
operator.

Before we characterizeA-correcting codes, let us turn th
problem around and ask what the familyA~C,R! of operators
A for which ~C,R! isA-correcting looks like. The next resu
gives an answer.

Theorem III.1. The operatorAa is in A~C,R! iff when
restricted toC, RrAa5l raI for eachRrPR. The family
A~C,R! is linearly closed and~C,R! is A~C,R! correcting.

Proof. To beAa correcting requires that foruC&PC,

z„RrAa2~^CuRrAauC&!…uC& z50.

This implies thatRrAauC&5l ra~uC&!uC&. By linearity of
RrAa , lra~uC&! cannot depend onuC&. The rest of the theo-
rem is immediate. QED.

FIG. 1. Geometric relation between fidelity and error. The fid
ity is the sum of the projections~for each interaction operator!
along the state. The error gives the ‘‘distance’’ from the origin
state for each interaction operator.
for

it
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B. Characterizations ofA-correcting codes

So far we have definedA-correcting codes both in term
of the code and the recovery operator. One of the most
portant consequences of the characterizations
A-correcting codes below is to allow definingA-correcting
codes without reference to the recovery operator. Letu i L&
denote the elements of an orthonormal basis of the codC.
The first characterization has proved the most useful so
for finding good codes by systematic searches such as th
@15# or by exploiting linear techniques from the classic
theory of error-correcting codes@12,13#.

Theorem III.2. The code C can be extended to a
A-correcting code iff for all basis elementsu i L&, u j L& ( iÞ j )
and operatorsAa , Ab in A

^ i LuAa
†Abu i L&5^ j LuAa

†Abu j L& ~19!

and

^ i LuAa
†Abu j L&50. ~20!

These conditions are more general than the ones give
@23#, which are sufficient but not necessary. Since they
independent of a recovery operator, we can define
A-correcting code as one which satisfies Eq.~19! and Eq.
~20! for any one~and therefore every! basis of the code.

Proof. Assume that~C, R! is anA-correcting code. We
compute^ i LuAa

†Abu j L& explicitly.

^ i LuAa
†Abu j L&5^ i LuAa

†IAbu j L&5K i LUAa
†(

r
Rr
†RrAbU j LL

5(
r

^ i LuAa
†Rr

†RrAbu j L&5(
r

^ i Lul̄arlbru j L&

5aabd i j ,

where we have used the superoperator properties ofR and
Theorem III.1. The forward direction of the theorem no
follows by inspection.

Let us now show how to construct a recovery opera
given that Eq.~19! and Eq.~20! hold. CallV i the subspace
spanned byAau i L& ~for all a!. By Eq. ~20!, the V i are or-
thogonal subspaces. Letun r

i & be an orthonormal basis forV i .
We shall shortly impose additional conditions on theun r

i &.
For now, observe that theun r

i & are mutually orthogonal.
Hence there exist unitaryVr which returnun r

i & to the corre-
sponding stateu i L&:

Vr un r
i &5u i L&. ~21!

The recovery operator is given by the interaction operato

R5$O,R1 ,...,Rr ,...%, ~22!

whereO is the projection onto the orthogonal complement
% iV i , i.e., the part of the Hilbert space which is not reach
by acting on the code with theAa , and

Rr5Vr(
i

un r
i &^n r

i u. ~23!

-

l
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ThatR is a superoperator follows from the observation th
it is a sum of orthogonal projections followed by unita
operators where the projections span the Hilbert space.

To show thatR recovers the state, we need unitary o
erators Ui such that Ui un r

0&5un r
i & and for all Aa ,

UiAau0L&5Aau i L&. The existence of unitary operators sat
fying the second condition follows from Eq.~19!, according
to which the inner-product relationships between theAau0L&
and theAau i L& are identical@24#. Given suchUi , un r

i & can be
made to satisfy the remaining condition by choosing the
sis un r

0& of V 0 and definingun r
i &5Ui un r

0&.
We show thatR does indeed recover the state, i.e.,

CPC, RrAauC& is proportional toC. We can write

AauC&[Aa(
i

a i u i L&5(
i

a iAau i L&5(
i

a iUiAau0L&

[(
i ,r

a iUibar
0 un r

0&5(
i ,r

a ibar
0 un r

i &, ~24!

where the identities defineai andb ar
0 by expansion in terms

of the corresponding basis elements. The introduction of
operatorsUi is what allows us to obtain the expansion in t
last line where theb’s show no dependence oni . We can
now computeRrAauC& as

RrAauC&5(
i
Vr un r

i &K n r
i U(

j ,s
a jbas

0 Unsj L 5(
i

a ibar
0 Vr un r

i &

5(
i

bar
0 a i u i L&5bar

0 uC&. ~25!

This implies thatRrAa is a multiple of the identity operation
on C. SinceO is null on all Aau j L&, the fact thatR is a
recovery operator forA follows. QED.

An interesting observation about Eq.~19! is that it does
not require that the logical states have zero scalar prod
when two different interactions are applied, but merely t
the scalar products are the same. For two-dimensional co
this means that parts of the subspaces spanned byAau0L& and
Aau1L& to which the states are mapped may overlap. If
identify eachAa with a distinct error, then this possibility
allows the correction of more than one error per tw
dimensional subspace. This is a novel feature of quan
error-correcting codes which does not exist in their class
counterparts. The fact that nontrivial overlap is possible
demonstrated by the following example.

Let us consider the code$u0L&5u00&, u1L&5u11&% subject to
the interaction operators

A05S A122q 0 0 0

0 1 0 0

0 0 1 0

0 0 0 A122q

D , ~26!

A15S Aq/2 0 0 0

0 0 0 Aq/2
Aq/2 0 0 0

0 0 0 Aq/2
D ,
t

-

-

-

r

e

ts
t
es,

e

-
m
al
s

A25S Aq/2 0 0 0

0 0 0 Aq/2
2Aq/2 0 0 0

0 0 0 2Aq/2
D ,

for some fixed 0,q,1. It is easy to check that these oper
tors form a superoperator. They are linearly independent
therefore cannot be reduced to a smaller, equivalent inte
tion. TheAi map the logical states as follows:

u0L&→A122qu00&, Aq/2~ u00&1u10&),

Aq/2~ u00&2u10&),

u1L&→A122qu11&, Aq/2~ u01&1u11&),

Aq/2~ u01&2u11&). ~27!

Naively, one might expect that the states on the right ha
sides are linearly independent, but in fact, one of them
linearly dependent on the other two in each case. We th
fore need only two recovery operators to retrieve the ini
state. They are given by

R05u00&^00u1u11&^11u; R15u00&^10u1u11&^01u.
~28!

Whether there are any such examples of practical sign
cance is under investigation.

We return to the problem of characterizing quantum err
correcting codes. IfA is a superoperator, then a simple cha
acterization ofA-correcting codes is in terms of left inver
ible superoperators.

Theorem III.3. Let A be a superoperator.C is an
A-correcting code iff the restriction ofA to C has a left
superoperator inverse.

Proof. By Theorem III.1,C is anA-correcting code if and
only if there exists a superoperatorR such that onC,
RrAa5l raI for all r anda. This means thatRA is a super-
operator equivalent to the identity~by a change of basis on
the environment!. QED.

Interestingly, to check that an operatorB5RA has error 0
on any state, it suffices to applyI ^B to a completely en-
tangled state. In other words, checking that the operatoB
has zero error for all pure states of a system is equivalen
checking only one state which is completely entangled wit
copy of the system.

Theorem III.4. B has error 0 onC if and only if
I ^B( i u i L&u i L&5l( i u i L&u i L &.

The equality in the theorem is to be interpreted in terms
state ensembles: Two state ensembles are equivalent iff
induce the same density matrix.

Proof. LetBr be a member ofB. ThenI ^Br is a member
of I ^B. If B has error 0 onC, then

I ^Br(
i

u i L&u i L&5(
i

u i L&Br u i L&5(
i

u i L&l r u i L&

5l r(
i

u i L&u i L&.
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This implies that the ensembleI ^B( i u i L&u i L& is equivalent
to a scalar multiple of(i u i L&u i L&.

Now suppose that the identity in the theorem holds. T
fact that the left hand side is equivalent~as a set of states! to
the right hand side implies that for eachr ,

I ^Br(
ı

u i L&u i L&5l r(
i

u i L&u i L&.

By applying the operatorI ^Br to each summand and usin
the fact that the u i L&u i L& are independent, this give
Br u i L&5l r u i L&. The result follows. QED.

An interesting and concise method of describing a co
which hides the recovery operator without removing it e
tirely involves expressing the coding space as a sum of
terms, the first of which is a tensor product of the code w
another space. As we will see, this perspective has sev
interesting consequences. One of these consequences
explicit distinction between correctable versus detectable
rors.

Theorem III.5.C is anA-correcting code if and only if
there is an isomorphisms:H→C^E%D such that for all
AaPA and uC&PC, AauC&5s„uC&^uE(a)&… for some vector
uE(a)& depending onAa alone.

The idea is to ensure that under each interaction opera
the effect of the environment is clearly separated from
state to be preserved. This is essential for the logical sta
keep their coherence.uC& is the wave function of a collective
degree of freedom which represents the logical state and
state of the remaining degrees of freedom is given byuE(a)&.
E takes up all the information from the environment and fin
state inE encodes the environment’s effect on the code. T
final stateE is called the error syndrome.D is the summand
of H, which is normally never reached byA, but which can
be used for error detection if so desired. A perfect quant
code is one for whichD is empty and theuE(a)& spanE. Note
that in many cases of interest, a multiple of the identity m
is in A ~given by A0 for example!. In this case,
C5s„C^uE~0!&….

Proof. LetC be anA-correcting code inH. We use the
notation from the proof of Theorem III.2. LetD be the or-
thogonal complement of the subspace spanned by theun r

i &.
Let E be the Hilbert space spanned by$un r

0&%r . The isomor-
phism betweenH and C^E%D is established by letting
s(u i L&un r

0&)5un r
i & and definings to be the identity map on

D. Let AaPA and uC&5(ja j u j L&PC. Write
Aau0L&5( rb ra

0 un r
0&. Applying the properties discussed

the proof of Theorem III.2 gives

AauC&5(
j r

a jbar
0 un r

j &5sS (
j

a j u j L& ^ (
r

bar
0 un r

0& D
5sS uC& ^ (

r
b ra
0 un r

0& D .
Thus we can letuE(a)&5(rb ar

0 un r
0& to prove the ‘‘only if’’

part of the theorem.
For the other direction we show how to construct a rec

ery operator which restores the code after action ofA. Let
un r

0& be a basis ofE and let Rr be the projection onto
s~C^un r

0&! followed by a unitary operator which map
e

e
-
o
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ral
the
r-

rs
e
to

he

l
e

m
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-

s(u i L& ^ un r
0&) to u i L&. Let O be the projection ontos~D!.

Then the conditions on theAa imply that RrAa is a scalar
multiple of the identity, which gives the desired result. QE

Finally, we mention that for superoperatorsA, there is a
simple information theoretic characterization ofA-correcting
codes due to Nielsen and Schumacher@25#. Let ue&
5(1/Ak)( i u i L&u i L& be the perfectly entangled state of the c
from which we can define the density matrices:

r̄5
1

k (
ai

Aau i L&^ i LuAa
† and r5(

a
I ^Aaue&^euAa

†
^ I .

~29!

The entropy of a density matrixs is denoted byS~s!.
Theorem III.6.Let A be a superoperator. ThenC is an

A-correcting code if and only ifS( r̄)2S(r)5log2 k.
The quantityS( r̄)2S(r) is introduced as a natural notio

of mutual information in@25#. The proof of the theorem can
be found there.

IV. IMPLEMENTING RECOVERY OPERATORS

Let us begin by observing that the recovery operator c
structed in Theorem III.2 consists only of projections fo
lowed by unitary operators conditional on the result of t
projections. Implementing such an operator is conceptu
straightforward: First you perform a measurement cor
sponding to the set of projections, then, depending on
outcome of the measurement, you perform an appropr
unitary operation. However, in quantum computation, it
customary to assume that direct measurements can onl
performed in a standard basis of each system. This me
that a suitable unitary transformations must be applied firs
order to rotate the measurement subspaces.

To discuss various methods for implementing the rec
ery operator we need the notion of a unitary extension.
W5( iViPi , where thePi are orthogonal projections, an
Pj
†Vj

†ViPi50 for iÞ j . Then a unitary extension ofW is any
unitaryW8 which agrees withW on the range of thePi . The
conditions ensure thatW8 exists.

Let R be described by the interaction operato
(U0P0 ,...,Urm

Prm
), where thePr are projections onto the

orthogonal subspacesPr , and theUr are unitary. LetM be
a separate~ancillary! system with standard basisur M&. LetVr
be a unitary operator onM with the property that
Vr u0M&5ur M& ~i.e., Vr is a unitary extension ofur M&^0Mu).
The operatorV5( rPr ^Vr is unitary and has the propert
thatPr ^ u0M& goes toPr ^ ur M&. ~This is a generalization o
the standard controlled-NOT operations in quantum compu
ing.! If M starts in the stateu0M&, then we can performR by
first applyingV, then measuringM in the standard basis
and finally applyingUr to the coding space if the outcome o
the measurement isur M&. This is in fact the implementation
of the recovery operator suggested in@11,12#. If it is neces-
sary to represent the recovery operator by unitary opera
without measurement, then the measurement and the
rotation step can be replaced by application of the unit
operator( rUr ^ ur M&^r Mu. However, note that with this pro
cedure, the information about the environment’s interact
with the coding space is transferred completely toM. The
only effective way in whichM can be reused for subseque
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55 907THEORY OF QUANTUM ERROR-CORRECTING CODES
operations is to dissipate that information by a measurem
Usually when using a code, there will be a time when it

desirable to decode the state into a separate systemC8 of the
same dimension asC with standard basisu i &. The purpose of
decoding the state in this fashion may be to measure it, o
perform unitary operations which cannot easily be applied
the coding space directly, or as the first step in a recov
operation where the second step is to reencode the s
Given an implementation of the recovery operator, one
perform this decoding by following the recovery opera
with the application of a unitary extension of the opera
( i u0L&^ i Lu ^ u i &^0u to H^u0&. This in effect swaps the stat
from C to C8 after recovery.

Here is a potentially useful method for decoding witho
use of ancillas. We use the notation from Theorem III.2. L
Qi be the projection ontoV i . First apply a unitary extension
of ( iQı^ u i &^0u to uc&^u0& in H^C8. Then apply( iUi

†

^ u i &^ i u. Finally ~if desired! measureH to put the coding
system into a known state. As an alternative to the last u
tary transformation, one can measureH in a special basis
and follow the measurement by a unitary operation onC8.
One choice for such a basis is given by an arbitrary exten
of the set

ueir &5(
j

v i j un r
j &,

wherev is a kth root of unity ~we have neglected norma
ization factors!. If the outcome of the measurement isueir &,
then the unitary transformation( jv

2 i j u j &^ j u needs to be ap
plied to C8 to complete the decoding step. If ak3k Had-
amard matrix@19# exists, one can choose the coefficients
un r

i & and of u i &^ i u to be 1 or21.
In many applications,C8 is in fact a subsystem ofH, that

is,H5C8^E8. In that case we can decode a state by using
isomorphism of Theorem III.5. First identifyE with a sub-
space ofE8 and apply a unitary extensionD of the operator
which takess(u i L&ua&) to u i &ua&. This can be followed by a
measurement ofE to dissipate the error. Note that in the ca
where the identity map is corrected, such thatC5s~C^ua0&!,
we can applyD21 to uc&ua0& to perform the encoding opera
tion. Now the same circuit can be used for both encoding
decoding. Recovery can be accomplished by applyingD, a
measurement ofE, a restoration ofE to ua0&, and finally re-
encoding usingD21. The first example of such a configura
tion was given in@15#.

We end this section by making a comment on codes s
as the ones suggested by Steane@12# and Calderbank and
Shor @13#. These codes have the property thatH can be
represented as in Theorem III.5, with the additional prope
that for a basisueı& of E and unitary operatorsUi j ,

Aas~ uc&uei&)5sS (
j
Ui j uc&aa juej& D

independent ofc. This implies that each subspaces~C^uei&!
is anA-correcting code. This property is particularly usef
in iterated applications of the code, where recovery opera
and interactions alternate. Effectively, it suffices to proj
the state after the interaction onto the subspacess~C^uei&)
by using a recovery operator consisting of these projectio
nt.
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The result of the projection is a correct state in an alterna
code, so it is not necessary to follow up with a unitary o
erator. It is, however, necessary to keep track of the seque
of outcomes of the projections, since theUi j change the re-
quired interpretation of the logical basis ofC.

V. PROPERTIES OF CODES CORRECTING
INDEPENDENT INTERACTIONS

A. Independent interactions

It is difficult to discover quantum error-correcting cod
for general types of interactions. In the classical theory
error correction, it is often assumed that errors occur in
pendently for each symbol. This assumption seems ph
cally reasonable in many situations. In cases where it is
strictly true it can still lead to a systematic approach
finding high-fidelity error-correcting codes. We now discu
the implications of a similar assumption for the quantu
theory. In this case, the set of symbols is replaced by a fi
system such as the qubit. The coding space is a tensor p
uct of independent systems. To say that the interaction
erator acts independently on each component system m
that it is a tensor product of single system interactions.
shall focus on the case where each system is a qubit to
plify the discussion. Generalizations to larger systems
straightforward. LetH5Q^ r5Q1^•••^Qr . Given a one-
qubit superoperatorA, we say thatA^ r acts independently
on each qubit with

A^ r5$Ai1
^Ai2

^ •••% i1 ,i2 ,... .

The assumption of independent interaction is reasona
for the case of spontaneous emission where we can takeA to
consist of

S05S 1 0

0 A12p2
D , S15S 0 p

0 0D .
For phase randomization~decoherence! independence is a
good approximation when the effective wavelength of t
environment is smaller than the interspacing of the phys
system used as qubits. For example, if the environmen
modeled by a bath at finite temperature, the condition is t
the De Broglie wavelength is smaller than the qubit’s int
spacing. The one-qubit phase randomization interacti
were given in Eq.~12!.

As in classical error correction with fixed error rates, it
in general not possible to correctA^ r with error 0. And just
as in the classical case, it is useful to consider codes wh
correct well the ‘‘important’’ members ofA^ r , that is, those
which strongly affect only a few of the qubits. This leads
the study ofe-error-correcting quantum codes.

An operatorA acting onH is said to induce~at most! e
errors if it is anr -fold tensor product of one-qubit operato
where all but e of them are the identity. Ane-error-
correcting code is one which can recover from all interact
operators inducing at moste errors.

To discusse error correction in more detail, we need
linear basis for the one-qubit interactions. One such ba
with the additional property that each operator is unitary
given by
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A05S 1 0

0 1D ; A15S 1 0

0 21D ;
A25S 0 1

1 0D ; A35S 0 21

1 0 D . ~30!

TheseAa operators physically correspond to:~0! leaving the
system unchanged,~1! changing the sign of the bit if it is in
the u1& state, ~2! flipping the bit, ~3! flipping the bit and
changing its sign if it was in theu1& state.

Another useful basis for the one qubit interactions
given by

Ã05S 1 0

0 0D ; Ã15S 0 0

0 1D ;
Ã25S 0 1

0 0D ; Ã35S 0 0

1 0D . ~31!

The operatorsÃ0 andÃ1 implement an ideal measurement o
the qubit.Ã2 and Ã3 implement an ideal measurement fo
lowed by a bit flip.

The basis in Eq.~30! is the one used in@15# to find the
one-error-correcting five-qubit code.

B. Simple lower bound

One of the simplest lower bounds on the number of cl
sical code words given that at leaste errors are to be cor
rected is the Hamming bound. It is obtained by counting
numberbe of words withine errors of each code word. Th
product ofbe and the number of code words cannot exce
the size of the coding space.

For quantum codes, one can attempt a similar argum
Assume that we have written the superoperatorA in a mini-
mal form so that eachAa is independent. In the special ca
where Eq.~19! is solved by setting both sides to 0, it is cle
that all states of the formAau i L& are independent. This im
plies that the total dimension of the space has to be at l
2kuAu. This argument fails because no such independenc
implied by Eq. ~19! and Eq.~20!. One can, however, us
Theorem III.5 to see that the total dimension has to exc
2ke, wheree is the dimension ofE. If a lower bound on
dim(A0uC&,...,Aam

uC&) is known, then this is a lowe
bound one.

As an example, consider the question of whether there
~2r ,2! codes withr<4 qubits such that any operator whic
induces at most one error can be corrected. A natural b
for this family of operators can be derived from the basis
Eq. ~30! and consists of 113r operators. Solving
2(113r )<2r suggests thatr must be at least 5. See@15# for
an example of a code withr55. As was pointed out in the
previous paragraph, this argument is incomplete.

We present here a different argument which proves
r55 is the minimum for one-error-correcting codes. Assu
a code withr54 exists. We use the necessary and suffici
conditions given in Eqs.~19! and~20! and expand the logica
zero and one as
-

e

d

t.
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u0L&5(
i jkl

a i jkl u i jkl &,

u1L&5(
i jkl

b i jkl u i jkl &, ~32!

and use the interaction operators described in Eq.~31!. Let
us define the reduced density matrices

r i 8 j 8 i j
0

5(
kl

a i 8 j 8kl
* a i jkl ,

r i 8 j 8 i j
1

5(
kl

b i 8 j 8kl
* b i jkl . ~33!

Using those operators which induce an error on the
two qubits in Eq.~20! we get

(
i j

a i j 00* b i j 0050,

(
i j

a i j 10* b i j 0050,

A

(
i j

a i j 11* b i j 1150, ~34!

from which we conclude that the density matrices are
thogonal, i.e.,

~35!

On the other hand, Eq.~19! implies that these two densit
matrices are equal: Using those operators which induce
error in the first two qubits, we get

(
i j

a00i j* a00i j5(
i j

b00i j* b00i j ,

(
i j

a10i j* a10i j5(
i j

b10i j* b10i j ,

A

(
i j

a11i j* a11i j5(
i j

b11i j* b11i j , ~36!

from which we deduce
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r i j i 8 j 8
0

5(
kl

a i jkl* a i 8 j 8kl

5(
kl

b i jkl* b i 8 j 8kl

5r i j i 8 j 8
1 . ~37!

Equation~35! and Eq.~37! are inconsistent and imply that n
such code exists.

The argument presented above can be generalized to
following theorem.

Theorem V.1. A(n,k) e-error-correcting quantum cod
must satisfyn>4e1k.

The task of proving this theorem is much simplified
characterizinge-error correction in terms of the reduced de
sity matrices of the code words. Let the qubits of the cod
space be labeled by 1, . . . ,r . ForU#$1,...,r %, let r(ux&,U)
be the reduced density matrix ofux& on the qubits labeled by
elements ofU. The complement ofU is denoted byŪ.

Theorem V.2.C is ane-error-correcting code if and only i
for all U#$1,...,r % with uUu52e: ~i! for all i , j , r(u i L&,U)
5r(u j L&,U) and ~ii ! for iÞ j , r(u i L&,Ū)r(u j L&,Ū)50.

The proofs of Theorems V.1 and V. 2 will be given els
where using a straightforward generalization of the te
niques in the earlier proof of the bound on one error corr
tion.

C. Relationship between the pure state
and entangled state fidelity

We have studied the recovery of corrupted states us
error-correction codes. It is anticipated that the states to
protected involve only a subset of the entangled qubits of
computer or communication channel. This means that in
cussions of fidelity and error, the whole state, not just
component being protected, must be considered. Natu
we can compute the fidelity of a code taking into account a
part of the state not directly involved in the interaction a
recovery. The worst-case fidelity for such states is referre
as the entangled state fidelity to distinguish it from the p
state fidelity introduced earlier.

If the pure state fidelity after recovery of the coded su
system is one, then the entangled state fidelity is one als
does not matter if the state is pure or if it is entangled w
other systems. This observation is invalid if we have imp
fect fidelity.

Theorem V.3.If the pure state fidelity isFp512e, then
the entangled state fidelity isFe>123e/2. There are ex-
amples where this bound is achieved.

Proof. We give the proof for the case where the system
two-dimensional. We have

Fp5 min
uc&PC

^CuruC&512e, ~38!

and we would like to put a bound on the entangled st
fidelity

Fe5 min
uCe&PH^C

^CeureuCe&. ~39!
the
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Here r and re are the final density matrix after interactio
and recovery if the initial state isuC& and uCe&, respectively.
Write the entangled state in the Schmidt basis asuCe&
5( iApi uc i

C&uc i
H& ~the labelC characterizes the system o

which we want to do error correction and the labelH the
system with which it is entangled!. We assume that only the
systemC is affected by an interaction with the environme
and subsequent recovery and that the systemH has trivial
dynamics. In this case the interaction operators are ten
products of the identity operator for the systemH and the
ones given by the interactions for the systemC. We can
therefore rewrite Eq.~39! as

Fe5(
i j ,a

pipj^c i
CuAauc i

C&^c j
CuAa

†uc j
C&. ~40!

To obtain the bound we calculate the pure state fidelity
a superposition of the formAp1c1

C1eiuAp2c2
C . Thus

Fp<~Ap1c1
C1eiuAp2c2

C!

5(
a

^Ap1c1
C1eiuAp2c2

CuAauAp1c1
C1eiuAp2c2

C&

3^Ap1c1
C1eiuAp2c2

CuAa
†uAp1c1

C1eiuAp2c2
C&. ~41!

We can now average uniformly the last equation over
values ofu to get

Fp<Fe1p1p2~^c1
CuAauc2

C&^c2
CuAa

†uc1
C& ~42!

1^c2
CuAauc1

C&^c1
CuAa

†uc2
C&). ~43!

Finally, Eq. ~5! puts a bound on the last term in Eq.~43!
using the normalization of the interaction operator, i.e.,

(
i ,a

^c i
CuAauc1

C&^c1
CuAa

†uc i
C&<1. ~44!

~Note that the expression is a partial trace of a density m
trix. The trace is partial because the interactions may take
original state into a larger space containingC.! By expanding
the sum overi and noting that~1! the term withi51 is at
least 12e by the definition of pure state fidelity and~2! all
the terms are positive, we conclude that the terms withiÞ1
are bounded bye. The largest achievable value forp1p2 is
1/4. This gives

Fe>12
3e

2
. ~45!

For the example of decoherence in Sec. II, it is possible
show thatFe5Fp . The following example shows howeve
that the bound in Eq.~45! can be achieved. Consider th
interaction consisting of scalar multiples of the Pauli sp
matrices,

A5H 1

)
sx ,

1

)
sy ,

1

)
szJ .
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We show that for this example,F~A!51/3 andFe~A!50.
Let uu&5au0&1eiubu1& with a andb real, anda21b251.
The fidelity ofA is obtained by maximizing the expressio

1
3 ~ z^uusxuu& z21 z^uusyuu& z21 z^uuszuu& z2!

5 1
3 $@2ab cos~u!#21@2ab sin~u!#21~a22b2!2%

5 1
3 @~a21b2!2#5

1

3
.

HenceF~A!51/3. To show thatFe~A!50, applyA to the
second system of the completely entangled stateue&
51/&~u0&u0&1u1&u1&!. We get

I ^ sxue&5
1

&
~ u0&u1&1u1&u0&),

I ^ syue&5
i

&
~ u0&u1&2u1&u0&),

I ^ szue&5
i

&
~ u0&u0&2u1&u1&).

These states are all orthogonal toue&, whenceFe~A!50.
Thus this example achieves equality in Eq.~45! and our
bound is the best possible.

D. Bounds on the fidelity of error-correcting codes
for independent interactions

Let A be one-qubit interaction of the form
A5$A0 ,A1 ,...% with A0 close to the identity in some sens
In this case we would hope that ane-error-correcting code
on n qubits reduces the error after independent interacti
of each qubit withA. That this does indeed hold is an im
portant observation for the application of these err
correcting codes. We are about to show that in the c
whereA05A12pI, the classical bounds on the probabili
of error in the corrected code do apply, as has been discu
by Calderbank and Shor@13#, Steane@12#, and others. When
A0 is not a scalar multiple of the identity, then addition
terms must be added to the bounds. We defer the discus
of this case to future papers.

Assume then that A5$A12pI,A1 ,...%. Denote
A85$A1,. . .%. and note that the strength ofA8 is

uA8u25sup
ux&

(
i>1

^xuAi
†Ai ux&5p.

Let C#Q^ r be anr -qubit e-error-correcting code with re
covery operatorR. To estimate the error after recoverin
from A^ r , write

A^ r5$A12pI,A8% ^ r

5 (
0<k<r

(
U#$1,...,r %,uUu5k

A12pk~ ^ i¹UI ! ^ ~ ^ iPUA8!,

with the obvious interpretation of the tensor products a
which system each factor is acting on. L
s

-
se

ed

l
ion

d

AU5(^ i¹UI )^~^ iPUA8! refer to the ensemble of operato
obtained by lettingI act on the qubits inU andA8 on the
qubits not inU. By the properties of the recovery operato
for uU u<e, the error due toRAU is 0. Thus it suffices to
bound the error of the remaining terms in the sum for
interaction. We do this by assuming that the error in ea
summand is maximal. That is, the contribution to the to
error byAU is bounded by the strength ofAU given by the
maximum value ofzAUux&z2. The strength of the tensor prod
uct of operator ensembles can be computed using the
lemma.

Lemma V.4.Let B1 andB2 be operator ensembles. The
uB1^B2u25uB1u2uB2u2.

The lemma can be proved by diagonalizingB1†B1
5( iB1i

† B1i andB2†B25( iB2i
† B2i .

We deduce that the strength ofAU is puUu. By evaluating
the sums over theU ’s we obtain the following result.

Theorem V.5.Let R be the recovery operator of a
e-error correcting code C on n qubits and A
5$A12pI,A8% a superoperator on one qubit. Then

F~C,RA^ r !>12(
k.e

S rkD pk~12p!r2k.

Note that for applications involving entanglements, t
bound needs to be modified in consideration of the relati
ship between pure state and entangled state fidelity.

VI. CONCLUSION AND FUTURE WORK

We have laid the foundations for a theory of quantu
error-correcting codes by providing a general definition
quantum codes and by characterizing those which can co
known interactions with zero error. The main features of o
approach include treating a code solely in terms of its s
space in a larger Hilbert space and defining decoding op
tions in terms of general recovery superoperators. This
lows studying codes and their properties for arbitra
interaction superoperator and avoids explicitly dealing w
decoding and encoding issues when studying the fidelity
code given its recovery operator. The treatment in terms
interaction operators directly leads to the characterization
error-correcting codes given in Sec. III. The characterizat
in terms of how the operators map individual states~Theo-
rem III.2! has proved useful for finding new codes@15# but
also gives the quantum analog to the classical notion of
tance between code words.

Our approach is not confined to the study of codes wh
allow perfect reconstruction of the encoded states. As
example of what can be done, we definede-error-correcting
codes on strings of qubits and considered the effect of in
pendent interactions. We showed that for interactions with
identity component, there is a natural way in which the cl
sical bound on the error can be applied, as has been
cussed informally by other authors. This justifies the eff
that has been put into finding goode-error-correcting codes
We observe that this classical bound may be more pessi
tic than necessary, but leave a careful study of the fidelity
various known codes to future work.

We brought up the important issue of how reliable a p
dictor the pure state fidelity is for error propagation in e
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tangled systems and showed that the entangled state fid
is not much less than the pure state fidelity. The fact tha
can be less is an important observation, lest one be dece
into believing that a fidelity of 1/3 might be adequate if n
compounded by other errors on the same system.

The study of imperfect fidelity codes is far from comple
Both the sources of introduced error, and its propaga
when recovery is attempted many times, require furt
study. Ultimately, these issues determine the circumstan
when an advantage may be gained from using er
correction schemes.

We would like to finish by commenting on a general
sue. The present work on quantum error correction assu
that no errors are produced during operations. This is a
sonable assumption if the coding, recovery, and decod
operations take a small time compared to the rate at wh
errors appear~i.e., the interaction strengths!, and the error in
the operations themselves is small compared to the error
rected by the code. We do not believe that this assump
da

y

. J

L.

c

ra
lity
it
ed

.
n
r
es
r-

es
a-
g
h

r-
n

will remain valid in the context of large scale quantum c
culations. It is therefore important to take into account t
fact that operations are imperfect. A step in this direction h
already been taken in@26#. There the particular case of co
recting for decoherence~phase randomization! using the
three-bit scheme presented in the Introduction has been
vestigated.
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