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Geometric phases for generalized squeezed coherent states
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A simple technique is used to obtain a general formula for the Berry plaaskthe corresponding Hannay
angle for an arbitrary Hamiltonian with an equally spaced spectrum and appropriate ladder operators connect-
ing the eigenstates. The formalism is first applied to a general deformation of the oscillator involving both
squeezing and displacement. Earlier results are shown to emerge as special cases. The analysis is then extended
to multiphoton squeezed coherent states and the corresponding anholonomies deduced.
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[. INTRODUCTION phase would thus be a way to obtain information on the
photon distribution of the field. Other practical applications
Generalized coherent states of various kinds have been optics include the construction of achromatic phase
discussed in recent years in the literat(see, e.g.[1-7]). shifters[23] using the geometric phase for white light phase-
These states play an important role in multiphoton processestepping interferometry in surface-profile studjéd,25. It
in quantum optics, and also have applications in quantunis therefore clear that coherent optics is eminently suited for
measurement theory. A unified description of multiphotona practical realization of the geometric phase in various
coherent states has been given receflly Many of these cases, thus providing a valuable probe to study nonclassical
states can be identified with eigenstates of Hamiltonians thattates of radiatiof26].
are essentially number operators in appropriate Fock spaces, With this motivation, it is therefore of interest to deter-
so that the corresponding levels are equally spaced. Whilgine the geometric phase for different kinds of coherent
some of these states have classical properties, others like thtates. In particular, there is a wide class of Hamiltonians
“cat states”[9,10] (eigenstates 0&™, wherea is the anni- Whose eigenstates are generalized coherent states, and it is
hilation operator are nonclassical. In view of the signifi- for this class that we calculate the Berry phase. We shall be
cance of these states in optics, an investigation of their quarfoncerned with the Berry phase in its original setting: the
tum (and wherever possible, classicgbroperties is of cyclic, adiabatic variation of parameters in a Hamiltonian
interest. with a discrete, nondegenerate spectrum. Berry’s seminal
An important aspect in this regard is the geometric phas#vork [11] established a well-known formula for the geomet-
or anholonomy associated with the evolution of these statedC phasey, of thenth level, as the line integral of a certain
in certain circumstances. Originally derived by Beftyi] vector field over a closed contour in parameter space. Earlier
for Hamiltonians with a nondegenerate spectrum under a cyw¥orks on Berry phases in the context of squeezed coherent
clic, adiabatic variation of parameters, the formalism hastateq27] make direct use of this formula. In this paper, we
been extended to Hamiltonians with a degenerate spectrugdopt a more general approach. We show that for a Hamil-
[12] as well as nonadiabatid3] and noncyclic[14] varia-  tonian system with equally spaced levejg,is a linear func-
tion of parameters. Even more general settings for the gedion of n. Hence all the information on the Berry phases of
metric phase have been pointed out, involving a groupthe various eigenstates is contained in the corresponding
theoretic approachl5] and a quantum-kinematic approach phasesy, and y, of the ground state and the first excited
[16]. state, respectively. In turn, this implies that in the semiclas-
In terms of physical applications, the geometric phase angical limit, the anholonomythe Hannay angleis simply the
its generalizations have attracted a lot of interest in a widelifference betweeny, and ;. This relationship simplifies
variety of fields(e.g., se¢17,18), especially in quantum and enormously the computation of the semiclassical an-
coherent optics. Examples include studies on the effect of thBolonomy, besides clarifying exactly why the latter vanishes
geometric phase on the coherent excitation and photoionizan some cases, although the corresponding Berry phase does
tion of atoms driven by an intense laser figltB], on the  not.
photon statistics of the output field in a degenerate paramet- The plan of the paper is as follows. In Sec. Il we derive
ric amplifier [20], and on coherent pulse propagati@i]. the linear relationship mentioned above betwegny,, and
Recently, it has been show2] that the geometric phase ;. In Sec. Il we use this to obtain an explicit expression for
arising in the propagation of a single-mode electromagnetig/, for the generalized harmonic oscillator coherent states,
field through a nonlinear medium is sensitive to the photorand show how earlier results follow as special cases. Finally,
statistics of the initial field. A measurement of the geometricin Sec. IV we extend the discussion to sets of multiphoton
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coherent states built up from the squeezed vacuum grourahd

state. Section V contains some concluding remarks.
G'(R) [n,R)=d, |n+1R), (6)

ll. GENERAL FORMULA FOR v, where the time-independent constaoisand d,, can be de-
FOR EQUALLY SPACED LEVELS termined if we know also the commutatof&, G'] and

We begin with the simple observation that the geometrk{GyX];r We note in passing that Eq2) implies that
phase is specific to the actual system under consideration, [$3: G'X]=1 so that we could also have chosénas the

the following sense: in a given Hamiltonian, a clear identifi-lowering operator ands "X as the corresponding raising op-
cation must first be made of the actual dynamical“fast” ) erator. However, we shall use the choice made earlier, as it is

variablesr versus the adiabatic, externally varied “slow” more convenient for the calculations to be presented in Sec.

variablesR. In this sense, the Hamiltonidd, =% w(a’a+ V. . S _

%) (Wherer Comprisesa and aT' R is represented by the Let the parameteR be varied adlabatlcally and CyCllca”y

Sing'e parametew, and[a’ aT]: 1) is not identica]'a pri_ with a time pel’iOdT. Denoting byln,R> thel’lth eigenstate. at

ori, to the Ham”tonianHz: p2/(2m)+%mw2q2 (Wherer t=0 and by |n,R>T the state to which it evolves at time

comprisesy andp, R stands fom andw, and[q,p]=i#). T, we have

Of course, H, may be rewritten in the form .

H,=%o[ a'(R)a(R)+3 ] by defining the parameter- |n,R)T=exr{iyn— _f E,[R(t)]dt

dependentoperators a(R) = (mw/2%)Y2q+i(2mw#h) ~Y%p i Jo

and its Hermitian conjugat@’(R). Their commutator turns . ] ) )

out to be[a(R), a'(R)] = 1 for all R, and it is this invari- Wh_ereEn(R) is t_he corresponding e|_genvalue of th_e Hamil-

ance of the operator algebra that makes it convenieahte  tonianH(R). Using Eq.(3), we have in the present instance

lyzethe HamiltonianH, using itsrepresentatiorin terms of

a(R) and a'(R). Our approach is essentially based on this |n,R)T=exp{i -

property adapted to more general cases, as we shall see. We

mention in passing that the distinction drawn above betwee

different Hamiltoniangexemplified here byH; andH,) is

what is essentially responsible for the ff28] that a canoni-

cal transformation can convemvholly or partly) a geometric

phase into a dynamical phase, or vice versa. Yo=I § (n,R|[(Vg |n,R))-dR, 9
Consider a Hamiltoniatd (R) with equally spaced, non-

deg';,enerate eigenvalues, whéedenotes the set of “exter- \ hare the integral runs over a closed contour in parameter

nal” parameters to be varied adlab_atlcally in some phyS|cagpace. Analogous to E¢8), we have also

range. A form forH(R) that describes all the systems of

interest to us is givequp to constanysby the Hermitian _ i(n—-1)T

operator |n—1-R>T=eX+7n1— —

In,R), (7)

inT
= InR), (8

Eeeping in mind thaR(0)=R(T). The Berry phasey, is
given by[11]

In—1R). (10

-t
H(R)= GI(R)X(R)G(R), (1) But X(R)G(R) is the lowering operator fogachvalue ofR,

where X(R) is a positive-definite, Hermitian operator, to- S0 that at timeT we must have

gether with the equal-time commutation relation [X(R)G(R)]7 [n,R)r=c¢, [n— 1Ry, (12)

[X(R)G(R), G'(R)]=1 (20 where we have denoted HX(R)G(R)]; the annihilation
_ ) operator at timé& . However, we now recall that, does not
on a suitable Hilbert space of states, for ev&yFor the  geneng on, as it is determined by the equal-time commuta-
standard oscillatorG=a while X is a multiple of the unit aorS[G, G'] and[G,X]. Substituting from Eqs(8) and(10)

operator. In more general instances, as in the case of Hamifg, ine kets in Eq(11), we find that KG); must be given by
tonians whose eigenstates are certain coherent $&itex

may be a nontrivial function ofa’a. Equation(2) leads to T

[XG,H]=XG and[ G",H]=— G for everyR. It is then [X(R)G(R)]T=X(R)G(R)GX+(Vn1—7n+ 7l

readily deduced that the spectrumtdfR) is the set of non- (12)

negative integers, i.e., there exists normalized eigenstates

[n,R) such that As this operator relation holds good for evaryit follows
immediately that {,— y,_1) must be independent af. In

H(R) [n,R)=n[n,R) (n=012, ... (3 other words,
Further, sinceXG and G' act as lowering and raising op- Yo=YoTN(¥Y1— 7o), (13

erators, respectively, we have
which is also consistent with the requirement that
X(R)G(R) |O,R)=0, (4 {[X(R)G(R)]1}" acting on |n,R); yield the state|0,R)+ .
We note that the formula obtained fef, is only contingent
X(R)G(R) [n,R)=c, |n—1R), (5) on the existence ofi) an equally spaced spectrum, afiid




55 GEOMETRIC PHASES FOR GENERALIZED SQUEEZED ... 871

raising and lowering operators connecting the eigenstates. H(R) |[n,R)=Aw(n+3) |n,R), (22)
The corresponding classical anholonomy is the Hannay angle

(the shift in the angle variablefor which the familiar semi-  where
classical connection gives the formuU28] A 8= —dy,/an.

From Eq.(13), we have therefore n,R)=D(a,a*)S(B,8%) |n), n=0,1,2,.... (23
AbO=yo—y;. (14)  Therefore, under an adiabatic, cyclic variation of the six real
parameters comprising, the Berry phase and Hannay angle
IIl. ANHOLONOMIES FOR SQUEEZED are given by Eq9.13) and(14), respectively. Hence we have
COHERENT STATES merely to compute explicitly the quantities
The following results are well knowf29,30: the Berry .
phasey,=0 for the linear harmonic oscillator with Hamil- vo=1 ¢ (OR|Vr|OR)-dR (24

tonianp?/(2m) + 3mw?q? or Aw( a'a+3), under the varia-
tion of the parametens andw, but the generalized oscillator and

with a cross term gq+qp) may havey,#0. Classically,

the quadratic HamiItonigrAp2+Zqu+Cq2. has a non- yi=i %(1,R|VR|1,R>-dR. (25)
vanishing Hannay angle if and only if there is alsmégation

of the axes of the ellipse in the{p) plane under the adia-
batic, cyclic variation ofA,B, andC: mere translation of its
center and scaling of its axes lead A®=0. Turning to

(The gradient is understood to act on the ket to its rjght.
Now (1R|Vg|1,R) can be simplified by noting that
-t - i

coherent statel27], for the displaced oscillator with Hamil- [LR)=G'(R) |0’R>’<1’F$|_<O’R|G.(R)' _Moreover, using

tonianz o[ ( a'— a*)(a— «) +1/2], whose ground state is a the fact that[G(R)_, G'(R)]=1 in this case, and that

coherent state, one finds,#0, butA#=0, under the adia- C(R) [0R)=0, we find

batic variation of the complex parameter However, if one _

considerssqueezedoherent states\ #+0 under the adia- (LRIVR[LR)=(OR|VR OR)

batic variation of the squeezing parameger +{OR|[G(R),(Vg G'(R))] |OR).
We now consider the general deformation of the oscillator

Hamiltonian that includes the foregoing as special cases. Let (26)
p2 1 Therefore
H/Zﬁ‘l‘ Emw2q2=hw( aTa+%) (15)
Y1=Yo+i jg (ORI[G(R),(Vr G'(R))] |0R)-dR.
(where the dependence afand a' on the parameters and @27
w is implicit). TransformingH’ with the squeezing operator
[31] The emergence of the first termyd) on the right-hand side
al?_ g* a2 is entirely a consequence of the commutation relation
S(,B,ﬁ*):exl{ u)(ﬁec) (16) [G, G']=1. (In Sec. IV, we shall see what happens when
2 X#1,[G, G']#1.) To evaluate the commutator in EQ7),

and the displacement oberator it is helpful to use the fact that E¢L9) can be reduced to the
P P explicit expression16]

D(a,a*)=expaa’'—a*a), (ael) a7 3

|8l

H=D(a,a*)S(B,8*)H’ S'(B,8*) D'(a,a*). (18  Carrying out the calculations involvehe salient features
_ , are given in the Appendjxwe arrive finally at the following
Let{|n)}(n=0,1,2,...) denote the eigenstates Hf, and o5 it |t turns out that variations in and  are both in-

H, the Fock space spanned by these states. We note that,jed in that of the single parameter

both S(B,8*) and D(a,a*) are unitary operators ift.
Comparing Eq(18) with Eq. (1) we identify the operators A= In(Mw). (29)

G(R)=(a—a)coshp|—( a'—a*)—sinhpB|. (28

we have the Hamiltonian

G(R)=DSa S D', X(R)=1, (19 Moreover, there occurs a natural separation of the contribu-
tions of the squeezing and displacement parameters to the

where Berry phasey, acquired by|n,R). We find

R={m,w,a=a;t+ia,,B=B11iB}. 20
{mo,a=a;+iay,B=B1+1B5} (20) y= 7P+ 5, (9, (30)

Moreover .
with

[G(R), G'(R)]=1 (21)

in this case. Also D= % (axday—ajda,—ajaydh) (31)
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and
C=—- cosﬁ|,8|+smh2|,8| |B|cosh,6’|smH,8|
sin 36
7&9—( +§) 39( | gf ') (B20B1~ B1dBy) 39
IV. ANHOLONOMIES FOR MULTIPHOTON
—|'8—2|sinHB|cosHB|d)\, (32) SQUEEZED COHERENT STATES

We turn now to the application of our formalism to
Hamiltonians based on multiphoton coherent states. To be
“specific, we consider the eigenstates of the square of the
annihilation operator. We begin with the observati8hthat
the commutation relation

where¢ stands for the integral over the closed contour tra-
versed in the space of the six parametBisWe are now
ready to read off a number of special cases.

(i) @= const,B= const, m andv varied It is evident that

v,=0, and hence\ §=0, in this case. Varyingn and o 1

does not produce a geometric phase, as the variation appears 5(1‘*‘ a'a)~'a? a'?|=1 (37
as a perfect differentiald( Inmw). The original oscillator

corresponds to the trivial case=0,8=0. is valid on theevensubspacé, ={span|2n);n=0,1, . ..}

(it) p= const In this case(which includes=0, or no  of H,. (It is in fact valid on H,—span|1), but for our
squeezmgwe have a nonvanishing Berry phase that is juspresent purposes we restrict our attentiofttd. Comparing
ya=7), but this isn independent, so that the Hannay Eq. (37) W|th Eg. (2), we identify the raising and lowering
angIeAH 0. This remains so, of course, evemifandw  operatorsG' and XG according to
are also kept constant, andy4(,«,) alone are varied, as
found in Ref.[27]. Writing 7, as the line integral of a vector G'=a™, X=3(1+a'a)™" (39)
potential[11], it is evident that this latter case. & cons)
implies a vector potentiad with components ¢,,— «;,0)

along thea, @,, and\ directions. The corresponding “mag- h . 4 H L his Hamiltonian i
netic field” V=Vg XA is therefore ainiformfield along the ~"2V€ anticipated. However, it Is not this Hamiltonian in

\ direction; the Berry phase is thus equal, in magnitude td/vhich we are interested, but rather in the anholonomies as-
twice the a’rea enclosed by the loop in thg (’a ) plane. On " “sociated with its deformations that have generalized coherent
2 .

the other hand, ik is alsovaried along witha; anda,, the and/or squeezed statésigenstates oKG) as their ground

, L . states.
vector potentialA=(a,,— aq,— aa5). It is interesting to ' : .
note how the variation i gets coupled to the displacement We therefore define the corresponding displacement op-

The “Hamiltonian” G'XG itself is easily verified to have
matrix elements identical to those af'a/2, as one might

parametersy; and a,. The fieldV now involves a singular erator

source over and above the earlier uniform field: a line singu- D(a,a*)=exga G'—a*XG). (39)
larity (“antivortex”) along thex axis, with winding number

equal to—1. The stateD |0) is then an eigenstate ofG with eigenvalue

(i) @ = const In this case(which includese=0, or N0 «. The next step is to attempt to construct a Hamiltonian
displacement we have ann-dependent Berry phase, and D( G'XG)D ! whose ground state would be the coherent
therefore a nonzeroA 6. This remains true ik is also kept  stateD |0) (rather than the vacuurf0)), so that we may
constant and only8;, 3, are varied27]. Then proceed as in Sec. Il to investigate the associated anholono-

mies. Unfortunately, the displacement operator in B§) is
no longer unitary, so thadd G'XGD™? is not Hermitian. It
ff) sink?|/3’|d(arg@) (33 is evident that the problem arises because the raising opera-
tor G'= a'? and its conjugata? do not satisfy the commu-
tation relation[G, G']=1; rather, it is the commutator
corresponding to a magnetic field normal to {Beplane of  [xG, G'] that is equal to unity. One way out is to make a
magnitude @+ 3)sinh(34])/|8. We note also that a nonvan- itferent identification ofG and X than that made in Eq.
ishing y, occurs if3; and\ alone are varied, provided the (3g), and we shall consider this possibility subsequently. For
imaginary part 8, of the squeezing parametgris nonzero.  the present, we note that there is another approach, based on
In this connection, it is useful to note that the Hamiltoniansqueezing rather than displacement:
hwS(B,8*)(a'a+1/2) S'(B,8*) corresponding to pure  The squeezing operat®(B,3*) defined in Eq(16) can

squeezing can be written, in terms of the or|g|nal oscillatorhe expanded31] in the normal-ordered form
operatorsy andp, asAp?+ B(pg+qp)+ Cq?, with

1
Yn=— n+§

T2

B
28 tanH18|>

(34) ( i W a“a’)

S(B,ﬁ*)=(COSHB|)_1/26XP(

A= 21 cosr?|/3|+S|nr12|,8|+2|B|coshﬁ|5|nH,8|

32 . 2 n*
B=— Wcosﬂﬁblnﬁlﬂ, (35 xexp( zlfﬂ tanH/i’I) (40)
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With the help of this expansion, we may establish that N alTal )
- N B with
51+ a'a)'a’s(B,p*) |0)= 2|ﬂ|tanHB| S(8,8*) |0).

41y  a=2"Y%(1+ a'a)"Y%a? a,'=2""2a"%(1+ a'a) 12

(50)
In other words, the squeezed vacuum
and[a;, a;"]=1 in H,. (It is clear[33] that (a;,H,) is
10,8)=S(8,8*) |0) (42)  isomorphic to &,H,), each of these constituting an irreduc-
) ) ) ible representation of the basic commutation relation
is also a generalized coherent st@r eigenstate of the low- [F, FT]=1). The procedure followed in Sec. Il for the

ering operatoiXG). Moreover,S is unitary. We may there-  griginal oscillator Hamiltonian may now be repeated, unal-

fore construct the deformed, Hermitian Hamiltoni@astor- tered:unitary displacement and squeezing operators
ing the appropriate constants

1 Di(a,a*)=expla a;'—a*a;) (51
Hs=>%wS(B,5*)] a'?(1+ a'a) 'a?+1] S'(B,8*). and
(43
. e Ba,'?—p*al
The ground state of this Hamiltonian is the stfgB) de- Si(B,B*)=ex — (52
fined in Eq.(42):
Hs|0,8)=%w |0,8). (44) may be used to deforiN’, cor_responding s_queeze_d coherent
states constructed, and their anholonomies derived, exactly
The raising and lowering operators for this system are as in Sec. lll. It is also evident that the same process can be
repeated in thésomorphig subspace${,DH3zD - - -, where
G'(R)=S(B,8*) a's'(B,8*) (45  H,={span|2n)}, by defining the operatora,, a," in H,
recursively, according to
and
:271/2 1+ T _ 3 —1/2,2 , 53
X(RIG(R)=38(8,6*)(1+ a'a) 1a? S'(B,6%), W2 i) e 69
(46)

so that[ay, a,']=1 in H,.

respectively. The excited stagn,B) (n=1,2,...) of Hg
is obtained by applying G'(R)]" to |0,8), and the corre- V. CONCLUSIONS
sponding eigenvalue Bw(n+1/2).

We may now consider the Berry phase acquired by thef0
state|2n, 8)under the adiabatic, cyclic variation of the four
parametersn,w, B, and B, in Hg (the first two being im-
plicitly contained ina anda’ as beforg The answer, in fact,
may be written down directly from our earlier results once
we recognize tha2n, 8) is also given by

In this paper we have shown that, for an arbitrary Hamil-
nian with equally spaced, nondegenerate eigenvalues, the
geometric phase,, of the nth eigenstate is a linear function
of n. Crucial to the derivation of this result is the existence of
raising and lowering operatorgconnecting the different
state$ that satisfy a definite algebra. Using the above formal-
ism, the geometric phase was calculated both for generalized

2n,8)= B*) [2n), 4 squeezed coherent states and for a class of multiphoton co-
[2n.8)=S(5.5*) [2m) 0 herent states.
i.e., raising with (G")" and squeezing witls can be per- A natural question that arises is whether our approach can

formed in either order. The Berry phase is therefore preciselpe extended to the case of Hamiltonians with unequally
¥§9 where 4 is given by Eq.(32), and the rest of the Spaced levels. Although the existen@nd constructionof
discussion proceeds as before. appropriate raising and lowering operators is not immedi-

Finally, let us return to the Hamiltoniafor number op- ately obvi(_)us in the general case, one po_ssible avenue of
approach is the factorization meth@@4] and its recent ex-

erato) , ] : !
tensions, particularly in the context of supersymmetric quan-
N'=3%a'a=3 a'(1+ a'a) 1a?, (48)  tum mechanic$35]. This question is presently under inves-
tigation.
which, in the spacéH,, has eigenvalues 0,1,2.. . The Finally, it turns out to be possible to construct coherent

question is whether we can writd’ in the form a;'a; states(and generalized coherent statés a class of Hamil-
where a," anda, are the corresponding raising and lower- tonians that are strictly isospectral to the harmonic oscillator
ing operators andmoreover [a;, a;']=1 in H;. This [36]. While certain classes of these states are essentially uni-
would avoid the problem encountered earlier, which arosearily equivalent to those obtained from the original oscilla-
becausd G, G'] was not equal to the unit operator. Now, tor Hamiltonian, other classes of coherent states can be con-
since (1+ a'a)~! is a bounded positive operator, there structed, via supersymmetry transformations, that are not
exists (according to the square-root lemrh32]) a unique unitarily equivalent to the original ones. The geometric
positive bounded operator (1a'a) /> whose square is phases associated with such states are also under investiga-
(1+ a'a) 1. We may therefore write tion, and the results will be reported elsewhere.
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APPENDIX

We outline the steps leading to the explicit formulas given
in Egs. (30)—(32) for the Berry phasey, corresponding to

the squeezed, displaced oscillator Hamiltorttanf Eq. (18).
To evaluatey,, given by Eq.(24), we work in the posi-
tion representation, in which

with
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Yo=i fﬁdR[ J dxipo* (;R) Vribo(XiR) |, (A1)

where R stands for the set of six parameters
{Mm,w,a=a,+ia,,B=pB,+iB,}. The ground state wave
function ¢ is found in a straightforward manner, and is
given by

o | Mo 14 U% 1,
Yo(X;R)= 57 ex _4_Ul ex —Eux —uvXx/|, (A2)
. Mo | 8| —iBzsinh2 B
“:““'“f(% (|ﬂ|COShZﬂ|+B13inh3ﬁ|>’ (A3)
2mw)l/2<—a1|B|+i(a1B2—a2,81)sinhZﬂ|—ia2|B|CoshZB|) (Ad)
h | B|cosh2 8| + B,sinh2 | '

v=vl+iv2=<

Next, we calculate the partial derivatives f with respect to the six parameteisis convenient to consider the logarithmic
derivative of), substitute these in EgAL) and carry out théGaussiahintegrals ovelx, to arrive at the result

1
(azdal—aldaz—alazd)\)-l— E

-

|8l

where\ = In(mw) as defined in Eq(29).

We must now compute; from Eq. (27). Using the rep-
resentation given in Eq(28) for the operatorG(R) (and
remembering thatn and w occur in the expressions fa
anda'), we find

[G(R),(VR G'(R))]-dR
B, - sinum)z
=i |B|smH,8|cosﬂ,8|d)\ |( B

X (B2dB1— B1dB2)]. (AB)

sinh 8|

2
) (B2dB1—B1dB7) — > %SinHBICOSHBIdA},

18,

(A5)

There is no operator dependence left in this expression
becauséa, a']=1. Moreover, sincej,(x;R) is normalized
to unity, Eq.(27) becomes

sin 2
(%) (B2dB1— B1dB,)

Y1=7Y0t §

—%sinﬂﬂcosh,@ld)\} (A7)

Substitution of Eqs(A5) and(A7) in the general formula
for y, [EqQ. (13)] yields the results quoted in Eq80)—(32).
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