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Geometric phases for generalized squeezed coherent states

S. Seshadri, S. Lakshmibala, and V. Balakrishnan
Department of Physics, Indian Institute of Technology, Madras 600 036, India

~Received 4 March 1996!

A simple technique is used to obtain a general formula for the Berry phase~and the corresponding Hannay
angle! for an arbitrary Hamiltonian with an equally spaced spectrum and appropriate ladder operators connect-
ing the eigenstates. The formalism is first applied to a general deformation of the oscillator involving both
squeezing and displacement. Earlier results are shown to emerge as special cases. The analysis is then extended
to multiphoton squeezed coherent states and the corresponding anholonomies deduced.
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I. INTRODUCTION

Generalized coherent states of various kinds have b
discussed in recent years in the literature~see, e.g.,@1–7#!.
These states play an important role in multiphoton proces
in quantum optics, and also have applications in quan
measurement theory. A unified description of multiphot
coherent states has been given recently@8#. Many of these
states can be identified with eigenstates of Hamiltonians
are essentially number operators in appropriate Fock spa
so that the corresponding levels are equally spaced. W
some of these states have classical properties, others lik
‘‘cat states’’ @9,10# ~eigenstates ofam, wherea is the anni-
hilation operator! are nonclassical. In view of the signifi
cance of these states in optics, an investigation of their qu
tum ~and wherever possible, classical! properties is of
interest.

An important aspect in this regard is the geometric ph
or anholonomy associated with the evolution of these st
in certain circumstances. Originally derived by Berry@11#
for Hamiltonians with a nondegenerate spectrum under a
clic, adiabatic variation of parameters, the formalism h
been extended to Hamiltonians with a degenerate spec
@12# as well as nonadiabatic@13# and noncyclic@14# varia-
tion of parameters. Even more general settings for the g
metric phase have been pointed out, involving a gro
theoretic approach@15# and a quantum-kinematic approac
@16#.

In terms of physical applications, the geometric phase
its generalizations have attracted a lot of interest in a w
variety of fields~e.g., see@17,18#!, especially in quantum and
coherent optics. Examples include studies on the effect of
geometric phase on the coherent excitation and photoion
tion of atoms driven by an intense laser field@19#, on the
photon statistics of the output field in a degenerate param
ric amplifier @20#, and on coherent pulse propagation@21#.
Recently, it has been shown@22# that the geometric phas
arising in the propagation of a single-mode electromagn
field through a nonlinear medium is sensitive to the pho
statistics of the initial field. A measurement of the geome
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phase would thus be a way to obtain information on
photon distribution of the field. Other practical applicatio
in optics include the construction of achromatic pha
shifters@23# using the geometric phase for white light phas
stepping interferometry in surface-profile studies@24,25#. It
is therefore clear that coherent optics is eminently suited
a practical realization of the geometric phase in vario
cases, thus providing a valuable probe to study nonclass
states of radiation@26#.

With this motivation, it is therefore of interest to dete
mine the geometric phase for different kinds of coher
states. In particular, there is a wide class of Hamiltonia
whose eigenstates are generalized coherent states, and
for this class that we calculate the Berry phase. We shal
concerned with the Berry phase in its original setting: t
cyclic, adiabatic variation of parameters in a Hamiltoni
with a discrete, nondegenerate spectrum. Berry’s sem
work @11# established a well-known formula for the geome
ric phasegn of thenth level, as the line integral of a certai
vector field over a closed contour in parameter space. Ea
works on Berry phases in the context of squeezed cohe
states@27# make direct use of this formula. In this paper, w
adopt a more general approach. We show that for a Ha
tonian system with equally spaced levels,gn is a linear func-
tion of n. Hence all the information on the Berry phases
the various eigenstates is contained in the correspon
phasesg0 and g1 of the ground state and the first excite
state, respectively. In turn, this implies that in the semicl
sical limit, the anholonomy~the Hannay angle! is simply the
difference betweeng0 and g1. This relationship simplifies
enormously the computation of the semiclassical
holonomy, besides clarifying exactly why the latter vanish
in some cases, although the corresponding Berry phase
not.

The plan of the paper is as follows. In Sec. II we deri
the linear relationship mentioned above betweengn ,g0, and
g1. In Sec. III we use this to obtain an explicit expression
gn for the generalized harmonic oscillator coherent sta
and show how earlier results follow as special cases. Fina
in Sec. IV we extend the discussion to sets of multipho
869 © 1997 The American Physical Society
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870 55S. SESHADRI, S. LAKSHMIBALA, AND V. BALAKRISHNAN
coherent states built up from the squeezed vacuum gro
state. Section V contains some concluding remarks.

II. GENERAL FORMULA FOR gn

FOR EQUALLY SPACED LEVELS

We begin with the simple observation that the geome
phase is specific to the actual system under consideratio
the following sense: in a given Hamiltonian, a clear ident
cation must first be made of the actual dynamical~or ‘‘fast’’ !
variablesr versus the adiabatic, externally varied ‘‘slow
variablesR. In this sense, the HamiltonianH15\v( a†a1
1
2) ~where r comprisesa and a†, R is represented by the
single parameterv, and @a, a†#51) is not identical,a pri-
ori, to the HamiltonianH25p2/(2m)1 1

2mv2q2 ~where r
comprisesq andp, R stands form andv, and@q,p#5 i\).
Of course, H2 may be rewritten in the form
H25\v@ a†(R)a(R)1 1

2 ] by defining the parameter-
dependentoperators a(R)5(mv/2\)1/2q1 i (2mv\)21/2p
and its Hermitian conjugatea†(R). Their commutator turns
out to be@a(R), a†(R)# 5 1 for all R, and it is this invari-
ance of the operator algebra that makes it convenient toana-
lyze the HamiltonianH2 using itsrepresentationin terms of
a(R) and a†(R). Our approach is essentially based on t
property adapted to more general cases, as we shall see
mention in passing that the distinction drawn above betw
different Hamiltonians~exemplified here byH1 andH2) is
what is essentially responsible for the fact@28# that a canoni-
cal transformation can convert~wholly or partly! a geometric
phase into a dynamical phase, or vice versa.

Consider a HamiltonianH(R) with equally spaced, non
degenerate eigenvalues, whereR denotes the set of ‘‘exter
nal’’ parameters to be varied adiabatically in some phys
range. A form forH(R) that describes all the systems
interest to us is given~up to constants! by the Hermitian
operator

H~R!5 G†~R!X~R!G~R!, ~1!

whereX(R) is a positive-definite, Hermitian operator, to
gether with the equal-time commutation relation

@X~R!G~R!, G†~R!#51 ~2!

on a suitable Hilbert space of states, for everyR. For the
standard oscillator,G5a while X is a multiple of the unit
operator. In more general instances, as in the case of Ha
tonians whose eigenstates are certain coherent states@8#, X
may be a nontrivial function ofa†a. Equation~2! leads to
@XG,H#5XG and @ G†,H#52 G† for everyR. It is then
readily deduced that the spectrum ofH(R) is the set of non-
negative integers, i.e., there exists normalized eigenst
un,R& such that

H~R! un,R&5n un,R& ~n50,1,2, . . .!. ~3!

Further, sinceXG and G† act as lowering and raising op
erators, respectively, we have

X~R!G~R! u0,R&50, ~4!

X~R!G~R! un,R&5cn un21,R&, ~5!
nd

c
in
-

s
We
n

l

il-

es

and

G†~R! un,R&5dn un11,R&, ~6!

where the time-independent constantscn anddn can be de-
termined if we know also the commutators@G, G†# and
@G,X#. We note in passing that Eq.~2! implies that
@G, G†X#51 so that we could also have chosenG as the
lowering operator andG†X as the corresponding raising op
erator. However, we shall use the choice made earlier, as
more convenient for the calculations to be presented in S
IV.

Let the parameterR be varied adiabatically and cyclicall
with a time periodT. Denoting byun,R& thenth eigenstate at
t50 and by un,R&T the state to which it evolves at tim
T, we have

un,R&T5expF ign2
i

\E0
T

En@R~ t !#dtG un,R&, ~7!

whereEn(R) is the corresponding eigenvalue of the Ham
tonianH(R). Using Eq.~3!, we have in the present instanc

un,R&T5expF ign2
inT

\ G un,R&, ~8!

keeping in mind thatR(0)5R(T). The Berry phasegn is
given by @11#

gn5 i R ^n,Ru~¹R un,R&!•dR, ~9!

where the integral runs over a closed contour in param
space. Analogous to Eq.~8!, we have also

un21,R&T5expF ign212
i ~n21!T

\ G un21,R&. ~10!

But X(R)G(R) is the lowering operator foreachvalue ofR,
so that at timeT we must have

@X~R!G~R!#T un,R&T5cn un21,R&T , ~11!

where we have denoted by@X(R)G(R)#T the annihilation
operator at timeT. However, we now recall thatcn does not
depend ont, as it is determined by the equal-time commu
tors @G, G†# and@G,X#. Substituting from Eqs.~8! and~10!
for the kets in Eq.~11!, we find that (XG)T must be given by

@X~R!G~R!#T5X~R!G~R!expF i S gn212gn1
T

\ D G .
~12!

As this operator relation holds good for everyn, it follows
immediately that (gn2gn21) must be independent ofn. In
other words,

gn5g01n~g12g0!, ~13!

which is also consistent with the requirement th
$@X(R)G(R)#T%

n acting on un,R&T yield the stateu0,R&T .
We note that the formula obtained forgn is only contingent
on the existence of~i! an equally spaced spectrum, and~ii !
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raising and lowering operators connecting the eigensta
The corresponding classical anholonomy is the Hannay a
~the shift in the angle variable!, for which the familiar semi-
classical connection gives the formula@29# Du52]gn /]n.
From Eq.~13!, we have therefore

Du5g02g1 . ~14!

III. ANHOLONOMIES FOR SQUEEZED
COHERENT STATES

The following results are well known@29,30#: the Berry
phasegn50 for the linear harmonic oscillator with Hamil
tonianp2/(2m)1 1

2mv2q2 or \v( a†a1 1
2), under the varia-

tion of the parametersm andv, but the generalized oscillato
with a cross term (pq1qp) may havegnÞ0. Classically,
the quadratic HamiltonianAp212Bpq1Cq2 has a non-
vanishing Hannay angle if and only if there is also arotation
of the axes of the ellipse in the (q,p) plane under the adia
batic, cyclic variation ofA,B, andC: mere translation of its
center and scaling of its axes lead toDu50. Turning to
coherent states@27#, for the displaced oscillator with Hamil
tonian\v@( a†2a* )(a2a)11/2#, whose ground state is
coherent state, one findsgnÞ0, butDu50, under the adia-
batic variation of the complex parametera. However, if one
considerssqueezedcoherent states,DuÞ0 under the adia-
batic variation of the squeezing parameterb.

We now consider the general deformation of the oscilla
Hamiltonian that includes the foregoing as special cases.

H85
p2

2m
1
1

2
mv2q25\v~ a†a1 1

2 ! ~15!

~where the dependence ofa and a† on the parametersm and
v is implicit!. TransformingH8 with the squeezing operato
@31#

S~b,b* !5expS b a†22b* a2

2 D ~bPC! ~16!

and the displacement operator

D~a,a* !5exp~a a†2a* a!, ~aPC! ~17!

we have the Hamiltonian

H5D~a,a* !S~b,b* !H8 S†~b,b* ! D†~a,a* !. ~18!

Let $ un&%(n50,1,2,. . . ) denote the eigenstates ofH8, and
H0 the Fock space spanned by these states. We note
both S(b,b* ) and D(a,a* ) are unitary operators inH0.
Comparing Eq.~18! with Eq. ~1! we identify the operators

G~R!5DSa S† D†, X~R!51, ~19!

where

R5$m,v,a5a11 ia2 ,b5b11 ib2%. ~20!

Moreover

@G~R!, G†~R!#51 ~21!

in this case. Also
s.
le

r
et

hat

H~R! un,R&5\v~n1 1
2 ! un,R&, ~22!

where

un,R&5D~a,a* !S~b,b* ! un&, n50,1,2,. . . . ~23!

Therefore, under an adiabatic, cyclic variation of the six r
parameters comprisingR, the Berry phase and Hannay ang
are given by Eqs.~13! and~14!, respectively. Hence we hav
merely to compute explicitly the quantities

g05 i R ^0,Ru¹R u0,R&•dR ~24!

and

g15 i R ^1,Ru¹R u1,R&•dR. ~25!

~The gradient is understood to act on the ket to its righ!
Now ^1,Ru¹R u1,R& can be simplified by noting tha
u1,R&5 G†(R) u0,R&,^1,Ru5^0,RuG(R). Moreover, using
the fact that @G(R), G†(R)#51 in this case, and tha
G(R) u0,R&50, we find

^1,Ru¹R u1,R&5^0,Ru¹R u0,R&

1^0,Ru@G~R!,„¹R G
†~R!…# u0,R&.

~26!

Therefore

g15g01 i R ^0,Ru@G~R!,„¹R G
†~R!…# u0,R&•dR.

~27!

The emergence of the first term (g0) on the right-hand side
is entirely a consequence of the commutation relat
@G, G†#51. ~In Sec. IV, we shall see what happens wh
XÞ1, @G, G†#Þ1.! To evaluate the commutator in Eq.~27!,
it is helpful to use the fact that Eq.~19! can be reduced to the
explicit expression@16#

G~R!5~a2a!coshubu2~ a†2a* !
b

ubu
sinhubu. ~28!

Carrying out the calculations involved~the salient features
are given in the Appendix!, we arrive finally at the following
results. It turns out that variations inm andv are both in-
cluded in that of the single parameter

l5 ln~mv!. ~29!

Moreover, there occurs a natural separation of the contr
tions of the squeezing and displacement parameters to
Berry phasegn acquired byun,R&. We find

gn5gn
~D !1gn

~S!, ~30!

with

gn
~D !5 R ~a2da12a1da22a1a2dl! ~31!
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and

gn
~S!5S n1

1

2D R S sinhubu
ubu D 2~b2db12b1db2!

2
b2

ubu
sinhubucoshubudl, ~32!

wherer stands for the integral over the closed contour t
versed in the space of the six parametersR. We are now
ready to read off a number of special cases.

~i! a5 const,b5 const, m andv varied: It is evident that
gn50, and henceDu50, in this case. Varyingm and v
does not produce a geometric phase, as the variation app
as a perfect differential,d( lnmv). The original oscillator
corresponds to the trivial casea50,b50.

~ii ! b5 const: In this case~which includesb50, or no
squeezing! we have a nonvanishing Berry phase that is j
gn5gn

(D) , but this is n independent, so that the Hanna
angleDu50. This remains so, of course, even ifm andv
are also kept constant, and (a1 ,a2) alone are varied, as
found in Ref.@27#. Writing gn as the line integral of a vecto
potential @11#, it is evident that this latter case (l5 const!
implies a vector potentialA with components (a2 ,2a1 ,0)
along thea1 ,a2, andl directions. The corresponding ‘‘mag
netic field’’ V5¹R3A is therefore auniformfield along the
l direction; the Berry phase is thus equal, in magnitude
twice the area enclosed by the loop in the (a1 ,a2) plane. On
the other hand, ifl is alsovaried along witha1 anda2, the
vector potentialA5(a2 ,2a1,2a1a2). It is interesting to
note how the variation inl gets coupled to the displaceme
parametersa1 anda2. The fieldV now involves a singular
source over and above the earlier uniform field: a line sin
larity ~‘‘antivortex’’ ! along thel axis, with winding number
equal to21.

~iii ! a 5 const: In this case~which includesa50, or no
displacement! we have ann-dependent Berry phase, an
therefore a nonzeroDu. This remains true ifl is also kept
constant and onlyb1 ,b2 are varied@27#. Then

gn52S n1
1

2D R sinh2ubud~argb! ~33!

corresponding to a magnetic field normal to theb plane of
magnitude (n1 1

2)sinh(2ubu)/ubu. We note also that a nonvan
ishing gn occurs ifb1 andl alone are varied, provided th
imaginarypartb2 of the squeezing parameterb is nonzero.
In this connection, it is useful to note that the Hamiltoni
\vS(b,b* )( a†a11/2) S†(b,b* ) corresponding to pure
squeezing can be written, in terms of the original oscilla
operatorsq andp, asAp21B(pq1qp)1Cq2, with

A5
1

2m Fcosh2ubu1sinh2ubu12
b1

ubu
coshubusinhubuG ,

~34!

B52
b2

ubu
coshubusinhubu, ~35!
-

ars

t

o

-

r

C5
mv2

2 Fcosh2ubu1sinh2ubu22
b1

ubu
coshubusinhubuG .

~36!

IV. ANHOLONOMIES FOR MULTIPHOTON
SQUEEZED COHERENT STATES

We turn now to the application of our formalism t
Hamiltonians based on multiphoton coherent states. To
specific, we consider the eigenstates of the square of
annihilation operator. We begin with the observation@8# that
the commutation relation

F12 ~11 a†a!21a2, a†2G51 ~37!

is valid on theevensubspaceH15$spanu2n&;n50,1, . . .%
of H0. ~It is in fact valid onH02spanu1&, but for our
present purposes we restrict our attention toH1). Comparing
Eq. ~37! with Eq. ~2!, we identify the raising and lowering
operatorsG† andXG according to

G†5 a†2, X5 1
2 ~11 a†a!21. ~38!

The ‘‘Hamiltonian’’ G†XG itself is easily verified to have
matrix elements identical to those ofa†a/2, as one might
have anticipated. However, it is not this Hamiltonian
which we are interested, but rather in the anholonomies
sociated with its deformations that have generalized cohe
and/or squeezed states~eigenstates ofXG) as their ground
states.

We therefore define the corresponding displacement
erator

D~a,a* !5exp~a G†2a*XG!. ~39!

The stateD u0& is then an eigenstate ofXG with eigenvalue
a. The next step is to attempt to construct a Hamiltoni
D( G†XG)D21 whose ground state would be the cohere
stateD u0& ~rather than the vacuumu0&), so that we may
proceed as in Sec. III to investigate the associated anholo
mies. Unfortunately, the displacement operator in Eq.~39! is
no longer unitary, so thatD G†XGD21 is not Hermitian. It
is evident that the problem arises because the raising op
tor G†5 a†2 and its conjugatea2 do not satisfy the commu-
tation relation @G, G†#51; rather, it is the commutator
@XG, G†# that is equal to unity. One way out is to make
different identification ofG and X than that made in Eq.
~38!, and we shall consider this possibility subsequently. F
the present, we note that there is another approach, base
squeezing rather than displacement:

The squeezing operatorS(b,b* ) defined in Eq.~16! can
be expanded@31# in the normal-ordered form

S~b,b* !5~coshubu!21/2expS a†2b

2ubu
tanhubu D

3S (
r50

`
~ sechubu21!r

r !
a†rar D

3expS 2
a2b*

2ubu
tanhubu D . ~40!
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With the help of this expansion, we may establish that

1

2
~11 a†a!21a2S~b,b* ! u0&5F b

2ubu
tanhubuGS~b,b* ! u0&.

~41!

In other words, the squeezed vacuum

u0,b&[S~b,b* ! u0& ~42!

is also a generalized coherent state~an eigenstate of the low
ering operatorXG). Moreover,S is unitary. We may there-
fore construct the deformed, Hermitian Hamiltonian~restor-
ing the appropriate constants!

HS5
1

2
\vS~b,b* !@ a†2~11 a†a!21a211# S†~b,b* !.

~43!

The ground state of this Hamiltonian is the stateu0,b& de-
fined in Eq.~42!:

HS u0,b&5 1
2\v u0,b&. ~44!

The raising and lowering operators for this system are

G†~R!5S~b,b* ! a†2 S†~b,b* ! ~45!

and

X~R!G~R!5 1
2S~b,b* !~11 a†a!21a2 S†~b,b* !,

~46!

respectively. The excited stateu2n,b& (n51,2, . . . ) of HS
is obtained by applying@ G†(R)#n to u0,b&, and the corre-
sponding eigenvalue is\v(n11/2).

We may now consider the Berry phase acquired by
stateu2n,b&under the adiabatic, cyclic variation of the fou
parametersm,v,b1, andb2 in HS ~the first two being im-
plicitly contained ina anda† as before!. The answer, in fact,
may be written down directly from our earlier results on
we recognize thatu2n,b& is alsogiven by

u2n,b&5S~b,b* ! u2n&, ~47!

i.e., raising with (G†)n and squeezing withS can be per-
formed in either order. The Berry phase is therefore precis
g2n
(S) where gn

(S) is given by Eq.~32!, and the rest of the
discussion proceeds as before.

Finally, let us return to the Hamiltonian~or number op-
erator!

N85 1
2 a

†a5 1
2 a

†2~11 a†a!21a2, ~48!

which, in the spaceH1, has eigenvalues 0,1,2, . . . . The
question is whether we can writeN8 in the form a1

†a1
where a1

† anda1 are the corresponding raising and lowe
ing operators and,moreover, @a1 , a1

†#51 in H1. This
would avoid the problem encountered earlier, which ar
because@G, G†# was not equal to the unit operator. Now
since (11 a†a)21 is a bounded positive operator, the
exists ~according to the square-root lemma@32#! a unique
positive bounded operator (11 a†a)21/2 whose square is
(11 a†a)21. We may therefore write
e

ly

e

N85 a1
†a1 ~49!

with

a15221/2~11 a†a!21/2a2, a1
†5221/2 a†2~11 a†a!21/2,

~50!

and @a1 , a1
†#51 in H1. ~It is clear @33# that (a1 ,H1) is

isomorphic to (a,H0), each of these constituting an irredu
ible representation of the basic commutation relat
@F, F†#51). The procedure followed in Sec. III for th
original oscillator Hamiltonian may now be repeated, un
tered:unitary displacement and squeezing operators

D1~a,a* !5exp~a a1
†2a* a1! ~51!

and

S1~b,b* !5expS b a1
†22b* a1

2

2 D ~52!

may be used to deformN8, corresponding squeezed cohere
states constructed, and their anholonomies derived, exa
as in Sec. III. It is also evident that the same process can
repeated in the~isomorphic! subspacesH2.H3.•••, where
Hk5$spanu2kn&%, by defining the operatorsak , ak

† in Hk
recursively, according to

ak5221/2~11 a†k21ak21!
21/2ak21

2 , ~53!

so that@ak , ak
†#51 in Hk .

V. CONCLUSIONS

In this paper we have shown that, for an arbitrary Ham
tonian with equally spaced, nondegenerate eigenvalues
geometric phasegn of thenth eigenstate is a linear functio
of n. Crucial to the derivation of this result is the existence
raising and lowering operators~connecting the different
states! that satisfy a definite algebra. Using the above form
ism, the geometric phase was calculated both for general
squeezed coherent states and for a class of multiphoton
herent states.

A natural question that arises is whether our approach
be extended to the case of Hamiltonians with unequa
spaced levels. Although the existence~and construction! of
appropriate raising and lowering operators is not imme
ately obvious in the general case, one possible avenu
approach is the factorization method@34# and its recent ex-
tensions, particularly in the context of supersymmetric qu
tum mechanics@35#. This question is presently under inve
tigation.

Finally, it turns out to be possible to construct cohere
states~and generalized coherent states! for a class of Hamil-
tonians that are strictly isospectral to the harmonic oscilla
@36#. While certain classes of these states are essentially
tarily equivalent to those obtained from the original oscil
tor Hamiltonian, other classes of coherent states can be
structed, via supersymmetry transformations, that are
unitarily equivalent to the original ones. The geomet
phases associated with such states are also under inve
tion, and the results will be reported elsewhere.
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APPENDIX

We outline the steps leading to the explicit formulas giv
in Eqs. ~30!–~32! for the Berry phasegn corresponding to
the squeezed, displaced oscillator HamiltonianH of Eq. ~18!.

To evaluateg0, given by Eq.~24!, we work in the posi-
tion representation, in which
li-

an
. g05 i R dR•F E dxc0* ~x;R!¹Rc0~x;R!G , ~A1!

where R stands for the set of six paramete

$m,v,a5a11 ia2 ,b5b11 ib2%. The ground state wave
function c0 is found in a straightforward manner, and
given by
ic
c0~x;R!5S mv

2p\ D 1/4expS 2
v1
2

4u1
DexpS 2

1

2
ux22vxD , ~A2!

with

u5u11 iu25Smv

2\ D S ubu2 ib2sinh2ubu
ubucosh2ubu1b1sinh2ubu D , ~A3!

v5v11 iv25S 2mv

\ D 1/2S 2a1ubu1 i ~a1b22a2b1!sinh2ubu2 ia2ubucosh2ubu
ubucosh2ubu1b1sinh2ubu D . ~A4!

Next, we calculate the partial derivatives ofc0 with respect to the six parameters~it is convenient to consider the logarithm
derivative ofc0), substitute these in Eq.~A1! and carry out the~Gaussian! integrals overx, to arrive at the result

g05 R F ~a2da12a1da22a1a2dl!1
1

2 S sinhubu
ubu D 2~b2db12b1db2!2

1

2

b2

ubu
sinhubucoshubudl G , ~A5!
ion
wherel5 ln(mv) as defined in Eq.~29!.
We must now computeg1 from Eq. ~27!. Using the rep-

resentation given in Eq.~28! for the operatorG(R) ~and
remembering thatm andv occur in the expressions fora
anda†), we find

@G~R!,„¹R G
†~R!…#•dR

5 i
b2

ubu
sinhubucoshubudl2 i S sinhubu

ubu D 2
3~b2db12b1db2!]. ~A6!
There is no operator dependence left in this express
because@a, a†#51. Moreover, sincec0(x;R) is normalized
to unity, Eq.~27! becomes

g15g01 R F S sinhubu
ubu D 2~b2db12b1db2!

2
b2

ubu
sinhubucoshubudl G . ~A7!

Substitution of Eqs.~A5! and~A7! in the general formula
for gn @Eq. ~13!# yields the results quoted in Eqs.~30!–~32!.
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