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Formula for the calculation of integral cross sections in a Fourier expansion method
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A method has been developed to calculate the integral cross sections from the measured generalized oscil-
lator strengths that are fitted by a Fourier expansion. The method has been appliedetXehend e-N,
scattering problems. Excellent agreement has been obtained with existing measured values for the transitions to
5p°(2Pg)6s and 5°(2P,,)6s of Xe at 100 and 500 eV. For the vibrational states;1-4, of theb™I,
electronic state of hlat 300 eV, good agreement with the data calculated by the Lassettre expansion has also
been achieved.S1050-294{@7)09501-2

PACS numbe(s): 34.10+x, 34.50.Fa, 31.56:w

One of the main purposes in the measurement of differ- w (f,—6)w?
ential cross section®CS’s) is to obtain integral cross sec- = SET T o.%E ®
tions (ICS’s). Since DCS's for optically allowed transitions
increase dramatically as the scattering angle decreases, ex- ) o
perimentalists begin their measurement at a small afjgte ~ With f1,f,,f5 ... being the coefficients ofi(x/(1+x)]",
avoid the region where the measurements are likely to hav8=1.23 ... .
large uncertainties. However, DCS'’s at scattering angles less Equation(2) has also been used by experimentalists to
than 6, usually contribute significantly to ICS’s, particularly €xtrapolate GOS's t&?=0 to obtain OOS's. However, as
when the impact energies are h@h] In order to obtain Eq. (2) is an infinite series the OOS obtained is dependent on
reliable ICS’s, researchers normally transform DCS'’s intothe number of terms retained. Recently, Haffewal. [5]
generalized oscillator strengtfi€0S's and integrate them Used a Fourier expansion to fit GOS's, with the function
with respect to the momentum transfer squateti[2], f(K?) expressed as
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whereE is the impact energwy is the excitation energy, and i )

f(K2) is the GOS function. In the evaluation of Eq) the  Wherey=In(1+x), andx has the same meaning as in £2).
Lassettre expansidi8] has been used widely to fit the GOS 1he coefficients,, a;, by, ande are determined by least-
data, because it has the correct singularity for the scatteringduare calculation. Substituting E@) into Eq. (1), we have
amplitude and is able to fit all the valueskf. The Lassettre

series for thes-p transition has the form T (k2 1
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wheref is the optical oscillator strengttD0O9), x=K?/a?,

anda= 21 + \2(I—w), with | being the ionization energy Equation(7) cannot be evaluated directly. However, it can be

andw the excitation energy. The coefficients,f,,f, ...  transformed into

are determined by the least-square calculation. Substituting

Eq. (2) into Eq. (1) we obtain the expression for calculating  TABLE |. Coefficients of Eq. (6) for the transitions to

ICS's[4], 5p°(2P4,,)6s and 5°(%P4,) 6s of Xe. The numbers in the brackets

of Tables I, Il, and IV are the power of 10 by which the coefficients

T should be multiplied.
o=z [IN(8cE) — ¢1fo, 3
100 eV 500 eV
wherec and ¢ are calculated from the equations 2P, 2P, 2P, 2P,
a\ 137 f, f, f3 1, fs ao 0.3638  0.1795 0.4308 0.2950
Inc=2Inz=|—-—==+=+-5+t2t 5t _ _ _ _
2w 60 6 42 168 504 1260 a; 0.1940 0.355¢-1) 0.2544 0.7927-1)
(4) b, —0.2645 -0.1438 —0.3199 —0.2629
€ 3.600 0.7220+1) 0.3136+1) 0.4498+1)
and
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TABLE IlI. Coefficients of Eq.(6) for the transitions to the vibrational statass1-4, of theblHu
electronic state of h

v=1 v=2 v=3 v=4
ag 0.142 716 86-1) —0.165 834 38+3) —0.157 899 16+3) 0.127 799 80+4)
a; —0.128 815 06-3) 0.165 858 18+3) 0.157 941 96+3) —0.127 791 56+4)
b, —0.178 562 27—-2) 0.136 044 07+1) —0.145 881 74+1) —0.796 048 27+1)
€ 0.270 374 86+2) 0.626 991 57-1) —0.887 365 8P—-1) 0.354 848 16-1)

T (Xmax 1 a, 1 . II. For vibrational states 3 and 4, the coefficieatsand a;
T Ew L X(1+x)° at §+ E) (1+x) are close to each other. Therefore, we keep eight significant
min digits to achieve high accuracy. Table Il gives ICS’s for the
a; by , e-Xe scattering using Eq$3) and(9). The Suzukiet al.data
+(7—§ [(1+x)""<]|dx, (8)  which was obtained by fitting GOS’s with the Lassettre

equation and performing a numerical calculation, are also
listed in Table Ill. An excellent agreement among the three
sets of data has been achieved. This demonstrates that the

wherex =K 2,/a? andx,=K2,/a?. To evaluate Eq(8) . ;
the integrand has to be expanded over the whole complc—i)g""ta are well described by E), as can be see in the paper

plane. We construct a loop in the complex plane using tw y Haffadet al.[S]. _Tgble v presents the coefficients of Eq.
lines, X +iy(y=0—%) and X +iy(y=2—0), part of (2) for the e-N, collision. If we retain more than four terms
the r;aarlmgxiymm {0 Xpqy, aNd thénTi(nexminJrioo to X:nax+i°°- in the Lassettre expansion, the curve fits are more noisy.

AS Xinin @ndXax &re greater than zero, there is no singularityThFre_ltoﬁ' c{;“)icfoslfr terlmsl hta\(/je bgen ésed in the f'ttmg'd
inside the loop. Also, the contribution to the integral from . h able v, s calculated using EP) are compare
the final part of the loop can be ignored gs+» the inte- with those from Eq(S_). The agreement between the re_su_lts
grand —0. The original integration fromx,, to X, then of the two methods is satisfactory. We note that the fitting

i Ay d fitting function are quite different in the two
reduces to the integral from O to along the linex=x,,;, Process an . ,
plus to 0 on the linex=X,,. The integration of Eq(8) is methods. However, the difference between the OOS’s ob-

carried out in the Appendix. tained byhthehtwt)cgw,ethct))ds_ isdsrg\aIIhThis is prﬁbzbly the
With the values ot |, 1,;, andl,, from the Appendix, Eqg. reason why the s obtained by the two methods agree
with each other so well, as well as the fact that at high energy
(8) reduces to S ; .
most of the contribution to the integral cross section comes
from small scattering angles, or sm&Ff values. In this re-
a b gion of smallk? values the GOS'’s are close to the OOS's.
1 1 . .
> ?)I,,} 9) In conclusion, a formula has been obtained to calculate
: the integral cross sections when the GOS's are fitted by a
Fourier series. The formula was illustrated through a calcu-
lation of ICS’s for thee-Xe and thee-N, collision problems.

Since the cross section is a_real number, the intedralad Good agreement was achieved when the results are com-
[, must be the complex conjugate of each other. In the cal-

. . pared with those from other methods.
culation of o we only need to evaluate the integialor |,,.
Let us consider a hypergeometric functigh,(a,b;c;z),
with b=1 andc=1+a. This kind of a hypergeometric func- ACKNOWLEDGMENTS
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B function in thel, andl,, of Eq. (9) can be found in many TABLE Ill. ICS’s (10 16 cn?) for the e-Xe scattering.
mathematical libraries.

Equation (9) was used to calculate the excitation cross 100 eV 500 eV
section for thee-Xe ande-N, scattering. The GOS data are 2p 2p 2p 2p
taken from the measurements of Suzekal.[2] for Xe and 112 82 12 82
Xu et al.[6] for N,. The coefficients in Eq(6) for the tran-  Eq. (3) 0.2083 0.3565 0.07394 0.1236
sitions to the H°(°P3;,)6s and 5°(°P,,)6s states of Xe  Eq. (9) 0.2080 0.3560 0.079 89 0.1230
are listed in Table I, while those of the vibrational states,syzuki 0.204 0.352 0.0751 0.126

v=1-4, of theb'II, electronic state of Nare given in Table
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TABLE IV. Coefficients of Eq.(2) for the transitions to the TABLE V. ICS’s (10" c¢n) for the transitions to the vibra-

vibrational states =1—4 of thebII,, electronic state of pl tional levelv =1—4 of thebII, electronic state of N

v=1 v=2 v=3 v=4 v=1 v=2 v=3 v=4
fo 0.1441-1) 0.3173-1) 0.5108-1) 0.8124-1) Eqg. (9) 0.075 14 0.1297 0.2317 0.4783
f; —0.6001+1) -0.6218§+1) -0.3099+1) -0.3272+1) Eqg. (3) 0.065 82 0.1406 0.2407 0.3919

f, 0.8518+2) 0.7346+2) 0.3966+2)  0.9403+1)
f3 —0.2733+3) —0.2272+3) —0.1428+3) 0.7920

APPENDIX: INTEGRATION OF EQ. (8) imin
The integration/,"(dx/[x(1+x)®~'¢]) can be separated 2F1<6+i6,1i7+ifi TFwe
into two parts: =B(1,6+ie UL
into two parts ( ) (x5
Xmax dx 1
= Xeri X(1+X)67IE 2F1(6+i6,1;7+i6; m)
m
f” 1 i (1+Xmax)6+le . A3)
= — < —d
0 (1+Xmintiy)® ™' (Xpintiy) y The third integral is
o 1 i X dx
- e —dy. (Al B
jo (:I-""Xmax""y)6 I Xmax T 1Y Y ( ) ll” fxmin X(:I.-f—X)6
Integrall, can be evaluated to obtain 1 1 1
= + +
1 5(1+ Xma®  A(1+Xma?  3(1+Xmad®
siie o oF1| 6—1€,1;7—I¢; Trx . 1 . 1 L
= 6—ie —z -
! (:I-"—Xmin)6 l 2(1+Xmax)2 (1+Xmax) 5(:I-""Xmin)5
F (6 i€,1;7—i K) ! ! !
—iel;7—ie; ——— - -
1 1+Xma 4(1_")(min)4 '?’(]-'}_Xmin)3 2(:|-‘|')(min)2
- 6—ie . (AZ)
(1+Xmax) 1 .
Xmax Xmm
. . . - +In —In . (A4)
A similar formula can be obtained for integrgj: (1+Xmin) 1+Xpy 1+ Xpmin
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