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Field cancellation by a two-level atom in a multimode cavity driven by a time-dependent field
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We investigate the behavior of a two-level atom in a multimode cavity driven from the side by a time-
dependent field. The time-dependent fields we have looked ati)aprire amplitude modulatediji) pure
frequency modulatedjii) single sideband, an@v) general three-mode fields. Each of these fields results in
two (for the single-sideband cgser three modes separated by the modulation frequency. We find that when
the driving field mode spacing is a multiple of the cavity mode spacing, the multimode cavity field created by
the driven two-level atom becomes exactly 180° out of phase with the external driving field in steady state.
This results in a zero net field at the position of the atom and, hence, the atom remains unexcited regardless of
the strength of the external driving field. This is very reminiscent of the field-induced transparency effect as
described by Cardimoret al.[J. Phys. BL5, 55(1982] in which the various dipole transitions of a multilevel
atom dressed by a coherent field are driven 180° out of phase with each other, producing a zero net fluores-
cence. We also show that, in the limit of an infinite cavity, the multimode equations reduce to the neoclassical
equations of Stroud and Jaynézhys. Rev. Al, 106 (1970]. [S1050-294®7)07701-9

PACS numbeps): 42.50.Dv, 42.50.Hz

[. INTRODUCTION sidebands that are in quadrature with the central mode. We
will also look at single-sideband driving fields and arbitrary-
A wealth of knowledge and intuition has been gainedintensity double-sideband fields, created via combinations of
from the study of the idealized system of a two-level atomAM and FM. Because of the multimode nature of these
coupled to a single-mode fie[d]. The slightly more com- modulated driving fields, we will allow the cavity to support
plicated models of a three-level atom or a two-level atom inmore than one quantized mode. We analyze the effect on the
a cavity or interactions with a multimode field are natural@tomic fluorescence when the allowed cavity modes are var-
progressions in understanding the complex interaction ofed in number and in frequency separation. _
light and matter under more physical constraints. The radia- A novel feature arises in steady state when the modulation
tive properties of atoms inside a cavity have been the subje@mplitude of the external driving field is zero. Even though a
of intense investigations in recent years under the broagoherent field exists within the cavity in steady state, main-
heading of cavity quantum electrodynamics. Some of thda@ined by the perfectly reflecting mirrors, the atom decouples
more exotic effects uncovered in theoretical work dealingffom this field, and the fluorescence turns Gfée Ref[9]).
with a single atom in a cavity should become more accesEOr highly reflecting, but not perfect, mirrors, the fluores-
sible in the laboratory once the technologies of atomic cool€ence is strongly suppressed. This decoupling of the atom
ing and trapping are incorporated into experimdiais One from. the field is exactly analqgou_s to the atomic decoupling
model system that has received a lot of theoretical attentioff@ding to the three-level field-induced transparency de-
comprises a single atom coupled strongly to a single quargcribed by Cardimonat al. [10-12, and later modified by
tized cavity mode, driven by an external coherent field, andiarris and co-worker§13,14. (Harris’s version of electro-
including cavity damping and spontaneous emission. By almagnetically induced transparency has been observed ex-
lowing for a flux of energy through the atom-cavity system,Perimentally in atomg15].) In the following work we find
the dynamics can evolve to a nonequilibrium steady statéhat even when the driving field is modulated, the decoupling
that exhibits many interesting and novel featui@s8). take_s place Wh_en_eve_r the cavity fleld_ mode spacing is a har-
In this work we explore a modified version of this model monic of the driving field mode spacing.
in an idealized limit. We drive the atom directly with a two-
or three-mode external coherent field and examine the situa- 1. REVIEW OF SINGLE-MODE-FIELD RESULTS
tion of perfectly reflecting cavity mirrorglossless cavity o i ) i
We will also provide a brief glimpse at the effect of includ- W& Will first review the results obtained when a single-
ing loss out of the cavity. The driving field will be created M0de field is incident from the side of a single-mode cavity
using three modes of varying amplitude and phase, separat&gntaining a single two-level atogsee Fig. 1. With this in
by a fixed frequency spacing. We will look at driving fields Mind, the wave equation is
created via pure amplitude modulatiohM ), which result in )
sidebands that are in phase with the central mode, and fields J 2
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FIG. 1. The externally driven two-level atom-in-a-cavity system

under consideration in this paper.

where thes term comes from thd=c¢E constitutive rela-

tion and will account phenomenologically for the cavity
losses. Defining slowly varying envelopes through the rela-

tions
E(z,t)=&(t)exdi(wt—kz)]+c.cC., (2a)

P(z,t)=P(t)exdi(wt—kz)]+c.c., (2b)

we can derive the equation satisfied by the electric fields in

the slowly varying envelope approximati¢8VEA) as

aC

J
<_+Yc)9(t):_i T, rt), ©)

ot

where we have made the following definitions and substitu

tions:
Q(t)=2d&(t)/, (4a)
P(t)=Nd*r 1), (4b)
y.=2m0, (40)
a=47oNd|?T,/ch. (4d)

Here d is the transition dipole moment\ is the atomic
number densityr ;5(t) is the slowly varying part of the off-
diagonal density matrix element, is the inverse Beer's ab-
sorption length, and’, is the dipole dephasing time. Now
defining the Bloch variables as=r,+r,, iv="r1— 5,
andw=r,,—r;, and writing the Rabi frequency in real and
imaginary parts a$)=(Q'+ x)+iQ", wherey is the con-
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Q’+)/CQ':2—TZU, (5d)
-" n ac
0"+ y.Q =—2—T2U, (5¢

whereT, is the population decay tim&y=w,;—w with wy;
the atomic transition frequency, and,, is the equilibrium
population inversion.

From these equations we find the steady-state values to be

[(Qgst X) AT — Qg IWegT,

u — ! n 6a)
S TH (AT 24 (O )7+ (7T,
P
=-Q!T, a—cc (6b)
[(QQS_FX)—’_QIS:SATZ]WeqTZ
USS: 1+ AT 2 ! 2 "ny\2 (6C)
( 2) +[(QSS+X) +(Qs ]TlTZ
0
=T, ——. (60)

If we have a very good cavity such thatfd ac) <|w, we
find expressions for the Rabi frequency to first order in
(2] acwgy) to be

2y
(1) _ ¢
st x| 1+ aCWeq”’ (78
2,
n(l)_ _ c
st X(ATz)( aCWeq) . (7b)

From these expressions we see that for a perfect cavity
(v.=0), the steady-state cavity field is exactly the applied
field, only 180° out of phase, resulting in=0=v¢ and
Wss=Weq. The two fields cancel at the site of the atom and,
for weg=—1, the atom remains in the ground state, even
though the applied field is incident on it continuousgsee
Ref. [9]).

Ill. MULTIMODE FIELDS

The guestion now is: Can this cancellation effect persist
in the presence of a multimode external driving field? To
investigate this, we apply a general three-mode driving field
in place of the single-mode field of Sec. Il, and allow the
cavity field to develop several modes. We will consider there
to be an aperture in the cavity to restrict the transverse varia-
tion to the lowest-order mode. Then, putting the atom at the
center of the cavity we can approximate the wave fronts as

stant monochromatic field applied to the side of the cavityP!ane waves, and consider only longitudinal cavity modes.

andQ’ +iQ" is the cavity field, we may write the Maxwell-
Bloch equations for the atom-cavity system as

u=—u/T,—Av—Q"w, (5a)
v=—0vlT,+Au+(Q'+ x)w, (5b)
W= —(W=Weg)/ T1— (2" + x)v+Q"u, (50

In this approximation, we expand the cavity fidtd(z,t)
in terms of the cavity mode functiori,(z) as

EJ(zt)=2, C.(HUy(2)+c.c., (8)

where the cavity mode functions satisfy Helmholtz's equa-
tion
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2

U,=0 ©) Q=7 &, (17)

2
E‘Fkn

with the appropriate boundary conditions, and are normalwe find the multimode equivalent of E¢B) to be
ized over a cavity of length such that c
. o
2 (ue O+ (Y 18p) Q= =i 2L (O)(utiv). (19
E Jluzuﬁ'l(z)un(z)dzz Snm- (10 2
We will first let 4,(0)=1 and let the cavity support a
The mode amplitude<,(t) can be written in terms of finite number of modes. Now our general three-mode driving

slowly varying amplitudes, () as field Rabi frequency can be written as
Co(1)=E, (D expiwt) (11) 2d 2d
n n ' . Edrive=7 {2A coswt+2B cog (w+ d)t]

so that the cavity field can be written as
+2C cog(w—d)t]}

Ec(Z,t)Zg En(DUn(Z)expliot) +c.c. (12 zzﬁ—d {2A[ 1+ ConCOSSt]COsL

Since in this work we are gonsidgring a single_ atom at the — 2ACH,Sindt sinwt}
center of the cavity, we will confine the polarization to a _
region small compared to the variation of the cavity modes. =2x'coswt—2y"sinwt=(x'+ix")e'“'+c.c.
2
We do this by introducing the Gaussian faceor?/2/ [ = et cc. (19

into the atomic polarizatiotherea, is the Bohr radius If
we now approximate this factor with ité-function limit  |f we assume there is an atomic steady state in whigkO,

[lim, Hoe*ZZ/ag/\/anz 5(2)], Egs.(2b) and (4b) become and then search for a solution to EqSa—-5(c) (now with
0 x—x and ay’ added toQ)” everywherg¢ and Eq.(18), we

u+iv find
P(z,t)=ANd* 5 )exp(iwt)Jrc.c. 8(2)ag. (13
_ _ o > Qr=—x", (209
We made thiss-function approximation in anticipation of an n
integration overz. Inserting these expressions into the wave
equation(l) gives vss:(; Ql 4y’ Wss/ T, (20b)
> [+ 2i 0E— 02E0+ C2K2E+ 2y o(EntiwEn) Un 5
" Wss —7/ Y+ 2 Qp+x! /F} (200
X exp(i wt) + c.c. n
=—2aNd*[U+iv+2iw(U+iv)—w?(u+iv)] QﬁzAnQr’,, (200
X 8(z)ag expliwt) +c.c. (14 . acag
. . . . . Qr;:_AnQ:‘H' T L USS! (206
After invoking the SVEA, we multiply both sides of this 2

equation byi/;(z) and integrate over the cavity fromL/2

t0 L/2 1o obtain wherel'=1/T,, y=1/T, Weq=—1, and we have assumed a

perfect cavity withy,=0. If we look for conditions in which
the atom remains in the ground state in this atomic steady

Fog 21,2 2 ;
R G R R state(taking our cue from the single-mode results in which

2a W ~=We,=—1), we find
=2m?NH* == U (0) (u+tiv). as

| . - > ==X, (213

We use the following approximation and definitions: n
21n V=0, (Zlb)

C2k— 0= 0f~ 0 ~20( 0y~ ©)=20A =20 — >
" Qp=AncogAnt+ ¢p), (210
=2whA., (16

Qr=Asin(Apt+ ¢p). (21d

where 7 is the cavity round-trip time and is the cavity
mode spacing. If we write the Rabi frequency for thin  Using Egs.(209 and (218, we find that the above steady
mode as state is satisfied if
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¢n=0, (229 - _
2 |Un(0)PexfiAg(t—t")]
Ao=— X0, (22b) e
. - , t—t’
Aip=-— E)(O(Cami Cfm) for An: é, (22(:) = 2 expgi2mn -
n=—oo R
A.,=0 for A # 6, (220 o " t—t
. . = E dx exriiZme)ex;{iZWX( )
where o= (2d/%)A from Eg. (19). The various specializa- me—w J—w TR
tions of the general modulated driving fidleq. (19)] occur - ) "
in the following manner: (i) cq=0=pure amplitude- _ t-t) .
modulated field, (i) c,n=0=>pure frequency-modulated _m;m o\ m+ = _TRm;m o(mrg+t—t').

field, and(iii) c,n= Cci=single-sideband field. These solu- 25
tions are borne out in the figures of Sec. V. (25
_ As pointed out in Ref[9], the single atom in a cavity e recognize that we cannot have a field at a future time
interacting with a two-mode fieltbne driving mode and one  jnteract with the atom in the present, we may now write the

cavity mode is similar to a single field driving an atom ¢4ty field that appears in the Bloch equatioria)55(c) as
having two competing transition paths. In both cases, the

competing quantitiegthe two modes in the atom-in-a-cavity acay M

problem and the two transition dipole moments in the three-  Q(t)=—i T TRE [u(t—m7g)+iv(t—m7g)]
level-atom problem develop 180° out of phase with each 2 m=0

other. Now we see that, corresponding to R&f], a single Xexp(— y.m7g). (26)

atom in a cavity interacting with a multimode field is similar
to a single field driving an atom having multiple competing For this ring cavity case, with a round-trip distancelLofwe
transitions. In the multilevel atom problem, the transitionhaverg=L/c. So we see that the field that interacts with the
dipole moments become out of phase and quantum mecharatom at time is just that field created at timteplus all of the
cally interfere with each other. Here in the present work, theprevious fields that have reflected back to the position of the
multimode cavity field stabilizes in a 180° out-of-phase con-atom m times (with the maximum ofm being the nearest
figuration when the cavity field mode spacing is a harmonidnteger less thar/rg), with each of these reflected fields
of the driving field mode spacingA(= é/n), producing a being reduced in amplitude due to leakage out of the cavity
zero net field at the position of the atom. at the rate ofy.. In the limit of an infinite cavity length we
have

IV. INFINITE-MODE CAVITY FIELD

. . 0 .
In this section we will allow an infinite number of cavity I|mwQ(t)= T, [u®) +iv(D)]. (27
modes by formally integrating the multimode E48). Do- RT

ing this we obtain
B. Standing-wave cavity

. aCao ‘ - Now let ider th f a standing- ity. If
Q. ()=— U* (0 f Y +io(t! ow let us consider the case of a standing-wave cavity.
n(t) 'T,0 n(0) O[u( )H1v(t)] the cavity mirrors are taken to be at*L/2, the mode
) amplitudes satisfy
Xexg —(y.—iAy)(t—t")]dt’. (23
S lmn (N
The field that appears in the Bloch equatidigs. (5a)— Uy(z=0)=si T (z+L/2) =sin —-1,
(50)] is E¢(z=0.), which is related to z=0
o n=123.... (28
Q(t)= Qn(t)ULO
® n;x (Dn(0) We see that only every other mode contributes, since every

c t other mode in a standing-wave cavity has a mode at the
a ) )
- - iO J dt'[u(t’) +iv(t)]exd — ye(t—t)] center of the cavity. The sum in E(R4) now becomes

2 0

ein'ﬂ_’_e*in'ﬂ
1_

> ) 29

o , _ - 2.2, exp{i&m( . )
X 2 |Un(0)[PexiliAn(t—t)]. (24 R

where we have used gimm/2)=%1-cosnw)]. Using
. ) Poisson’s sum formula once again allows us to write this as
A. Ring cavity
Let us consider the case of a ring cavity. The mode func-  7r - o ,
tions for a ring cavity have the property that,(z=0)|?>=1 2 m;_w [o(m7p+t—t")—z8(M7p+t—t'+7¢/2)
for all n. Using this property and the Poisson sum formula
[16] allows us to simplify the sum within this integral as —28(mrg+t—t' —1r/2)]. (30
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FIG. 2. Five cavity field modes allowed, with.=é. (a) The
atomic variablesi, v, andw, (b) the real part of the slowly varying
cavity field, A,cosp,, and (c) the imaginary part of the slowly
varying cavity field,A,sin¢, , plotted vsI't.

Now the field appearing in the Bloch equations becomes

I

(b)

+1 modes

+2 modes

A cost,

central mode

T T 1
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Asing,

T T 1
0 20 40 60 80 100 120 140
Tt

FIG. 3. Five cavity field modes allowed, with.= 6/2. (a), (b),
and(c) as in Fig. 2.

In the infinite cavity limit, the Bloch equations for both
types of cavities become

acay r u=—u/T,—Av+guw, (333
Q== =5 > exp(— yemrr)[p(t—mrg) _
2 m=0 v=—v/T,+Au+gow+ xw, (33b)
_%p(t_mTR'f' ’TR/Z)qu ’)/CTR/Z) .
W= — (W—Weg)/ Ty —g(u+0v?) — xv, (330

- % (t_ mTR_ TR/Z)qu - '}/CTRIZ)]

Xexp(—m7rye) — p(t—[m—1/2]7g)

x exd —(m—1/2) g1} (31

where p(t)=u(t)+iv(t). For this standing-wave cavity

case, with a round-trip distance of. 2we haverg=2L/c.
Thus, the field-averaging that occurs in a standing wéve

whereg= aay/T,. These equations are just the neoclassical
equations of Stroud and Jayngk?] where the Lamb shift

has been neglected and phenomenological damping has been
included. This is not too surprising, since in the infinite-
cavity-length limit the atom is sitting in free space and feel-
ing the effects of its own radiation reaction field. If we tgt

be much greater than bothTL/ and |A|, then we can find
steady-state solutions to these neoclassical-like equations
good to second order ifl/gweqT,) and/or(A/gwe),

1/2 in fron is countered by the doubling of the round-trip x A 2
time. This field arises from the fact that in a standing-wave Uss=~ 3 ow, <1+ aWerT ) (343
cavity, the cavity field interacts with the atom at every half- e eq’2
round-trip time, again escaping from the cavity at the rate of P
) i - L A ; X 1 1-(ATy)
ve, @s in the ring cavity. Once again in the infinite cavity Ve — (1+ + 2), (34b)
limit, this cavity field reduces to g OWeql2  (9WeqT2)
aa, 2 2
lim Q(t)=—i T—O [u(t) +iv(t)]. (32) Wss~we{1— X°T, ( 1 1+(AT2)2”7 (340
TR 2 g gWeqTZ (gWequ)
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FIG. 4. Five cavity field modes allowed, with.= §/1.5. (a), FIG. 5. Seven cavity field modes allowed, with) A= 4, (b)
(b), and(c) as in Fig. 2. Ac=6/2, and(c) A,=6/3. In each case, only the real part of the

slowly varying cavity field A,cosp, , is plotted vsI't.

which then implies that in this limitQ’'=gv——y and

Q"=—-gu—0. as to wash out the atom’s natural linewidth. Taking our cue
from previous work showing that the best atomic response to

V. GRAPHICAL RESULTS a modulated driving field occurs when the modulation fre-
quency is approximately equal to the driving Rabi frequency
In all of our numerical experiments, we kept the driving [18], we setd=yj.

field modulation frequency fixed, so that the driving-field In Fig. 2 we allow five cavity modes to develop and adjust

mode spacing wag. We then varied the number and fre- the cavity so that the cavity field mode spacing equals the

quency spacingX.) of the allowed cavity modes. In all of driving field mode spacing. The plots show the steady state

the following graphs of the cavity field, we plot only the indicated in Eqs(22). We see that all theb,, go to zero and

slowly varying part. Writing the cavity field as}, the central mode and the1 modes develop 180° out of

=0qoe' !, we find the slowly varying part can be written phase with the driving field. Thec2 modes decay away to

as zero. In Fig. 3 we again allow five cavity modes to develop,
Ciad but now we set the cavity mode spacing equal to one half the
Qsiow=Qpe "0 driving mode spacing. This brings the2 modes into reso-
, nei CAn ' i nance with the driving field. Thec1 modes and all the
= —+ —_ i X n
QnCOSARL+ Qg SINARLHT (2 COSARL = 2y SIMAQL) decay to zero. Notice from the time scale that the steady state
=A,Ccosp,+iASiNd,,, (35) takes much longer to reach than when th& modes were

resonant. In Fig. 4 we set the cavity mode spacing equal to

where the final line was obtained using E@&lo and(21d.  two-thirds of the driving field mode spacing (= 6/1.5). In
We plotA, cos¢,, andA, sin ¢, separately in the following the figure we see that no steady state is ever reached when
figures. We first investigate the case of pure amplitudehe cavity mode spacing is not a pure harmonic of the driving
modulation(settingc,,=0), and then show how the results field mode spacingi.e., A.# &/n).
are modified when we generalize the field modulation. The In Fig. 5 we allow seven cavity modes to develop. Here
effect of a nonzero cavity dampingy{# 0) will be briefly  we show only theA,cosp,, components of the cavity fields,
indicated in the final figure. as once again all thé,, go to zero. As Eqg.22) indicate, for

In each of the figures we set the amplitude of the drivingA .= 6 the =1 side modes are resonant with the driving field
field Rabi frequency equal toT§=1I" (yp=I), so thatitcan and become 180° out of phase with it. The2 and =3
be considered to be a relatively strong field, but not so strongnodes die away. When the cavity mode spacing is equal to
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FIG. 6. The maximum and minimum of the atomic inversion FIG. 7. Five cavity field modes allowed, with,= 8. (a) Pure

after Ft:400, VSAC/5. (a) Three CaVity modes aIIowe(ﬂb) Five frequency modulation of the driving ﬁe|da£1: 0) (b) Sing|e_
cavity modes allowedc) Seven cavity modes allowe(t) Twenty-  sideband driving fieldd,= f = 1). (c) Completely general driving
five cavity modes allowed. The inset is an expansion of the smallg|d modulation(a,=1.2,f,,=0.4). In each case, only the real part
A/ 6 part of the 25-mode graph. of the slowly varying cavity fieldA,cosp,, is plotted vsI't.

field and all other modes go to zero. (o), we letc,,,=1.2

the second £.= 6/2) or third (A.=&/3) harmonic of the andcsy,=0.4, to represent a completely general modulation
driving field, the=2 or +3 side modes, respectively, move of the driving field. As predicted by Eq$22), A, ; goes to
into resonance, leaving the other modes to die away. Notice-1/2(1.2+0.4=-0.8 and A_; goes to —1/2(1.2-0.4)=
once again that the steady state is reached after longer and0.4.
longer periods of time as the resonant modes move away Finally, in Fig. 8 we show how the 180° out-of-phase
from the central three modes. condition of a three-mode cavity field with =4 in the

In Fig. 6 we plot the maximum and minimum of the long-time limit begins to fail as the cavity is made leaky
atomic inversionw in a long-time limit, as a function of (y.>0). We only show two nonzero values ¢f since the
A/ é. As we have predicted, the inversion remains-dtin  trend is obvious.
this steady-state limit whenever the cavity field mode spac-
ing is a pure harmonic of the driving field mode spacing.

Figure 7 shows the effects of generalizing the modulation
of the driving field. In each of these figures, we allow five In this paper we have provided analytic and numeric re-
cavity modes to develop and only look at the= 6 case, as sults describing the fluorescence of an atom in a cavity being
the effects of going to higher harmonics has already beedriven by an external time-dependent field. The external field
made clear. Also, we only look at th, cos¢, components modulation produces a two- or three-mode driving field, so
of the cavity field because in each case all #hego to zero, we allow several modes to develop in the cavity.
as predicted by Eqgs(22). In (a), the pure frequency- When the modulation frequency is zero, we obtain the
modulated casec(,,=0), we see that the central andl  single-mode results of Alsingt al. (Ref. [9]). The single-
modes develop 180° out of phase with the driving fieldcavity mode becomes 180° out of phase with the driving
modes[recall that in frequency modulation, the sidebandsfield mode in steady state. The resultant field at the position
are 180° out of phase with each other, hence t{e0.5 of the atom is then zero, and the atom stops fluorescing.
values for thex1 modes$. In (b), we show the results when When the modulation frequency is made nonzero, the cavity
there is only a single sideband (=cq,=1). The central field modes once again develop 180° out of phase with the
and +1 modes become 180° out of phase with the drivingdriving field modes, but only when the cavity field mode

VI. SUMMARY
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FIG. 9. The absolute value of one plus the real part of the slowly
varying central cavity field mode from Fig. @he case in which
seven cavity modes are alloweid plotted on a log scale V&t to
show the decay to steady stat@®ne is added to the mode ampli-

0.0 Y. =04 © tudes since the steady-state value is a negative dhe. solid thin
line hasA .= §, the dashed line has.= §/2, and the thick solid line
02 1 modes hasA .= /3. Exponential curves with decay constants\gf= 5/10,

A= 6120, andA .= 6/30 are also plotted. The inset represents the
varying cavity mode spacingd in relation to the fixed driving
-0.6 mode spacing and the atomic linewidth’.
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crease the ratio oA /é. For fixed &, this means that the
FIG. 8. Three cavity field modes allowed, with.= 5. (a) Zero  steady state is pushed farther off when the cavity mode spac-
cavity damping {/I'=0). (b) Nonzero cavity damping ing A, is reduced. Reducing increases the number of
(7c/T'=0.1).(c) Even greater cavity losseg{/I'=0.4). nonresonant modes within the radiative atomic linewibith
(see the inset in Fig.)9If we plot the cavity field modes as
a function of the cavity mode time scale t, we find that
they decay at a rate proportionalag/n whenA .= é/n. The
spacing is a pure harmonic of the driving field mode spacingphysical reason behind this is that whieg= 6, there is only
In other words, whenever the central cavity field mode andne set of sidebands within the atomic linewidtsince
any two of the cavity field side bands match up with the §=I'). The other sidebands outside the atomic response line-
central driving field mode and its two side bands, the atonwidth interact only very weakly with the atom. When
decouples from the driving field and stops fluorescing. AlsoA.=d/n, n sets of cavity field sidebands fall within the
when cavity damping is introduced, the cancellation effectatomic linewidth, feeding off each other and supporting each
becomes less pronounced. other in a non-steady-state for a longer period of time. In Fig.
This cancellation effect is analogous to the field-induced® we demonstrate the above explanation by plotting the ab-
transparency described by Cardimastaal. (Refs.[10-12). solute value of the real part of the central cavity mode for the
In that case, multiple transition paths within a multilevel seven-mode case versusit for A.=46/1, A.=6/2, and
atom are dressed by an applied field and develop 180° out &f.= 6/3, as well as three exponential curves with decay con-
phase with each other, thereby adding to zero and causirgfants equal tad /10, A./20, andA./30. The semilogarith-
the atom to decouple from the driving field. mic scale produces straight lines for the exponential curves.
In the system studied in this work, the atom is coupled to We also showed how the multimode equations reduce, in
the cavity modes and can absorb from and emit into thesthe infinite cavity limit, to the neoclassical equations of
modes. It can also radiate into free space via spontaneoiroud and Jaynd&ef.[17]). In this limit, we reproduce the
emission. Therefore, even when cavity damping is abserfield-cancellation effect when the absorptiare) is greater
(7.=0), the modes of the cavity are damped through theithan 1.
interaction with the atom. In our analysis we find that ini- When we allowed modulation other than pure amplitude
tially the atom deposits energy into all the cavity modes.modulation, the cancellation effect persisted. Since any arbi-
However, over time the modes nonresonant with the drivingrary three-mode field can be constructed with combinations
field decay to zero, while the modes resonant with the drivof amplitude modulation and frequency modulation, and
ing field oscillate to a nonzero value. This continues until, insince the above results can be easily extended to more than
steady state, the modes resonant with the driving field arthree-mode driving fields, the field cancellation effect de-
equal and opposite to the driving field, at which point thescribed in this paper should apply to any general time-
atom decouples from the field. From Fig. 5 we see that thelependent field driving a two-level atom in a multimode cav-
time necessary to reach this steady state increases as we (ig-
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