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Field cancellation by a two-level atom in a multimode cavity driven by a time-dependent field
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We investigate the behavior of a two-level atom in a multimode cavity driven from the side by a time-
dependent field. The time-dependent fields we have looked at are~i! pure amplitude modulated,~ii ! pure
frequency modulated,~iii ! single sideband, and~iv! general three-mode fields. Each of these fields results in
two ~for the single-sideband case! or three modes separated by the modulation frequency. We find that when
the driving field mode spacing is a multiple of the cavity mode spacing, the multimode cavity field created by
the driven two-level atom becomes exactly 180° out of phase with the external driving field in steady state.
This results in a zero net field at the position of the atom and, hence, the atom remains unexcited regardless of
the strength of the external driving field. This is very reminiscent of the field-induced transparency effect as
described by Cardimonaet al. @J. Phys. B15, 55 ~1982!# in which the various dipole transitions of a multilevel
atom dressed by a coherent field are driven 180° out of phase with each other, producing a zero net fluores-
cence. We also show that, in the limit of an infinite cavity, the multimode equations reduce to the neoclassical
equations of Stroud and Jaynes@Phys. Rev. A1, 106 ~1970!#. @S1050-2947~97!07701-9#

PACS number~s!: 42.50.Dv, 42.50.Hz
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I. INTRODUCTION

A wealth of knowledge and intuition has been gain
from the study of the idealized system of a two-level ato
coupled to a single-mode field@1#. The slightly more com-
plicated models of a three-level atom or a two-level atom
a cavity or interactions with a multimode field are natu
progressions in understanding the complex interaction
light and matter under more physical constraints. The ra
tive properties of atoms inside a cavity have been the sub
of intense investigations in recent years under the br
heading of cavity quantum electrodynamics. Some of
more exotic effects uncovered in theoretical work deal
with a single atom in a cavity should become more acc
sible in the laboratory once the technologies of atomic co
ing and trapping are incorporated into experiments@2#. One
model system that has received a lot of theoretical atten
comprises a single atom coupled strongly to a single qu
tized cavity mode, driven by an external coherent field, a
including cavity damping and spontaneous emission. By
lowing for a flux of energy through the atom-cavity syste
the dynamics can evolve to a nonequilibrium steady s
that exhibits many interesting and novel features@3–8#.

In this work we explore a modified version of this mod
in an idealized limit. We drive the atom directly with a two
or three-mode external coherent field and examine the s
tion of perfectly reflecting cavity mirrors~lossless cavity!.
We will also provide a brief glimpse at the effect of inclu
ing loss out of the cavity. The driving field will be create
using three modes of varying amplitude and phase, separ
by a fixed frequency spacing. We will look at driving field
created via pure amplitude modulation~AM !, which result in
sidebands that are in phase with the central mode, and fi
created via pure frequency modulation~FM!, which result in
551050-2947/97/55~1!/787~9!/$10.00
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sidebands that are in quadrature with the central mode.
will also look at single-sideband driving fields and arbitrar
intensity double-sideband fields, created via combination
AM and FM. Because of the multimode nature of the
modulated driving fields, we will allow the cavity to suppo
more than one quantized mode. We analyze the effect on
atomic fluorescence when the allowed cavity modes are
ied in number and in frequency separation.

A novel feature arises in steady state when the modula
amplitude of the external driving field is zero. Even though
coherent field exists within the cavity in steady state, ma
tained by the perfectly reflecting mirrors, the atom decoup
from this field, and the fluorescence turns off~see Ref.@9#!.
For highly reflecting, but not perfect, mirrors, the fluore
cence is strongly suppressed. This decoupling of the a
from the field is exactly analogous to the atomic decoupl
leading to the three-level field-induced transparency
scribed by Cardimonaet al. @10–12#, and later modified by
Harris and co-workers@13,14#. ~Harris’s version of electro-
magnetically induced transparency has been observed
perimentally in atoms@15#.! In the following work we find
that even when the driving field is modulated, the decoupl
takes place whenever the cavity field mode spacing is a
monic of the driving field mode spacing.

II. REVIEW OF SINGLE-MODE-FIELD RESULTS

We will first review the results obtained when a singl
mode field is incident from the side of a single-mode cav
containing a single two-level atom~see Fig. 1!. With this in
mind, the wave equation is

S ]2

]t2
2c2

]2

]z2
14ps

]

]t DE~z,t !524p
]2

]t2
P~z,t !, ~1!
787 © 1997 The American Physical Society
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788 55D. A. CARDIMONA, KARL KOCH, AND P. M. ALSING
where thes term comes from theJ5sE constitutive rela-
tion and will account phenomenologically for the cavi
losses. Defining slowly varying envelopes through the re
tions

E~z,t !5E~ t !exp@ i ~vt2kz!#1c.c., ~2a!

P~z,t !5P~ t !exp@ i ~vt2kz!#1c.c., ~2b!

we can derive the equation satisfied by the electric fields
the slowly varying envelope approximation~SVEA! as

S ]

]t
1gcDV~ t !52 i

ac

T2
r 12~ t !, ~3!

where we have made the following definitions and subst
tions:

V~ t ![2dE~ t !/\, ~4a!

P~ t !5Nd* r 12~ t !, ~4b!

gc[2ps, ~4c!

a[4pvNudu2T2 /c\. ~4d!

Here d is the transition dipole moment,N is the atomic
number density,r 12(t) is the slowly varying part of the off-
diagonal density matrix element,a is the inverse Beer’s ab
sorption length, andT2 is the dipole dephasing time. Now
defining the Bloch variables asu5r 121r 21, iv5r 122r 21,
andw5r 222r 11, and writing the Rabi frequency in real an
imaginary parts asV5(V81x)1 iV9, wherex is the con-
stant monochromatic field applied to the side of the cav
andV81 iV9 is the cavity field, we may write the Maxwell
Bloch equations for the atom-cavity system as

u̇52u/T22Dv2V9w, ~5a!

v̇52v/T21Du1~V81x!w, ~5b!

ẇ52~w2weq!/T12~V81x!v1V9u, ~5c!

FIG. 1. The externally driven two-level atom-in-a-cavity syste
under consideration in this paper.
-

in

-

y

V̇81gcV85
ac

2T2
v, ~5d!

V̇91gcV952
ac

2T2
u, ~5e!

whereT1 is the population decay time,D5v212v with v21
the atomic transition frequency, andweq is the equilibrium
population inversion.

From these equations we find the steady-state values t

uss5
@~Vss8 1x!DT22Vss9 #weqT2

11~DT2!
21@~Vss8 1x!21~Vss9 !2#T1T2

~6a!

52Vss9T2
2gc

ac
, ~6b!

vss5
@~Vss8 1x!1Vss9 DT2#weqT2

11~DT2!
21@~Vss8 1x!21~Vss9 !2#T1T2

~6c!

5Vss8T2
2gc

ac
. ~6d!

If we have a very good cavity such that (2gc/ac)!uwequ, we
find expressions for the Rabi frequency to first order
~2gc/acweq! to be

Vss8
~1!52xF11S 2gc

acweq
D G , ~7a!

Vss9
~1!52x~DT2!S 2gc

acweq
D . ~7b!

From these expressions we see that for a perfect ca
(gc50), the steady-state cavity field is exactly the appli
field, only 180° out of phase, resulting inuss505vss and
wss5weq. The two fields cancel at the site of the atom an
for weq521, the atom remains in the ground state, ev
though the applied field is incident on it continuously~see
Ref. @9#!.

III. MULTIMODE FIELDS

The question now is: Can this cancellation effect pers
in the presence of a multimode external driving field?
investigate this, we apply a general three-mode driving fi
in place of the single-mode field of Sec. II, and allow t
cavity field to develop several modes. We will consider the
to be an aperture in the cavity to restrict the transverse va
tion to the lowest-order mode. Then, putting the atom at
center of the cavity we can approximate the wave fronts
plane waves, and consider only longitudinal cavity mode

In this approximation, we expand the cavity fieldEc(z,t)
in terms of the cavity mode functionsUn(z) as

Ec~z,t !5(
n

Cn~ t !Un~z!1c.c., ~8!

where the cavity mode functions satisfy Helmholtz’s equ
tion
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55 789FIELD CANCELLATION BY A TWO-LEVEL ATOM IN A . . .
S ]2

]z2
1kn

2DUn50 ~9!

with the appropriate boundary conditions, and are norm
ized over a cavity of lengthL such that

2

L E
2L/2

L/2

Um* ~z!Un~z!dz5dnm . ~10!

The mode amplitudesCn(t) can be written in terms o
slowly varying amplitudesEn(t) as

Cn~ t !5En~ t !exp~ ivt !, ~11!

so that the cavity field can be written as

Ec~z,t !5(
n
En~ t !Un~z!exp~ ivt !1c.c. ~12!

Since in this work we are considering a single atom at
center of the cavity, we will confine the polarization to
region small compared to the variation of the cavity mod

We do this by introducing the Gaussian factore2z2/a0
2
/Ap

into the atomic polarization~herea0 is the Bohr radius!. If
we now approximate this factor with itsd-function limit

@ lima0→0e
2z2/a0

2
/Apa05d(z)#, Eqs.~2b! and ~4b! become

P~z,t !5Nd* F S u1 iv
2 Dexp~ ivt !1c.c.Gd~z!a0 . ~13!

We made thisd-function approximation in anticipation of a
integration overz. Inserting these expressions into the wa
equation~1! gives

(
n

@ Ën12iv Ėn2v2En1c2kn
2En12gc~ Ėn1 ivEn!#Un

3exp~ ivt !1c.c.

522pNd* @ ü1 i v̈12iv~ u̇1 i v̇ !2v2~u1 iv !#

3d~z!a0 exp~ ivt !1c.c. ~14!

After invoking the SVEA, we multiply both sides of thi
equation byUm* (z) and integrate over the cavity from2L/2
to L/2 to obtain

2iv Ėn1~c2kn
22v2!En12ivgcEn

52pv2Nd*
2a0
L
Un* ~0!~u1 iv !. ~15!

We use the following approximation and definitions:

c2kn
22v2[vn

22v2'2v~vn2v![2vDn[2v
2pn

tR

[2vnDc , ~16!

wheretR is the cavity round-trip time andDc is the cavity
mode spacing. If we write the Rabi frequency for thenth
mode as
l-

e

.

Vn5
2d

\
En , ~17!

we find the multimode equivalent of Eq.~3! to be

V̇n1~gc2 iDn!Vn52 i
aca0
T2L

Un* ~0!~u1 iv !. ~18!

We will first let Un(0)51 and let the cavity support a
finite number of modes. Now our general three-mode driv
field Rabi frequency can be written as

2d

\
Edrive5

2d

\
$2A cosvt12B cos@~v1d!t#

12C cos@~v2d!t#%

[
2d

\
$2A@11camcosdt#cosvt

22Acfmsindt sinvt%

[2x8cosvt22x9sinvt5~x81 ix9!eivt1c.c.

[xeivt1c.c. ~19!

If we assume there is an atomic steady state in whichuss50,
and then search for a solution to Eqs.~5a!–5~c! ~now with
x→x8 and ax9 added toV9 everywhere! and Eq.~18!, we
find

(
n

Vn952x9, ~20a!

vss5S (
n

Vn81x8DwssY G, ~20b!

wss52gY Fg1S (
n

Vn81x8D 2Y GG , ~20c!

V̇n95DnVn8 , ~20d!

V̇n852DnVn91
aca0
T2L

vss, ~20e!

whereG51/T2 , g51/T1 , weq521, and we have assumed
perfect cavity withgc50. If we look for conditions in which
the atom remains in the ground state in this atomic ste
state~taking our cue from the single-mode results in whi
wss5weq521!, we find

(
n

Vn852x8, ~21a!

vss50, ~21b!

Vn85Ancos~Dnt1fn!, ~21c!

Vn95Ansin~Dnt1fn!. ~21d!

Using Eqs.~20a! and ~21a!, we find that the above stead
state is satisfied if
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790 55D. A. CARDIMONA, KARL KOCH, AND P. M. ALSING
f6n50, ~22a!

A052x0 , ~22b!

A6n52 1
2x0~cam6cfm! for Dn5d, ~22c!

A6n50 for DnÞd, ~22d!

wherex05(2d/\)A from Eq. ~19!. The various specializa
tions of the general modulated driving field@Eq. ~19!# occur
in the following manner: ~i! cfm50⇒pure amplitude-
modulated field, ~ii ! cam50⇒pure frequency-modulate
field, and~iii ! cam5cfm⇒single-sideband field. These solu
tions are borne out in the figures of Sec. V.

As pointed out in Ref.@9#, the single atom in a cavity
interacting with a two-mode field~one driving mode and one
cavity mode! is similar to a single field driving an atom
having two competing transition paths. In both cases,
competing quantities~the two modes in the atom-in-a-cavit
problem and the two transition dipole moments in the thr
level-atom problem! develop 180° out of phase with eac
other. Now we see that, corresponding to Ref.@10#, a single
atom in a cavity interacting with a multimode field is simil
to a single field driving an atom having multiple competi
transitions. In the multilevel atom problem, the transiti
dipole moments become out of phase and quantum mech
cally interfere with each other. Here in the present work,
multimode cavity field stabilizes in a 180° out-of-phase co
figuration when the cavity field mode spacing is a harmo
of the driving field mode spacing (Dc5d/n), producing a
zero net field at the position of the atom.

IV. INFINITE-MODE CAVITY FIELD

In this section we will allow an infinite number of cavit
modes by formally integrating the multimode Eq.~18!. Do-
ing this we obtain

Vn~ t !52 i
aca0
T2L

Un* ~0!E
0

t

@u~ t8!1 iv~ t8!#

3exp@2~gc2 iDn!~ t2t8!#dt8. ~23!

The field that appears in the Bloch equations@Eqs. ~5a!–
~5c!# is Ec(z50,t), which is related to

V~ t !5 (
n52`

`

Vn~ t !Un~0!

52 i
aca0
T2L

E
0

t

dt8@u~ t8!1 iv~ t8!#exp@2gc~ t2t8!#

3 (
n52`

`

uUn~0!u2exp@ iDn~ t2t8!#. ~24!

A. Ring cavity

Let us consider the case of a ring cavity. The mode fu
tions for a ring cavity have the property thatuUn(z50)u251
for all n. Using this property and the Poisson sum formu
@16# allows us to simplify the sum within this integral as
e

-

ni-
e
-
c

-

(
n52`

`

uUn~0!u2exp@ iDn~ t2t8!#

5 (
n52`

`

expF i2pnS t2t8

tR
D G

5 (
m52`

` E
2`

`

dx exp~ i2pmx!expF i2pxS t2t8

tR
D G

5 (
m52`

`

dSm1
t2t8

tR
D5tR (

m52`

`

d~mtR1t2t8!.

~25!

If we recognize that we cannot have a field at a future ti
interact with the atom in the present, we may now write t
cavity field that appears in the Bloch equations 5~a!–5~c! as

V~ t !52 i
aca0
T2L

tR(
m50

M

@u~ t2mtR!1 iv~ t2mtR!#

3exp~2gcmtR!. ~26!

For this ring cavity case, with a round-trip distance ofL, we
havetR5L/c. So we see that the field that interacts with t
atom at timet is just that field created at timet plus all of the
previous fields that have reflected back to the position of
atomm times ~with the maximum ofm being the neares
integer less thant/tR!, with each of these reflected field
being reduced in amplitude due to leakage out of the ca
at the rate ofgc . In the limit of an infinite cavity length we
have

lim
tR→`

V~ t !52 i
aa0
T2

@u~ t !1 iv~ t !#. ~27!

B. Standing-wave cavity

Now let us consider the case of a standing-wave cavity
the cavity mirrors are taken to be atz56L/2, the mode
amplitudes satisfy

Un~z50!5sinFpnL ~z1L/2!GU
z50

5sinS np

2 D ,
n51,2,3,... . ~28!

We see that only every other mode contributes, since ev
other mode in a standing-wave cavity has a mode at
center of the cavity. The sum in Eq.~24! now becomes

1

2 (
n52`

`

expF i2pnS t2t8

tR
D G S 12

einp1e2 inp

2 D , ~29!

where we have used sin2(np/2)5 1
2@12cos(np)#. Using

Poisson’s sum formula once again allows us to write this

tR
2 (

m52`

`

@d~mtR1t2t8!2 1
2d~mtR1t2t81tR/2!

2 1
2d~mtR1t2t82tR/2!#. ~30!
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Now the field appearing in the Bloch equations becomes

V~ t !52 i
aca0
T2L

tR
2 (

m50

M

exp~2gcmtR!@p~ t2mtR!

2 1
2p~ t2mtR1tR/2!exp~gctR/2!

2 1
2p~ t2mtR2tR/2!exp~2gctR/2!#

52 i
aca0
T2L

tR
2
p~ t !2 i

aca0
T2L

tR
2 (

m51

M

$p~ t2mtR!

3exp~2mtRgc!2p~ t2@m21/2#tR!

3exp@2~m21/2!tRgc#%, ~31!

where p(t)5u(t)1 iv(t). For this standing-wave cavity
case, with a round-trip distance of 2L, we havetR52L/c.
Thus, the field-averaging that occurs in a standing wave~the
1/2 in front! is countered by the doubling of the round-tr
time. This field arises from the fact that in a standing-wa
cavity, the cavity field interacts with the atom at every ha
round-trip time, again escaping from the cavity at the rate
gc , as in the ring cavity. Once again in the infinite cav
limit, this cavity field reduces to

lim
tR→`

V~ t !52 i
aa0
T2

@u~ t !1 iv~ t !#. ~32!

FIG. 2. Five cavity field modes allowed, withDc5d. ~a! The
atomic variablesu, v, andw, ~b! the real part of the slowly varying
cavity field, Ancosfn , and ~c! the imaginary part of the slowly
varying cavity field,Ansinfn , plotted vsGt.
e
-
f

In the infinite cavity limit, the Bloch equations for bot
types of cavities become

u̇52u/T22Dv1guw, ~33a!

v̇52v/T21Du1gvw1xw, ~33b!

ẇ52~w2weq!/T12g~u21v2!2xv, ~33c!

whereg5aa0/T2 . These equations are just the neoclassi
equations of Stroud and Jaynes@17# where the Lamb shift
has been neglected and phenomenological damping has
included. This is not too surprising, since in the infinit
cavity-length limit the atom is sitting in free space and fe
ing the effects of its own radiation reaction field. If we letg
be much greater than both 1/T2 and uDu, then we can find
steady-state solutions to these neoclassical-like equat
good to second order in~1/gweqT2! and/or~D/gweq!,

uss'2
x

g

D

gweq
S 11

2

gweqT2
D , ~34a!

vss'2
x

g S 11
1

gweqT2
1
12~DT2!

2

~gweqT2!
2 D , ~34b!

wss'weqF12
x2T1
g S 1

gweqT2
1
11~DT2!

2

~gweqT2!
2 D G , ~34c!

FIG. 3. Five cavity field modes allowed, withDc5d/2. ~a!, ~b!,
and ~c! as in Fig. 2.
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792 55D. A. CARDIMONA, KARL KOCH, AND P. M. ALSING
which then implies that in this limitV85gv→2x and
V952gu→0.

V. GRAPHICAL RESULTS

In all of our numerical experiments, we kept the drivin
field modulation frequency fixed, so that the driving-fie
mode spacing wasd. We then varied the number and fre
quency spacing (Dc) of the allowed cavity modes. In all o
the following graphs of the cavity field, we plot only th
slowly varying part. Writing the cavity field asVn
5Vslowe

iDnt, we find the slowly varying part can be writte
as

Vslow5Vne
2 iDnt

5Vn8cosDnt1Vn9sinDnt1 i ~Vn9cosDnt2Vn8sinDnt !

5Ancosfn1 iAnsinfn , ~35!

where the final line was obtained using Eqs.~21c! and~21d!.
We plotAn cosfn andAn sinfn separately in the following
figures. We first investigate the case of pure amplitu
modulation~settingcfm50!, and then show how the resul
are modified when we generalize the field modulation. T
effect of a nonzero cavity damping (gcÞ0) will be briefly
indicated in the final figure.

In each of the figures we set the amplitude of the driv
field Rabi frequency equal to 1/T25G ~x05G!, so that it can
be considered to be a relatively strong field, but not so str

FIG. 4. Five cavity field modes allowed, withDc5d/1.5. ~a!,
~b!, and~c! as in Fig. 2.
e

e

g

as to wash out the atom’s natural linewidth. Taking our c
from previous work showing that the best atomic respons
a modulated driving field occurs when the modulation f
quency is approximately equal to the driving Rabi frequen
@18#, we setd5x0.

In Fig. 2 we allow five cavity modes to develop and adju
the cavity so that the cavity field mode spacing equals
driving field mode spacing. The plots show the steady s
indicated in Eqs.~22!. We see that all thefn go to zero and
the central mode and the61 modes develop 180° out o
phase with the driving field. The62 modes decay away to
zero. In Fig. 3 we again allow five cavity modes to develo
but now we set the cavity mode spacing equal to one half
driving mode spacing. This brings the62 modes into reso-
nance with the driving field. The61 modes and all thefn
decay to zero. Notice from the time scale that the steady s
takes much longer to reach than when the61 modes were
resonant. In Fig. 4 we set the cavity mode spacing equa
two-thirds of the driving field mode spacing (Dc5d/1.5). In
the figure we see that no steady state is ever reached w
the cavity mode spacing is not a pure harmonic of the driv
field mode spacing~i.e.,DcÞd/n!.

In Fig. 5 we allow seven cavity modes to develop. He
we show only theAncosfn components of the cavity fields
as once again all thefn go to zero. As Eqs.~22! indicate, for
Dc5d the61 side modes are resonant with the driving fie
and become 180° out of phase with it. The62 and 63
modes die away. When the cavity mode spacing is equa

FIG. 5. Seven cavity field modes allowed, with~a! Dc5d, ~b!
Dc5d/2, and~c! Dc5d/3. In each case, only the real part of th
slowly varying cavity field,Ancosfn , is plotted vsGt.
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55 793FIELD CANCELLATION BY A TWO-LEVEL ATOM IN A . . .
the second (Dc5d/2) or third (Dc5d/3) harmonic of the
driving field, the62 or 63 side modes, respectively, mov
into resonance, leaving the other modes to die away. No
once again that the steady state is reached after longer
longer periods of time as the resonant modes move a
from the central three modes.

In Fig. 6 we plot the maximum and minimum of th
atomic inversionw in a long-time limit, as a function of
Dc/d. As we have predicted, the inversion remains at21 in
this steady-state limit whenever the cavity field mode sp
ing is a pure harmonic of the driving field mode spacing.

Figure 7 shows the effects of generalizing the modulat
of the driving field. In each of these figures, we allow fi
cavity modes to develop and only look at theDc5d case, as
the effects of going to higher harmonics has already b
made clear. Also, we only look at theAn cosfn components
of the cavity field because in each case all thefn go to zero,
as predicted by Eqs.~22!. In ~a!, the pure frequency-
modulated case (cam50), we see that the central and61
modes develop 180° out of phase with the driving fie
modes@recall that in frequency modulation, the sideban
are 180° out of phase with each other, hence the2~60.5!
values for the61 modes#. In ~b!, we show the results whe
there is only a single sideband (cam5cfm51). The central
and11 modes become 180° out of phase with the driv

FIG. 6. The maximum and minimum of the atomic inversionw,
after Gt5400, vsDc/d. ~a! Three cavity modes allowed.~b! Five
cavity modes allowed.~c! Seven cavity modes allowed.~d! Twenty-
five cavity modes allowed. The inset is an expansion of the sm
Dc/d part of the 25-mode graph.
ce
nd
ay
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n
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field and all other modes go to zero. In~c!, we letcam51.2
andcfm50.4, to represent a completely general modulat
of the driving field. As predicted by Eqs.~22!, A11 goes to
21/2~1.210.4!520.8 and A21 goes to21/2~1.220.4!5
20.4.

Finally, in Fig. 8 we show how the 180° out-of-phas
condition of a three-mode cavity field withDc5d in the
long-time limit begins to fail as the cavity is made leak
(gc.0). We only show two nonzero values ofgc since the
trend is obvious.

VI. SUMMARY

In this paper we have provided analytic and numeric
sults describing the fluorescence of an atom in a cavity be
driven by an external time-dependent field. The external fi
modulation produces a two- or three-mode driving field,
we allow several modes to develop in the cavity.

When the modulation frequency is zero, we obtain t
single-mode results of Alsinget al. ~Ref. @9#!. The single-
cavity mode becomes 180° out of phase with the driv
field mode in steady state. The resultant field at the posi
of the atom is then zero, and the atom stops fluoresc
When the modulation frequency is made nonzero, the ca
field modes once again develop 180° out of phase with
driving field modes, but only when the cavity field mod

ll

FIG. 7. Five cavity field modes allowed, withDc5d. ~a! Pure
frequency modulation of the driving field (am50). ~b! Single-
sideband driving field (am5 f m51). ~c! Completely general driving
field modulation~am51.2, f m50.4!. In each case, only the real pa
of the slowly varying cavity field,Ancosfn , is plotted vsGt.
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spacing is a pure harmonic of the driving field mode spaci
In other words, whenever the central cavity field mode a
any two of the cavity field side bands match up with th
central driving field mode and its two side bands, the at
decouples from the driving field and stops fluorescing. Al
when cavity damping is introduced, the cancellation eff
becomes less pronounced.

This cancellation effect is analogous to the field-induc
transparency described by Cardimonaet al. ~Refs.@10–12#!.
In that case, multiple transition paths within a multilev
atom are dressed by an applied field and develop 180° ou
phase with each other, thereby adding to zero and cau
the atom to decouple from the driving field.

In the system studied in this work, the atom is coupled
the cavity modes and can absorb from and emit into th
modes. It can also radiate into free space via spontane
emission. Therefore, even when cavity damping is abs
(gc50), the modes of the cavity are damped through th
interaction with the atom. In our analysis we find that in
tially the atom deposits energy into all the cavity mod
However, over time the modes nonresonant with the driv
field decay to zero, while the modes resonant with the d
ing field oscillate to a nonzero value. This continues until,
steady state, the modes resonant with the driving field
equal and opposite to the driving field, at which point t
atom decouples from the field. From Fig. 5 we see that
time necessary to reach this steady state increases as w

FIG. 8. Three cavity field modes allowed, withDc5d. ~a! Zero
cavity damping (gc/G50). ~b! Nonzero cavity damping
(gc/G50.1). ~c! Even greater cavity losses (gc/G50.4).
.
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crease the ratio ofDc/d. For fixed d, this means that the
steady state is pushed farther off when the cavity mode s
ing Dc is reduced. ReducingDc increases the number o
nonresonant modes within the radiative atomic linewidthG
~see the inset in Fig. 9!. If we plot the cavity field modes as
a function of the cavity mode time scaleDct, we find that
they decay at a rate proportional toDc/n whenDc5d/n. The
physical reason behind this is that whenDc5d, there is only
one set of sidebands within the atomic linewidth~since
d5G!. The other sidebands outside the atomic response l
width interact only very weakly with the atom. Whe
Dc5d/n, n sets of cavity field sidebands fall within th
atomic linewidth, feeding off each other and supporting ea
other in a non-steady-state for a longer period of time. In F
9 we demonstrate the above explanation by plotting the
solute value of the real part of the central cavity mode for
seven-mode case versusDct for Dc5d/1, Dc5d/2, and
Dc5d/3, as well as three exponential curves with decay c
stants equal toDc/10, Dc/20, andDc/30. The semilogarith-
mic scale produces straight lines for the exponential curv

We also showed how the multimode equations reduce
the infinite cavity limit, to the neoclassical equations
Stroud and Jaynes~Ref. @17#!. In this limit, we reproduce the
field-cancellation effect when the absorption (aa0) is greater
than 1.

When we allowed modulation other than pure amplitu
modulation, the cancellation effect persisted. Since any a
trary three-mode field can be constructed with combinati
of amplitude modulation and frequency modulation, a
since the above results can be easily extended to more
three-mode driving fields, the field cancellation effect d
scribed in this paper should apply to any general tim
dependent field driving a two-level atom in a multimode ca
ity.

FIG. 9. The absolute value of one plus the real part of the slo
varying central cavity field mode from Fig. 5~the case in which
seven cavity modes are allowed! is plotted on a log scale vsDct to
show the decay to steady state.~One is added to the mode ampl
tudes since the steady-state value is a negative one.! The solid thin
line hasDc5d, the dashed line hasDc5d/2, and the thick solid line
hasDc5d/3. Exponential curves with decay constants ofDc5d/10,
Dc5d/20, andDc5d/30 are also plotted. The inset represents
varying cavity mode spacingDc in relation to the fixed driving
mode spacingd and the atomic linewidthG.
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