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Soft turbulence in multimode lasers
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Using a weakly nonlinear analysis, we study the behavior of a homogeneously broadened laser in the
vicinity of the second threshold. We show that the dynamics is described by a complex Ginzburg-Landau
equation coupled to a Fokker-Plank equation. Although the cubic term of the Ginzburg-Landau equation is
destabilizing for all parameter values, bounded solutions exist because of the strong nonlinear dispersion
(“dispersive chaos). A careful numerical study of the original Maxwell-Bloch equations is also carried out to
investigate the role played by off-resonant solutidigl050-294{@7)02001-5

PACS numbgs): 42.60.Mi, 42.65.Sf, 42.55:f, 42.65~k

[. INTRODUCTION pinpoint the role played by the unstable Rabi side bands:
they are the source of the chaotic dynamics and information
Maxwell-Bloch equations represent the core of many la{energy flows from them.
ser models. They are widely employed to describe all types The study of Maxwell-Bloch turbulence done in Rpf]
of single-mode laser instabilitig4—3] as well as multimode shows how rich the laser dynamics is and how comprehen-
dynamics. Here, we focus our attention on the behavior of @ion of its behavior creates a tool to better understand turbu-
homogeneously broadened unidirectional laser in the abence in various branches of physics. With this idea in mind
sence of transverse effects. The first two assumptions afge have analyzed in detail the near-threshold laser dynamics:
dictated, as usual, by the need to make the analytical angeing near the onset of turbulence allows us to use weakly
numerical investigations as simple as possible, while leavingionlinear analysis to model the laser and thus obtain a par-
the qualitative behavior unchanged. The reason for the Iaspa"y analytical grip on this complex problem.
restriction represents the main motivation for our paper: t0 The aim of the present paper is to set up a framework for
isolate Iongit_udinal instabilities in order to capture the es-g,ch analysis and develop and test an accurate and reliable
sence of their features. _ model of the near-threshold dynamics of a homogeneously
It has been known for a long time that such a mOdeIbroadened unidirectional ring laser. We show that it can be
ig?nwietygo 'anez?:'[l(jtﬁr:s?hgl]g cF:)(;JrrrneF; %irg‘;ngirhésS'Vr\‘lﬁrci?r?%scribed by a complex Ginzburg-Landau equation coupled
: P Y0 a Fokker-Planck equation. Moreover, the values of the

on of the laser. Below threshold, no laser field is emitted, arameters that control these equations are somewhat pecu-
while above there is an electric field in the cavity that can be. q P

described as a single longitudinal mode solution of the mod-a" the Ginzburg-Landau equation has a positive cubic term.

el's equations. As the pump parameter is increased furthé}levgrth_eless, _the so_lutions_do r_10t explode because the equa-
and further, the single mode solution becomes unstablton is highly dispersive, QS|tuat|on that has been analyzed in
against perturbations with wave vectors lying in two side-Ref- [5]. Thus the laser is an optical example of a type of
bands[1,2] centered around two opposite wave vectors. Ac-turbulence already found in hydrodynamids and called
cordingly, the intensity of the laser light starts oscillating dispersive chaos: “a dynamical state in which repetitive
and, if the cavity is sufficiently long, an irregular spatial Pulsing caused by strong nonlinear dispersion produces con-
dependence of the field sets in as well. tinuously erratic spatiotemporal behaviojuoted from the

In small cavities, only one cavity mode can be excited, s@bstract of Ref[6]).
that Maxwell-Bloch equations reduce to a set of three ordi- The paper is organized as follows: in the next section we
nary differential equations that have been shown to bentroduce the Maxwell-Bloch model of the ring laser and
equivalent to the Lorenz model. In such a case, the onset ;lummarize the known properties of the linear stability analy-
irregular behavior arises only in the bad cavity limit and is,sis of the single mode solution. This is important in order to
in any case, limited to the time domain while the spatialdefine the proper environment for the perturbation expansion
profile is that of the corresponding cavity mode. near the second threshold, developed in Sec. lll. There, we

More interesting and experimentally accessible is the casderive the governing equation for the laser field near the
of long cavities, when two new modes are excited. This scebifurcation point (amplitude equations The dynamical
nario is very similar to the turbulent flow of a fluid in a pipe: properties of such equations are investigated in Sec. IV. In
not only the laser output, but also the field spatial depenSec. V, we discuss the correctness of this approximation by
dence along the cavity axis, is irregular. For this reason, thisomparing its predictions with those of numerical integration
kind of laser behavior has been called Maxwell-Bloch turbu-of the model equations and we discuss their validity. Finally,
lence in Ref[4], where it has been analyzed in an informa-in the conclusions we summarize our results and discuss
tion theoretical way. Using mutual information, the authorssome possible ways forward.
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IIl. MODEL AND LINEAR STABILITY ANALYSIS

Besides considering the restrictions already mentioned in
the Introduction, we further assume that the laser dynamics
is well described by mean-field equations; i.e., we postulate
that the profile of the field intensity does not exhibit any
systematic growtlidecay along the cavity. This approxima-
tion becomes increasingly accurate as the reflectance of the
cavity mirrors is increased. Anyhow, the spatial dependence
has been fully taken into account in RET] where, however,
no relevant difference has been found with the simplified
model.

A further remark concerns the detunirdg between the
cavity and the atomic frequeney, . We assume it to be zero
(resonant cageln short cavitiesA plays a crucial role, as it
heavily affects the first laser threshold. In moderately long
cavities, it still plays some role in controlling the switch
among the various modes or their simultaneous functionin
[8]. In long cavities,A loses all meaning: there is always a
cavity mode resonant with the atomic frequency @andan
be always scaled out by changing reference frame.

The laser equations in a frame rotating at frequengy
are

X

FIG. 1. The shaded region denotes the stability domain of
single-mode laser solutions far=7,=1. Lg is the first threshold
Yne, Lg is the line of Eckhaus instability, and;, andL, are the
lines of two distinct Hopf bifurcations.

D=y (=D+x—fp coB),

_ 2D+ kp?| .
IF=k(P—F)+d,F, W=\ —gp|SINB~dze,
aP=—P+FD, 0
=K T sinB+d,¢.
D=y [~D+x—3(F*P+FP*)], 1

where time is normalized to the inverse of polarization deca)ggg\]lz r%rggg'ga%tg}?;??rgﬁ] tr?g?il;te;rr]estggirl]i?m;%‘?alO.Z,i;hc?f
rate vy, , while space is normalized in such a way that the y y

specd of lght 1 equal t0 1y, ads repesent th dampig ¢ SPUSmO soions T can b done by it e
constants of population inversion and electric field, respecp Perp P

: . , ; : numberq, an ansatz that reduces the problem to solving a
g\ﬂé(ggﬁgrﬁgi? scaled with respect4g). Finally, x is the fifth-order algebraic equation for the eigenvalugéq). This

. . ) . _
These equations admit single-mode solutions for eve means that there exist five brancheld(q) and the single

possible value of the wave numberprovided that the pump W“Od‘? solution with wa\(/i<)e ”“’.“b‘*“ IS I_mearly sta}ble if and
value is above the corresponding threshold, _o,nly if the _reaI part Of}‘.k (a) Is negative for all’s and all
i's. A particular case igj=0 since\,(0)=0 on one of the
K 57 0™ it K K . branches. This reflects the marginal stability against global
Fo7=x— (1t wj)el oo e, Ppl=F(o(1-iwy), phase fluctuations, which in turr?follows fr0|¥n tﬁe arbitgrari—
K ness of the phase.

- A general discussion of the stability properties has been
1+k’ carried out in Ref[9]; here, we first recall the main results
K ) and then repeat some of the calculations in the resonant case
where the phasgg” is an arbitrary real number. In fact, _q) a5 some expressions are needed to derive the ampli-
there are infinite stationary solutions with the same wave qe equations in the following section. In Fig. 1, we report

number, one for each value of the phase. This has deep COfe horders of the stability domains with reference to the case

sequences on the dynamics. Namely, the single-mode Sta— v=1. The line L, represents the first laser threshold

tionary solution is always marginally stable with respect to a,,,\e which the single-mode solution with wave nunibisr

perturbation that changes the phase of the field uniformly qiqineq by the laser cavity=1+k24, in the present case

across the cavity length. In or.de_r to highlight this Phenom'with nonzero amplitude. The lineg represents the border of
enon and keep better track of it, it is convenient to introduc

| di ~the field and th \arizati qae domain of Eckhaus instability: laser modes to the left of
polar coordinates; the field and the polarization are expressqd. 4re Eckhaus unstable, i.e., the uniform solution is un-
as modulus and phase,

stable for small but finitey's. Both L; andL, are marginal
F=fel, P=pefe®. stability curves, where a single-mode laser solution becomes
' unstable under perturbations witin general finite wave
The laser equations expressed in the new variables are ~numbers. More precisely, unstable solutions are placed
abovel; and to the right ofL,. As a result, the shaded
o f=—kf+9,f+ kp cosB, (2 region is the only domain where the corresponding single-
mode solutions are linearly stable. Notice that above
op=—p+fD cosB, x=35.2.., nostable single mode exists. Accordingly, such a

2
Do=1+wi, wy
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critical value plays a role similar to any point along the cided to study perturbatively the resonant single-mode solu-

Benjamin-Feir line in the parameter space of the complexion, the first to become unstable when increasind\ever-

Ginzburg-Landau equation, although the instability mechatheless, we show in Sec. IV that our approach is also able to

nisms are different in the two models. account for the effect of small off-resonance effects.
Numerical simulations performed abog indicate that The single-mode resonant stationary solutionf §s= p,

the instability is practically of Eckhaus type, since it just =x—1, B,=0, ande=¢,, an arbitrary constarfrom now

Ieads_to_an adjustment of the wave numk?emtil the stable on, we drop the dependence kras we will always refer to
domain is entered and no chaotic evolution is observed a”P(=0)

longer. More interesting is the region to the right lof,

where. desite the existen f linearly stabl lutions. an The laser equationg), linearized around this stationary
where, despiie the existence of linearly stable solutions, asolution, are described by a block diagonal operator,
irregular dynamics is observed. For this reason, we have de-

Sf —k+4d, K 0 0 0 Sf
; Sp 1 -1 fo 0 0 Sp
—| D= —nfo —wnfo — 0 0 oD | . ()
at

op 0 0 0 —(1+x) —a,]| 9B

o9 0 0 0 K a, o9

After expanding in plane waves of wave vectprwe obtain N4 (14 y+ k= IDON2H [y (L+ k+T5)—iG(1+ )N
two separate eigenvalue problems. The€22submatrix gives _
rise to the solutions +27y,kf3—iq(1+f3)y,=0. (4)

(141 +igE IF = qPF 2gi (1= ) The threshold can be determined by imposing that the maxi-
= K)T19= k)" —097+2qi(1 -« ' mum value of the real part of (upon varyingq) is zero. In

2 other words, we must impose that=iv when A =idqv
) i where bothv and d,v are real numbers representing the fre-
Both eigenvalues are independent of the pump value. Thg ency of the oscillations at the Hopf bifurcation and its

eigenvalue thh the minus sign has a neggtive real part'for _au,ierivative with respect to the wave numigerin this way we
g values, while the real part_of the one_W|th th_e plus sign iscap determine both the critical pump valje(or, equiva-
exactly zero forg=0, where it reaches its maximum value. lently ?2:}_ 1) and the critical wave numbd.

The “eigenvector” corresponding to this zero “eigenval- | &t ys start by solving the real part of E¢) with respect
ue,” w;=(0,0,0,0,3, is the global phase of the field, in iy the wave number,
agreement with the previous considerations.

The spectrum of theX83 submatrix depends implicitly on
the value of the pump parameter throuigh For sufficiently
high intensity, a mode of wave numbgeq becomes un-
stable. Accordingly, the amplitudes of the electric field, po- o ) ) )
larization, and population inversion acquire a modulation ofAfter substituting Eq(5) in the imaginary part of Eq4), we
wave numbed. This is the so-called second laser thresholdobtain the further constraint
[1,2], which we show to be a subcritical Hopf bifurcation for
all parameter _vall_Jes. Since this stL_de i_s import_a_nt_ in view of vA— V2(3'F2_ ) v+ zyﬁ2(1+"f'2) =0. (6)
the characterization of the evolution in the vicinity of the
bifurcation, we go through the various steps in some detailWe can now compute the derivative of Ed) and solve for

The determinant of the>83 submatrix is dqv, Obtaining

(1+y,t«) 1/2—2)/”/(?2
(I+y)v

q= ®

J _ _i(1+?2)’y”+1}(1+'}/u)+i1/2
T 32+ 21+ y+ k—id) v—[i 7 (L+ T2+ ) +G( 1+ y)]

(7)

Upon imposing that,v is a real number, i.e., by multiplying the numerator by the complex conjugate of the denominator and
imposing that the result is real, one obtains

3(2k—1—y) +q(1+ y)r?— V?’n[(1+?2)(1+ Y+ r(1- 7\\+2’F2)]+(1+’Fz)(1+ ¥)a,=0.
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We can substitute expressi@B) to eliminate theq depen- where
dence in the above equation, to obtain

3ty (y—3f )22 (1+T9)=0. (8 Uo= oWy

Equations(6) and (8) are very similar to one another. By

summing them, we obtain a simple solution for the fre- 1 (G
quency at threshold, U1:U10+§[L11W26 qz=ebic.cl,
v2=3(3f 2~ y)y. )

N . . . = i(qz—wt) i(2Gz—2at)
By substituting back in Eq(6), we find an analytic expres- Y2 Upot[Uze€ +tc.cl+[uge +c.cl].

sion for the pump parametgg]

T_F2+1=5+3v + o+ 3yt 2 The s'ubindicefs of different variables havg always the same
X=15H1=5+3y+2vV2y2+3y+ v, (10 meaning: the first index refers to the ordekirthe second to

the value of the wave vector, measured in multipleyof

which is independent of th@escaled field decay rate. Let T : is th q litude of th de with
us stress that this cancellation of the parameter dependence igere Ore,¢go IS the zero-order amplitude of the mode wit

not obvious at all: it does not follow from any scaling of the wave vectgrq=Q, Uz IS & vector that represents the terms at
variables. The same comment applies to the frequanoy  [IrSt Order ine with wave vectorq=0, andL, is the ampli-

the bifurcating solution, another quantity that is independen{uo'_e oLthe mafg”}f‘"y stl;alble _modq#q) at f(i)rst (?]r_(ljer ing.
of x. Notice also that since+0 for all parameter values, the Wy Is the marginally stable eigenvector g0, while w; is

bifurcation is always of Hopf type the marginally stable eigenvector @=q. The marginally

A compact expression for the wave number is obtained b)§tab_le modew, appears al(eady at order_zero because the
partially substituting Eq(9) into Eq. (5) stationary solution is marginally stable with respect to this

mode independently of the pump value, i.e., independently
T2 of . The termsu,y and u,; are produced by the nonlinear
n(f+y) - - - :
K, (1D interaction of the amplitudes of the two marginally stable
2(1+y)v eigenvectors.
The amplitude equations describe the nonlinear dynamics
close to the second threshold, i.e., when the unstable eigen-
' value is positive, but small. Under this hypothesis, the dy-
namics of the terms;; , of ¢y andL ,, is slow in both space
and time,

q=7-

showing that the wave number does, instead, depend bm
particular, we see thaf can be equal to zero. In other words
for special values of; and « this instability can be observed
even in short cavities.

III. NONLINEAR ANALYSIS

B 2.2 242
The linear stability analysis developed in the previous Uij(82,8t,8°2%, 8715, . ),

section tells us that the single-mode solution has always a
marginally stable mode with wave vectge=0, which corre-
sponds to the phase invariance of the single-mode solution.
At threshold, a second mode, with wave vedaerq, is mar-
ginally stable. Nonlinear analysis builds on this knowledge 92 2.2
to obtain the equations, ttemplitude equationsobeyed by Lii(ez,6t,872%,87%,. . ).
the amplitudes of these two modes in a neighborhood of the
bifurcation point[10].

We introduce a vectou that represents the difference
between the values of the fieldsp, D, ¢, and 8 and their
stationary values at threshold,

(poo(ez,st,szzz,sztz,. o),

We introduce a control parametgrdefined as

— 2
m=epiteupte,

f

P and slow space and time variables,
u=| D |-

¢

IB Tozt, T]_:St, T2:82t2,. cey

U611 Olol !

Call £ a small parameter that measures the distance of the
control parameter, the pump intensity, from the bifurcation Z0=2, Zy=¢z, Z,=¢€°7%...,
point: at the bifurcation point=0. Near the bifurcation
point, we can expand in powers ofg,
so that the linearized operator defined in E).is expanded
U=Ug+eu;+e2u,+0(ed), in
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~Kk+d, Kk 0 0 0 TK¥Iz, k0 0 0
1 -1 f, 0 0 1 -1 0 0
“nfo —nfo —w 0 0 = _7\\? _7“": 7 0 0
0 0 0 —(1+x) -0, 0 0 0 —(1+k) —dgz
0 0 0 K d3 0 0 0 K« 9z,
dz, 0 0 0 O
0 0 wu; O 0
+e|l —vm1 vma O O 0 +0(&?)
0 0 0 0 —dz
0 0 0 0 Jdz
=Lo(q)+eL1+0(e?),

where the symbolCy(q) highlights the fact that only the tain a term in(d,¢)%. (5) Finally, if IA_EEna”Lnl is the am-
order zero term of the expansion depends on the wave vectplitude of the unstable mode at wave vedjothe only func-

of the modulation. . tions of Le'dZ that can appear in the phase equation must
The laser equationg?), can be written as have zero wave vector; i.e., they must be of the fd¢hh.|?).
Therefore a normal form for the phase equation up to third
(aTO"F8(9T1)(U0+8U1):[£0(q)+8£1](U0+8U1) order ine is
+ Mug,u;)+0(&?), - - - ~ o
o o= 10,0+ ad, 0+ a3| L|2f72(P, (14

whereN(u) are the nonlinear terms. The amplitude equations _ o .
are obtained by expanding this equation in powers ahd ~ Whereq;, i=1,3 are real constants. Moreover it is possible to

by imposing that at each order the equation show [10,12,13 that the coefficients of the linear terms of
the amplitude equations are related to the derivatives of the
Lo(QPu,=5S,, (120  marginally stable eigenvalug(q,u). In the case of Eq(14)
we have
where S, is a source term function of the slow derivatives
and of the amplitudes of order lower thanis solvable. The ay=—1d\(0,0), ap=—dgq\(0,0). (15)
operatorLy(q) is noninvertible forg=0 andg=q. Therefore
this equation is solvable only if Now, for the second equatiofit) The equation fot. can

S V=0 13 be complexL itself being a complex variablé2) The mode
e is stable foru<0, unstable fo.>0. Therefore, the equation

wherev; , i =0,1, are the kernels of the adjoint of the matri- CONtains a linear term of the formd(+i ;) uL. (3) All the
cesLy(0) and Ly(T), respectively. terms that appear in the equation havg vya;/eA vegton.
Equation(13) is the amplitude equation up to orderThe ~ Therefore, they must be of the forfi{d,¢,|L|)L. (4) Fi-
algebra involved in obtaining them is rather heavy and wea!ly, there are no terms i, ¢L, since the nonlinear terms
have written a Maple procedure to obtain them up to third" the laser equations2), are independent af,¢. Therefore,
order in s. However, their form can be derived by using e @amplitude equation fdr has the form
symmetry argumentl1]. The purpose of the Maple proce- - - - -
dure is, then, to provide the numerical values of the various L= (81 +i8) ul+Fd,L+(m1+in2)d, L +(1+i02)
coefficients. alon . ~on
Let us start by the phase equation, the equation for X(0:0)2L+ (gyFio)|LIL, (16)
e=2,e"¢,0 (We have shown in the previous section that
is the global phase of the fieldWe can make the following
observations(1) The equation must be real, singds a real
variable.(2) The value ofg itself does not play any role in
the dynamics. The actual value of the phase is irrelevant;
what matters are the changes of the phase across the cavity,
i.e., d,¢. (3) The phase is marginally stable independently of _
the value of the pump. Therefore the equation does not con- ¥=—1d47\(q,0),
tain w. (4) The nonlinear terms in Eq2) do not depend on (17
d,: as a consequence the amplitude equation does not con- (mp1t+iny)= —&qq)\(a,O).

where all the terms , 3, 7, ¢, ando; are real. The coef-
ficients of the linear terms are related to the derivatives of the
marginally stable eigenvalue gt=q by

(8,+162)=3,7(G,0),



756 D. CASINI, G. D’ALESSANDRO, AND A. POLITI 55

These relations together with Eqd5) are used by the (@ (b) ©
Maple procedure to find the values of the linear coefficients. - 0 i 0 -
The values of the nonlinear ones are obtained by solving © c, c
Egs.(12) and(13) up to third order ine. Bl
By scaling space, time and the two varlabieandL and -2 r
by referring to a suitably rotating and moving reference a0 |
frame, it is possible to rewrite Eq§l4) and (16) in a more -0.8
compact form, -4
d,L=pL+(1+icy)d L+ (1+icy)|L|’L - . - . - .
- H ( v & ( 2)| | 1'oo.o 05 " 1.0 Y 054 10 6o.o 05, 10
. ]
—(1+ica)(9,0)2L, (18)
FIG. 2. The three coefficients of the complex Ginzburg-Landau
9,0= C4g{¢+c53£5@+C6|L|23§¢,, (19 equation(18) vs the only relevant parametey,.
where ratio between the real parts of the numerator and of the de-
nominator in Eq(7). Again, by taking advantage of E¢p),
s S5 R we obtain
T=011—2 l, =1z —1, o= —gﬁ,
U 7 o1
- 2v3(1+y)
—~ , Gq7= — I @
L=\/— &%, ¢,=—2, 2ve(1+y)+ (7= )
01 71
which contains a nontrivial dependence on the parameter
o 0, a— 9 Notice that this is the coefficient @f,L.
sztf_l' C3=— 01’ C4= 5, From Eq.(4), and recalling the expression fagv, Eq.
(21), one obtains
ap a3
Cs=—, Cg=—.
> 7 ° g1

It is immediately recognized that E¢L8) is a complex
Ginzburg-Landau equatiofCGL) coupled with a further
equation for the global phase. In the next section we discuss
the values of the various coefficients, the form of the equa-
tions (18) and (19) and we compare their solutions with
those of the Maxwell-Bloch equations, Eq$) and (2).

IV. AMPLITUDE EQUATIONS

The coefficients of the amplitude equations are functions
of two independent parameters only, the rescaled field- and
population-decay rates, and ;, respectively. We have de-
termined all the coefficients by means of the Maple proce-
dure for several choices of the two parameters. The numeri-
cal values for the Ginzburg-Landau equation are reported in
Fig. 2, while those of the phase equation are plotted in Fig. 3.
It turns out that the former set of coefficients is independent
of . This result can be confirmed analytically in the case of
the coefficientc;. From its definition and from Eq17), we
can write

Im[ 94\ (4.,0)]

T RE Gy (.01 20

We know that the marginally stable eigenvalue is, at thresh-
old, purely imaginary and, from Sec. Il, that its imaginary
part is given by Eq(9). Moreover, always from Sec. I, we FIG. 3. Surface plots of the three coefficients of the phase equa-
know thatd,v is a real number: therefore it is equal to the tion (19) vs y and«.
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Fgoh =2(9gv)? — — o 22
aoh = 2(q) P(1+y)+iT2-i(1+12)y, 22
|
Substituting back in Eq20) and using Eqs(9) we find It is instructive to write the phase equation in terms of the
variableQ,
_ T2(8=8yf—10y,+ 13y f ) +3%7(+2)
=V ~ ~ o ’ — 2

(14 y,)(— 35(4+ 18f 2, — 32— 81 ) 9.Q=d,(CatCe|L[*)Q+C50,,Q. (24

(23

This is a Fokker-Planck-type equation wi playing the
which is independent ok. Physical considerations on the role of the “probability distribution,” although there is no
damping processes reveal that the decay rate of the polarizaeed for it to be positive definite. The configuratifdr] =0
tion must be larger than or equal to the decay rate of th@ndQ=const is a solution of the equation, as it should, since
population. Accordingly;y, is bounded to be smaller than 1. it is a generic cavity mode. The termy+ c4|L |2 is analogous
For y—0, c, diverges to—x as —1/\48y,. The overall to a force field and it tends to make the phase drift. In the
behavior is reported in Fig.(8). A similar proof for the absence of amplitude fluctuatiorfc=0) it reduces to the
independence of other two coefficients, though in principle standard phase velocity of the cavity modes.
feasible, would involve so much algebra as to be in the end The Fokker-Planck equation conserves the overall prob-
very obscure. In the absence of any short-cut we just rely oability, a feature that in the laser context becomes the con-
the numerical evidence. servation of the average wave numb&), i.e., of the wind-

The first general observation about the amplitude equaing number of the global phase. The evolution of resonant
tions concerns the sign of the coefficients. The cubic ternsolutions can be understood by recalling the spectral proper-
turns out to have always a positive real part, thus meaningies of the Fokker-Planck operator, which admits only nega-
that it has always a destabilizing effect. In other words, wetive eigenvalues except for a single zero component
are in the presence of a subcritical Hopf bifurcation, i.e., forpressing the probability conservationin fact, in the
pump values smaller thagp two oscillating solutions coexist resonant casg,Q)=0, so that no component of the initial
together with all stable plane waves. Accordingly, at least inphase configuration lies along the marginally stable direction
principle, it is possible to observe a nontrivial dynamicaland the asymptotic solution is necessai@=0, i.e., the
behavior below the second laser threshold. Whether this imphase tends spontaneously to homogenize. Accordingly, the
plies the existence of a stable chaotic evolution is an opeasymptotic dynamical features are determined only by the
guestion that we leave to future investigations. Above threshGinzburg-Landau equation. Nevertheless, the corrections to
old, in the absence of any spatial variations of the fields, th¢he drift term in the phase equation have a sound physical
positive cubic term indicates that one should include at leadnterpretation. In fact, the term, is nothing but the phase
the fifth-order contribution to confine the evolution within a velocity of the single modéin the rescaled unijsthat we
finite region of the phase space. Nevertheless, @chad know to be independent of the wave numléerwhen the
Kramer[5] have shown that if the system is sufficiently dis- dynamics is switched on, the nonzero average valugt pf
persive or, more precisely, &,<4c;, the amplitude of the induces a correction that can be interpreted as a shift in the
field L remains bounded. A direct check from the data re-group velocity. In fact, the time derivative gfis a variation
ported in Fig. 2 reveals that the inequality is always satisfiedpw in the global frequency, while the spatial derivative is
indicating that the dynamics of the CGL alone remains connothing but a variatiordk. Thus, we can conclude that the
fined. nonlinear dynamics induces a decrease in the group velocity

The second comment on the CGL equation refers to itgcg turns out to be always negative
coupling to the phase equation through the last term propor- In the nonresonant case, the paramgteannot be scaled
tional toL. The real part of its coefficient is always negative, out any longer. In particular, fqe<<1, the drift present in the
implying that it tends to stabilize the homogeneous solutiorphase equation is of order 1, while the dynamics of the am-
with L=0. A partial explanation of this effect is offered by plitudeL is very slow. Accordingly, the phase dependency in
the analysis of the simple case whegw=Q is independent the Ginzburg-Landau equation can be safely averaged over
of z. A solution with a constant valu® #0 of the derivative the spatial variable. Sind®)=(d,¢) is a constant of motion
of its phase is nothing but a nonresonant cavity mode witi{see the above considerationthe role of the phase is simply
wave numbek= Q. A direct linear stability analysis of such to renormalize the control parameiero a smaller effective
modes reveals that they are less unstable than the resonafalue. Accordingly, thel evolution is still described by a
one, as they bifurcate at larger values of the pump paramet@inzburg-Landau equation, whil&|? can be seen as an ex-
(see Fig. L ternal chaotic forcing acting on the global phase. This obser-

Thus, the conditionu=Q? is nothing but a quadratic ap- vation suggests introducing a further representation of the
proximation of the threshold line of the nonresonant modephase dynamics by removing the average spatial drift from
and, accordingly, we see that the amplitude equation modehe global phasey=¢—(Q){. The variabley satisfies the
accounts also for their evolution. equation
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9.4p=(Cq+Co|L|?) I p+ Csd  h+ (CytC L|2)<Q>-(

The first term in the right-hand side can be effectively re-
moved by choosing a suitable moving reference frame. In
such a case, one is left with a model which is very reminis-
cent of the Edwards-Wilkinson equation for the interfacial
profile heighth [14],

where ¢ is a white noise term with averagé)=v. In fact,

the main difference between the above model and#).is

that the stochastic forcing is substituted by a chaotic fluctu-
ating term resulting from the integration of a CGL. However,
we believe that this is not extremely important as long as the
evolution of the CGL equation is chaotic with no long-range
space-time correlations.

V. NUMERICAL ANALYSIS

To test the correctness of the amplitude equations in the
vicinity of the second laser threshold, we have numerically
integrated both the original Maxwell-Bloch model and the
amplitude equations for the particular choice of parameter
values y=«=1. In this case,y=8+4v3=14.9288, while
c,=0.81161 and,=—8.88366. We have used two different
algorithms to integrate both sets of equations: a split step and
a pseudo-spectral method, both with periodic boundary con-
ditions. In both cases the space derivatives have been evalu-
ated using a fast Fourier transform routine. A Runge-Kutta
algorithm has been used to integrate the nonlinear part of the
equations in the split-step program. A variable step variable FIG. 4. Gray scale images of the modulus of the fielth) and
order Adams algorithniNag routine d02cbfhas been used of the electric field amplitudé (b) obtained by integrating Egs.
in the pseudo-spectral program. Both codes have produced8) and (1), respectively. The horizontal axis represents the posi-
comparable results. Moreover we have tested the progrant®n of the field along the cavity, while time flows downward. The
by checking that the numerical stability threshold characterparameters of both simulations correspondxtey,=1. Equation
istics of the traveling-wave solution coincide with those ob-(18) has been integrated wila=1, for 50 time units on a 512-point
tained in Sec. II. grid of total length 50. Equatiofl) has been integrated witf=16,

Two typical patterns, one di| and one of the electric for 100 time units on a 512-point grid, corresponding to a cavity
field amplitudef in the resonant case, are reported in Fig. 4'€ngth 125.

using two gray-scale images. Space runs from left to right, ) .
while time flows downwards. In Fig.(d) we see that around Where the overline denotes temporal average. By recalling
the “defects,” where two propagating filamentsvhite the scaling transform_atlons adopted to arrive at expression
stripes coalescel. exhibits a sharp peak. The approximately (18); one can also write
periodic spatial structure reveals the existence of a further 118
spatial scale besides that corresponding to the critical wave Af== |2 |,y 2AL=2.452AL, (28)
numberq of the unstable perturbations, obviously absent in 2oy
this representation, but clearly visible in Figb# (the high-
frequency ripples Moreover, we can see from these image
how this type of behavior is comparable to the “dispersive
chaos” phenomenology analyzed in RE3): peaks of light
move in an irregular manner along the cavity never settlin
down. ine the dependence dfL on the control parameter. The
A quantitative comparison with the Maxwell-Bloch equa- results of the numerical comparison, reported in Fig. 5, re-

tions has been done by computing the average square amp‘ﬁ‘-aal an exc_eller_lt_ agreement. The mair_1 source of limitations
tude of the field fluctuations to the applicability of the CGL equation comes from the

spikes arising when two nearby filaments coalesce. In fact, it
is precisely wherjL| is large enough that the perturbative
Af=(5f?), (27) approach may fail. Therefore, we have determined numeri-

swhereAL is defined in an equivalent mannerad andw,;

is the first component ofv,. Numerical simulations done at
pu=1 give AL=2.12+0.02. Asu can be scaled out in the
gﬁinzburg-Landau model, this information suffices to deter-
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FIG. 5. Average square amplitude of field fluctuations for dif-

ferent values ofu (full circles) compared with the expected value with no implication on the asymptotic dynamics. The aver-
from the CGL equation. All simulations refer to the casey=1.  age winding number remains practically constant and equal

to the initial value in the evolution of both the perfectly
Ca||y the probab|||ty dens|t}P(||_|) for the same parameter resonant and of the most off-resonant mode. In the former
values as above in order to test whether it is bounded frongase, this behavior can be explained by symmetry consider-
above. The properly rescaled histogram is reported in Fig. @tions: positive variations df(t) are equally likely as nega-
where it is seen a clear power-|aw decay at |arge intensityve ones. In the latter case, instead, it suffices to notice that
values. However, the most important feature is the lack of configuration withk,=0.3 corresponds to a point slightly
any evidence of an upper bound ||_0| If a Spike |n||_|(t) below the marginal Stablllty |iné_2 in Flg 1, so that the
has no qualitative consequence on the dynamics, then wextremely rare jumps are to be attributed to the much weaker
may hope that the failure of the amplitude equation is verychaotic evolution. For the two intermediate valueskgf a
marginal being observable in a few sporadic events. Howdear drift towards nearly stable modes is observed. This im-
ever, we must notice that whéh| becomes so large as to be plies that “permanent” changes of winding number occur
comparable with the intensity of the single laser mode, ther{00. These phenomena have been described by kdealain
a defect may occur leading, in turn, to a change of the windRef.[4], where the authors introduced the conceptiudotic
ing number. In order to test this hypothesis, we have exitineracy as a sequence of random jumps among the rem-
ecuted a series of long simulations of the Maxwell-Blochhants of former attractors.

model somehow above threshdice., for y=16), in which Accordingly, the evolution of the wave number is vaguely
case it is possible to perform a thorough investigation offeminiscent of that of a particle in a symmetric bistable po-
nonresonant dynamics too. tential, the unstable state corresponding to the resonant mode

More precise|y' Starting from an initial condition with while the stable states to the marginally stable laser modes.
wave numberk(t=0)=k, we have let it evolve for 2000 Whether this picture can be taken as a serious starting point
time units, monitoring(t). We have then repeated the simu- for constructing a meaningful model of the laser dynamics is
lation for 100 different initial condition§15], to determine @ completely open question. For instance, some preliminary
the ensemble averagk), which is reported in Fig. 7 for four ~simulations suggest that the permanent changes of winding
different choices of the wave numb@ramelyk,=0, 0.05, number, which make(t) diffuse away from the resonant
0.15, and 0.8 In all cases, several small spikes are observed¢ondition, are more rarefied when the cavity length is in-
which represent the signature of temporary Jumpg((jjo creased. However, it is too early to conclude that this phe-

nomenon becomes negligible in the thermodynamic Il{mi

finite cavity length.

10" : : Notice that the above is an important question from an

P(LI) experimental point of view, since a vanishing diffusion of
the winding number implies that the chaotic evolution de-
scribed by the single CGL is a phenomenon observable over
all time scales and hence, presumably accessible to experi-
mental investigation. Conversely, a hon-negligible role of the
defects would imply a nonzero diffusion and, thereby, drift
of the wave number towards marginally stable states, thus
making the dynamics of the amplitude equation relevant only
for a transient time.

1

10° 107 10° ju 10
VI. CONCLUSIONS AND OPEN PROBLEMS
FIG. 6. Probability density?(|L|) of the amplitude/L| as de-
termined from the CGL equation for the same parameter values as The weakly nonlinear analysis discussed in this paper
in Fig. 5. shows that the dynamics of the laser just above the second
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threshold is approximately described by a CGL equatiorleave to a future analysis the investigation of this point and,
coupled to a Fokker-Planck equation for the spatial derivain particular, of the scaling behavior of phase fluctuations.
tive of the global phase. Such a model allows us to predicWe should, in fact, recall that there cannot be an exact
and describe several features of the numerically observe@quivalence between the field phase evolution and that of a
chaotic evolution. In particular, the highly dispersive CGL Stochastic model such as KPZ equation. The noisy term in
accounts for the dynamics displayed by the linearly unstabléhe phase equation is, in fact, the result of an intrinsic chaotic
mode. Moreover, the evolution of the global phase can p&volution rather than being the result of an interaction with
connected to that of the unstable modes and their interactiof €xternal random environment. o _
modifies the dispersion properties of the active medium. A further aspect that deserves a more detailed investiga-

Furthermore our results open a Pandora’s box, stimulatingon is the occurrence of defects_. In particular, it should be
further investigations along several directions. First of all, nderstood whether defects arise just above the second

one should recall that the amplitude equations are, by cont-h”aShOId or whether there is a further transition pdims

struction, correct over a finite range of time scales; thus, iEOfnehOW conjectured if4]). In this analysis, one should

would be desirable to understand to what extent they appl eep in mind a poss'b'.e depender)ce of th? scenario on the
to the asymptotic dynamics in the thermodynamic limit. In arameter values that in the previous section of this paper

the previous section we have discussed one possible sour@gve been kept f'.XEd to a specific choice. o
of limitations: the occurrence of sporadic strong spikes Another question that deserves a further analysis is the

whereby a defect can originate. However, one should men(_)bserved drift of the average wave numigeep(t) towa_lrds
tion a further limitation associated with the phase dynamics.Stable modes. Is there a cnnpa! frequency abqve which sgc_h
a phenomenon appears? This is connected with the possibil-

Indeed, the analogy with Edwards-Wilkinson dynamics un-; . : ) o
covered in Sec. IV leads immediately to conjecture that non!Y of the amplitude equations to provide a quantitative de-

linear (higher-ordey terms should exist, which make the cor- scription of the dynamics over all time scales.

: L ; Finally, we want to recall that the reverse character of the
respondence with the Kardar-Parisi-ZhafiPZ) equation Gl e e s .
b ) ed opf bifurcation implies that at least periodic solutions other

[16] even more appropriate. For those readers who are n% inal q it below th dl threshold
familiar with the latter equation, it is worth recalling that it an single modes exist below theé second laser thréshoid.
Whether this phenomenon implies the existence of nontrivial

?r:les?es}t_bgar? g dslir&ge Zlf réoc[lzllgezrutcek: rg tg:%’gg?,?; el(ggt*& Ite?ad- stable behavior even below threshold is another point deserv-

ing correction to the linear behavior, changing the asymplng further investigations.
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