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Soft turbulence in multimode lasers
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Using a weakly nonlinear analysis, we study the behavior of a homogeneously broadened laser in the
vicinity of the second threshold. We show that the dynamics is described by a complex Ginzburg-Landau
equation coupled to a Fokker-Plank equation. Although the cubic term of the Ginzburg-Landau equation is
destabilizing for all parameter values, bounded solutions exist because of the strong nonlinear dispersion
~‘‘dispersive chaos’’!. A careful numerical study of the original Maxwell-Bloch equations is also carried out to
investigate the role played by off-resonant solutions.@S1050-2947~97!02001-5#

PACS number~s!: 42.60.Mi, 42.65.Sf, 42.55.2f, 42.65.2k
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I. INTRODUCTION

Maxwell-Bloch equations represent the core of many
ser models. They are widely employed to describe all ty
of single-mode laser instabilities@1–3# as well as multimode
dynamics. Here, we focus our attention on the behavior o
homogeneously broadened unidirectional laser in the
sence of transverse effects. The first two assumptions
dictated, as usual, by the need to make the analytical
numerical investigations as simple as possible, while leav
the qualitative behavior unchanged. The reason for the
restriction represents the main motivation for our paper
isolate longitudinal instabilities in order to capture the e
sence of their features.

It has been known for a long time that such a mo
shows two thresholds as the pump parameter is incre
from zero. The first threshold corresponds to the switch
on of the laser. Below threshold, no laser field is emitt
while above there is an electric field in the cavity that can
described as a single longitudinal mode solution of the m
el’s equations. As the pump parameter is increased fur
and further, the single mode solution becomes unsta
against perturbations with wave vectors lying in two sid
bands@1,2# centered around two opposite wave vectors. A
cordingly, the intensity of the laser light starts oscillatin
and, if the cavity is sufficiently long, an irregular spati
dependence of the field sets in as well.

In small cavities, only one cavity mode can be excited,
that Maxwell-Bloch equations reduce to a set of three o
nary differential equations that have been shown to
equivalent to the Lorenz model. In such a case, the onse
irregular behavior arises only in the bad cavity limit and
in any case, limited to the time domain while the spat
profile is that of the corresponding cavity mode.

More interesting and experimentally accessible is the c
of long cavities, when two new modes are excited. This s
nario is very similar to the turbulent flow of a fluid in a pip
not only the laser output, but also the field spatial dep
dence along the cavity axis, is irregular. For this reason,
kind of laser behavior has been called Maxwell-Bloch turb
lence in Ref.@4#, where it has been analyzed in an inform
tion theoretical way. Using mutual information, the autho
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pinpoint the role played by the unstable Rabi side ban
they are the source of the chaotic dynamics and informa
~energy! flows from them.

The study of Maxwell-Bloch turbulence done in Ref.@4#
shows how rich the laser dynamics is and how compreh
sion of its behavior creates a tool to better understand tu
lence in various branches of physics. With this idea in m
we have analyzed in detail the near-threshold laser dynam
being near the onset of turbulence allows us to use wea
nonlinear analysis to model the laser and thus obtain a
tially analytical grip on this complex problem.

The aim of the present paper is to set up a framework
such analysis and develop and test an accurate and rel
model of the near-threshold dynamics of a homogeneou
broadened unidirectional ring laser. We show that it can
described by a complex Ginzburg-Landau equation coup
to a Fokker-Planck equation. Moreover, the values of
parameters that control these equations are somewhat p
liar: the Ginzburg-Landau equation has a positive cubic te
Nevertheless, the solutions do not explode because the e
tion is highly dispersive, a situation that has been analyze
Ref. @5#. Thus the laser is an optical example of a type
turbulence already found in hydrodynamics@6# and called
dispersive chaos: ‘‘a dynamical state in which repetiti
pulsing caused by strong nonlinear dispersion produces
tinuously erratic spatiotemporal behavior’’~quoted from the
abstract of Ref.@6#!.

The paper is organized as follows: in the next section
introduce the Maxwell-Bloch model of the ring laser an
summarize the known properties of the linear stability ana
sis of the single mode solution. This is important in order
define the proper environment for the perturbation expans
near the second threshold, developed in Sec. III. There,
derive the governing equation for the laser field near
bifurcation point ~amplitude equations!. The dynamical
properties of such equations are investigated in Sec. IV
Sec. V, we discuss the correctness of this approximation
comparing its predictions with those of numerical integrati
of the model equations and we discuss their validity. Fina
in the conclusions we summarize our results and disc
some possible ways forward.
751 © 1997 The American Physical Society
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II. MODEL AND LINEAR STABILITY ANALYSIS

Besides considering the restrictions already mentione
the Introduction, we further assume that the laser dynam
is well described by mean-field equations; i.e., we postu
that the profile of the field intensity does not exhibit a
systematic growth~decay! along the cavity. This approxima
tion becomes increasingly accurate as the reflectance o
cavity mirrors is increased. Anyhow, the spatial depende
has been fully taken into account in Ref.@7# where, however,
no relevant difference has been found with the simplifi
model.

A further remark concerns the detuningD between the
cavity and the atomic frequencyva . We assume it to be zer
~resonant case!. In short cavities,D plays a crucial role, as i
heavily affects the first laser threshold. In moderately lo
cavities, it still plays some role in controlling the switc
among the various modes or their simultaneous function
@8#. In long cavities,D loses all meaning: there is always
cavity mode resonant with the atomic frequency andD can
be always scaled out by changing reference frame.

The laser equations in a frame rotating at frequencyva
are

] tF5k~P2F !1]zF,

] tP52P1FD,

] tD5g i@2D1x2 1
2 ~F*P1FP* !#, ~1!

where time is normalized to the inverse of polarization de
rate g' , while space is normalized in such a way that t
speed of light is equal to 1;gi andk represent the dampin
constants of population inversion and electric field, resp
tively ~both again scaled with respect tog'!. Finally,x is the
pump parameter.

These equations admit single-mode solutions for ev
possible value of the wave numberk, provided that the pump
value is above the corresponding threshold,

F0
~k!5Ax2~11vk

2!eiw0
~k!
ei ~vkt1kz!, P0

~k!5F0
~k!~12 ivk!,

D0511vk
2, vk5

k

11k
,

where the phasew 0
(k) is an arbitrary real number. In fac

there are infinite stationary solutions with the same wa
number, one for each value of the phase. This has deep
sequences on the dynamics. Namely, the single-mode
tionary solution is always marginally stable with respect t
perturbation that changes the phase of the field unifor
across the cavity length. In order to highlight this pheno
enon and keep better track of it, it is convenient to introdu
polar coordinates; the field and the polarization are expres
as modulus and phase,

F5 f eiw, P5peibeiw.

The laser equations expressed in the new variables are

] t f52k f1]zf1kp cosb, ~2!

] tp52p1 fD cosb,
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] tD5g i~2D1x2 f p cosb!,

] tb52S f 2D1kp2

f p D sinb2]zw,

] tw5k
p

f
sinb1]zw.

Some preliminary information about the dynamics of t
above model is obtained from the linear stability analysis
the single-mode solutions. This can be done by writing
perturbation as the superposition of plane waves with w
numberq, an ansatz that reduces the problem to solvin
fifth-order algebraic equation for the eigenvalueslk(q). This
means that there exist five branchesl k

( i )(q) and the single-
mode solution with wave numberk is linearly stable if and
only if the real part ofl k

( i )(q) is negative for allq’s and all
i ’s. A particular case isq50 sincelk~0!50 on one of the
branches. This reflects the marginal stability against glo
phase fluctuations, which in turn follows from the arbitra
ness of the phasew.

A general discussion of the stability properties has be
carried out in Ref.@9#; here, we first recall the main result
and then repeat some of the calculations in the resonant
~k50!, as some expressions are needed to derive the am
tude equations in the following section. In Fig. 1, we rep
the borders of the stability domains with reference to the c
k5gi51. The line L0 represents the first laser thresho
above which the single-mode solution with wave numberk is
sustained by the laser cavity~x511k2/4, in the present case!
with nonzero amplitude. The lineLE represents the border o
the domain of Eckhaus instability: laser modes to the left
LE are Eckhaus unstable, i.e., the uniform solution is u
stable for small but finiteq’s. Both L1 andL2 are marginal
stability curves, where a single-mode laser solution becom
unstable under perturbations with~in general! finite wave
numbers. More precisely, unstable solutions are pla
aboveL1 and to the right ofL2. As a result, the shade
region is the only domain where the corresponding sing
mode solutions are linearly stable. Notice that abo
x535.2. . . , nostable single mode exists. Accordingly, such

FIG. 1. The shaded region denotes the stability domain
single-mode laser solutions fork5gi51. L0 is the first threshold
line, LE is the line of Eckhaus instability, andL1 and L2 are the
lines of two distinct Hopf bifurcations.
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55 753SOFT TURBULENCE IN MULTIMODE LASERS
critical value plays a role similar to any point along th
Benjamin-Feir line in the parameter space of the comp
Ginzburg-Landau equation, although the instability mec
nisms are different in the two models.

Numerical simulations performed aboveL1 indicate that
the instability is practically of Eckhaus type, since it ju
leads to an adjustment of the wave numberk until the stable
domain is entered and no chaotic evolution is observed
longer. More interesting is the region to the right ofL2,
where, despite the existence of linearly stable solutions
irregular dynamics is observed. For this reason, we have
Th
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i
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cided to study perturbatively the resonant single-mode s
tion, the first to become unstable when increasingx. Never-
theless, we show in Sec. IV that our approach is also abl
account for the effect of small off-resonance effects.

The single-mode resonant stationary solution isf 05p0
5Ax21, b050, andw5w0, an arbitrary constant~from now
on, we drop the dependence onk as we will always refer to
k50!.

The laser equations~2!, linearized around this stationar
solution, are described by a block diagonal operator,
]

]t S d f
dp
dD
db
dw
D 5S 2k1]z k 0 0 0

1 21 f 0 0 0

2g i f 0 2g i f 0 2g i 0 0

0 0 0 2~11k! 2]z

0 0 0 k ]z

D S d f
dp
dD
db
dw
D . ~3!
axi-

e-
its
After expanding in plane waves of wave vectorq, we obtain
two separate eigenvalue problems. The 232 submatrix gives
rise to the solutions

l5
2~11k!1 iq6A~11k!22q212qi~12k!

2
.

Both eigenvalues are independent of the pump value.
eigenvalue with the minus sign has a negative real part fo
q values, while the real part of the one with the plus sign
exactly zero forq50, where it reaches its maximum valu
The ‘‘eigenvector’’ corresponding to this zero ‘‘eigenva
ue,’’ w1[~0,0,0,0,1!, is the global phase of the field, i
agreement with the previous considerations.

The spectrum of the 333 submatrix depends implicitly on
the value of the pump parameter throughf 0. For sufficiently
high intensity, a mode of wave numberq5q̃ becomes un-
stable. Accordingly, the amplitudes of the electric field, p
larization, and population inversion acquire a modulation
wave numberq̃. This is the so-called second laser thresh
@1,2#, which we show to be a subcritical Hopf bifurcation fo
all parameter values. Since this study is important in view
the characterization of the evolution in the vicinity of th
bifurcation, we go through the various steps in some det

The determinant of the 333 submatrix is
e
ll
s

-
f
d

f

l.

l31~11g i1k2 i q̃ !l21@g i~11k1 f 0
2!2 i q̃~11g i!#l

12g ik f 0
22 i q̃~11 f 0

2!g i50. ~4!

The threshold can be determined by imposing that the m
mum value of the real part ofl ~upon varyingq! is zero. In
other words, we must impose thatl5in when ]ql5 i ]qn
where bothn and]qn are real numbers representing the fr
quency of the oscillations at the Hopf bifurcation and
derivative with respect to the wave numberq. In this way we
can determine both the critical pump valuex̃ ~or, equiva-
lently, f̃ 25x̃21! and the critical wave numberq̃.

Let us start by solving the real part of Eq.~4! with respect
to the wave number,

q̃5
~11g i1k!n222g ik f̃ 2

~11g i!n
. ~5!

After substituting Eq.~5! in the imaginary part of Eq.~4!, we
obtain the further constraint

n42n2~3 f̃ 22g i!g i12g i
2 f̃ 2~11 f̃ 2!50. ~6!

We can now compute the derivative of Eq.~4! and solve for
]qn, obtaining
or and
]qn5
2 i ~11 f̃ 2!g i1n~11g i!1 in2

3in212~11g i1k2 i q̃ !n2@ ig i~11 f̃ 21k!1q̃~11g i!#
. ~7!

Upon imposing that]qn is a real number, i.e., by multiplying the numerator by the complex conjugate of the denominat
imposing that the result is real, one obtains

n3~2k212g i!1q̃~11g i!n22ng i@~11 f̃ 2!~11g i!1k~12g i12 f̃ 2!#1~11 f̃ 2!~11g i!q̃g i50.
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We can substitute expression~5! to eliminate theq̃ depen-
dence in the above equation, to obtain

3n41g i~g i23 f̃ 2!n222g i
2 f̃ 2~11 f̃ 2!50. ~8!

Equations~6! and ~8! are very similar to one another. B
summing them, we obtain a simple solution for the fr
quency at thresholdñ,

ñ 25 1
2 ~3 f̃ 22g i!g i . ~9!

By substituting back in Eq.~6!, we find an analytic expres
sion for the pump parameter@9#

x̃5 f̃ 2115513g i12&A213g i1g i
2, ~10!

which is independent of the~rescaled! field decay ratek. Let
us stress that this cancellation of the parameter dependen
not obvious at all: it does not follow from any scaling of th
variables. The same comment applies to the frequencyñ of
the bifurcating solution, another quantity that is independ
of k. Notice also that sinceñÞ0 for all parameter values, th
bifurcation is always of Hopf type.

A compact expression for the wave number is obtained
partially substituting Eq.~9! into Eq. ~5!

q̃5 ñ2k
g i~ f̃ 21g i!

2~11g i!ñ
, ~11!

showing that the wave number does, instead, depend onk. In
particular, we see thatq̃ can be equal to zero. In other word
for special values ofgi andk this instability can be observe
even in short cavities.

III. NONLINEAR ANALYSIS

The linear stability analysis developed in the previo
section tells us that the single-mode solution has alway
marginally stable mode with wave vectorq50, which corre-
sponds to the phase invariance of the single-mode solu
At threshold, a second mode, with wave vectorq5q̃, is mar-
ginally stable. Nonlinear analysis builds on this knowled
to obtain the equations, theamplitude equations, obeyed by
the amplitudes of these two modes in a neighborhood of
bifurcation point@10#.

We introduce a vectoru that represents the differenc
between the values of the fieldsf , p, D, w, andb and their
stationary values at threshold,

u5S f
p
D
w
b

D 2S f̃
p̃

D̃
w̃

b̃

D .
Call « a small parameter that measures the distance of
control parameter, the pump intensity, from the bifurcat
point: at the bifurcation point«50. Near the bifurcation
point, we can expandu in powers of«,

u5u01«u11«2u21O~«3!,
-

e is

t

y

s
a

n.

e

e

he

where

u05w00w1 ,

u15u101
1

2
@L11w2e

i ~ q̃z2ṽt !1c.c.#,

u25u201@u21e
i ~ q̃z2ṽt !1c.c.#1@u22e

i ~2 q̃z22ṽt !1c.c.#.

The subindices of different variables have always the sa
meaning: the first index refers to the order in«, the second to
the value of the wave vector, measured in multiples ofq̃.
Therefore,w00 is the zero-order amplitude of the mode wi
wave vectorq50, u10 is a vector that represents the terms
first order in« with wave vectorq50, andL11 is the ampli-
tude of the marginally stable mode (q5q̃) at first order in«.
w1 is the marginally stable eigenvector atq50, whilew2 is
the marginally stable eigenvector atq5q̃. The marginally
stable modew1 appears already at order zero because
stationary solution is marginally stable with respect to t
mode independently of the pump value, i.e., independe
of «. The termsu10 and u2i are produced by the nonlinea
interaction of the amplitudes of the two marginally stab
eigenvectors.

The amplitude equations describe the nonlinear dynam
close to the second threshold, i.e., when the unstable ei
value is positive, but small. Under this hypothesis, the d
namics of the termsui j , of w00 andL11 is slow in both space
and time,

ui j ~«z,«t,«2z2,«2t2,. . .!,

w00~«z,«t,«2z2,«2t2,. . .!,

L11~«z,«t,«2z2,«2t2,. . .!.

We introduce a control parameterm defined as

m5«m11«2m21••• ,

and slow space and time variables,

T05t, T15«t, T25«2t2,. . . ,

Z05z, Z15«z, Z25«2z2,. . . ,

so that the linearized operator defined in Eq.~3! is expanded
in
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S 2k1]z k 0 0 0

1 21 f 0 0 0

2g i f 0 2g i f 0 2g i 0 0

0 0 0 2~11k! 2]z

0 0 0 k ]z

D 5S 2k1]Z0 k 0 0 0

1 21 f̃ 0 0

2g i f̃ 2g i f̃ 2g i 0 0

0 0 0 2~11k! 2]Z0

0 0 0 k ]Z0

D
1«S ]Z1 0 0 0 0

0 0 m1 0 0

2g im1 g im1 0 0 0

0 0 0 0 2]Z1

0 0 0 0 ]Z1

D 1O~«2!

5L0~q!1«L11O~«2!,
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where the symbolL0(q) highlights the fact that only the
order zero term of the expansion depends on the wave ve
of the modulation.

The laser equations,~2!, can be written as

~]T01«]T1!~u01«u1!5@L0~q!1«L1#~u01«u1!

1N~u0 ,u1!1O~«2!,

whereN~u! are the nonlinear terms. The amplitude equatio
are obtained by expanding this equation in powers of« and
by imposing that at each order the equation

L0~q!un5Sn , ~12!

whereSn is a source term function of the slow derivativ
and of the amplitudes of order lower thann, is solvable. The
operatorL0(q) is noninvertible forq50 andq5q̃. Therefore
this equation is solvable only if

Sn•vi50, ~13!

wherevi , i50,1, are the kernels of the adjoint of the mat
cesL0~0! andL0(q̃), respectively.

Equation~13! is the amplitude equation up to ordern. The
algebra involved in obtaining them is rather heavy and
have written a Maple procedure to obtain them up to th
order in «. However, their form can be derived by usin
symmetry arguments@11#. The purpose of the Maple proce
dure is, then, to provide the numerical values of the vari
coefficients.

Let us start by the phase equation, the equation
ŵ5Sn«

nwn0 ~we have shown in the previous section thatw1
is the global phase of the field!. We can make the following
observations:~1! The equation must be real, sinceŵ is a real
variable.~2! The value ofŵ itself does not play any role in
the dynamics. The actual value of the phase is irrelev
what matters are the changes of the phase across the c
i.e., ]zŵ. ~3! The phase is marginally stable independently
the value of the pump. Therefore the equation does not c
tain m. ~4! The nonlinear terms in Eq.~2! do not depend on
]zw: as a consequence the amplitude equation does not
tor

s

e
d

s

r

t;
ity,
f
n-

n-

tain a term in~]zw!2. ~5! Finally, if L̂[Sn«
nLn1 is the am-

plitude of the unstable mode at wave vectorq̃, the only func-
tions of L̂ei q̃ z that can appear in the phase equation m
have zero wave vector; i.e., they must be of the formf (uL̂u2).
Therefore a normal form for the phase equation up to th
order in« is

] tŵ5a1]zŵ1a2]zzŵ1a3uL̂u2]zŵ, ~14!

whereai , i51,3 are real constants. Moreover it is possible
show @10,12,13# that the coefficients of the linear terms o
the amplitude equations are related to the derivatives of
marginally stable eigenvalue,l~q,m!. In the case of Eq.~14!
we have

a152 i ]ql~0,0!, a252]qql~0,0!. ~15!

Now, for the second equation:~1! The equation forL̂ can
be complex,L̂ itself being a complex variable.~2! The mode
is stable form,0, unstable form.0. Therefore, the equation
contains a linear term of the form (d11 id2)mL̂. ~3! All the
terms that appear in the equation have wave vectorq5q̃.
Therefore, they must be of the formf (]zŵ,uL̂u2)L̂. ~4! Fi-
nally, there are no terms in]zŵL̂, since the nonlinear term
in the laser equations,~2!, are independent of]zŵ. Therefore,
the amplitude equation forL̂ has the form

] tL̂5~d11 id2!mL̂1q]zL̂1~h11 ih2!]zzL̂1~%11 i%2!

3~]zŵ !2L̂1~s11 is2!uL̂u2L̂, ~16!

where all the termsdi , q, hi , zi , andsi are real. The coef-
ficients of the linear terms are related to the derivatives of
marginally stable eigenvalue atq5q̃ by

~d11 id2!5]ml~ q̃,0!,

q52 i ]ql~ q̃,0!,
~17!

~h11 ih2!52]qql~ q̃,0!.
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756 55D. CASINI, G. D’ALESSANDRO, AND A. POLITI
These relations together with Eqs.~15! are used by the
Maple procedure to find the values of the linear coefficien
The values of the nonlinear ones are obtained by solv
Eqs.~12! and ~13! up to third order in«.

By scaling space, time and the two variablesŵ andL̂, and
by referring to a suitably rotating and moving referen
frame, it is possible to rewrite Eqs.~14! and ~16! in a more
compact form,

]tL5mL1~11 ic1!]zzL1~11 ic2!uLu2L

2~11 ic3!~]zw!2L, ~18!

]tw5c4]zw1c5]zzw1c6uLu2]zw, ~19!

where

t5d1t2z
d1
q
, z5zAd1

h1
, w5A2

%1

d1
q̂,

L5As1

d1
eid2tL̂, c15

h2

h1
,

c25
s2

s1
, c352

%2

%1
, c45

a12q

d1
,

c55
a2

h1
, c65

a3

s1
.

It is immediately recognized that Eq.~18! is a complex
Ginzburg-Landau equation~CGL! coupled with a further
equation for the global phase. In the next section we disc
the values of the various coefficients, the form of the eq
tions ~18! and ~19! and we compare their solutions wit
those of the Maxwell-Bloch equations, Eqs.~1! and ~2!.

IV. AMPLITUDE EQUATIONS

The coefficients of the amplitude equations are functio
of two independent parameters only, the rescaled field-
population-decay rates,k andgi , respectively. We have de
termined all the coefficients by means of the Maple pro
dure for several choices of the two parameters. The num
cal values for the Ginzburg-Landau equation are reporte
Fig. 2, while those of the phase equation are plotted in Fig
It turns out that the former set of coefficients is independ
of k. This result can be confirmed analytically in the case
the coefficientc1. From its definition and from Eq.~17!, we
can write

c15
Im@]qql~ q̃,0!#

Re@]qql~ q̃,0!#
. ~20!

We know that the marginally stable eigenvalue is, at thre
old, purely imaginary and, from Sec. II, that its imagina
part is given by Eq.~9!. Moreover, always from Sec. II, we
know that]qñ is a real number: therefore it is equal to th
.
g

ss
-

s
d

-
ri-
in
3.
t
f

-

ratio between the real parts of the numerator and of the
nominator in Eq.~7!. Again, by taking advantage of Eq.~9!,
we obtain

]qñ5
2ñ 2~11g i!

2ñ 2~11g i!1kg i~7 f̃ 22g i!
, ~21!

which contains a nontrivial dependence on the parametek.
Notice that this is the coefficient of]zL.

From Eq. ~4!, and recalling the expression for]qn, Eq.
~21!, one obtains

FIG. 2. The three coefficients of the complex Ginzburg-Land
equation~18! vs the only relevant parameter,gi .

FIG. 3. Surface plots of the three coefficients of the phase eq
tion ~19! vs gi andk.
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]qql52~]qñ !2
3ñ]qñ2q]qñ22ñ2 i ~11g i1k!]qñ1 i ~11g i!

ñ~11g i!1 i ñ 22 i ~11 f̃ 2!g i

. ~22!
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Substituting back in Eq.~20! and using Eqs.~9! we find

c15 ñ
f̃ 2~828g i

2210g i113g i f̃ 2!13g i
2~g i12!

g i~11g i!~235f̃ 4118f̃ 2g i23g i
228 f̃ 2!

,

~23!

which is independent ofk. Physical considerations on th
damping processes reveal that the decay rate of the pola
tion must be larger than or equal to the decay rate of
population. Accordingly,gi is bounded to be smaller than 1
For gi→0, c1 diverges to2` as 21/A48g i. The overall
behavior is reported in Fig. 2~a!. A similar proof for the
independence ofk other two coefficients, though in principl
feasible, would involve so much algebra as to be in the
very obscure. In the absence of any short-cut we just rely
the numerical evidence.

The first general observation about the amplitude eq
tions concerns the sign of the coefficients. The cubic te
turns out to have always a positive real part, thus mean
that it has always a destabilizing effect. In other words,
are in the presence of a subcritical Hopf bifurcation, i.e.,
pump values smaller thanx̃, two oscillating solutions coexis
together with all stable plane waves. Accordingly, at leas
principle, it is possible to observe a nontrivial dynamic
behavior below the second laser threshold. Whether this
plies the existence of a stable chaotic evolution is an o
question that we leave to future investigations. Above thre
old, in the absence of any spatial variations of the fields,
positive cubic term indicates that one should include at le
the fifth-order contribution to confine the evolution within
finite region of the phase space. Nevertheless, Scho¨pf and
Kramer@5# have shown that if the system is sufficiently di
persive or, more precisely, ifc2,4c1 , the amplitude of the
field L remains bounded. A direct check from the data
ported in Fig. 2 reveals that the inequality is always satisfi
indicating that the dynamics of the CGL alone remains c
fined.

The second comment on the CGL equation refers to
coupling to the phase equation through the last term pro
tional toL. The real part of its coefficient is always negativ
implying that it tends to stabilize the homogeneous solut
with L50. A partial explanation of this effect is offered b
the analysis of the simple case when]zw[Q is independent
of z. A solution with a constant valueQÞ0 of the derivative
of its phase is nothing but a nonresonant cavity mode w
wave numberk5Q. A direct linear stability analysis of suc
modes reveals that they are less unstable than the reso
one, as they bifurcate at larger values of the pump param
~see Fig. 1!.

Thus, the conditionm5Q2 is nothing but a quadratic ap
proximation of the threshold line of the nonresonant mo
and, accordingly, we see that the amplitude equation mo
accounts also for their evolution.
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It is instructive to write the phase equation in terms of t
variableQ,

]tQ5]z~c41c6uLu2!Q1c5]zzQ. ~24!

This is a Fokker-Planck-type equation withQ playing the
role of the ‘‘probability distribution,’’ although there is no
need for it to be positive definite. The configurationuLu50
andQ5const is a solution of the equation, as it should, sin
it is a generic cavity mode. The termc41c6uLu2 is analogous
to a force field and it tends to make the phase drift. In
absence of amplitude fluctuations~L50! it reduces to the
standard phase velocity of the cavity modes.

The Fokker-Planck equation conserves the overall pr
ability, a feature that in the laser context becomes the c
servation of the average wave number^Q&, i.e., of the wind-
ing number of the global phase. The evolution of reson
solutions can be understood by recalling the spectral pro
ties of the Fokker-Planck operator, which admits only ne
tive eigenvalues except for a single zero component~ex-
pressing the probability conservation!. In fact, in the
resonant case,̂Q&50, so that no component of the initia
phase configuration lies along the marginally stable direct
and the asymptotic solution is necessarilyQ50, i.e., the
phase tends spontaneously to homogenize. Accordingly,
asymptotic dynamical features are determined only by
Ginzburg-Landau equation. Nevertheless, the correction
the drift term in the phase equation have a sound phys
interpretation. In fact, the termc4 is nothing but the phase
velocity of the single mode~in the rescaled units! that we
know to be independent of the wave numberk. When the
dynamics is switched on, the nonzero average value ofuLu
induces a correction that can be interpreted as a shift in
group velocity. In fact, the time derivative ofw is a variation
dv in the global frequency, while the spatial derivative
nothing but a variationdk. Thus, we can conclude that th
nonlinear dynamics induces a decrease in the group velo
~c6 turns out to be always negative!.

In the nonresonant case, the parameterm cannot be scaled
out any longer. In particular, form!1, the drift present in the
phase equation is of order 1, while the dynamics of the a
plitudeL is very slow. Accordingly, the phase dependency
the Ginzburg-Landau equation can be safely averaged
the spatial variable. SincêQ&[^]zw& is a constant of motion
~see the above considerations!, the role of the phase is simpl
to renormalize the control parameterm to a smaller effective
value. Accordingly, theL evolution is still described by a
Ginzburg-Landau equation, whileuLu2 can be seen as an ex
ternal chaotic forcing acting on the global phase. This obs
vation suggests introducing a further representation of
phase dynamics by removing the average spatial drift fr
the global phase,c[w2^Q&z. The variablec satisfies the
equation
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]tc5~c41c6uLu2!]zc1c5]zzc1~c41c6uLu2!^Q&.
~25!

The first term in the right-hand side can be effectively
moved by choosing a suitable moving reference frame
such a case, one is left with a model which is very remin
cent of the Edwards-Wilkinson equation for the interfac
profile heighth @14#,

]th5D]zzh1j, ~26!

wherej is a white noise term with average^j&5v. In fact,
the main difference between the above model and Eq.~25! is
that the stochastic forcing is substituted by a chaotic fluc
ating term resulting from the integration of a CGL. Howev
we believe that this is not extremely important as long as
evolution of the CGL equation is chaotic with no long-ran
space-time correlations.

V. NUMERICAL ANALYSIS

To test the correctness of the amplitude equations in
vicinity of the second laser threshold, we have numerica
integrated both the original Maxwell-Bloch model and t
amplitude equations for the particular choice of parame
values gi5k51. In this case,x̃5814)514.9288, while
c150.81161 andc2528.88366. We have used two differe
algorithms to integrate both sets of equations: a split step
a pseudo-spectral method, both with periodic boundary c
ditions. In both cases the space derivatives have been e
ated using a fast Fourier transform routine. A Runge-Ku
algorithm has been used to integrate the nonlinear part o
equations in the split-step program. A variable step varia
order Adams algorithm~Nag routine d02cbf! has been used
in the pseudo-spectral program. Both codes have produ
comparable results. Moreover we have tested the progr
by checking that the numerical stability threshold charac
istics of the traveling-wave solution coincide with those o
tained in Sec. II.

Two typical patterns, one ofuLu and one of the electric
field amplitudef in the resonant case, are reported in Fig
using two gray-scale images. Space runs from left to rig
while time flows downwards. In Fig. 4~a! we see that around
the ‘‘defects,’’ where two propagating filaments~white
stripes! coalesce,L exhibits a sharp peak. The approximate
periodic spatial structure reveals the existence of a fur
spatial scale besides that corresponding to the critical w
numberq̃ of the unstable perturbations, obviously absent
this representation, but clearly visible in Fig. 4~b! ~the high-
frequency ripples!. Moreover, we can see from these imag
how this type of behavior is comparable to the ‘‘dispers
chaos’’ phenomenology analyzed in Ref.@6#: peaks of light
move in an irregular manner along the cavity never settl
down.

A quantitative comparison with the Maxwell-Bloch equ
tions has been done by computing the average square a
tude of the field fluctuations

D f5^d f 2&, ~27!
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where the overline denotes temporal average. By recal
the scaling transformations adopted to arrive at expres
~18!, one can also write

D f5
1

2 Ud1s1
Uuw21u2DL52.452DL, ~28!

whereDL is defined in an equivalent manner toD f andw21
is the first component ofw2. Numerical simulations done a
m51 give DL52.1260.02. Asm can be scaled out in the
Ginzburg-Landau model, this information suffices to det
mine the dependence ofDL on the control parameter. Th
results of the numerical comparison, reported in Fig. 5,
veal an excellent agreement. The main source of limitati
to the applicability of the CGL equation comes from th
spikes arising when two nearby filaments coalesce. In fac
is precisely whenuLu is large enough that the perturbativ
approach may fail. Therefore, we have determined num

FIG. 4. Gray scale images of the modulus of the fieldL ~a! and
of the electric field amplitudef ~b! obtained by integrating Eqs
~18! and ~1!, respectively. The horizontal axis represents the po
tion of the field along the cavity, while time flows downward. Th
parameters of both simulations correspond tok5gi51. Equation
~18! has been integrated withm51, for 50 time units on a 512-poin
grid of total length 50. Equation~1! has been integrated withx516,
for 100 time units on a 512-point grid, corresponding to a cav
length 125.
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55 759SOFT TURBULENCE IN MULTIMODE LASERS
cally the probability densityP(uLu) for the same paramete
values as above in order to test whether it is bounded f
above. The properly rescaled histogram is reported in Fi
where it is seen a clear power-law decay at large inten
values. However, the most important feature is the lack
any evidence of an upper bound touLu. If a spike in uLu(t)
has no qualitative consequence on the dynamics, then
may hope that the failure of the amplitude equation is v
marginal being observable in a few sporadic events. Ho
ever, we must notice that whenuLu becomes so large as to b
comparable with the intensity of the single laser mode, th
a defect may occur leading, in turn, to a change of the wi
ing number. In order to test this hypothesis, we have
ecuted a series of long simulations of the Maxwell-Blo
model somehow above threshold~i.e., for x516!, in which
case it is possible to perform a thorough investigation
nonresonant dynamics too.

More precisely, starting from an initial condition wit
wave numberk(t50)5k0 we have let it evolve for 2000
time units, monitoringk(t). We have then repeated the sim
lation for 100 different initial conditions@15#, to determine
the ensemble average^k&, which is reported in Fig. 7 for four
different choices of the wave number~namelyk050, 0.05,
0.15, and 0.3!. In all cases, several small spikes are observ
which represent the signature of temporary jumps ofk(t)

FIG. 5. Average square amplitude of field fluctuations for d
ferent values ofm ~full circles! compared with the expected valu
from the CGL equation. All simulations refer to the casek5gi51.

FIG. 6. Probability densityP(uLu) of the amplitudeuLu as de-
termined from the CGL equation for the same parameter value
in Fig. 5.
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with no implication on the asymptotic dynamics. The ave
age winding number remains practically constant and eq
to the initial value in the evolution of both the perfect
resonant and of the most off-resonant mode. In the form
case, this behavior can be explained by symmetry consi
ations: positive variations ofk(t) are equally likely as nega
tive ones. In the latter case, instead, it suffices to notice
a configuration withk050.3 corresponds to a point slightl
below the marginal stability lineL2 in Fig. 1, so that the
extremely rare jumps are to be attributed to the much wea
chaotic evolution. For the two intermediate values ofk0, a
clear drift towards nearly stable modes is observed. This
plies that ‘‘permanent’’ changes of winding number occ
too. These phenomena have been described by Ikedaet al. in
Ref. @4#, where the authors introduced the concept ofchaotic
itineracy as a sequence of random jumps among the re
nants of former attractors.

Accordingly, the evolution of the wave number is vague
reminiscent of that of a particle in a symmetric bistable p
tential, the unstable state corresponding to the resonant m
while the stable states to the marginally stable laser mo
Whether this picture can be taken as a serious starting p
for constructing a meaningful model of the laser dynamics
a completely open question. For instance, some prelimin
simulations suggest that the permanent changes of win
number, which makek(t) diffuse away from the resonan
condition, are more rarefied when the cavity length is
creased. However, it is too early to conclude that this p
nomenon becomes negligible in the thermodynamic limit~in-
finite cavity length!.

Notice that the above is an important question from
experimental point of view, since a vanishing diffusion
the winding number implies that the chaotic evolution d
scribed by the single CGL is a phenomenon observable o
all time scales and hence, presumably accessible to ex
mental investigation. Conversely, a non-negligible role of
defects would imply a nonzero diffusion and, thereby, d
of the wave number towards marginally stable states, t
making the dynamics of the amplitude equation relevant o
for a transient time.

VI. CONCLUSIONS AND OPEN PROBLEMS

The weakly nonlinear analysis discussed in this pa
shows that the dynamics of the laser just above the sec
as

FIG. 7. Average wave vector~winding number! ^k& vs time for
four ensembles of 100 realizations starting withk~0!50 ~solid line!,
0.05 ~dotted!, 0.15 ~dashed!, and 0.3~long-dashed!, respectively.
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760 55D. CASINI, G. D’ALESSANDRO, AND A. POLITI
threshold is approximately described by a CGL equat
coupled to a Fokker-Planck equation for the spatial deri
tive of the global phase. Such a model allows us to pre
and describe several features of the numerically obse
chaotic evolution. In particular, the highly dispersive CG
accounts for the dynamics displayed by the linearly unsta
mode. Moreover, the evolution of the global phase can
connected to that of the unstable modes and their interac
modifies the dispersion properties of the active medium.

Furthermore our results open a Pandora’s box, stimula
further investigations along several directions. First of
one should recall that the amplitude equations are, by c
struction, correct over a finite range of time scales; thus
would be desirable to understand to what extent they ap
to the asymptotic dynamics in the thermodynamic limit.
the previous section we have discussed one possible so
of limitations: the occurrence of sporadic strong spik
whereby a defect can originate. However, one should m
tion a further limitation associated with the phase dynam
Indeed, the analogy with Edwards-Wilkinson dynamics u
covered in Sec. IV leads immediately to conjecture that n
linear ~higher-order! terms should exist, which make the co
respondence with the Kardar-Parisi-Zhang~KPZ! equation
@16# even more appropriate. For those readers who are
familiar with the latter equation, it is worth recalling that
arises by adding a nonlinear term proportional to~]zh!2 to
the left-hand side of Eq.~26!. Such a term provides the lead
ing correction to the linear behavior, changing the asym
totic ~in time! growth rate of interfacial~phase in our case!
fluctuations. A rapid inspection of the procedure to der
our amplitude equation suggests that the above type of n
linear corrections should indeed arise at higher orders.
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leave to a future analysis the investigation of this point a
in particular, of the scaling behavior of phase fluctuatio
We should, in fact, recall that there cannot be an ex
equivalence between the field phase evolution and that
stochastic model such as KPZ equation. The noisy term
the phase equation is, in fact, the result of an intrinsic cha
evolution rather than being the result of an interaction w
an external random environment.

A further aspect that deserves a more detailed invest
tion is the occurrence of defects. In particular, it should
understood whether defects arise just above the sec
threshold or whether there is a further transition point~as
somehow conjectured in@4#!. In this analysis, one should
keep in mind a possible dependence of the scenario on
parameter values that in the previous section of this pa
have been kept fixed to a specific choice.

Another question that deserves a further analysis is
observed drift of the average wave number^k&(t) towards
stable modes. Is there a critical frequency above which s
a phenomenon appears? This is connected with the poss
ity of the amplitude equations to provide a quantitative d
scription of the dynamics over all time scales.

Finally, we want to recall that the reverse character of
Hopf bifurcation implies that at least periodic solutions oth
than single modes exist below the second laser thresh
Whether this phenomenon implies the existence of nontri
stable behavior even below threshold is another point des
ing further investigations.
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