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Einstein-Podolsky-Rosen-Bohm experiment with relativistic massive particles

Marek Czachor*
Katedra Fizyki Teoretycznej i Metod Matematycznych, Politechnika Gdan´ska, ul. Narutowicza 11/12, 80-952 Gdan´sk, Poland

~Received 12 March 1996!

Two aspects of the relativistic version of the Einstein-Podolsky-Rosen-Bohm~EPRB! experiment with
massive particles are discussed:~a! a possibility of using the experiment as an implicit test of a relativistic
center-of-mass concept, and~b! influence of the relativistic effects on degree of violation of the Bell inequality.
The nonrelativistic singlet state average^cua•s^b•suc&52a•b is relativistically generalized by defining
spin via the relativistic center-of-mass operator. The corresponding EPRB average contains relativistic correc-
tions which are stronger in magnitude than standard relativistic phenomena such as the time delay, and can be
measured in Einstein-Podolsky-Rosen-Bohm-type experiments with relativistic massive spin-1

2 particles. The
degree of violation of the Bell inequality is shown to depend on the velocity of the pair of spin-1

2 particles with
respect to the laboratory. Experimental confirmation of the relativistic formula would indicate that for relativ-
istic nonzero-spin particles centers of mass and charge do not coincide. The result may have implications for
quantum cryptography based on massive particles.@S1050-2947~97!00201-1#

PACS number~s!: 03.65.Bz, 03.30.1p
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I. INTRODUCTION

Contemporary applications of the Einstein, Podolsky, a
Rosen~EPR! correlations@1,2# and the Bell inequality@3,4#
range from purely philosophical problems to quantum cr
tography, computation and teleportation. In the cryp
graphic scheme proposed by Ekert@5# Alice and Bob test for
eavesdropping by measuring the average of the ‘‘Bell
servable’’

c~a,a8,b,b8!5^cuâ^ b̂uc&1^cuâ^ b̂8uc&

1^cuâ8^ b̂uc&2^cuâ8^ b̂8uc&, ~1!

whereâ, etc., are ‘‘yes–no’’ observables~say, signs of spin
for electrons, or planes of polarization for photons!. Quan-
tum mechanics predicts that for some choices of such
servables one can obtainuc(a,a8,b,b8)u52A2. In an ideal
situation a result of the formuc(a,a8,b,b8)u,2A2 indicates
that at least some pairs of particles were not prepared in
singlet state and this indicates an eavesdropper.

Practical applicability of quantum cryptographic protoco
crucially depends on detector efficiencies. In typical Be
type photon pair experiments the efficiencies were sma
than 20%. The advent of solid-state photodiodes provi
efficiencies of detection which are much higher@6# but still
far from ideal.

An almost ideal experimental scheme has been rece
discussed by Fry, Walther, and Li@7# who propose to replace
photons with massive particles~pairs of 199Hg atoms!. De-
tection efficiency is then at least 95% and can be pushe
more than 99%. An obvious drawback of such a commu
cation channel is that it is slow. To make it faster one mig
be tempted to use relativistic velocities.

It will be shown below that for high velocities one ma
expect a surprising effect: The amount of violation of t
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Bell inequality may decrease with growing velocity of th
spin-12 particles. Alice and Bob must therefore additiona
know the velocity distribution of the particle beam. Othe
wise they may be confused and ‘‘detect an eavesdropp
even though the particles remain in a pure zero-helicity s
glet state. The effect is related to the old problem descri
already in 1930 by Schro¨dinger @9,10#. As is widely known
Schrödinger examined the behavior of the coordinate ope
tor x associated with Dirac’s equation and discovered
oscillatory motion he called theZitterbewegung. TheZitter-
bewegungtakes place with respect to thecenter-of-masspo-
sition operatorxA and this is the operator which should b
used to define a physically meaningful spin operator. T
situation is not typical only of the Dirac equation and is n
associated with the presence of negative-energy solution
one is sometimes led to believe. The so-called new Di
equation generalized by Mukunda, van Dam, and Biedenh
@11# admits only positive-energy solutions, but theZitter-
bewegungis present and the associated center-of-mass
erator is algebraically identical to this implied by Schro¨d-
inger’s analysis of the Dirac equation@12#. The analysis
presented in@11# shows clearly that in order to obtain
physically consistent model of an extended hadron one ha
proceed in the way identical to the one chosen in this pa
First define the center-of-mass operatorQ, then introduce the
angular momentumL5Q3P, and finally define spin by
S5J2L .

In what follows I use a group representation formulatio
elements of which can be found in the 1965 papers by Fle
ing @13#. The group theoretic approach has the advantag
being applicable to any physical system whose symme
group is the Poincare´ group, or whose symmetry group con
tains the Poincare´ group as a subgroup.

II. RELATIVISTIC SPIN OPERATORS

Let us begin with generators of the unitary, infinit
dimensional-irreducible representation of the Poincare´ group
72 © 1997 The American Physical Society
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55 73EINSTEIN-PODOLSKY-ROSEN-BOHM EXPERIMENT . . .
corresponding to a nonzero massm and spinj . Their stan-
dard form is@14#

J5
\

i
p3

]

]p
1s, ~2!

K56S up0u
\

i

]

]p
2

p3s

mc1up0u
D , ~3!

P5p, ~4!

P05p056Ap21m2c2. ~5!

Heres denotes finite-dimensional angular momentum ma
ces corresponding to the (2j11)-dimensional representatio
Dj of the rotation group. Similar forms are obtained if o
uses the hadronic representation introduced in@11#.

The Poincare´ group has two Casimir operators: Th
squared mass and the square of the Pauli-Lubanski ve
Wm. The latter operator written in the above representatio

Wm5~W0,W!5~P•J,P0J2P3K ! ~6!

5@p•s,p0~n•s!n6mcs'#, ~7!

wheren is the unit vector pointing in the momentum dire
tion and

s'5s2~n•s!n.

The center-of-mass position operator which generalizes
any representation the operatorxA of Schrödinger is

Q52 1
2 ~P0

21K1KP0
21! ~8!

5 i\
]

]p
2 i\

p

2p0
2 1

p3s

up0u~mc1up0u!
. ~9!

This operator extends naturally also to massless fields
can be shown to be uniquely~up to subtleties with domain
of unbounded operators! derived from symmetry consider
ations in the case of the Maxwell field@15,16#. In the Max-
well field case, formula~9! can be regarded as defining
connection on a light cone. A parallel transport with resp
to this connection can be shown to generate a Berry ph
@17,18#.

Orbital angular momentum and spin corresponding toQ
were given by Pryce and Fleming@13,19#

L5Q3P5
\

i
p3

]

]p
1

up0u2mc

up0u
@s2~n•s!n#,

S5J2L5
mc

up0u
s1S 12

mc

up0u
D ~n•s!n

5A12b2s'1~n•s!n5W/p0 . ~10!

b5nuvu/c, where v5c2p/p0 is a velocity of the particle.
Equation~10! shows that relativistic spin is closely related
the Pauli-Lubanski vector. Projection of spin in a directi
given by the unit vectora commutes with the Hamiltonian
P0 and equals
i-

tor
is

to

nd

t
se

a•S5F mc

up0u
a1S 12

mc

up0u
D ~n•a!nGs ~11!

5@A12b2a'1ai#•s5:a~a,p!s. ~12!

The latter equality defines the vectora(a,p) whose length is

ua~a,p!u5
A~p•a!21m2c2

up0u
5A11~b•a!22b2.

The eigenvalues ofa•S are therefore

la5 j 3\A11~b•a!22b2, ~13!

where j 352 j , . . . ,1 j . The eigenvalues of the Paul
Lubanski vector projections areva5p0la . In the infinite-
momentum or massless limit the eigenvalues of the rela
istic spin in a direction perpendicular top vanish, which can
be regarded as a consequence of the Lorentz flattening o
moving particle@in these limitsS5(n•s)n#. Projection of
spin on the momentum direction is equal to the helicity, i.
p•S5p•s for any p, and S5s in the rest frame (p50).
Bacry @20# observed that a nonrelativistic limit ofQ leads to
a correct form of the spin-orbit interaction in the Pauli equ
tion if one uses potentialsV(Q) instead ofV(x) @21#; an
analogous effect was described in@22# where the internal
angular momentum of theZitterbewegungleads to spin with
the correctg52 factor. An algebraic curiosity is the fact tha
the components ofS satisfy an algebra which isso(3) in the
rest frame and formally contracts to the Euclideane(2) in
the infinite-momentum or massless limit, and thus provid
an interesting alternative explanation of the privileged r
played by the Euclidean group in the theory of massl
fields @23,24#.

In spite of all these facts suggestng that bothQ andS are
natural candidates for physical observables no experime
tests distinguishing them from other definitions of positi
and spin have been proposed so far. Obviously, it is not e
to test directlyQ which, representing the center of mas
may be expected to couple to the gravitational field. The s
operator, on the other hand, is responsible for the magn
moment and should couple to the electromagnetic fi
which is much stronger.

Consider now a Stern-Gerlach-type measurement inv
ing spin-12 relativistic particles and assume thatS is the
physical internal angular momentum which is measured
this experiment@25#. Assume also that we have two spin12
particles in a singlet state~total helicity equals zero! and
propagating in the same direction with identical momentap
~to be more precise one should take wave packets in mom
tum space, but for simplicity assume that they are su
ciently well localized around momentap, so that we can
approximate them by plane waves!

uc&5
1

A2
S U1 1

2
,pL U2 1

2
,pL 2U2 1

2
,pL U1 1

2
,pL D .

~14!

The ketsu6 1
2,p& form thehelicity basis. Consider the binar

operatorsâ5a•S/ulau, b̂5b•S/ulbu. Their eigenvalues are
61. The relativistic corrections that arise are those result
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74 55MAREK CZACHOR
from the modification of the spin direction as ‘‘seen’’ by
measuring device. The average of the relativistic EP
Bohm-Bell operator is

^cuâ^ b̂uc&52
a•b2b2a'•b'

A11b2@~n•a!221#A11b2@~n•b!221#
.

~15!

There are several interesting particular cases of formula~15!.
First, if a5a' , b5b' then

^cuâ^ b̂uc&52a•b, ~16!

which is the nonrelativistic result. This case will never occ
in a realistic experiment since localization of detectors w
lead to a momentum spread. Ifa•nÞ0, b•nÞ0 then in the
ultrarelativistic caseb251

^cuâ^ b̂uc&52
~a•n!~b•n!

ua•nuub•nu
561 ~17!

independently of the choice ofa, b. It is easy to intuitively
understand this result: In the ultrarelativistic limit projection
of spin in directions perpendicular to the momentum vani
for both particles and spins are~anti-! parallel to the momen-
tum. The most striking case occurs ifa and b are perpen-
dicular and the nonrelativistic average is 0. Leta•b50,
a•n5b•n51/A2. Then

^cuâ^buc&52
b2

22b2 . ~18!

This average is 0 in the rest frame (b50) and 21 for
b51. Any observable deviation from 0 in an EPR-Bohm
type experiment would be an indication that the operato
S andQ are physically correct observables and that mass
spin-12 particles are extended in the sense that centers of m
and charge do not coincide. Figure 1 shows that Eq.~18!
describes a relativistic effect that is even stronger than
Lorentz contraction or the time delay~both are proportional
to A12b2). One peculiarity ofQ is that its components do
not commute for nonzero spins. An uncertainty princip
guarantees therefore that such a particle cannot be local

FIG. 1. Average~18! ~solid! as compared to@12b2#1/221 ~dot-
ted!. The EPRB average varies withb faster than proper time.
Relativistic corrections described by Eqs.~15! and ~18! are caused
by both the Lorentz contraction and the Mo” ller shift of the center of
mass. Their experimental verification would provide an indire
proof that the noncommuting position operator~9! is physically
well defined.
-

r
l

h

rs
e
ss

e

ed

at a point@29#, or is extended in some nonclassical sense
property that cannot be without implications for the reno
malization and self-energy problems. The definition ofQ
implies also that the center of mass does not transform
spatial component of a four vector. This apparently coun
intuitive result agrees however with the classical analysis
Mo” ller @8,13# who showed that the center of mass of a sp
ning classical body is not a component of a four vect
These interesting properties seem unavoidable and ca
proved in various ways at both quantum and classical lev
~for their classical derivations see@11,27#!.

Consider now the vectors a5(1/A2,1/A2,0),
a85(21/A2,1/A2,0),b5(0,1,0),b85(1,0,0) leading to the
maximal violation of the Bell inequality in nonrelativisti
domain. Figure 2 shows the dependence of the average~1!
on b andf whereb5(b cosf,b sinf,0). Figure 3 shows
the average~1! for b5b(cosf sinu,sinf sinu,cosu) as a
function of the spherical angles and forb50.99 and
b50.95.

These results show clearly that the information about
degree of violation of the Bell inequality is not sufficient fo

t

FIG. 2. Forb50 we obtain the maximal violation and no vio
lation for b→1. Alice and Bob may be confused and ‘‘detect’’ a
eavesdropper even if the state is pure singlet, butb is close to 1.
Spins of ultrarelativistic spin-12 particles are ‘‘almost classical’’ and
are either almost parallel or antiparallel to their momenta.

FIG. 3. The average~1! for b50.99 ~upper! and b50.95
~lower!. u50 corresponds to particles moving perpendicularly
measuring devices~maximal violation!. For u5p/2 we have the
situation from Fig. 2.
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55 75EINSTEIN-PODOLSKY-ROSEN-BOHM EXPERIMENT . . .
determining purity of a massive two-particle zero-helic
state. Additionally one has to know the momentum distrib
tion of the particle beam.

III. PAULI-LUBANSKI VECTOR VS SPIN

The relation betweenWm andS is similar to the one be-
tween the four-velocityum and the three-velocityb. The
Casimir operatorWmW

m equals (mc)2 j ( j11) if an irreduc-
ible representation of the Poincare´ group is considered. Fo
this reason it is typical to define the spin four-vector as

wm5Wm/~mc!5Fu•s, p0mc
~n•s!n6s'G , ~19!

whereum is the four velocity. In the rest framep056mc
andwm56(0,s) which seems to justify this choice. For
moving particle the eigenvalues ofa•w arelap0 /mc where
la denote the respective eigenvalues ofa•S. The eigenval-
ues ofa•w therefore tend to6` in the infinite-momentum
limit which is unphysical for a spin observable. Nothing
that kind occurs if one dividesW by energyandnot by mass
which again selects our spin operator as a candidate f
physical observable.

Nevertheless, irrespective of this subtlety, the relativis
EPRB average is the same for bothS andw since we con-
sider a ‘‘yes-no’’ observable which is obtained bynormal-
ization of eigenvalues to61. This is another reason to be
lieve that the discussed suppression of degree of the
inequality violation is a physical phenomenon that should
observable in experiments with massive particles.

IV. COMPARISON WITH THE DIRAC EQUATION

Just for the sake of completeness let us compare the
eral formulas to the analogous calculations performed for
Dirac electrons. The Pauli-Lubanski vector is

W05p•s ~20!

W5 1
2 ~sH1Hs!, ~21!

whereH is the Dirac free Hamiltonian and

s5
\

2 S s 0

0 s
D

is the spinor part of the generator of rotations. The relativ
tic spin operator is therefore equal to

S5WH215 1
2 ~s1LsL!

5P1sP11P2sP2 . ~22!

Here L is the sign-of-energy operator andP6 project on
states of given signs of energy. It follows thatS is the so-
called even part of the spinor part of the generator of ro
tions. This operator commutes withH and, hence, can b
used for analyzing the EPRB experiment@30#. The explicit
form of this observable in units with\51 andc51 is

S5
m2

p0
2 s1

p2

p0
2 ~n•s!n1

im

2p0
2p3g. ~23!
-

a

c

ell
e

n-
e

-

-

g5(g1,g2,g3) wheregk are Dirac matrices. The eigenva
ues ofa•S are given by Eq.~13! with j 3561/2. The corre-
sponding positive-energy eigenstates in the standard re
sentation are

C6
a 5S Aup0u1mS (ulau1

1
2 a•n)w66

ma•n

2up0u
w7D

Aup0u2mS 6(ulau1
1
2 a•n)w62

ma•n

2up0u
w7D D

wherew6 satisfiesn•sw656w6 .
I have remarked that a positive verification of the relat

istic center-of-mass concept would indicate that nonze
spin relativistic particles are extended. The example of
Dirac equation illustrates this idea. Consider again the sp
part of the generator of rotationss. It does not commute with
H and satisfies in the Heisenberg picture the preces
equation

ṡ5v3s, ~24!

wherev522cg5p/\. For massive fieldsv does not com-
mute withH and, hence, can be decomposed into even
odd parts. The even part is

V5
c21mc3g•n/upu
c21m2c4/p2

v.

V reduces tov in both massless and infinite-momentu
limits. A Hamiltonian of a particle moving with velocity
v5cb can now be expressed as

H5S 11
m2c4

c2p2 DV•S5b22V•S5V8•S, ~25!

where each of the operators appearing inH is even and com-
muting withH. The form ~25! is analogous to the one dis
cussed in@31#. The limiting formH5v•S is characteristic
of all massless fields, where for higher spins Eq.~24! is still
valid, but angular velocities for a given momentum a
smaller the greater the helicity.

The new form of the Hamiltonian leads to the followin
observation. Notice that for massless fields the Hamilton
can be written in either of the following two forms:

H5v•S ~26!

or

H5c•p5v•p, ~27!

wherev is the velocity operator for a general massless fi
(ca in case of the Dirac equation! and c5(v•p)p/p2 is its
even part. We recognize here the classical mechanical
for a transition from a pointlike description to the extende
objectlike one: linear momentum goes into angular mom
tum, linear velocity into angular velocity, and vice vers
The third part of this rule~mass moment of inertia! can be
naturally postulated as follows:

H5mkc
25I kv

2, ~28!
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76 55MAREK CZACHOR
where Eq.~28! defines the kinetic mass (mk) and the kinetic
moment of inertia (I k) of the massless field. The explic
form of I k for massless fields of helicityl5m2n @corre-
sponding to the (m,n) spinor representation ofSL(2,C)# is,
in ordinary units,

I k5
l\p•S

cp2
. ~29!

The equation

I k5mkr l
2 ~30!

characteristic, by the way, of circular strings~here with mass
mk) defines some radius which is equal to

r l5
\l

upu
, ~31!

which can be expressed also as a form of the uncerta
principle

upur l5\l. ~32!

The center-of-mass commutation relation

@Qk ,Ql #52 i\eklmSm /p0
2

leads, in the massless case, to the uncertainty relations o
type

DQ1DQ2>\2ulu/~2^upu2&u!5^r l
2&/u2lu.

It is remarkable that the same radius occurs naturally in
twistor formulation of massless fields@28#. It is known that
although spin-0 twistors can be represented geometricall
null straight lines, this does not hold for spinl, lÞ0, twist-
ors @28#. Instead of the straight line we get a congruence
twisting, null, shear-free world lines, the so-called Robins
congruence. A three-dimensional projection of this cong
ence consits ofcircles, whose radii are given exactly by ou
o

d

th

tor
ty

the

e

y

f
n
-

formula ~31! ~cf. the footnote on p. 62 in@28#!. The circles
propagate with velocity of light in the momentum directio
and rotate in the right- or left-handed sense depending on
sign of helicity. The same construction can be performed
the massive Dirac particle if one usesV8.

V. SUMMARY

The main idea advocated in this paper can be summar
as follows. Considersomeprocedure leading to a measur
ment of a nonrelativistic spin@25#. This procedure is base
on a black box giving results ‘‘yes’’ or ‘‘no’’ for spins equa
to, respectively,1\/2 and2\/2. In the nonrelativistic do-
main the particles enter the device ‘‘slowly.’’ Imagine no
that for some reasons we decide to use faster particles.
measured average may vary with the growing~average! ve-
locity of the particle beam and, obviously, some result w
be obtained. The question is how to calculate the resul
such an experiment assuming that the procedure meas
the spin itself and not the total angular momentum. Ma
different definitions of relativistic spins exist in literature b
all of them are momentum dependent@32#. Calculations
based on the definition which seems the most physical~via
the relativistic center of mass! show that relativistic correc-
tions are nontrivial. Their strength can be regarded as a c
bined influence of two independent relativistic phenome
The Lorentz contraction and the Mo” ller shift of the center of
mass of a spinning body. The same result is obtained if
uses the spin operator defined via the Pauli-Lubanski vec
The effect can be in principle measured and will have to
taken into account in quantum cryptographic tests for eav
dropping if fast massive particles will be used for a k
transfer.
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