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Einstein-Podolsky-Rosen-Bohm experiment with relativistic massive particles
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Two aspects of the relativistic version of the Einstein-Podolsky-Rosen-B@®PRB experiment with
massive particles are discusséd: a possibility of using the experiment as an implicit test of a relativistic
center-of-mass concept, aftg) influence of the relativistic effects on degree of violation of the Bell inequality.

The nonrelativistic singlet state avera@¢|a- o®b- o] ¢)=—a-b is relativistically generalized by defining

spin via the relativistic center-of-mass operator. The corresponding EPRB average contains relativistic correc-
tions which are stronger in magnitude than standard relativistic phenomena such as the time delay, and can be
measured in Einstein-Podolsky-Rosen-Bohm-type experiments with relativistic massi\é[miﬂﬁles. The

degree of violation of the Bell inequality is shown to depend on the velocity of the pair of%smint-icles with

respect to the laboratory. Experimental confirmation of the relativistic formula would indicate that for relativ-
istic nonzero-spin particles centers of mass and charge do not coincide. The result may have implications for
quantum cryptography based on massive parti¢®$050-294{®7)00201-1]

PACS numbd(s): 03.65.Bz, 03.30:p

I. INTRODUCTION Bell inequality may decrease with growing velocity of the
spin+ particles. Alice and Bob must therefore additionally
Contemporary applications of the Einstein, Podolsky, ancknow the velocity distribution of the particle beam. Other-
Rosen(EPR) correlationg 1,2] and the Bell inequality3,4]  wise they may be confused and “detect an eavesdropper”
range from purely philosophical problems to quantum cryp-even though the particles remain in a pure zero-helicity sin-
tography, computation and teleportation. In the crypto-glet state. The effect is related to the old problem described
graphic scheme proposed by EKg5} Alice and Bob test for  aiready in 1930 by Schdinger[9,10]. As is widely known
eavesdropping by measuring the average of the “Bell obgchrglinger examined the behavior of the coordinate opera-
servable” tor x associated with Dirac’s equation and discovered the
A A oscillatory motion he called thgitterbewegungThe Zitter-
c(aa’,b,b")=(ylavb|y)+(plazb’|y) bewegungakes place with respect to ticenter-of-masgo-
~ R sition operatorx, and this is the operator which should be
Hylaebly)—(glaeb’y), (1) geq topdefine A physically mean?ngful spin operator. The
situation is not typical only of the Dirac equation and is not

¥vher|ea, etc., are lyes—nof ol:;sgrvqble(s}.cay, shlgns of SPIN - 55s0ciated with the presence of negative-energy solutions as
or electrons, or planes of polarization for phothnrQuan- ;0 s sometimes led to believe. The so-called new Dirac

tum mechanics predicts that for some choices of §uch Obéquation generalized by Mukunda, van Dam, and Biedenharn
servables one can obtajn(a,a’,b,b’)|=22. In an ideal

cive R [11] admits only positive-energy solutions, but tEéter-
situation a result of the foriic(a,a’,b,b’)| <22 indicates  pewegungs present and the associated center-of-mass op-
that at least some pairs of particles were not prepared in thgyator is algebraically identical to this implied by Satho
singlet state and this indicates an eavesdropper. inger's analysis of the Dirac equatidi2]. The analysis
Practical applicability of quantum cryptographic protocols yresented if11] shows clearly that in order to obtain a
crucially depends on detector efficiencies. In typical Bell-pnysically consistent model of an extended hadron one has to
type photon pair experiments the efficiencies were smalleproceed in the way identical to the one chosen in this paper:
than 20%. The advent of solid-state photodiodes providegi st define the center-of-mass operafyrthen introduce the
efficiencies of detection which are much highiéf but still angular momentunL=QxP, and finally define spin by
far from ideal. S=J—L.

_An almost ideal experimental scheme has been recently |5 what follows | use a group representation formulation,
discussed by Fry, Walther, and [] Wholrg)ropose toreplace glements of which can be found in the 1965 papers by Flem-
photons with massive particlépairs of ***Hg atom$. De-  ing [13]. The group theoretic approach has the advantage of
tection efficiency is then at least 95% and can be pushed t8eing applicable to any physical system whose symmetry

more than 99%. An obvious drawback of such a communiyroyp is the Poincargroup, or whose symmetry group con-
cation channel is that it is slow. To make it faster one mightiains the Poincargroup as a subgroup.

be tempted to use relativistic velocities.

It will be shown below that for high velocities one may
expect a surprising effect: The amount of violation of the Il. RELATIVISTIC SPIN OPERATORS
Let us begin with generators of the unitary, infinite-
*Electronic address: mczachor@sunrise.pg.gda.pl dimensional-irreducible representation of the Poingaiceip
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corresponding to a nonzero massand spinj. Their stan- m mc
dard form is[14] aS=|—at+|{1l-—|(n-an|s (1)
| Pol | pol
h d
I=TPX g +s 2) =[V1-pB%a +a]-s=:a(ap)s (12)
The latter equality defines the vectafa,p) whose length is
h 9 pXxs
K=={|pol+ - = ————], () J(p-a)2+ m2c2
i gp mct (p-a)°+mc
P metlpd atap) = = VT (Bra B
P=p, (4) ,
The eigenvalues dd- S are therefore
Po=Po=+ Vp?+ mPcZ. (5)

Na=]ahi1+(B-a)7~ B2, (13
Heres denotes finite-dimensional angular momentum matri- ] ) ) ] _
ces corresponding to the (2 1)-dimensional representation Where js=—j,...,+j. The eigenvalues of the Pauli-

D! of the rotation group. Similar forms are obtained if one Lubanski vector projections ar@,=po\,. In the infinite-
uses the hadronic representation introducefLi. momentum or massless limit the eigenvalues of the relativ-

squared mass and the square of the Pauli-Lubanski vect&€ regarded as a consequence of the Lorentz flattening of the
W, The latter operator written in the above representation ighoving particle[in these limitsS=(n-s)n]. Projection of

WH= (WO, W)= (P-J,PeJ—PxK) (6)
(7

wheren is the unit vector pointing in the momentum direc-
tion and

=[p-S,po(n-s)n=mcs, |,

s, =s—(n-s)n.

The center-of-mass position operator which generalizes t
any representation the operatgy of Schralinger is

Q=—3(Py'*K+KPyh ®)

. d p pXs
=ih——ih 4+ — 9
" 2p2 " Tpol(me+ [pa)) ©

This operator extends naturally also to massless fields arff’

can be shown to be uniquelyp to subtleties with domains
of unbounded operatorglerived from symmetry consider-
ations in the case of the Maxwell fie[d5,16. In the Max-
well field case, formula9) can be regarded as defining a

connection on a light cone. A parallel transport with respect”
to this connection can be shown to generate a Berry phase

[17,18.
Orbital angular momentum and spin correspondingto
were given by Pryce and Flemind3,19

L=qxp="px Ly PAme o gm
= =—pX—+ —————[s—(n-9)n],
i P ap | Pl
mc mec
S=J-L=+—s+ 1——)(n-s)n
|pol |Po

= \/1—,823l+(n-s)n=W/p0.

B=n|v|/c, wherev=c?p/p, is a velocity of the particle.
Equation(10) shows that relativistic spin is closely related to

(10

spin on the momentum direction is equal to the helicity, i.e.,
p-S=p-s for any p, and S=s in the rest frame =0).
Bacry[20] observed that a nonrelativistic limit @ leads to

a correct form of the spin-orbit interaction in the Pauli equa-
tion if one uses potential¥’(Q) instead ofV(x) [21]; an
analogous effect was described [i22] where the internal
angular momentum of thgitterbewegundeads to spin with
the correcg=2 factor. An algebraic curiosity is the fact that
the components db satisfy an algebra which s0(3) in the
test frame and formally contracts to the Euclide) in

the infinite-momentum or massless limit, and thus provides
an interesting alternative explanation of the privileged role
played by the Euclidean group in the theory of massless
fields[23,24].

In spite of all these facts suggestng that b@tland S are
natural candidates for physical observables no experimental
tests distinguishing them from other definitions of position
d spin have been proposed so far. Obviously, it is not easy
to test directlyQ which, representing the center of mass,
may be expected to couple to the gravitational field. The spin
operator, on the other hand, is responsible for the magnetic
moment and should couple to the electromagnetic field
hich is much stronger.

Consider now a Stern-Gerlach-type measurement involv-
iIng spin+ relativistic particles and assume th&tis the
physical internal angular momentum which is measured in
this experimen{25]. Assume also that we have two sgin-
particles in a singlet staté&otal helicity equals zepjoand
propagating in the same direction with identical momemta
(to be more precise one should take wave packets in momen-
tum space, but for simplicity assume that they are suffi-
ciently well localized around momenga, so that we can
approximate them by plane wayes

1 1 1
o=l

2P

1
_E'p

L
2P

the Pauli-Lubanski vector. Projection of spin in a direction The kets| = 3,p) form thehelicity basis. Consider the binary
given by the unit vectoa commutes with the Hamiltonian operatorsa=a- S/|\,|, b=b-J|\,|. Their eigenvalues are
Py and equals +1. The relativistic corrections that arise are those resulting
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FIG. 1. Averagg18) (solid) as compared tpl— 82]*°— 1 (dot-

ted. The EPRB average varies wit faster than proper time.
Relativistic corrections described by Eq5) and(18) are caused
by both the Lorentz contraction and the/ Mo shift of the center of
mass. Their experimental verification would provide an indirect
proof that the noncommuting position opera{® is physically
well defined.

FIG. 2. ForB=0 we obtain the maximal violation and no vio-
lation for 8—1. Alice and Bob may be confused and “detect” an
eavesdropper even if the state is pure singlet, ®ig close to 1.
Spins of ultrarelativistic spir%—particles are “almost classical” and
are either almost parallel or antiparallel to their momenta.

from the modification of the spin direction as “seen” by a
measuring device. The average of the relativistic EPRat a point[29], or is extended in some nonclassical sense, a

Bohm-Bell operator is property that cannot be without implications for the renor-
malization and self-energy problems. The definition @f
. a-b—p%a, b, implies also that the center of mass does not transform as a
(dlasbly)=— J1+87(n-a)%—1]V1+ B (n-b)’—1] : spatial component of a four vector. This apparently counter-

(15) intuitive result agrees however with the classical analysis of
Mdller [8,13] who showed that the center of mass of a spin-
There are several interesting particular cases of forifiilfa ~ ning classical body is not a component of a four vector.

First, if a=a, , b=b, then These interesting properties seem unavoidable and can be
R proved in various ways at both quantum and classical levels
(pla®b|y)=—a-b, (16)  (for their classical derivations s¢&1,27)).

o o _ . Consider now the vectors a=(1/y2,1/4/2,0),
yvh|ch is .th(_e nonrelqnwstlc.result. Th_|s case will never OCCUr g — (— 1/\/5,1/\/5,0),b:(O,l,O),b’z(l,0,0) leading to the
in a realistic experiment since localization of detectors will j,5ximal violation of the Bell inequality in nonrelativistic

lead to a momentum spread.dfn#0, b-n#0 then in the  4omain. Figure 2 shows the dependence of the avefBige

ultrarelativistic casgs®=1 on B and ¢ where B= (8 cosp,Bsing,0). Figure 3 shows
(a-n)(b-n) the average(l) for B= B(cosp sing,sing sing,coy) as a
(y|a® 6|¢>: _ =+1 (17) function of the spherical angles and fg8=0.99 and

la-n||b-n| B=0.95.

These results show clearly that the information about the

independently of the choice @ b. It is easy to intuitively  yoqree of violation of the Bell inequality is not sufficient for

understand this result: In the ultrarelativistic limit projections
of spin in directions perpendicular to the momentum vanish
for both particles and spins a¢enti-) parallel to the momen-
tum. The most striking case occursdfandb are perpen-
dicular and the nonrelativistic average is 0. Leth=0,
a-n=b-n=1/y/2. Then

2

(Wably) = 5. a9

This average is 0 in the rest framg+{0) and —1 for
B=1. Any observable deviation from 0 in an EPR-Bohm
type experiment would be an indication that the operators
S andQ are physically correct observables and that massive
spin+ particles are extended in the sense that centers of mass
and charge do not coincide. Figure 1 shows that @&)
describes a relativistic effect that is even stronger than the
Lorentz contraction or the time deldioth are proportional FIG. 3. The averaggl) for 8=0.99 (uppe) and B=0.95

to V1— B?). One peculiarity ofQ is that its components do (lower). #=0 corresponds to particles moving perpendicularly to
not commute for nonzero spins. An uncertainty principlemeasuring devicegmaximal violation. For §= /2 we have the
guarantees therefore that such a particle cannot be localizettuation from Fig. 2.
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determining purity of a massive two-particle zero-helicity y=(y!,4?,1%) where yk are Dirac matrices. The eigenval-
state. Additionally one has to know the momentum distribu-yes ofa- S are given by Eq(13) with j;= *=1/2. The corre-
tion of the particle beam. sponding positive-energy eigenstates in the standard repre-
sentation are
lll. PAULI-LUBANSKI VECTOR VS SPIN

ma- n
The relation betweelV* andS is similar to the one be- \/|p0|+m( (INa+ 3 & n)w+tmw+>
tween the four-velocityu®* and the three-velocity3. The - Po
Casimir operatoW, W* equals mc)?j(j+1) if an irreduc- - 1 ma- n
ible representation of the Poincageoup is considered. For VIPol =m| (Aol + z@-mw..— 2lpol V*

this reason it is typical to define the spin four-vector as
wherew.. satisfiesn-ow.=*w.. .

I have remarked that a positive verification of the relativ-
istic center-of-mass concept would indicate that nonzero-
spin relativistic particles are extended. The example of the
whereu” is the four velocity. In the rest frampo=2=mc  pjrac equation illustrates this idea. Consider again the spinor
andw*==x(0,s) which seems to justify this choice. For a part of the generator of rotatiossIt does not commute with

moving particle the eigenvalues afw areh,po/mcwhere  H and satisfies in the Heisenberg picture the precession
A4 denote the respective eigenvaluesaoS. The eigenval-  equation

ues ofa-w therefore tend tat oo in the infinite-momentum

limit which is unphysical for a spin observable. Nothing of S=wXs, (24)

that kind occurs if one divide®/ by energyandnot by mass

which again selects our spin operator as a candidate for where w=—2cy°p/4. For massive fieldss does not com-

physical observable. mute withH and, hence, can be decomposed into even and
Nevertheless, irrespective of this subtlety, the relativisticodd parts. The even part is

EPRB average is the same for b@handw since we con-

sider a “yes-no” observable which is obtained hprmal- c2+mccy-n/|p|

ization of eigenvalues ta-1. This is another reason to be- - CZTZ&/pZ“’

lieve that the discussed suppression of degree of the Bell

inequality violation is a physical phenomenon that should ben reduces tow in both massless and infinite-momentum

observable in experiments with massive particles. limits. A Hamiltonian of a particle moving with velocity

v=cf can now be expressed as

w#=WH/(mc)= u'S,:]—OC(n'S)niSL ’ (19

IV. COMPARISON WITH THE DIRAC EQUATION -
m-c

Just for the sake of completeness let us compare the gen- H= 0.-S=820-5=Q'-5, (25
eral formulas to the analogous calculations performed for the

Dirac electrons. The Pauli-Lubanski vector is

+ ——
1 C2p2

where each of the operators appearingflits even and com-

Wo=p-s (200  muting with H. The form(25) is analogous to the one dis-
cussed in31]. The limiting form H= - S is characteristic
W=1(sH+Hs), (21 of all massless fields, where for higher spins E) is still
valid, but angular velocities for a given momentum are
whereH is the Dirac free Hamiltonian and smaller the greater the helicity.
The new form of the Hamiltonian leads to the following
— f( o 0) observation. Notice that for massless fields the Hamiltonian
2\0 o can be written in either of the following two forms:
is the spinor part of the generator of rotations. The relativis- H=w-S (26)

tic spin operator is therefore equal to
or
S=WH 1=3(stAsA)

—TI, ST, +T1_oT_ . 22) H=c-p=v-p, @

Here A is the sian-of-enerav operator afil. broiect on wherev is the velocity operator for a general massless field
9 gy op = Proj (ca in case of the Dirac equatiprand c=(v-p)p/p? is its

states of given signs of energy. It follows thads the so- even part. We recognize here the classical mechanical rule
called even part of the spinor part of the generator of rota;

tions. This operator commutes with and, hence, can be for a transition from a pointlike description to the extended-
used for analyzing the EPRB experimdB0]. The explicit objectlike one: linear momentum goes into angular momen-

. ; . o o tum, linear velocity into angular velocity, and vice versa.
form of this observable in units with=1 andc=1 is The third part of this rul§mass moment of inertfjacan be

< m2 +p2( - im y 3 naturally postulated as follows:
=—St+—(N-SN+ =——=pX 7.
P Po 2p; H=m?=1,? (29)
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where Eq.(28) defines the kinetic massr) and the kinetic formula (31) (cf. the footnote on p. 62 ifi28]). The circles
moment of inertia () of the massless field. The explicit propagate with velocity of light in the momentum direction

form of I, for massless fields of helicitk=m—n [corre- and rotate in the right- or left-handed sense depending on the
sponding to thefi,n) spinor representation &L(2,C)]is,  sign of helicity. The same construction can be performed for

in ordinary units, the massive Dirac particle if one us€ks.
NAP-S
| = CFIC:2 . (29 V. SUMMARY
The main idea advocated in this paper can be summarized
The equation as follows. Considesomeprocedure leading to a measure-
ment of a nonrelativistic spifi25]. This procedure is based
I = mkrf (30 on a black box giving results “yes” or “no” for spins equal

to, respectively,+#/2 and —#/2. In the nonrelativistic do-
characteristic, by the way, of circular strindsere with mass  main the particles enter the device “slowly.” Imagine now
m,) defines some radius which is equal to that for some reasons we decide to use faster particles. The
measured average may vary with the growiagerage ve-
:ﬁ_)‘ (31) locity of the particle beam and, obviously, some result will
Ip|’ be obtained. The question is how to calculate the result of
, _ such an experiment assuming that the procedure measures
which can be expressed also as a form of the uncertain,e spin jtself and not the total angular momentum. Many
principle different definitions of relativistic spins exist in literature but
all of them are momentum depender@2]. Calculations

Y

[plry=fX. (32 based on the definition which seems the most physidal
The center-of-mass commutation relation the relativistic center of masshow that relativistic correc-
tions are nontrivial. Their strength can be regarded as a com-
[Qk.Q/]= —iﬁek,msm/pﬁ bined influence of two independent relativistic phenomena:

The Lorentz contraction and the Mier shift of the center of
leads, in the massless case, to the uncertainty relations of thgass of a spinning body. The same result is obtained if one
type uses the spin operator defined via the Pauli-Lubanski vector.

2 NN The effect can be in principle measured and will have to be
AQuAQ=AZIN/(([p[H) =(r)/I2\]. taken into account in quantum cryptographic tests for eaves-
ropping if fast massive particles will be used for a key

It is remarkable that the same radius occurs naturally in th
ransfer.

twistor formulation of massless field28]. It is known that
although spin-0 twistors can be represented geometrically by
null straight lines, this does not hold for spin A # 0, twist-
ors[28]. Instead of the straight line we get a congruence of | am grateful to Ryszard Horodecki for suggesting the
twisting, null, shear-free world lines, the so-called Robinsonproblem, Vasant Natarajan for information concerning ex-
congruence. A three-dimensional projection of this congruperiments, and Gerald Kaiser for extensive discussions. The
ence consits o€ircles whose radii are given exactly by our paper is a part of the KBN Project 2P30B03809.
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in similar contexts. It is claimed that the second quantization
eliminates problems with negative energies so no decomposi-
tion of operators into “even” and “odd” parts is really physi-
cal. Notice, however, that we have obtained the even spin of
the Dirac particle as a by product of the analysis which started
from unitary representations of the Poincgreup. These are
precisely the representations that are used in quantum-field
theory and the notion of the Pauli-Lubanski vector “survives”
second quantization. The same concerns the relativistic spin
introduced above.



