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Analytic properties and effective two-level problems in stimulated Raman adiabatic passage
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We demonstrate that various properties of population transfer by delayed pulses in three-level systems on
two-photon resonance can be deduced analytically and for general pulse shapes. We use the fact that the
three-level system reduces to effective two-level problems at large intermediate-level détunimgesonance
(A=0) and for completely overlapping pulses. Special attention is paid to the effect of the pulse order on the
population transfer efficiency. We show that on resonance the transfer efficiency depends substantially on the
pulse order, while at larga it does not. We also find that under some natural restrictions on the symmetry of
the problem, the population of the initial level does not depend on the pulse order At &owythermore, we
demonstrate that the population transfer in the three-level system can be viewed as a level-crossing problem in
an equivalent two-level system not only at large(which is known but also on resonancéy=0. The
effective on-resonance two-level problem is interesting by itself as it shows that a level crossing and adiabatic
evolution do not necessarily lead to complete population inversion. As examples throughout the paper, we
present several analytically solvable modé&1050-294{®7)09301-3

PACS numbds): 32.80.Bx, 33.80.Be, 42.50p

[. INTRODUCTION adiabatic limit, the analysis is more difficult but, fortunately,
it is simplified by the fact that the three-level system reduces
In recent years, the stimulated Raman adiabatic passage effective two-level problems on resonanca=0), at

process(STIRAP) has been intensively studied experimen-large intermediate-level detunirgand for completely over-
tally, analytically, and numericalljl—13]. On the one hand, lapping pulses; these two-level problems are presented in
this process provides the possibility for efficient populationSec, IV. In Sec. V, we demonstrate that STIRAP can be
transfer in three-level and even multilevel systems by usingjiewed as a level-crossing problem in an equivalent two-
relatively simple experimental setups. On the other, it givegeye| system not only at largé (which is known[7,13)) but
an interesting example of counterintuitive physics. In athreey|sg on resonance. We also consider the effective on-
level A system(Fig. 1), STIRAP requires that the Stokes yegonance level-crossing problem by itself as it appears to be

pulse (), driving the transition between the initially un- g ite ynusual. Finally, in Sec. VI, we summarize the conclu-
populated levels 2 and 3, angrecedesthe pump pulse sions

Q,, which drives the transition between the initially popu-
lated level 1 and the intermediate level 2, though they over-
lap partly. This is the so-calledounterintuitive pulse se-
guence, in contrast to thiatuitive one in which the pump

pulse ), precedes the Stokes pulék. STIRAP exploits Consider the three-levél system shown schematically in

the existence of an eigenstate of the Hamiltonian, which i”Fig. 1. Levels 1 and 2 are coupled by the pump laser pulse
volves states 1 and 3 only. Such an eigenstate appears whgn

the A system is ortwo-photon resonance condition which p(t), while levels 2 and 3 are coupled by the Stokes laser

il th hout th The int diate | eEmSGQS(t)' The transition between levels 1 and 3 is electric
we will assume throughout the paper. The intermediate lev ipole forbidden. Two-photon resonance between levels 1
2 can be off resonance by a detunifig

; . . and 3 is maintained, while level 2 can be off resonance by a
The properties of the population transfer in three-levelCertain detuning. The wave functions of these levelhe
systems have mainly been deduced from numerical simularB i %ﬁ d d byl (2 dl3y. Th |
tions[2-5]. Analytically, the process has been treated eithe are ;tat@sm e denoted byj1), |2), and|3). 1€ pulse
durations are supposed to be short compared with the relax-

in the perfect adiabatic limit6-9] or for specific pulse ation times of the system. Then the time evolution of the
h 10,11. In thi , d trat . : '
shapes on resonant®10,11. In this paper, we demonstrate | \o i ™ ool ides o(t) = [ e (1), c0(8),ca(t)]T of the

that various properties can be derived analytically and folP ; d by the Sat S .
general pulse shapes, with a particular emphasis on the effeglree states is governed by the nger equatioriin units

of the pulse order on the population transfer efficiency. Most® ~ )
of these properties have not been discussed in the literature
so far, to our knowledge.
The paper is organized as follows. In Sec. I, we present iic(t)zH(t)c(t) 1)
the basic equations and definitions. In Sec. lll, we analyze dt ’
the population transfer in the adiabatic limit. Beyond the

Il. THREE-LEVEL SYSTEM

where the Hamiltonian of the system in the rotating-wave
*Electronic address: vitanov@rock.helsinki.fi approximation is given by
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| +)=sing sind|1)+cosp|2)+ sing cosd|3),
|0) =cosd|1) —sind|3),
| —)Y=cosp sind|1)—sing|2)+ cosp cosd|3).

5
These adiabatic states correspond to the eigenvalues of
H(t),
1 N (1) = 3 [A(D) +VAZ() +405(1)]= Qo(t)cotp(1),

No(t)=0,
FIG. 1. The three-levek system. Levels 1 and 2 are coupled by
the pump laser puls@ ,(t), while levels 2 and 3 are coupled by the N\ _(t)= 3[A(t)— \/Az(t)+4Q§(t)]= —Qo(t)tanp(t),
Stokes laser puls@4(t). The transition between levels 1 and 3 is
electric dipole forbidden. Levels 1 and 3 are on two-photon resowith the time-dependent Euler's anglésand ¢ defined as
nance, while level 2 may be off resonance by a certain detuning

A. Only level 1 is populated initially. In STIRAP the Stokes pulse (1) = Qp(t) 6
Qg(t) precedes the pump pulg€e,(t) (counterintuitive pulse or- tand(t) = Qg t)’ ®)
den.
_200(1) 7
0 Qb 0 @an2e(t)= "3y @
H=| Q) A QD). @ ang
0 Q) 0

Qo) = VQ5(1) + Q5(1). 8

Without loss of generality the detuning(t) and the func-  Likewise, the probability amplitudes of the adiabatic states

tions Q,(t) andQ4(t), representing the Rabi frequencies of a(t)=[a_ (t),a,(t),a_(t)]" are connected to the diabatic
the two pulses, will be assumed positive. Furthermore(barg amplitudesc(t) by [5]

Q,(t) andQ4(t) are supposed to be pulse-shaped functions,
that is, functions which vanish at infinity and whose pulse c(t)y=W(t)a(t), 9
areas/” ., ((t)dt are finite. Generally, we will not impose

any specific restrictions ofd ,(t) and{)4(t) regarding pulse where the orthogonal rotation mati#(t) is given by

shapes, symmetries, and so on. In some cases, which will be sing sind  cosY  cosp sind
explicitly stated, considerable simplifications occur if we .
choose W(t)=| cosp 0 —sinp . (10

sinp cosy —sind cosp cosy

Q. ()= %5 t-7 Q)= ' t+7 3) The Schrdinger equation in the adiabatic representation is
YT T ) sS obtained from Eqgs(1), (9), and(10) and is given by

d
where f(x)=f(—x) is a symmetric pulse-shaped function, iqra=Ha(a(v), (11)
i.e., if the pulses have the same strength, the same shape
described byf(x), and the same characteristic widthHere  with
27 is the delay between the pulses, arrd0 means intuitive

pulse order whiler>0 means counterintuitive pulse order. Qecoty 9 sing iéo
We suppose that at tinte- — <« the three-level system is, o .
in state|1), Ha(t)=| —i9 sing 0 —idcosp |, (12

—ig i9cosp —Qotane
Co(=)=1, C(==)=0, c5(==)=0, 4 where an overdot means a time derivative.

In Sec. Il we discuss the population transfer mechanisms
and we are interested in the populations at tithe+o,  for the two pulse orders in the adiabatic limit, and the con-
P,=|cn(+%)|? (n=1, 2, and 3. ditions for adiabatic evolution. Generally, adiabatic evolu-

The population transfer mechanism is most easily retion is achieved for large pulse strengths and/or large pulse
vealed in the adiabatic representation, i.e., in the basis of th&idths; hence the product of the pulse strength and the pulse
instantaneous eigenstates), |0), and|—) of H(t), called  width, which is proportional to the pulse area and will be
adiabatic states. They are connected to the lodiabatig denoted bya, usually serves as the adiabaticity parameter
states|1), |2), and|3) by the relationg5] (the largera is, the stronger the adiabaticity
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I1l. ADIABATIC LIMIT (i) For A=0, we havep= /4, which implies that, ini-
tially, the adiabatic statelst) and|—) are both populated
while the state |0) is not populated, asa,(—x)
The population transfer by pulsesdounterintuitiveorder  —5_(—w)=1/\2, ay(—) =0 [see Eqs(4) and(9)]. In the
[in which the Stokes puls€(t) precedes the pump pulse adiapatic limit, the final adiabatic amplitudes are
Qp(1)], referred to as STIRAP, exploits the existence of they (4 oc)=a* (+ ) =€'¥/\2, ag(+=)=0, where{ is the
adiabatic stat¢0) which is a time-dependent linear combi- gqiabatic phase,
nation of state$1) and|3) only. The counterintuitive order

A. Counterintuitive pulse order

means that o
= Qo(t)dt. 18
Q) Qp(t) ‘ L@ o "
lim 0.0 =0, lim & - 13
to—o 778 tode 70S From Eq.(9) we find that the populations of the baidiaba-
or, in other words, tic) states are
. . m Pi(+%)=0, Py(+)=siP, Pj(+)~CcosL.
99(—2)=0, 9(+)=. (14) (19

Thus, the final-state populatioﬁ5(+oc) is not equal to

excitation and to statt8) after it, so that among the adia- unity, as for the counterintuitive pulse order, but oscillates
batic states only0) is populated initially. If the excitation is With the adiabaticity parameter singeis proportional to it

adiabatic, the system will remain in this adiabatic state all thdif EQ- (3) is assumed thea plays the role of the adiabaticity

time and, ultimately, the population will be completely trans-Parametek o
ferred to statd3), (ii) For A#+0, we havep(—x)=¢(+»)=0, which im-

plies that only stat¢—) among the adiabatic states is popu-
pgi(+oo)%0, P(Z:i(_i_oc)%o, pgi(+oo)%1 (15) lated initially asa (—»)=ay(—«)=0, a._('—oo)='1 [see

Egs.(4) and(9)]. Furthermore, state-) coincides with state
Here and in what follows a superscript “ci(*i” ) indicates  |3) att— +o; thus, if the excitation is adiabatic, then the
a quantity related to the counterintuitiviatuitive) pulse or-  System will remain in state-) and the population will even-
der. A remarkable property of the three-level system on twofually be completely transferred to sta8). Thereforejn the
photon resonance is that the adiabatic st@jedoes not in- ~ adiabatic limit both the intuitive and counterintuitive pulse
volve the intermediate stati?). This implies that if the —orders produce complete population transfer for nonzero
evolution is nearly adiabatic, the population of lej2) will  intermediate-level detuningy #0. There is, however, a dif-
remain negligible throughout the excitation and, thus, thef€érence in the way the population is transferred from state
specific properties of stat), including possible decay to |1) to state|3). For the counterintuitive pulse order, the
other states, should not substantially influence the efficiencpopulation is transferred through the adiabatic stdp
of STIRAP. This is an important advantage of STIRAP com-Which does not involve the intermediate sté2¢ and, thus,
pared with the other population transfer mechanisms. FinO population visits statf?) at any time. For the intuitive
nally, we should note that in the adiabatic limit, the value ofpulse order, the population is transferred through the adia-
the intermediate-level detuniniy does not affect the transfer batic statg —) which involves stat¢2) [see Egs(5)]. Thus,
efficiency as the adiabatic staf@) does not depend on it. the intermediate stat@) is populated during the transfer and
Beyond the adiabatic limit, however, the detuningdoes in the adiabatic limit its population is
affect the transfer efficiency. This interesting issue, which we

Hence the adiabatic stat®) is equal to statgl) before

will not consider in this work, has been studied in our recent PL(t)~sirfe(t)= 1 1— A _
paper[12]. 2 VAQS(1) +A%(1)
B. Intuitive pulse order The maximum value oPiz(t) is in the interval (0}), and it

is determined by the particular case considered. This means
that, in the case of strong decay from the intermediate state,
the counterintuitive pulse order is again advantageous as

Consider now théntuitive pulse order in which the pump
pulse),(t) precedes the Stokes pul@g(t). In other words,

O Oy compared with the intuitive pulse order. Related results have
tﬂnjw 0 tlTw a0 =0, (16)  earlier been obtained for a four-level systen]®.
which means that C. An example: Gaussian pulses
To illustrate the above conclusions, we integrated EBs.
Si(—o0)= = i(+o0)=0. 17) numerically in the case of Gaussian pulses of the same
2 shapes and strengths but separated by a pulse delay, of 2
2 2

Unlike the counterintuitive pulse order, there is a substantial ¢, (t)= Eex;{ _(t— 7') } Qb= Eexp{ [t
difference between the cases®&0 andA#0. P T T, ® T T
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As we mentioned, in Fig. 2§ (=AT) is set equal tax

LOT g (=Qp maxT=Qsmaxl), i-€., 6 anda increase simultaneously.
0.87 1\ This can be achieved either by increasing simultaneously the
06 detuningA and the pulse amplitude ;, max and Qg max for
fixed pulse widthsl or, alternatively, by increasing the pulse
0.4 widthsT for fixed detuning and pulse amplitudes. The reason
027 T=102T is that for the intuitive pulse order, adiabaticity cannot be
0 achieved by simply increasing for a fixed §. This is not a

problem for the counterintuitive pulse order because then the
population transfer is realized through the adiabatic state
|0), which is coupled to the other adiabatic states by the

matrix elements containin@ [see Eq.(12)]. The diagonal
elements()ycote and — Qytang can always be made much

larger than the matrix elements with for sufficiently large
a. For the intuitive pulse order, however, the population
transfer is realized through the adiabatic state, which is

Final-State Population

1.0}
0sl coupled to the adiabatic stdte ) by the off-diagonal matrix

' elements withp(t). These latter elements possess two peaks
0.6 T e e situated on thdrapidly vanishing wings of Qq(t), one for
047 t<0 and another for>0. As « increases, these peaks move
02(|/ =087 away from the pulses and, hence, if in these regipris of

00 n ” - the order of or larger thaf,, nonadiabatic transitions take

place which deteriorate the transfer efficiency. Thus we can-
not eliminate this nonadiabatic coupling by increasing
alone. If § is increased simultaneously witl, so that the

FIG. 2. The final-state population for Gaussian pul plot- ratio o/ é is kept constant, thep does not change; thus, for

ted as a function of the dimensionless parametéor r= +0.2T, sufficiently largea (and 6), we can achievély>|¢| at all
+0.5T, and +0.8T (7>0 means the counterintuitive pulse order, times. We hence conclude thtae adiabatic regime is easier
while <0 means the intuitive orderThe detunings is always set  to approach for counterintuitive pulses than it is for intuitive
equal toa. pulses
In Fig. 3, we show the time evolution of the populations
S for counterintuitive(upper figure and intuitive(lower figure
A==, (200 pulse orders withv= =10 andr= = 0.5T. These values of
the parameters ensure nearly adiabatic evolution. The figure
demonstrates that although an almost complete population
transfer to the final state is realized in both cases, for the
counterintuitive order the population of the intermediate
level 2 remains very small during the excitation, while for
the intuitive order it reaches appreciable values.

wherea, 6, andT are positive parameters, whikecan be
positive or negative. A positive means a counterintuitive
pulse order, while a negativemeans an intuitive order. The
parametersy and § are dimensionless, whil& and 7 have
the dimension of time. In Fig. 2, the final-state population is
plotted as a function ofa for r==*0.2T, =0.5T, and

+0.8T. The detunings is set equal tax. The figure demon- V. EOUIVALENT TWO.LEVEL PROBLEMS AND PULSE
strates how the adiabatic limit is approached for both coun-"* Q -
ORDER EFFECTS BEYOND THE ADIABATIC LIMIT

terintuitive and intuitive pulse orders when the adiabaticity
increases. For smadl (7= *0.2T), the adiabatic limi(unity Neither Egs(1) nor (11) are easy to analyze analytically
transfer efficiencyis approached slowly and in an oscilla- peyond the adiabatic limitFortunately, in three important
tory manner because of too much overlap between the pulsggnits—on resonance A=0), at large detuning
which leads to |al’ge-amp|itude Rabi OSCi”atiO(‘Ee Sec. (A>QD,QS)’ and for Comp'ete'y Over|apping pu'ses_the
IV'C). For larger (7= *0.8), there are almost no oscilla- three-level problem is reduced to effective two-level prob-
tions, but the adiabatic limit is approached slowly because ofems which greatly facilitate the analysis.

too small overlap between the pulses which requires large

pulse strengths to achieve adiabaticity. From the point of

view of the transfer efficiency, the region of moderate pulse A. On resonance

separation £= +0.5T) is the optimal one. We also see in the
figure that in all cases, a difference between the intuitive and
counterintuitive orders exists only at small(and this means In the case of intermediate-level resonandes 0, the

at smallés too), i.e., away from the adiabatic regime and nearthree-level problem is reduced to an equivalent two-level one
resonance. For large (and this means for largé), both  with a Rabi frequencgQ () and a detuningQ(t). This is
pulse orders produce almost the same transfer efficiency; thjzossible because, fax=0, Egs.(1) have the same form as
feature is discussed in more detail in Sec. IV B. the optical Bloch equations for a two-level system. The

1. Effective two-level problem
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and to the adiabatic two-level amplitude&) by

c1(t)=(d1(t)[*=[da(t)|*)cos(t)
g +2Rd d;(t)d3 (1) ]sind(1),
<
=
g co(t)=—2i Im[dy(t)d3 (1)],
ca(t) =2 Redy(t)d3 (t)]cosd(t)
— (i ()= [do()[P)sind (). (26)
These relations hold for any pulse order.
.§ 2. Intuitive and counterintuitive pulse orders
<
E The relation between the three-level on-resonance prob-
& lem and the effective two-level problem enables us to show
explicitly that, as the adiabaticity increases, the transfer effi-
ciency for the counterintuitive pulse sequence approaches
3 > " (‘) . 5 3 unity, while it oscillates for the intuitive pulse sequence. Let
) i ) Q4(t) and Q,(t) be two delayed but partly overlapping
(T pulses with(),(t) preceding,(t),
- Oq(t) (Y
FIG. 3. The time evolution of the populations for counterintui- lim =, Im =0. (27
s tﬂ—mQZ(t) 14,+oo‘(22(t)

tive (upper figurgé and intuitive (lower figure pulse orders for

Gaussian pulse€0) with a= =10 and7=0.5T and 7= —0.5T, ) ) . )
respectively. We will consider the special case when the pulse order is

reversed by simply interchanging the pump and Stokes
Schradinger equation for the probability amplitudes Pulses. In other words, in the counterintuitive pulse sequence
b(t) =[b,(t),b,(t)]" of the effective two-level system reads We take{},(t)=€Q(t) and Q4(t)=£(t), while in the in-
[5] tuitive pulse sequence we sél,(t)=Q,(t) and Q(t)
=,(t). Then the Hamiltonians in Eq$21) [as well as in

d 1] —Q4(t) Qp(t) Egs.(1)] corresponding to the two pulse orders are related to
i—b(t)=3 b(t). (21)  each other by a simple time-independent unitary transforma-
dt 2] Qu(t)  Q41) i . : : S
tion; so are the respective evolution matrices. This implies
By using the transformation that the solutions for the two pulse orders can be expressed
in terms ofthe samdnteraction parameters. The same con-
b(t)=R[% 9(t)]d(t) (22) clusion can be drawn if one starts from the adiabatic equa-

tions (24). InterchangingQ2; and (), does not change any-

to the adiabatic amplitudesl(t)=[d;(t),d,(t)]", where thing in these equations but the sign®fConsequently, the
J(t) is defined by Eq(6) and evolution matrices are the same except for the signs of the
off-diagonal elements. In this case, the substantial difference
cosp  sing between the two pulse orders comes from the different initial
“sing cosp)’ (23 conditionsd(—=) [becaused(—<) is differeni which are
determined from Eqs(26) and are imposed in order to sat-
the two-state equation1) are transformed into the adia- STy Eas.(4). Therefore, the solutiond'(+ ) andd®(+«)
batic equations for the two pulse orders can be obtained from essentially the
same evolution matrifthough applied on different initial

R(¢)=

d 1[ = Qo(t) —id(t) vectorsd(—)], i.e., in terms of the same interaction param-
i—d(t)=5| . d(t). (24  eters.
dt 2 i O(t) Qo(t) It is most convenient to express the solutions for the two

pulse orders in terms of the parameters of the evolution ma-
Apparently, the adiabaticity condition for Eqs(24),  trix Uy(+,—) for the adiabatic equation®4),

| 9] <Qy, is identical to that for Eqs(11) with A=0. The
probability amplitudess(t) of the three-level system are re- d(+o0)=Ug(+%,—0)d(—). (28)

lated to the bare two-level amplitudest) by ] ) o ) )
This evolution matrix is unitary, and can be parametrized as

Ji—-péé  pe7
et JTpee

c1(t)=1-2[by(t)[?, cy(t)=—2i Im[by(t)b}(t)],

Ug(+ 0, — ) = (29

ca(t)=2 Re by ()b3 (1], (29
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wherep is the probability of nonadiabatic transitions in the that this property holds evefor nonzero intermediate-level

effective two-level problem, whil¢ and » are dynamical
phases; all these depend on the interaction parameters.

For the counterintuitive pulse sequencet) ,(t) ={,(t)
and Q4(t)=Q4(t). Then 3%(—x=)=0 and 3°(+ )= /2.
The initial conditions(4) can be satisfied only if

f(—)=€'¢, df(—)=0, (30)

whered is an arbitrary unimportant phase. From E@5)—
(30) we find that the populations &t + in our three-level
system are

PS=4p(1—p)cod(¢é+ ), (31)
PS=4p(1-p)sir(¢+ 7), (32)
PS=(1-2p)2. (33)

For intuitive pulses, Q,(t)=Q4(t) and Q4(t)=Q(1).
Then §'(—)=x/2 and¥'(+)=0. The initial conditions
(4) require

) ) 1
dy(— ) =dj(— )= —=e'?, (34)

V2

whereg is again an unimportant phase. From EG§)—(29)
and (34) we obtain the populations &t +« to be

Pi=4p(1-p)cos(é—n), (39
PL=[(1—p)sin2¢— psin27]?, (36)
PL=[(1- p)cos— pcos2y]?. (37)

We should point out again that the paramefgrg, and» in

Egs. (31)—(33) and (35-3% are the same as long as the

pulse order is reversed by interchangifi)g and (2,. This

detuning A(t), provided A(t) too is an even function of
time, e.g., a constant. Equatio{&l) and(35) show that even

if ﬁ(t) andQy(t) are not symmetric, the initial-state popu-
lation behaves similarly for both pulse orders, as it has the
same amplitude but only a different phase of oscillations.
3. An example: An analytic model

We have found an exact analytic solution on resonance

(A=0) for pulses defined by
Q41(1) =Qg(t)coB(t),  Qa(t)=Qo(t)sinO(t), (38)

where

a v

t
Qo(t): ESECH?, @(t): Z . (39)

tanhtF+1

The pulse),(t) precedes the puls@,(t) and their maxima
are separated by a fixed pulse delay of approximately
0.506T. The only independent parameter serves as the
adiabaticity parameter: the largeris the stronger the adia-
baticity. Applying,(t) to the pump transition an@,(t) to
the Stokes transition or vice versa, one can realize both pulse
orders. Note that¥®(t) =0 (t) and '(t) = w/2— O (t).

The populations  for  counterintuitive pulses
[Qp(t) =Q5(t) and Q4(t)=Q4(t)] are

. 1 T
(1:|= mSII’F( E\/AZ-F 1/, (40
i 2A \% 4l T o
2= m Sin Z Ac+1], (41)
ci 2 P 77 2
PS= 1—msm2 Z\/Az-i-l , (42)

parametrization of the populations leads to several importarwhile those for intuitive pulses[Q,(t)=Q,(t) and

conclusions.
(i) When the adiabaticity parameter (the pulse area

increases, the probability for nonadiabatic transitions in the

effective two-level system tends to zero, whieis nearly
proportional to the adiabatic pha&ék), i.e.,

[’

p~0, §~_%fmﬂo(t)dt:_%§ (a—).

Then P§~1 and P;~cogy, i.e., the final-state population
tends to unity for counterintuitive pulses while it oscillates

for intuitive pulses(since{ is proportional toa), in agree-
ment with Eqs.(15) and(19).

Q1) =Q,(t)] are

) 1 T
i H _ 2

Pl K2+—1$|n2< 2\/A +1/, (43)
- i?| AT T 44
2_A2+ 1SI E + ’ ( )
PL=cog g\/A2+1 , (45)

whereA=2al/ is the area of each pulse. The derivation is
straightforward, and it is achieved by changing the indepen-

(ii) In the adiabatic limit,the initial-state population van- gent variable fromt to z=tanh¢/T) and going to the adia-
ishes for both counterintuitive and intuitive pulse orders, patic representatio24) where the two-state equations in-

PS~0, P\~0, because therp~0. For counterintuitive
pulses this is obvious but for the intuitive order it is not.
(iii) If 9(t) andQy(t) areeven functions of timpwvhich
will be the case if, e.g., Eq$3) hold], it is well known that
the symmetry of Eqs24) implies thaty=0 or 7. Thenthe

volve constant coefficients and are easily solved. Equation
(42) shows that, at larger, the probability of nontransfer
1—P§' for counterintuitive pulses decreasesda?. This

is yet another example of the breakdown of the Dykhne-
Davis-Pechukas exponential dependehtd] reported re-

ultimate initial-state population is the same for both pulsecently [5,11]. On the other hand, Eq45) shows that, for
orders P$'=P!=4p(1— p)cogé We show in the Appendix  intuitive pulses, the final-state population oscillates between
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FIG. 4. Populationg40)—(45) for the analytic mode(38) plot- FIG. 5. The pulse shapes and the _time evolution of populations
ted against the dimensionless pulse strengtior counterintuitive ~ (46)—(48) for the analytic mode(38) with £,=0, and 0=,
(upper figurg and intuitive (lower figure pulse orders. (counterintuitive pulse ordgfor a=20.

o vy
zero and unity whem increases. Note also that the popula—Where@(t) IS given by Eq.(39), x(1)=3VA +1®(.t) and,
as aboveA=2a/ is the area of each pulse. Evidently, at

tion of level 1 is the same for both intuitive and counterin- i . ! . :
. ) . large @ the maximum population of the intermediate state is
tuitive pulses as for this modef)o(t) and 9(t) are even  4a2_ ~2/,2<1 The time evolution of population&t6)—

functions although(2,(t) and Q,(t) are not symmetric (4g) is shown in Fig. 5 fore= 20 (lower figure, along with
themselves. It oscillates and its amplitude decreases in g pulse shapesipper figure. In addition, we can also cal-
Lorentzian fashion a& grows. These properties can be seeng|ate exactly the probability for nonadiabatic transitions in

in Fig. 4, where the populations are plotted agaiasfor 14 effective two-level problem, Eq&24) and (30); it is
counterintuitive (upper figure and intuitive (lower figure

pulse orders.

A useful feature of this model is that it allows a simple
analytic solution not only for the final values of the popula-
tions but also for their time evolution. For instance, the time-
dependent populations for counterintuitive pulses are exactlgnd it vanishes as Af.
given by Equations(46)—(48) are given in a form that shows ex-

plicitly the nonadiabatic contributions to the perfectly adia-
: batic solution P{, (t)=cosO(t), P§.(t)=0, and
2sin(t) cosy(t)sin® (t) §adt)=sirPO(t). For instance, we see that for near-
VAZ+1 adiabatic evolution > 1), the nonadiabatic contribution to

_ 2 $(t) is of the orderO(a 1), and it introducegsmall) os-

_ siny(t)cosd(t) (46  Cillations due to the terms witly(t) because(t) changes
VAZ+1 from O to i7\JAZ+1 >1 [in contrast, no oscillations arise
from the terms with®(t) as®(t) changes from 0 ter/2].
Finally, model(38) is unique in the sense that the ratio

2 .
gi(t):<%) sinfy(t), 47 [9(1)|/Q(t) is time independent and equatd(2a)=1/A,
which implies that the nonadiabatic couplirift) vanishes
at infinity simultaneously andn the same manneas the

1
|0|2(t)|2:K2+—13'n2

;\/A2+ 1®(t)}, (49)

St)= { codd () +

. 2siny(t) eigenvalue differencély(t). Hence we should not expect
PS(t)=1 sin®(t) — ——=—| cosy(t)coD(t) appreciable nonadiabatic transitions to take place there,
VAT+1 which indeed is seen explicitly in Eg49). This fact, along

siny(t)sin®(t)

JAZ+1

(49) ticular nonadiabatic regions like, for example, the pulses

2 with Eq. (49), suggests that for modéB8) there are no par-
“ wings in the case of Gaussian pulses.
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(@a=5 () a=10 ©a=15

100 100

FIG. 6. Intensity plot of the final-state popu-
10 lation P5 for Gaussian pulses, E(3), as a func-
tion of the dimensionless pulse dela4T and the
dimensionless detuningg for (@) a=5, (b)
a=10, and(c) «=15. The white meanP;=1,
while the black mean®;=0.

—

Intermediate-Level Detuning &

0.1 0.1

-1 0 1 -1 0 1 -1 0 1

Pulse Delay t/ T Pulse Delay ©/ T Pulse Delay t/ T

B. At large detuning argument holds equally well for both pulse orders. More-
over, Egs.(51) show that reversing the pulse order by inter-
changing Q,(t) and Q(t) changes only the sign of

It is well known that a N-level system on A _(t). It can readily be shown that this leads to the change
(N—1)-photon resonance can be reduced to an effectivgl(t)ﬁc*lf(t), cs(t)— —c3(t). Thus the populations for
two-level system byadiabatic eliminationof the intermedi-  counterintuitive and intuitive pulse orders are approximately
ate levels if the intermediate-level detunings are large comihe samet large intermediate-level detunidg The transfer
pared with the Rab'i frequgncies. This approximation, Whic;l“bfficiency plotted as a function of the pulse detays gen-
is frequently used in multiphoton absorption, has been disgrally expected to possess two maxima, one for the intuitive
cussed in some detail in Refd.5] and[16]. In this approxi-  pylse order and another for the counterintuitive pulse order.
mation, the three-level system on two-photon resonance ifdeed, this feature has been observed experimerj@Hy.
equivalent to a two-level system comprising statBs and  Moreover, if Eqs.(3) are chosen, e.g., if the pump and the
|3) only, Stokes pulses have the same shapes, widths, and strengths,

and the detuning is constant, then these two maxima will

Cl(t)} %[ —Aer() Qerlt) {Cl(t) (50) have the same profiles and will be symmetrically placed with
ca(t) Qerl(t)  Aer(t) [ C3(D) ]
It is worth pointing out that as far as the effect of the

respect tor=0.
given thatA>Q, ;. The effective detuning and Rabi fre- pulse order is concerned, the difference between the cases on

1. Effective two-level problem

d
"at

quency are resonance{=0) and at largeA comes out from the initial
conditions in the respective effective two-level problem. On
03-02 (NN resonance, the initial condition®0) and (34) for the two
A= 2A Qet=— A (51 pulse orders are different, which is crucial. In contrast, at
large A, the initial conditions(52) are the same for both
and the initial conditions are given by Eddg), pulse orders.
Ci(—»)=1, cz(—)=0. (52 3. An example: Gaussian pulses

To check the above conclusions we have integrated Eg.
(1) numerically in the case of Gaussian pulses of the same
shapes and strengths but separated by a time delay, a2l
for a constant intermediate-level detuning,

Equations(50) are obtained from Eq9S.l) when one sets
dc,y(t)/dt=0, and then solves foc,(t) from the resulting
algebraic equation.

2. Intuitive and counterintuitive pulse orders

a t—7\2
Equations(51) show that delayed pulses make the effec- Qpt)= ?GXF{ —( T )
tive detuningA.x(t) chirped. Furthermore, one easily finds

that, although Agu(t) vanishes att— *o, the ratio 2
Ae(t)/Qer(t) tends to +e at t——e and to T at 0 (t):fexp[—(H—T)
t— + <o [the upper(lower) sign being for the counterintuitive s T T
(intuitive) pulse orde}, which is a necessary condition for

adiabatic inversion. Thus the high efficiency of STIRAP canwhere«, §, andT are positive parameters, whitecan be
be viewed as due to a Landau-Zener-type transition in thipositive or negative. A positive means a counterintuitive
effective two-level system. We should point out that thispulse order, while a negative means an intuitive order.

1)
) A(t)=?, (53
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Both a and § are dimensionless, while and T have the states should be dominated by Rabi oscillations. We will not
dimension of time. The intensity plots in Fig. 6 show the present the general analysis here as it involves cumbersome,
final-state population as a function efT and 6 for «=5,  though straightforward, algebra. Instead, it is more instruc-
10, and 15. The figure demonstrates how the regions for thtive to consider explicitly several particular cases.

intuitive pulse order, dominated by Rabi oscillations at small

detuning ¢<3), become almost identical to those for the 1. Adiabatic regime

counterintuitive order at large detuning. As a result, at large | et ys find the solution in the adiabatic regime

6 the final-state population is nearly symmetric versysas . .

expected, because puldé&®) satisfy the symmetry condition [_|(p(t)|§%°(t)00kp’90(t)t?]mp]' rl]n adgmon to QPvS(iIOC) K
(3); otherwise the profile would be asymmetric. We see that_o’ whic | we assume th roug out the paper, we asohma €
at large detuning, a large transfer efficiency can be realizque+natlj_r% assunéptu;n t Agt)b's a nonzhero ((:jqnsta_nt.HT e_r|1
with both pulse orders. Furthermore, asincreasesand, o(* ) = [s?ed_q.( )] ;’:m_ elcausletl e adiabatic Hamil-
thus, adiabaticity improvesthe ranges of values af and tonian is nearly diagonal, simple calculations give

7/T, over which large transfer efficiency is achieved, in- 208 |2 1 [
crease too. It is worth noting the existence of wide ranges of Pz~ 52 sinz[ Zf [\/4Q§(t)+A2—A]dt ,
detuningge.g., 7< <10 for a=10) over which the transfer a+p -

efficiency is almost unity, irrespective of the pulse delay un- (56)

less the latter is very large. Finally, the comparison bet\Neeri,[h 0= JO2T 02 A - :
; ! o=+ Zp SZ. pparently, the final-state population
the three intensity plots shows that, at sm&lthe number of P, oscillates as a function of, 3, andA, and vanishes at

oscillations against/T increases withy, which is explained ; -

; ' very large detuning\. These features can be seen in Fig. 6
by t?etcophclt:sflons of Sde(‘;‘ IV_,I_A_ZOabt(k)]ve. Th.ﬁ ?.lOtS also dem'(for 7=0) wherea= g. It is worth noting that the oscillation
gns rate that for ze_rt(r)a _T_r?y/. B ’I e %SF' glonTvarT)us amplitude is largestunity) for equal pulse strengthg,= .

again increase witix. This 1S €xplained in Sec. € If we fix one of the pulse strengths, s@y and increase the

low. other (), then the final-state population decreasesras

On_e can easily check that the adiabatic condition for th(n(and in an oscillatory manngrand eventually tends to zero
effective two-level problem (50) generally requires

a?>8,1. Given the condition of validity of the adiabatic- for a> .

elimination approximationg>«, we conclude that adiaba- 2 Resonance

ticity for large detuning is achieved whew?s> §>a>1. ]
Evidently, for very large detuningd «?), the transfer ef- On resonanceA =0, we havep=m/4 and ¢=0. The
ficiency decreases since adiabaticity deteriorgi@ coupling between the adiabatic states) and|—) vanishes,

We have to point out that the conclusions deduced fronand the exact solution is easily found
the adiabatic-elimination approximation appear to be valid in
a wider region than the approximation itselfs «,1). For 2apB 2 4 1\/—2_2 5
example, this approximation cannot explain the high transfer a’+ B2 sin 2V +B). 67

efficiency and the symmetry againsin the final-state popu- )
lation for a< 8, as seen in Fig. 6. Note that Eq.(57) cannot be obtained from E¢56) by set-

ting A=0 in the latter, becausd#0 has been assumed in
the derivation of Eq(56).

3:

C. Completely overlapping pulses

Consider now the case when the pulses overlap exactly. 3. The same time dependence of the pulses and the detuning
Let us assume that the pulses have the same time dependencey simple solution is obtained also when the detuning

but possibly different strengths, A(t) shares the same time dependencé€lgft) and (1),

B ) that is, when

t t
Qp(t)z%(?), qu):?f(? (54)

o [t
A(t) = ?f(?
where the parameteks, 8, andT are real and positive and
JZ.f(x)dx=1. Evidently, §(t)=const[see Eq.(6)], and  then o is a (generally nonzemoconstant, andp=0. The
¥=0. This implies that only the matrix elements in the cor-solution is again simple, and the exact final-state population
ners ofH, [Eq. (12)] are nonzero and, hence, the adiabaticreads
state|0) is decoupled from the other adiabatic states. Thus

the three-level problem11) is reduced to an effective two- | 2aB 2 2 .n2M+ 5+ 2 .nZM—5
level one for the adiabatic states ) and|-), 3T\ W2 g2) | Smesih == T CosSesim =,
ig ar| Qocotep i(;D a; (55 —sin2<pcosz<psin2%), (58
dt|a_ —i¢ —Qotane || 2- '

with w=4(a?+ g%+ &°. It again oscillates as a function
It can be shown in general that the properties of these equaf «, 8, and 6. Note that Eq.(58) reduces to Eq(57) for
tions imply that the population dynamics of the act(tzdre 6=0, as should be the case.
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V. STIRAP AS A LEVEL-CROSSING PROBLEM i w ibei T
9i(—=)=€"cosg, gp(—)=—€Tsing, (62
A. At large detuning

As we discussed in Sec. IV B, the effective two-level
problem(50) at largeA involves a level crossing, since de-
layed pulses make the effective detunidgg(t) chirped.
This feature has been noted in Rgfg] and[13].

where ¢ is an unimportant constant phase. The difference

between the two pulse orders, however, still exists. Indeed,

reversing the pulse ordelby interchangingQ), and ()

causes a change of sign iy(t) which leads to complex

conjugation of the evolution matrix and sign changes in the

nondiagonal elements. For initial conditiong(—)
The method of adiabatic elimination, which is applicable =(1,0)" or g(—%)=(0,1)", this does not have any effect,

for largeA, and leads to Eq50), is completely invalid in the  but for the initial conditiong62) it does, of course.

case of intermediate-level resonandes=0. On the other

hand, the effective two-level problem far=0, Egs.(21), C. The on-resonance chirped two-level problem itself

does not involve a level crossing. One may then ask if an . ) )

effective level-crossing two-level problem, that corresponds 1€ chirped two-level problem with detuning and cou-

to STIRAP, exists. We will show that the answer is affirma-Pling given by Eq(61), (), and (), being delayed pulses, is

tive, although this two-level problem is quite unusual. Con-Intéresting by itself, i.e., for the initial conditions

sider the following orthogonal transformation of the prob- N N

ability amplitudesby (t) andb,(t) in Egs.(21), 91(=>)=1, gao(==)=0 63

B. On resonance

- rather than Eq(62), because it demonstrates thetlevel
b(t)= R( - §) g(t), (590  crossing and adiabatic evolution do not necessarily imply a
transition probability of unity Indeed, in the adiabatic limit,

th lati dily found f Eq22), (24) and
whereR(¢) is the rotation matrix23). The equations for the (sg)ngpbuea lons are readily found from Eq@2), (24) an

amplitudesg(t) are
4 |9a(+0)[?~ 3c08'y,  |gy(+0)[>~ 3 + 3siPLy,
90 =Hg(Dg(b), 60

where {,=/"..JOZ(t)+AZ(t)dt. Thus the ground-state

population oscillates between 0 afavhile the excited-state

where . . .
population oscillates betwegnand 1. The reason for this at
- “A. QO a first glance unexpected behavior is that the ratio
Hg(t) = R(—) Hb(t)R( — —) :[ 9 g}, Ag(t)/Qg4(t) does not diverge at—+%= (which is a neces-
8 8 Qg A sary condition for adiabatic inversigrbut tends to+ 1.
, For example, for model38) with =, and Q=1,,
with the corresponding, andQ, Eq. (61), are
1 a t T t
Ag(t)= ﬁ[ﬂs(t)_ﬂp(t)]r Ag(t)=— ﬁsecﬁ?sin Ztanhc |,
1 a t T t
Q4(t)= 2_\/5[93(0 +Q,()]. (61) Q4= Hsect"rfco Ztanhz]. (64)
Obviously, delayed pulses makg(t) chirped, and lead to a The excited-state population is exactly given by
level crossing at time, whereQ¢(to) =Q,(ty). From Egs. ) )
(25) and(59) we find that the three-level amplitude@) are |g2(+°)[*=1—|gs(+)|
expressed in terms @f{t) as A242 -
—1_ _ 2
. 1 A% 1) +1)cos?<4\/A +1
Cl(t)ZE[|91(t)|2_|92(t)|z]—\/E Reg:(t)g5 (1)], 1 2yATFL
- Earctan—AZ— , (65

Co(t)=—2ilm[ga(t)g3 (1)], o : .
whereA=2a/ 7. The derivation is straightforward, and it is

1 carried out by changing the independent variable fitota
ca(t) = —=[19:(D)2~1g2()[?]+ V2 R g,(1)g5 (1)]. z=tanh@/T), and going to the adiabatic representation where
\/5 the two-state equations involve constant coefficients and are
easily solved. In Fig. 7, we show the shapes of the pulse and
The initial conditions(4) require for both pulse orders the the detuning(64). In Fig. 8, the populations are plotted
same initial conditions fog(t), againsta.
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S which is an advantage in the case of strong decay from this
state to other states. Furthermore, it is more difficult to
achieve adiabatic evolution for the intuitive pulse order. We
Q have also shown that the initial-state population vanishes in
g the adiabatic limit for both pulse orders. Moreover, under
some natural restrictions on the symmetry of the problem,
the population of the initial level does not depend on the
pulse order for anyA. We also found that an effective two-
level problem exists for completely overlapping pulses as
well, which explains why the populations are then dominated
A by Rabi oscillations. Finally, we demonstrated that STIRAP
8 can be viewed as a level-crossing problem in an equivalent
P N N S two-level system not only at largé (which is known but
-3 -2 -1 0 1 2 3 also on resonance\(=0). The effective on-resonance level-
T crossing problem is interesting by itself, as it shows that a
level crossing and adiabatic evolution do not necessarily lead
to complete population inversion. This is another example of
the peculiarities of the two-level problems associated with
STIRAP in addition to the breakdown of the Dykhne-Davis-
VI. CONCLUSIONS Pechukas formula for the probability of nonadiabatic transi-

We have deduced analytically various properties of popu:[Ions reported recentl}5,11].
lation transfer by delayed pulses in three-level systems on
two-photon resonance in and beyond the adiabatic limit. We APPENDIX: INDEPENDENCE OF THE INITIAL-STATE
have used the fact that the three-level system reduces to ef- POPULATION ON THE PULSE ORDER
fective two-level problems both on resonanée<(0) and at .
large intermediate-level detuningy. Special attention was We will show thatif 9(t), Qg(t), and A(t) are even
paid to the effect of the pulse order on the population transfefunctions of time then the ultimate initial-state population is
efficiency. We showed that the transfer efficiency dependshe same for both pulse orderSor instance, such a case is
essentially on the pulse order on resonance, while at largthe frequently considered situation wheldg,(t) and Q4(t)
A it does not. That is, on resonance, the transfer efficienchave the same symmetric envelopes and the same strengths
approaches steadily unity for the counterintuitive pulse ordewhile the detuning is constant,
as the adiabaticity parameter increases, while it oscillates
between zero and unity for the intuitive order. At largye a [t—7 a [t+7
both pulse orders produce complete transfer of population to€2,(t) = ?f(?), Q)= ?f<?), A(t)=const,
the final state. There is, nevertheless, still a difference be-
tween the two pulse orders, since the population transfer is
realized via different adiabatic states. Consequently, for th@nd f(—x) =f(x). The proof is an exercise in matrix alge-
intuitive order the intermediate level is populated during thebra.
excitation, while for the counterintuitive order it is not, ~ The solution of the adiabatic equatiofisl) can be ex-
pressed in terms of the evolution mattily as

Pulse and Detuning

FIG. 7. The shapes of the pulse and the detuning,(&4).

— a(+2)=Uy(+%,—x)a(—»),

wherea=[a, ,aqg,a_]". The symmetry ofQ},(t) and A(t)
means thatp(t) is also an even functiong(—t) = ¢(t) [see

z Eq.(7)]. Then¢(t) is an odd functiong(—t)=— ¢(t). The
% implication of the symmetry of the problem is that
= U,(+00,—) has the property
g
UZ(+ 0, =) =1U4(+°, =)l (A1)
where
0 10 20 30 1 0 0o
0 0 1

FIG. 8. The population®;=|g.(+%)|? and P,=|g,(+=)|?,
Eqg. (65), for the model defined in Eq64), plotted against the
dimensionless parameter. In other words, Eq(Al) implies that
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(Ua)21= —(Ua)1o,  (Ua)zo=—(Ua)as, (Ua)zi=(Ua)as
(A2)

To see this, we introduce the evolution mai@xt,0), which
propagates the system from tirbe O to timet,

a(t)=G(t,0)a(0) .

Evidently, the first column of5(t,0) is the solution of Egs.
(11) for the initial conditionsa(0)= (1,0,0)", the second col-
umn is the solution for the initial conditions
a(0)=(0,1,0)", and the third column is the solution for the
initial conditionsa(0)=(0,0,1)". We note that time reversal
t——t in Egs.(11) is equivalent to complex conjugation of
a(t) and change of sign ay(t). This means that

G(—1,00=1G*(t,0).

Using the unitarity ofU, and G and the last equation, we
find that

Ug(+ 00, —0)=G(+%,00G(0,—%)=G(+%,00G'(—,0)
=G(+%2,0IGT(+»,0)

and Eq.(Al) follows immediately.

We now return to the basis of the actbhre states. Let
Q4(1) andQ,(t) be two delayed pulses with,(t) preced-
ing Q,(t), Egs.(27). Suppose first that we havecaunter-
intuitive pulse order, in which Qy(t)=0Q,(t) and
Qg(t)=Q4(t). The probability amplitudes c(t)
=[c§(t),c5(t),c5(t)]" satisfy the Schidinger equatior(1)

-d Ci _ i Ci
|&c (t)=H%t)c"(t), (A3)

with
0 Oyt O
Ho(t)=| Qa(t)  A(t)  Qq(t)
0 O4(1) 0
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Accounting for 9% —x)=0, d%+x)=x/2, and

o(—»)=¢(+*)=¢, we find that
USi=(U,) 18ing+ (U ) 3,c08p.

Provided the system has initially been in stitg, the popu-
lation of this state at— + is P§'=|U$}|2.

Suppose now that we have amuitive pulse order, in
which Qp(t)=Q,(t) and Q4(t)=Q,(t). The probability
amplitudes c'(t) =[c}(t),c5(t),c5(t)]" satisfy the Schro
dinger equatior(1),

d i — i i
i E(O=HI(DS(), (A5)

with
0

Q4(1)
0

Q4(1)
A(t)
Q,(t)

0
Q,(t)
0

H(t)

The population evolution is described by the evolution ma-
trix U'(t,—<0), and we have

c'(+)=U!(+0,—00)c/(—»).

Obviously, the Hamiltonians for the two pulse orders are
related by

o O -

00
H(t)=KHS(t)K, K=|0 1
10

Therefore, the transformatiodi(t) =KZc(t) casts Eqs(A5)
into equations of the same form as E@&3). Hence

U'(+00,— %) =KUC(+%,—x)K. (AB)
Equations(A2), (A4), and(A6) lead to the conclusion that

1= U %=~ (Uy),58ing— (U,) 25c08p

The population evolution is described by the evolution ma-

trix UC(t,— ), and we have

C(+00) = U+, —o0)c(— o).

Because the bare and adiabatic amplitudes are connected

ci(t)=WC(t)a(t) [Eq. (9)], we find that

USI(+ o0, —o0) = WE(+00) Ug(+00, =) [WE(—0) ],
(Ad)

=(U,)18ine+ (U,) sc080=US,.

Provided the system has initially been in stitg, the popu-
lation of this state at— +e is PL=|U}12=|U?=PF".
T%us the assumption that(t), Qq(t), and A(t) are even
functions of time led us to the conclusion that the ultimate
population of the initial statél) does not depend on the
pulse order.
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