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Analytic properties and effective two-level problems in stimulated Raman adiabatic passage
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We demonstrate that various properties of population transfer by delayed pulses in three-level systems on
two-photon resonance can be deduced analytically and for general pulse shapes. We use the fact that the
three-level system reduces to effective two-level problems at large intermediate-level detuningD, on resonance
(D50) and for completely overlapping pulses. Special attention is paid to the effect of the pulse order on the
population transfer efficiency. We show that on resonance the transfer efficiency depends substantially on the
pulse order, while at largeD it does not. We also find that under some natural restrictions on the symmetry of
the problem, the population of the initial level does not depend on the pulse order at anyD. Furthermore, we
demonstrate that the population transfer in the three-level system can be viewed as a level-crossing problem in
an equivalent two-level system not only at largeD ~which is known! but also on resonance,D50. The
effective on-resonance two-level problem is interesting by itself as it shows that a level crossing and adiabatic
evolution do not necessarily lead to complete population inversion. As examples throughout the paper, we
present several analytically solvable models.@S1050-2947~97!09301-3#

PACS number~s!: 32.80.Bx, 33.80.Be, 42.50.2p
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I. INTRODUCTION

In recent years, the stimulated Raman adiabatic pas
process~STIRAP! has been intensively studied experime
tally, analytically, and numerically@1–13#. On the one hand
this process provides the possibility for efficient populati
transfer in three-level and even multilevel systems by us
relatively simple experimental setups. On the other, it gi
an interesting example of counterintuitive physics. In a thr
level L system~Fig. 1!, STIRAP requires that the Stoke
pulseVs , driving the transition between the initially un
populated levels 2 and 3, andprecedesthe pump pulse
Vp , which drives the transition between the initially pop
lated level 1 and the intermediate level 2, though they ov
lap partly. This is the so-calledcounterintuitivepulse se-
quence, in contrast to theintuitive one in which the pump
pulseVp precedes the Stokes pulseVs . STIRAP exploits
the existence of an eigenstate of the Hamiltonian, which
volves states 1 and 3 only. Such an eigenstate appears
theL system is ontwo-photon resonance, a condition which
we will assume throughout the paper. The intermediate le
2 can be off resonance by a detuningD.

The properties of the population transfer in three-le
systems have mainly been deduced from numerical sim
tions @2–5#. Analytically, the process has been treated eit
in the perfect adiabatic limit@6–9# or for specific pulse
shapes on resonance@5,10,11#. In this paper, we demonstrat
that various properties can be derived analytically and
general pulse shapes, with a particular emphasis on the e
of the pulse order on the population transfer efficiency. M
of these properties have not been discussed in the litera
so far, to our knowledge.

The paper is organized as follows. In Sec. II, we pres
the basic equations and definitions. In Sec. III, we anal
the population transfer in the adiabatic limit. Beyond t
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adiabatic limit, the analysis is more difficult but, fortunatel
it is simplified by the fact that the three-level system redu
to effective two-level problems on resonance (D50), at
large intermediate-level detuningD and for completely over-
lapping pulses; these two-level problems are presente
Sec. IV. In Sec. V, we demonstrate that STIRAP can
viewed as a level-crossing problem in an equivalent tw
level system not only at largeD ~which is known@7,13#! but
also on resonance. We also consider the effective
resonance level-crossing problem by itself as it appears t
quite unusual. Finally, in Sec. VI, we summarize the conc
sions.

II. THREE-LEVEL SYSTEM

Consider the three-levelL system shown schematically i
Fig. 1. Levels 1 and 2 are coupled by the pump laser pu
Vp(t), while levels 2 and 3 are coupled by the Stokes la
pulseVs(t). The transition between levels 1 and 3 is elect
dipole forbidden. Two-photon resonance between level
and 3 is maintained, while level 2 can be off resonance b
certain detuningD. The wave functions of these levels~the
bare states! will be denoted byu1&, u2&, and u3&. The pulse
durations are supposed to be short compared with the re
ation times of the system. Then the time evolution of t
probability amplitudesc(t)5@c1(t),c2(t),c3(t)#

T of the
three states is governed by the Schro¨dinger equation~in units
\51)

i
d

dt
c~ t !5H~ t !c~ t !, ~1!

where the Hamiltonian of the system in the rotating-wa
approximation is given by
648 © 1997 The American Physical Society
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55 649ANALYTIC PROPERTIES AND EFFECTIVE TWO-LEVEL . . .
H~ t !5F 0 Vp~ t ! 0

Vp~ t ! D~ t ! Vs~ t !

0 Vs~ t ! 0
G . ~2!

Without loss of generality the detuningD~t! and the func-
tionsVp(t) andVs(t), representing the Rabi frequencies
the two pulses, will be assumed positive. Furthermo
Vp(t) andVs(t) are supposed to be pulse-shaped functio
that is, functions which vanish at infinity and whose pu
areas*2`

` Vp,s(t)dt are finite. Generally, we will not impos
any specific restrictions onVp(t) andVs(t) regarding pulse
shapes, symmetries, and so on. In some cases, which w
explicitly stated, considerable simplifications occur if w
choose

Vp~ t !5
a

T
f S t2t

T D , Vs~ t !5
a

T
f S t1t

T D , ~3!

where f (x)5 f (2x) is a symmetric pulse-shaped functio
i.e., if the pulses have the same strength, the same s
described byf (x), and the same characteristic widthT. Here
2t is the delay between the pulses, andt,0 means intuitive
pulse order whilet.0 means counterintuitive pulse order

We suppose that at timet→2` the three-level system is
in stateu1&,

c1~2`!51, c2~2`!50, c3~2`!50, ~4!

and we are interested in the populations at timet→1`,
Pn5ucn(1`)u2 (n51, 2, and 3!.

The population transfer mechanism is most easily
vealed in the adiabatic representation, i.e., in the basis o
instantaneous eigenstatesu1&, u0&, and u2& of H(t), called
adiabatic states. They are connected to the bare~diabatic!
statesu1&, u2&, andu3& by the relations@5#

FIG. 1. The three-levelL system. Levels 1 and 2 are coupled b
the pump laser pulseVp(t), while levels 2 and 3 are coupled by th
Stokes laser pulseVs(t). The transition between levels 1 and 3
electric dipole forbidden. Levels 1 and 3 are on two-photon re
nance, while level 2 may be off resonance by a certain detun
D. Only level 1 is populated initially. In STIRAP the Stokes pul
Vs(t) precedes the pump pulseVp(t) ~counterintuitive pulse or-
der!.
,
s,

be

pe

-
he

u1&5sinw sinqu1&1coswu2&1sinw cosqu3&,

u0&5cosqu1&2sinqu3&,

u2&5cosw sinqu1&2sinwu2&1cosw cosqu3&.

~5!

These adiabatic states correspond to the eigenvalue
H(t),

l1~ t !5 1
2 @D~ t !1AD2~ t !14V0

2~ t !#5V0~ t !cotw~ t !,

l0~ t !50,

l2~ t !5 1
2 @D~ t !2AD2~ t !14V0

2~ t !#52V0~ t !tanw~ t !,

with the time-dependent Euler’s anglesq andw defined as

tanq~ t !5
Vp~ t !

Vs~ t !
, ~6!

tan2w~ t !5
2V0~ t !

D~ t !
, ~7!

and

V0~ t !5AVp
2~ t !1Vs

2~ t !. ~8!

Likewise, the probability amplitudes of the adiabatic sta
a(t)5@a1(t),a0(t),a2(t)#

T are connected to the diabat
~bare! amplitudesc(t) by @5#

c~ t !5W~ t !a~ t !, ~9!

where the orthogonal rotation matrixW(t) is given by

W~ t !5F sinw sinq cosq cosw sinq

cosw 0 2sinw

sinw cosq 2sinq cosw cosq
G . ~10!

The Schro¨dinger equation in the adiabatic representation
obtained from Eqs.~1!, ~9!, and~10! and is given by

i
d

dt
a~ t !5Ha~ t !a~ t !, ~11!

with

Ha~ t !5F V0cotw i q̇ sinw i ẇ

2 i q̇ sinw 0 2 i q̇ cosw

2 i ẇ i q̇ cosw 2V0tanw
G , ~12!

where an overdot means a time derivative.
In Sec. III we discuss the population transfer mechanis

for the two pulse orders in the adiabatic limit, and the co
ditions for adiabatic evolution. Generally, adiabatic evo
tion is achieved for large pulse strengths and/or large pu
widths; hence the product of the pulse strength and the p
width, which is proportional to the pulse area and will b
denoted bya, usually serves as the adiabaticity parame
~the largera is, the stronger the adiabaticity!.

-
g
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650 55N. V. VITANOV AND S. STENHOLM
III. ADIABATIC LIMIT

A. Counterintuitive pulse order

The population transfer by pulses incounterintuitiveorder
@in which the Stokes pulseVs(t) precedes the pump puls
Vp(t)#, referred to as STIRAP, exploits the existence of
adiabatic stateu0& which is a time-dependent linear comb
nation of statesu1& and u3& only. The counterintuitive orde
means that

lim
t→2`

Vp~ t !

Vs~ t !
50, lim

t→1`

Vp~ t !

Vs~ t !
5`, ~13!

or, in other words,

qci~2`!50, qci~1`!5
p

2
. ~14!

Hence the adiabatic stateu0& is equal to stateu1& before
excitation and to stateu3& after it, so that among the adia
batic states onlyu0& is populated initially. If the excitation is
adiabatic, the system will remain in this adiabatic state all
time and, ultimately, the population will be completely tran
ferred to stateu3&,

P1
ci~1`!'0, P2

ci~1`!'0, P3
ci~1`!'1 ~15!

Here and in what follows a superscript ‘‘ci’’~‘‘i’’ ! indicates
a quantity related to the counterintuitive~intuitive! pulse or-
der. A remarkable property of the three-level system on tw
photon resonance is that the adiabatic stateu0& does not in-
volve the intermediate stateu2&. This implies that if the
evolution is nearly adiabatic, the population of levelu2& will
remain negligible throughout the excitation and, thus,
specific properties of stateu2&, including possible decay to
other states, should not substantially influence the efficie
of STIRAP. This is an important advantage of STIRAP co
pared with the other population transfer mechanisms.
nally, we should note that in the adiabatic limit, the value
the intermediate-level detuningD does not affect the transfe
efficiency as the adiabatic stateu0& does not depend on it
Beyond the adiabatic limit, however, the detuningD does
affect the transfer efficiency. This interesting issue, which
will not consider in this work, has been studied in our rec
paper@12#.

B. Intuitive pulse order

Consider now theintuitive pulse order in which the pump
pulseVp(t) precedes the Stokes pulseVs(t). In other words,

lim
t→2`

Vp~ t !

Vs~ t !
5`, lim

t→1`

Vp~ t !

Vs~ t !
50, ~16!

which means that

q i~2`!5
p

2
, q i~1`!50. ~17!

Unlike the counterintuitive pulse order, there is a substan
difference between the cases ofD50 andDÞ0.
e
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~i! For D50, we havew[p/4, which implies that, ini-
tially, the adiabatic statesu1& and u2& are both populated
while the state u0& is not populated, asa1(2`)
5a2(2`)51/A2, a0(2`)50 @see Eqs.~4! and~9!#. In the
adiabatic limit, the final adiabatic amplitudes a
a1(1`)5a2* (1`)5ei z/A2, a0(1`)50, wherez is the
adiabatic phase,

z5E
2`

`

V0~ t !dt. ~18!

From Eq.~9! we find that the populations of the bare~diaba-
tic! states are

P1
i ~1`!'0, P2

i ~1`!'sin2z, P3
i ~1`!'cos2z.

~19!

Thus, the final-state populationP3
i (1`) is not equal to

unity, as for the counterintuitive pulse order, but oscilla
with the adiabaticity parameter sincez is proportional to it
@if Eq. ~3! is assumed thena plays the role of the adiabaticity
parameter#.

~ii ! For DÞ0, we havew(2`)5w(1`)50, which im-
plies that only stateu2& among the adiabatic states is pop
lated initially asa1(2`)5a0(2`)50, a2(2`)51 @see
Eqs.~4! and~9!#. Furthermore, stateu2& coincides with state
u3& at t→1`; thus, if the excitation is adiabatic, then th
system will remain in stateu2& and the population will even-
tually be completely transferred to stateu3&. Therefore,in the
adiabatic limit both the intuitive and counterintuitive puls
orders produce complete population transfer for nonze
intermediate-level detuning,DÞ0. There is, however, a dif-
ference in the way the population is transferred from st
u1& to state u3&. For the counterintuitive pulse order, th
population is transferred through the adiabatic stateu0&
which does not involve the intermediate stateu2& and, thus,
no population visits stateu2& at any time. For the intuitive
pulse order, the population is transferred through the a
batic stateu2& which involves stateu2& @see Eqs.~5!#. Thus,
the intermediate stateu2& is populated during the transfer an
in the adiabatic limit its population is

P2
i ~ t !'sin2w~ t !5

1

2 F12
D~ t !

A4V0
2~ t !1D2~ t !

G .
The maximum value ofP2

i (t) is in the interval (0,12), and it
is determined by the particular case considered. This me
that, in the case of strong decay from the intermediate st
the counterintuitive pulse order is again advantageous
compared with the intuitive pulse order. Related results h
earlier been obtained for a four-level system in@9#.

C. An example: Gaussian pulses

To illustrate the above conclusions, we integrated Eqs.~1!
numerically in the case of Gaussian pulses of the sa
shapes and strengths but separated by a pulse delay oft,

Vp~ t !5
a

T
expF2S t2t

T D 2G , Vs~ t !5
a

T
expF2S t1t

T D 2G ,
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55 651ANALYTIC PROPERTIES AND EFFECTIVE TWO-LEVEL . . .
D~ t !5
d

T
, ~20!

wherea, d, andT are positive parameters, whilet can be
positive or negative. A positivet means a counterintuitive
pulse order, while a negativet means an intuitive order. Th
parametersa andd are dimensionless, whileT and t have
the dimension of time. In Fig. 2, the final-state population
plotted as a function ofa for t560.2T, 60.5T, and
60.8T. The detuningd is set equal toa. The figure demon-
strates how the adiabatic limit is approached for both co
terintuitive and intuitive pulse orders when the adiabatic
increases. For smallt (t560.2T), the adiabatic limit~unity
transfer efficiency! is approached slowly and in an oscilla
tory manner because of too much overlap between the pu
which leads to large-amplitude Rabi oscillations~see Sec.
IV C!. For larget (t560.8T), there are almost no oscilla
tions, but the adiabatic limit is approached slowly because
too small overlap between the pulses which requires la
pulse strengths to achieve adiabaticity. From the point
view of the transfer efficiency, the region of moderate pu
separation (t560.5T) is the optimal one. We also see in th
figure that in all cases, a difference between the intuitive
counterintuitive orders exists only at smalla ~and this means
at smalld too!, i.e., away from the adiabatic regime and ne
resonance. For largea ~and this means for larged), both
pulse orders produce almost the same transfer efficiency;
feature is discussed in more detail in Sec. IV B.

FIG. 2. The final-state population for Gaussian pulses~20! plot-
ted as a function of the dimensionless parametera for t560.2T,
60.5T, and60.8T (t.0 means the counterintuitive pulse orde
while t,0 means the intuitive order!. The detuningd is always set
equal toa.
s
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As we mentioned, in Fig. 2,d ([DT) is set equal toa
([Vp,maxT5Vs,maxT), i.e.,d anda increase simultaneously
This can be achieved either by increasing simultaneously
detuningD and the pulse amplitudesVp,max andVs,max for
fixed pulse widthsT or, alternatively, by increasing the puls
widthsT for fixed detuning and pulse amplitudes. The reas
is that for the intuitive pulse order, adiabaticity cannot
achieved by simply increasinga for a fixedd. This is not a
problem for the counterintuitive pulse order because then
population transfer is realized through the adiabatic s
u0&, which is coupled to the other adiabatic states by

matrix elements containingq̇ @see Eq.~12!#. The diagonal
elementsV0cotw and2V0tanw can always be made muc

larger than the matrix elements withq̇ for sufficiently large
a. For the intuitive pulse order, however, the populati
transfer is realized through the adiabatic stateu2&, which is
coupled to the adiabatic stateu1& by the off-diagonal matrix

elements withẇ(t). These latter elements possess two pe
situated on the~rapidly vanishing! wings ofV0(t), one for
t,0 and another fort.0. Asa increases, these peaks mo

away from the pulses and, hence, if in these regionsẇ is of
the order of or larger thanV0, nonadiabatic transitions tak
place which deteriorate the transfer efficiency. Thus we c
not eliminate this nonadiabatic coupling by increasinga
alone. If d is increased simultaneously witha, so that the

ratio a/d is kept constant, thenẇ does not change; thus, fo

sufficiently largea ~andd), we can achieveV0@uẇu at all
times. We hence conclude thatthe adiabatic regime is easie
to approach for counterintuitive pulses than it is for intuitiv
pulses.

In Fig. 3, we show the time evolution of the populatio
for counterintuitive~upper figure! and intuitive~lower figure!
pulse orders witha5d510 andt560.5T. These values of
the parameters ensure nearly adiabatic evolution. The fig
demonstrates that although an almost complete popula
transfer to the final state is realized in both cases, for
counterintuitive order the population of the intermedia
level 2 remains very small during the excitation, while f
the intuitive order it reaches appreciable values.

IV. EQUIVALENT TWO-LEVEL PROBLEMS AND PULSE
ORDER EFFECTS BEYOND THE ADIABATIC LIMIT

Neither Eqs.~1! nor ~11! are easy to analyze analyticall
beyond the adiabatic limit. Fortunately, in three importan
limits—on resonance (D50), at large detuning
(D@Vp ,Vs), and for completely overlapping pulses—th
three-level problem is reduced to effective two-level pro
lems which greatly facilitate the analysis.

A. On resonance

1. Effective two-level problem

In the case of intermediate-level resonance,D50, the
three-level problem is reduced to an equivalent two-level o
with a Rabi frequency12Vp(t) and a detuning

1
2Vs(t). This is

possible because, forD50, Eqs.~1! have the same form a
the optical Bloch equations for a two-level system. T



s
s

-

-

rob-
ow
ffi-
hes
et
g

r is
kes
nce

to
ma-
ies
sed
n-
ua-
-

the
nce
tial

t-

the
l
-

wo
ma-

as

i-

652 55N. V. VITANOV AND S. STENHOLM
Schrödinger equation for the probability amplitude
b(t)5@b1(t),b2(t)#

T of the effective two-level system read
@5#

i
d

dt
b~ t !5

1

2 F2Vs~ t ! Vp~ t !

Vp~ t ! Vs~ t !
Gb~ t !. ~21!

By using the transformation

b~ t !5R@ 1
2 q~ t !#d~ t ! ~22!

to the adiabatic amplitudesd(t)5@d1(t),d2(t)#
T, where

q(t) is defined by Eq.~6! and

R~f!5F cosf sinf

2sinf cosfG , ~23!

the two-state equations~21! are transformed into the adia
batic equations

i
d

dt
d~ t !5

1

2 F2V0~ t ! 2 i q̇~ t !

i q̇~ t ! V0~ t !
Gd~ t !. ~24!

Apparently, the adiabaticity condition for Eqs.~24!,

uq̇u!V0, is identical to that for Eqs.~11! with D50. The
probability amplitudesc(t) of the three-level system are re
lated to the bare two-level amplitudesb(t) by

c1~ t !5122ub2~ t !u2, c2~ t !522i Im@b1~ t !b2* ~ t !#,

c3~ t !52 Re@b1~ t !b2* ~ t !#, ~25!

FIG. 3. The time evolution of the populations for counterintu
tive ~upper figure! and intuitive ~lower figure! pulse orders for
Gaussian pulses~20! with a5d510 andt50.5T and t520.5T,
respectively.
and to the adiabatic two-level amplitudesd(t) by

c1~ t !5„ud1~ t !u22ud2~ t !u2…cosq~ t !

12Re@d1~ t !d2* ~ t !#sinq~ t !,

c2~ t !522i Im@d1~ t !d2* ~ t !#,

c3~ t !52 Re@d1~ t !d2* ~ t !#cosq~ t !

2„ud1~ t !u22ud2~ t !u2…sinq~ t !. ~26!

These relations hold for any pulse order.

2. Intuitive and counterintuitive pulse orders

The relation between the three-level on-resonance p
lem and the effective two-level problem enables us to sh
explicitly that, as the adiabaticity increases, the transfer e
ciency for the counterintuitive pulse sequence approac
unity, while it oscillates for the intuitive pulse sequence. L
V1(t) and V2(t) be two delayed but partly overlappin
pulses withV1(t) precedingV2(t),

lim
t→2`

V1~ t !

V2~ t !
5`, lim

t→1`

V1~ t !

V2~ t !
50. ~27!

We will consider the special case when the pulse orde
reversed by simply interchanging the pump and Sto
pulses. In other words, in the counterintuitive pulse seque
we takeVp(t)5V2(t) andVs(t)5V1(t), while in the in-
tuitive pulse sequence we setVp(t)5V1(t) and Vs(t)
5V2(t). Then the Hamiltonians in Eqs.~21! @as well as in
Eqs.~1!# corresponding to the two pulse orders are related
each other by a simple time-independent unitary transfor
tion; so are the respective evolution matrices. This impl
that the solutions for the two pulse orders can be expres
in terms ofthe sameinteraction parameters. The same co
clusion can be drawn if one starts from the adiabatic eq
tions ~24!. InterchangingV1 andV2 does not change any

thing in these equations but the sign ofq̇. Consequently, the
evolution matrices are the same except for the signs of
off-diagonal elements. In this case, the substantial differe
between the two pulse orders comes from the different ini
conditionsd(2`) @becauseq(2`) is different# which are
determined from Eqs.~26! and are imposed in order to sa
isfy Eqs.~4!. Therefore, the solutionsdi(1`) anddci(1`)
for the two pulse orders can be obtained from essentially
same evolution matrix@though applied on different initia
vectorsd(2`)#, i.e., in terms of the same interaction param
eters.

It is most convenient to express the solutions for the t
pulse orders in terms of the parameters of the evolution
trix Ud(1`,2`) for the adiabatic equations~24!,

d~1`!5Ud~1`,2`!d~2`!. ~28!

This evolution matrix is unitary, and can be parametrized

Ud~1`,2`!5F A12pei j Apeih

2Ape2 ih A12pe2 i jG , ~29!



e

ta

e

es

-
s,

se

l

-
the
.

nce

tely

-

ulse

s

is
en-

-
tion

e-

en

55 653ANALYTIC PROPERTIES AND EFFECTIVE TWO-LEVEL . . .
wherep is the probability of nonadiabatic transitions in th
effective two-level problem, whilej and h are dynamical
phases; all these depend on the interaction parameters.

For the counterintuitivepulse sequence,Vp(t)5V2(t)
andVs(t)5V1(t). Thenqci(2`)50 andqci(1`)5p/2.
The initial conditions~4! can be satisfied only if

d1
ci~2`!5eif, d2

ci~2`!50, ~30!

wheref is an arbitrary unimportant phase. From Eqs.~26!–
~30! we find that the populations att→1` in our three-level
system are

P1
ci54p~12p!cos2~j1h!, ~31!

P2
ci54p~12p!sin2~j1h!, ~32!

P3
ci5~122p!2. ~33!

For intuitive pulses,Vp(t)5V1(t) and Vs(t)5V2(t).
Thenq i(2`)5p/2 andq i(1`)50. The initial conditions
~4! require

d1
i ~2`!5d2

i ~2`!5
1

A2
eif, ~34!

wheref is again an unimportant phase. From Eqs.~26!–~29!
and ~34! we obtain the populations att→1` to be

P1
i 54p~12p!cos2~j2h!, ~35!

P2
i 5@~12p!sin2j2psin2h#2, ~36!

P3
i 5@~12p!cos2j2pcos2h#2. ~37!

We should point out again that the parametersp, j, andh in
Eqs. ~31!–~33! and ~35–37! are the same, as long as the
pulse order is reversed by interchangingV1 andV2. This
parametrization of the populations leads to several impor
conclusions.

~i! When the adiabaticity parametera ~the pulse area!
increases, the probabilityp for nonadiabatic transitions in th
effective two-level system tends to zero, whilej is nearly
proportional to the adiabatic phase~18!, i.e.,

p'0, j'2 1
2 E

2`

`

V0~ t !dt52 1
2 z ~a→`!.

Then P3
ci'1 andP3

i 'cos2z, i.e., the final-state population
tends to unity for counterintuitive pulses while it oscillat
for intuitive pulses~sincez is proportional toa), in agree-
ment with Eqs.~15! and ~19!.

~ii ! In the adiabatic limit,the initial-state population van
ishes for both counterintuitive and intuitive pulse order
P1
ci'0, P1

i '0, because thenp'0. For counterintuitive
pulses this is obvious but for the intuitive order it is not.

~iii ! If q̇(t) andV0(t) areeven functions of time@which
will be the case if, e.g., Eqs.~3! hold#, it is well known that
the symmetry of Eqs.~24! implies thath50 orp. Thenthe
ultimate initial-state population is the same for both pul
orders, P1

ci5P1
i 54p(12p)cos2j. We show in the Appendix
nt

that this property holds evenfor nonzero intermediate-leve
detuningD(t), providedD(t) too is an even function of
time, e.g., a constant. Equations~31! and~35! show that even

if q̇(t) andV0(t) are not symmetric, the initial-state popu
lation behaves similarly for both pulse orders, as it has
same amplitude but only a different phase of oscillations

3. An example: An analytic model

We have found an exact analytic solution on resona
(D50) for pulses defined by

V1~ t !5V0~ t !cosQ~ t !, V2~ t !5V0~ t !sinQ~ t !, ~38!

where

V0~ t !5
a

2T
sech2

t

T
, Q~ t !5

p

4 S tanhtT11D . ~39!

The pulseV1(t) precedes the pulseV2(t) and their maxima
are separated by a fixed pulse delay of approxima
0.506T. The only independent parametera serves as the
adiabaticity parameter: the largera is the stronger the adia
baticity. ApplyingV1(t) to the pump transition andV2(t) to
the Stokes transition or vice versa, one can realize both p
orders. Note thatqci(t)5Q(t) andq i(t)5p/22Q(t).

The populations for counterintuitive pulse
@Vp(t)5V2(t) andVs(t)5V1(t)# are

P1
ci5

1

A211
sin2S p

2
AA211D , ~40!

P2
ci5S 2A

A211D
2

sin4S p

4
AA211D , ~41!

P3
ci5F12

2

A211
sin2S p

4
AA211D G2, ~42!

while those for intuitive pulses@Vp(t)5V1(t) and
Vs(t)5V2(t)# are

P1
i 5

1

A211
sin2S p

2
AA211D , ~43!

P2
i 5

A2

A211
sin2S p

2
AA211D , ~44!

P3
i 5cos2S p

2
AA211D , ~45!

whereA52a/p is the area of each pulse. The derivation
straightforward, and it is achieved by changing the indep
dent variable fromt to z5tanh(t/T) and going to the adia-
batic representation~24! where the two-state equations in
volve constant coefficients and are easily solved. Equa
~42! shows that, at largea, the probability of nontransfer
12P3

ci for counterintuitive pulses decreases asp2/a2. This
is yet another example of the breakdown of the Dykhn
Davis-Pechukas exponential dependence@14# reported re-
cently @5,11#. On the other hand, Eq.~45! shows that, for
intuitive pulses, the final-state population oscillates betwe
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zero and unity whena increases. Note also that the popu
tion of level 1 is the same for both intuitive and counter

tuitive pulses as for this model,V0(t) and q̇(t) are even
functions althoughV1(t) and V2(t) are not symmetric
themselves. It oscillates and its amplitude decreases
Lorentzian fashion asa grows. These properties can be se
in Fig. 4, where the populations are plotted againsta for
counterintuitive~upper figure! and intuitive ~lower figure!
pulse orders.

A useful feature of this model is that it allows a simp
analytic solution not only for the final values of the popu
tions but also for their time evolution. For instance, the tim
dependent populations for counterintuitive pulses are exa
given by

P1
ci~ t !5H cosQ~ t !1

2sinx~ t !

AA211
Fcosx~ t !sinQ~ t !

2
sinx~ t !cosQ~ t !

AA211
G J 2

, ~46!

P2
ci~ t !5S 2A

A211D
2

sin4x~ t !, ~47!

P3
ci~ t !5H sinQ~ t !2

2sinx~ t !

AA211
Fcosx~ t !cosQ~ t !

1
sinx~ t !sinQ~ t !

AA211
G J 2

, ~48!

FIG. 4. Populations~40!–~45! for the analytic model~38! plot-
ted against the dimensionless pulse strengtha for counterintuitive
~upper figure! and intuitive~lower figure! pulse orders.
-

a
n

-
-
ly

whereQ(t) is given by Eq.~39!, x(t)5 1
2AA211Q(t) and,

as above,A52a/p is the area of each pulse. Evidently,
largea the maximum population of the intermediate state
4/A25p2/a2!1. The time evolution of populations~46!–
~48! is shown in Fig. 5 fora520 ~lower figure!, along with
the pulse shapes~upper figure!. In addition, we can also cal
culate exactly the probability for nonadiabatic transitions
the effective two-level problem, Eqs.~24! and ~30!; it is

ud2~ t !u25
1

A211
sin2F12AA211Q~ t !G , ~49!

and it vanishes as 1/A2.
Equations~46!–~48! are given in a form that shows ex

plicitly the nonadiabatic contributions to the perfectly ad
batic solution P1,ad

ci (t)5cos2Q(t), P2,ad
ci (t)50, and

P3,ad
ci (t)5sin2Q(t). For instance, we see that for nea

adiabatic evolution (a@1), the nonadiabatic contribution t
P3
ci(t) is of the orderO(a21), and it introduces~small! os-

cillations due to the terms withx(t) becausex(t) changes
from 0 to 1

4pAA211 @1 @in contrast, no oscillations aris
from the terms withQ(t) asQ(t) changes from 0 top/2#.

Finally, model~38! is unique in the sense that the rat

uq̇(t)u/V0(t) is time independent and equalsp/(2a)[1/A,

which implies that the nonadiabatic couplingq̇(t) vanishes
at infinity simultaneously andin the same manneras the
eigenvalue differenceV0(t). Hence we should not expec
appreciable nonadiabatic transitions to take place th
which indeed is seen explicitly in Eq.~49!. This fact, along
with Eq. ~49!, suggests that for model~38! there are no par-
ticular nonadiabatic regions like, for example, the puls
wings in the case of Gaussian pulses.

FIG. 5. The pulse shapes and the time evolution of populati
~46!–~48! for the analytic model~38! with Vp5V2 andVs5V1

~counterintuitive pulse order! for a520.



-

55 655ANALYTIC PROPERTIES AND EFFECTIVE TWO-LEVEL . . .
FIG. 6. Intensity plot of the final-state popu
lationP3 for Gaussian pulses, Eq.~53!, as a func-
tion of the dimensionless pulse delayt/T and the
dimensionless detuningd for ~a! a55, ~b!
a510, and~c! a515. The white meansP351,
while the black meansP350.
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B. At large detuning

1. Effective two-level problem

It is well known that a N-level system on
(N21)-photon resonance can be reduced to an effec
two-level system byadiabatic eliminationof the intermedi-
ate levels if the intermediate-level detunings are large co
pared with the Rabi frequencies. This approximation, wh
is frequently used in multiphoton absorption, has been
cussed in some detail in Refs.@15# and@16#. In this approxi-
mation, the three-level system on two-photon resonanc
equivalent to a two-level system comprising statesu1& and
u3& only,

i
d

dt Fc1~ t !c3~ t !
G'F2Deff~ t ! Veff~ t !

Veff~ t ! Deff~ t !
GFc1~ t !c3~ t !

G , ~50!

given thatD@Vp,s . The effective detuning and Rabi fre
quency are

Deff5
Vp

22Vs
2

2D
, Veff52

VpVs

D
, ~51!

and the initial conditions are given by Eqs.~4!,

c1~2`!51, c3~2`!50. ~52!

Equations~50! are obtained from Eqs.~1! when one sets
dc2(t)/dt50, and then solves forc2(t) from the resulting
algebraic equation.

2. Intuitive and counterintuitive pulse orders

Equations~51! show that delayed pulses make the effe
tive detuningDeff(t) chirped. Furthermore, one easily find
that, although Deff(t) vanishes at t→6`, the ratio
Deff(t)/Veff(t) tends to 6` at t→2` and to 7` at
t→1` @the upper~lower! sign being for the counterintuitive
~intuitive! pulse order#, which is a necessary condition fo
adiabatic inversion. Thus the high efficiency of STIRAP c
be viewed as due to a Landau-Zener-type transition in
effective two-level system. We should point out that th
e

-
h
s-

is

-

is

argument holds equally well for both pulse orders. Mo
over, Eqs.~51! show that reversing the pulse order by inte
changing Vp(t) and Vs(t) changes only the sign o
Deff(t). It can readily be shown that this leads to the chan
c1(t)→c1* (t), c3(t)→2c3* (t). Thus the populations for
counterintuitive and intuitive pulse orders are approximate
the sameat large intermediate-level detuningD. The transfer
efficiency plotted as a function of the pulse delayt is gen-
erally expected to possess two maxima, one for the intui
pulse order and another for the counterintuitive pulse ord
Indeed, this feature has been observed experimentally@8,4#.
Moreover, if Eqs.~3! are chosen, e.g., if the pump and th
Stokes pulses have the same shapes, widths, and stren
and the detuning is constant, then these two maxima
have the same profiles and will be symmetrically placed w
respect tot50.

It is worth pointing out that as far as the effect of th
pulse order is concerned, the difference between the case
resonance (D50) and at largeD comes out from the initial
conditions in the respective effective two-level problem. O
resonance, the initial conditions~30! and ~34! for the two
pulse orders are different, which is crucial. In contrast,
large D, the initial conditions~52! are the same for both
pulse orders.

3. An example: Gaussian pulses

To check the above conclusions we have integrated
~1! numerically in the case of Gaussian pulses of the sa
shapes and strengths but separated by a time delay of 2t, and
for a constant intermediate-level detuning,

Vp~ t !5
a

T
expF2S t2t

T D 2G ,
Vs~ t !5

a

T
expF2S t1t

T D 2G , D~ t !5
d

T
, ~53!

wherea, d, andT are positive parameters, whilet can be
positive or negative. A positivet means a counterintuitive
pulse order, while a negativet means an intuitive order
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656 55N. V. VITANOV AND S. STENHOLM
Both a and d are dimensionless, whilet and T have the
dimension of time. The intensity plots in Fig. 6 show t
final-state population as a function oft/T and d for a55,
10, and 15. The figure demonstrates how the regions for
intuitive pulse order, dominated by Rabi oscillations at sm
detuning (d,3), become almost identical to those for th
counterintuitive order at large detuning. As a result, at la
d the final-state population is nearly symmetric versust , as
expected, because pulses~53! satisfy the symmetry condition
~3!; otherwise the profile would be asymmetric. We see th
at large detuning, a large transfer efficiency can be reali
with both pulse orders. Furthermore, asa increases~and,
thus, adiabaticity improves!, the ranges of values ofd and
t/T, over which large transfer efficiency is achieved,
crease too. It is worth noting the existence of wide range
detunings~e.g., 7,d,10 fora510) over which the transfe
efficiency is almost unity, irrespective of the pulse delay u
less the latter is very large. Finally, the comparison betw
the three intensity plots shows that, at smalld, the number of
oscillations againstt/T increases witha, which is explained
by the conclusions of Sec. IV A 2 above. The plots also de
onstrate that for zero delay,t/T50, the oscillations versus
d again increase witha. This is explained in Sec. IV C be
low.

One can easily check that the adiabatic condition for
effective two-level problem ~50! generally requires
a2@d,1. Given the condition of validity of the adiabatic
elimination approximation,d@a, we conclude that adiaba
ticity for large detuning is achieved whena2@d@a@1.
Evidently, for very large detuning (d@a2), the transfer ef-
ficiency decreases since adiabaticity deteriorates@12#.

We have to point out that the conclusions deduced fr
the adiabatic-elimination approximation appear to be valid
a wider region than the approximation itself (d@a,1). For
example, this approximation cannot explain the high trans
efficiency and the symmetry againstt in the final-state popu-
lation for a,d, as seen in Fig. 6.

C. Completely overlapping pulses

Consider now the case when the pulses overlap exa
Let us assume that the pulses have the same time depen
but possibly different strengths,

Vp~ t !5
a

T
f S tTD , Vs~ t !5

b

T
f S tTD , ~54!

where the parametersa, b, andT are real and positive an
*2`

` f (x)dx51. Evidently, q(t)[const @see Eq.~6!#, and

q̇[0. This implies that only the matrix elements in the co
ners ofHa @Eq. ~12!# are nonzero and, hence, the adiaba
stateu0& is decoupled from the other adiabatic states. Th
the three-level problem~ 11! is reduced to an effective two
level one for the adiabatic statesu1& and u2&,

i
d

dt Fa1

a2
G5FV0cotw i ẇ

2 i ẇ 2V0tanw
GFa1

a2
G . ~55!

It can be shown in general that the properties of these e
tions imply that the population dynamics of the actual~bare!
he
ll

e

t,
d
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n

-

e

n

r

ly.
nce

-
c
s

a-

states should be dominated by Rabi oscillations. We will
present the general analysis here as it involves cumberso
though straightforward, algebra. Instead, it is more instr
tive to consider explicitly several particular cases.

1. Adiabatic regime

Let us find the solution in the adiabatic regim

@ uẇ(t)u!V0(t)cotw,V0(t)tanw#. In addition to Vp,s(6`)
50, which we assume throughout the paper, we also m
the natural assumption thatD(t) is a nonzero constant. The
w(6`)50 @see Eq.~7!# and because the adiabatic Ham
tonian is nearly diagonal, simple calculations give

P3'S 2ab

a21b2D 2sin2H 14E2`

`

@A4V0
2~ t !1D22D#dtJ ,

~56!

with V05AVp
21Vs

2. Apparently, the final-state populatio
P3 oscillates as a function ofa, b, andD, and vanishes a
very large detuningD. These features can be seen in Fig
~for t50) wherea5b. It is worth noting that the oscillation
amplitude is largest~unity! for equal pulse strengths,a5b.
If we fix one of the pulse strengths, sayb, and increase the
other (a), then the final-state population decreases asa22

~and in an oscillatory manner!, and eventually tends to zer
for a@b.

2. Resonance

On resonance,D50, we havew[p/4 and ẇ[0. The
coupling between the adiabatic statesu1& andu2& vanishes,
and the exact solution is easily found

P35S 2ab

a21b2D 2sin4S 12Aa21b2D . ~57!

Note that Eq.~57! cannot be obtained from Eq.~56! by set-
ting D50 in the latter, becauseDÞ0 has been assumed i
the derivation of Eq.~56!.

3. The same time dependence of the pulses and the detunin

A simple solution is obtained also when the detuni
D(t) shares the same time dependence asVp(t) andVs(t),
that is, when

D~ t !5
d

T
f S tTD .

Then w is a ~generally nonzero! constant, andẇ[0. The
solution is again simple, and the exact final-state popula
reads

P35S 2ab

a21b2D 2S sin2wsin2m1d

4
1cos2wsin2

m2d

4

2sin2wcos2wsin2
m

2 D , ~58!

with m5A4(a21b2)1d2. It again oscillates as a functio
of a, b, andd. Note that Eq.~58! reduces to Eq.~57! for
d50, as should be the case.
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V. STIRAP AS A LEVEL-CROSSING PROBLEM

A. At large detuning

As we discussed in Sec. IV B, the effective two-lev
problem~50! at largeD involves a level crossing, since de
layed pulses make the effective detuningDeff(t) chirped.
This feature has been noted in Refs.@7# and @13#.

B. On resonance

The method of adiabatic elimination, which is applicab
for largeD, and leads to Eq.~50!, is completely invalid in the
case of intermediate-level resonance,D50. On the other
hand, the effective two-level problem forD50, Eqs.~21!,
does not involve a level crossing. One may then ask if
effective level-crossing two-level problem, that correspon
to STIRAP, exists. We will show that the answer is affirm
tive, although this two-level problem is quite unusual. Co
sider the following orthogonal transformation of the pro
ability amplitudesb1(t) andb2(t) in Eqs.~21!,

b~ t !5RS 2
p

8 Dg~ t !, ~59!

whereR(f) is the rotation matrix~23!. The equations for the
amplitudesg(t) are

i
d

dt
g~ t !5Hg~ t !g~ t !, ~60!

where

Hg~ t !5RS p

8 DHb~ t !RS 2
p

8 D 5F2Dg Vg

Vg Dg
G ,

with

Dg~ t !5
1

2A2
@Vs~ t !2Vp~ t !#,

Vg~ t !5
1

2A2
@Vs~ t !1Vp~ t !#. ~61!

Obviously, delayed pulses makeDg(t) chirped, and lead to a
level crossing at timet0 whereVs(t0)5Vp(t0). From Eqs.
~25! and~59! we find that the three-level amplitudesc(t) are
expressed in terms ofg(t) as

c1~ t !5
1

A2
@ ug1~ t !u22ug2~ t !u2#2A2 Re@g1~ t !g2* ~ t !#,

c2~ t !522i Im@g1~ t !g2* ~ t !#,

c3~ t !5
1

A2
@ ug1~ t !u22ug2~ t !u2#1A2 Re@g1~ t !g2* ~ t !#.

The initial conditions~4! require for both pulse orders th
same initial conditions forg(t),
l

n
s
-
-

g1~2`!5eifcos
p

8
, g2~2`!52eifsin

p

8
, ~62!

wheref is an unimportant constant phase. The differen
between the two pulse orders, however, still exists. Inde
reversing the pulse order~by interchangingVp and Vs)
causes a change of sign inDg(t) which leads to complex
conjugation of the evolution matrix and sign changes in
nondiagonal elements. For initial conditionsg(2`)
5(1,0)T or g(2`)5(0,1)T, this does not have any effec
but for the initial conditions~62! it does, of course.

C. The on-resonance chirped two-level problem itself

The chirped two-level problem with detuning and co
pling given by Eq.~61!, Vp andVs being delayed pulses, i
interesting by itself, i.e., for the initial conditions

g1~2`!51, g2~2`!50 ~63!

rather than Eq.~62!, because it demonstrates thata level
crossing and adiabatic evolution do not necessarily imply
transition probability of unity. Indeed, in the adiabatic limit
the populations are readily found from Eqs.~22!, ~24! and
~59! to be

ug1~1`!u2' 1
2 cos

2zg , ug2~1`!u2' 1
2 1 1

2 sin
2zg ,

where zg5*2`
` AVg

2(t)1Dg
2(t)dt. Thus the ground-state

population oscillates between 0 and12 while the excited-state
population oscillates between12 and 1. The reason for this a
a first glance unexpected behavior is that the ra
Dg(t)/Vg(t) does not diverge att→6` ~which is a neces-
sary condition for adiabatic inversion!, but tends to71.

For example, for model~38! with Vp5V2 andVs5V1,
the correspondingDg andVg , Eq. ~61!, are

Dg~ t !52
a

4T
sech2

t

T
sinS p

4
tanh

t

TD ,
Vg~ t !5

a

4T
sech2

t

T
cosS p

4
tanh

t

TD . ~64!

The excited-state population is exactly given by

ug2~1`!u2512ug1~1`!u2

512
A212

2~A211!
cos2S p

4
AA211

2
1

2
arctan

2AA211

A2 D , ~65!

whereA52a/p. The derivation is straightforward, and it i
carried out by changing the independent variable fromt to
z5tanh(t/T), and going to the adiabatic representation wh
the two-state equations involve constant coefficients and
easily solved. In Fig. 7, we show the shapes of the pulse
the detuning~64!. In Fig. 8, the populations are plotte
againsta.
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VI. CONCLUSIONS

We have deduced analytically various properties of po
lation transfer by delayed pulses in three-level systems
two-photon resonance in and beyond the adiabatic limit.
have used the fact that the three-level system reduces t
fective two-level problems both on resonance (D50) and at
large intermediate-level detuningD. Special attention was
paid to the effect of the pulse order on the population tran
efficiency. We showed that the transfer efficiency depe
essentially on the pulse order on resonance, while at la
D it does not. That is, on resonance, the transfer efficie
approaches steadily unity for the counterintuitive pulse or
as the adiabaticity parameter increases, while it oscilla
between zero and unity for the intuitive order. At largeD,
both pulse orders produce complete transfer of populatio
the final state. There is, nevertheless, still a difference
tween the two pulse orders, since the population transfe
realized via different adiabatic states. Consequently, for
intuitive order the intermediate level is populated during
excitation, while for the counterintuitive order it is no

FIG. 7. The shapes of the pulse and the detuning, Eq.~64!.

FIG. 8. The populationsP15ug1(1`)u2 andP25ug2(1`)u2,
Eq. ~65!, for the model defined in Eq.~64!, plotted against the
dimensionless parametera.
-
n
e
ef-
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s
ge
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e
e

which is an advantage in the case of strong decay from
state to other states. Furthermore, it is more difficult
achieve adiabatic evolution for the intuitive pulse order. W
have also shown that the initial-state population vanishe
the adiabatic limit for both pulse orders. Moreover, und
some natural restrictions on the symmetry of the proble
the population of the initial level does not depend on t
pulse order for anyD. We also found that an effective two
level problem exists for completely overlapping pulses
well, which explains why the populations are then domina
by Rabi oscillations. Finally, we demonstrated that STIRA
can be viewed as a level-crossing problem in an equiva
two-level system not only at largeD ~which is known! but
also on resonance (D50). The effective on-resonance leve
crossing problem is interesting by itself, as it shows tha
level crossing and adiabatic evolution do not necessarily l
to complete population inversion. This is another example
the peculiarities of the two-level problems associated w
STIRAP in addition to the breakdown of the Dykhne-Dav
Pechukas formula for the probability of nonadiabatic tran
tions reported recently@5,11#.

APPENDIX: INDEPENDENCE OF THE INITIAL-STATE
POPULATION ON THE PULSE ORDER

We will show that if q̇(t), V0(t), and D(t) are even
functions of time then the ultimate initial-state population
the same for both pulse orders. For instance, such a case
the frequently considered situation whereVp(t) andVs(t)
have the same symmetric envelopes and the same stre
while the detuning is constant,

Vp~ t !5
a

T
f S t2t

T D , Vs~ t !5
a

T
f S t1t

T D , D~ t !5const ,

and f (2x)5 f (x). The proof is an exercise in matrix alge
bra.

The solution of the adiabatic equations~11! can be ex-
pressed in terms of the evolution matrixUa as

a~1`!5Ua~1`,2`!a~2`!,

wherea5@a1 ,a0 ,a2#T. The symmetry ofV0(t) andD(t)
means thatw(t) is also an even function,w(2t)5w(t) @see

Eq. ~7!#. Thenẇ(t) is an odd function,ẇ(2t)52ẇ(t). The
implication of the symmetry of the problem is tha
Ua(1`,2`) has the property

Ua
T~1`,2`!5IUa~1`,2`!I ~A1!

where

I5F 1 0 0

0 21 0

0 0 1
G .

In other words, Eq.~A1! implies that
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~Ua!2152~Ua!12, ~Ua!3252~Ua!23, ~Ua!315~Ua!13.
~A2!

To see this, we introduce the evolution matrixG(t,0), which
propagates the system from timet50 to time t,

a~ t !5G~ t,0!a~0! .

Evidently, the first column ofG(t,0) is the solution of Eqs
~11! for the initial conditionsa(0)5(1,0,0)T, the second col-
umn is the solution for the initial condition
a(0)5(0,1,0)T, and the third column is the solution for th
initial conditionsa(0)5(0,0,1)T. We note that time reversa
t→2t in Eqs.~11! is equivalent to complex conjugation o
a(t) and change of sign ofa0(t). This means that

G~2t,0!5IG* ~ t,0!I .

Using the unitarity ofUa andG and the last equation, w
find that

Ua~1`,2`!5G~1`,0!G~0,2`!5G~1`,0!G†~2`,0!

5G~1`,0!IGT~1`,0!I

and Eq.~A1! follows immediately.
We now return to the basis of the actual~bare! states. Let

V1(t) andV2(t) be two delayed pulses withV1(t) preced-
ing V2(t), Eqs.~27!. Suppose first that we have acounter-
intuitive pulse order, in which Vp(t)5V2(t) and
Vs(t)5V1(t). The probability amplitudes cci(t)
5@c1

ci(t),c2
ci(t),c3

ci(t)#T satisfy the Schro¨dinger equation~1!

i
d

dt
cci~ t !5Hci~ t !cci~ t ! , ~A3!

with

Hci~ t !5F 0 V2~ t ! 0

V2~ t ! D~ t ! V1~ t !

0 V1~ t ! 0
G .

The population evolution is described by the evolution m
trix Uci(t,2`), and we have

cci~1`!5Uci~1`,2`!cci~2`!.

Because the bare and adiabatic amplitudes are connecte
cci(t)5Wci(t)a(t) @Eq. ~9!#, we find that

Uci~1`,2`!5Wci~1`!Ua~1`,2`!@Wci~2`!#†.
~A4!
s.
K.
-

by

Accounting for qci(2`)50, qci(1`)5p/2, and
w(2`)5w(1`)[w, we find that

U11
ci 5~Ua!12sinw1~Ua!32cosw.

Provided the system has initially been in stateu1&, the popu-
lation of this state att→1` is P1

ci5uU11
ci u2.

Suppose now that we have anintuitive pulse order, in
which Vp(t)5V1(t) and Vs(t)5V2(t). The probability
amplitudes ci(t)5@c1

i (t),c2
i (t),c3

i (t)#T satisfy the Schro¨-
dinger equation~1!,

i
d

dt
ci~ t !5H i~ t !ci~ t !, ~A5!

with

H i~ t !5F 0 V1~ t ! 0

V1~ t ! D~ t ! V2~ t !

0 V2~ t ! 0
G .

The population evolution is described by the evolution m
trix Ui(t,2`), and we have

ci~1`!5Ui~1`,2`!ci~2`!.

Obviously, the Hamiltonians for the two pulse orders a
related by

H i~ t !5KH ci~ t !K, K5F 0 0 1

0 1 0

1 0 0
G .

Therefore, the transformationci(t)5Kc̃(t) casts Eqs.~A5!
into equations of the same form as Eqs.~A3!. Hence

Ui~1`,2`!5KU ci~1`,2`!K . ~A6!

Equations~A2!, ~A4!, and~A6! lead to the conclusion that

U11
i 5U33

ci 52~Ua!21sinw2~Ua!23cosw

5~Ua!12sinw1~Ua!32cosw5U11
ci .

Provided the system has initially been in stateu1&, the popu-
lation of this state att→1` is P1

i 5uU11
i u25uU11

ci u25P1
ci .

Thus the assumption thatq̇(t), V0(t), andD(t) are even
functions of time led us to the conclusion that the ultima
population of the initial stateu1& does not depend on th
pulse order.
t.
,

@1# U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Ku¨lz,
and K. Bergmann, Chem. Phys. Lett.149, 463 ~1988!; H.-G.
Rubahn, E. Konz, S. Schiemann, and K. Bergmann, Z. Phy
22, 401~1991!; S. Schiemann, A. Kuhn, S. Steuerwald, and
Bergmann, Phys. Rev. Lett.71, 3637~1993!; P. Pillet, C. Val-
entin, R.-L. Yuan, and J. Yu, Phys. Rev. A48, 845 ~1993!;
D

Y. B. Band and O. Magnes, J. Chem. Phys.101, 7528~1994!;
M. V. Danilenko, V. I. Romanenko, and L. P. Yatsenko, Op
Commun.109, 462 ~1994!; B. Glushko and B. Kryzhanovsky
Phys. Rev. A46, 2823~1992!.

@2# Y. B. Band and P. S. Julienne, J. Chem. Phys.95, 5681~1991!;
A. V. Smith, J. Opt. Soc. Am. B9, 1543~1992!; B. W. Shore,



n
,

,
,
d

, J

, J.

hys.

eg,

660 55N. V. VITANOV AND S. STENHOLM
J. Martin, M. P. Fewell, and K. Bergmann, Phys. Rev. A52,
566 ~1995!; J. Martin, B. W. Shore, and K. Bergmann,ibid.
52, 583 ~1995!.

@3# J. Oreg, J. Hazak, and J. H. Eberly, Phys. Rev. A32, 2776
~1985!; G. Z. He, A. Kuhn, S. Schiemann, and K. Bergman
J. Opt. Soc. Am. B7, 1960~1990!; B. W. Shore, K. Bergmann
and J. Oreg, Z. Phys. D23, 33 ~1992!; A. Kuhn, G. Coulston,
G. Z. He, S. Schiemann, K. Bergmann, and W. S. Warren
Chem. Phys.96, 4215~1992!; Y. B. Band and P. S. Julienne
ibid. 97, 9107~1992!; B. W. Shore, K. Bergmann, J. Oreg, an
S. Rosenwaks, Phys. Rev. A44, 7442~1991!; J. S. Melinger,
S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren
Chem. Phys.101, 6439~1994!.

@4# Y. B. Band and P. S. Julienne, J. Chem. Phys.94, 5291~1991!.
@5# T. A. Laine and S. Stenholm, Phys. Rev. A53, 2501~1996!.
@6# F. T. Hioe and J. H. Eberly, Phys. Rev. Lett.47, 838~1981!; F.

T. Hioe, Phys. Lett.99A, 150 ~1983!; J. R. Kuklinski, U.
Gaubatz, F. T. Hioe, and K. Bergmann, Phys. Rev. A40, 6741
~1989!; G. Coulston and K. Bergmann, J. Chem. Phys.96,
3467 ~1992!.

@7# J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A29, 690
~1984!.
,

J.

.

@8# U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann
Chem. Phys.92, 5363~1990!.

@9# J. Oreg, K. Bergmann, B. W. Shore, and S. Rosenwaks, P
Rev. A 45, 4888~1992!.

@10# F. T. Hioe and C. E. Carroll, Phys. Rev. A37, 3000~1988!; C.
E. Carroll and F. T. Hioe, J. Opt. Soc. Am.5, 1335 ~1988!;
Phys. Rev. A42, 1522~1990!; M. Elk, Phys. Rev. A52, 4017
~1995!.

@11# N. V. Vitanov and S. Stenholm, Opt. Commun.127, 215
~1996!.

@12# N. V. Vitanov and S. Stenholm, Opt. Commun.~to be pub-
lished!.

@13# B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Or
and J. H. Eberly, Phys. Rev. A45, 5297~1992!.

@14# A. M. Dykhne, Zh. Eksp. Teor. Fiz.38, 570~1960! @Sov. Phys.

JETP11, 411~1960!#; 41, 1324~1961! @ 14, 941~1962!#; J. P.

Davis and P. Pechukas, J. Chem. Phys.64, 3129~1976!.
@15# L. Allen and C. R. Stroud, Jr., Phys. Rep.91, 1 ~1982!.
@16# S. Stenholm,Foundations of Laser Spectroscopy~Wiley, New

York, 1984!.


