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Theory of gas-phase time-resolved ultrafast electron diffraction

W. -K. Liu* and S. H. Lin
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China

~Received 22 May 1996!

A theory of high-energy electron diffraction from diatomic molecular gases after excitation by a femtosec-
ond laser is presented. Rotational and vibrational coherence created by the excitation pulse are taken into
account. The use of the spherical tensor components of the density matrix along with the Liouville space
formalism allows a systematic derivation of the resulting equations.@S1050-2947~97!08901-4#

PACS number~s!: 34.50.Rk, 34.80.2i, 33.20.Sn, 33.20.Tp
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I. INTRODUCTION

Recently, ultrafast electron diffraction experiments us
a femtosecond laser system, a picosecond electron gu
gether with a two-dimensional charge-coupled device de
tion system, showed great promise for studying the temp
evolution of a gas-phase molecular system after coheren
citation @1,2#. In this paper, we present a formal theory f
the electron diffraction from diatomic molecules after ex
tation by a femtosecond laser. The rotational and vibratio
coherence effects created by the excitation processes are
sidered in detail.

We shall employ the density matrix formalism. The ge
eral theory of the pumping process by femtosecond pu
has been presented previously@3–5#. For rotational invari-
ance considerations, the irreducible spherical tensor te
nique together with the Liouville space description are p
ticularly appropriate. Such procedures were first used
pressure broadening studies@6,7# and have been extended
study various gas-phase relaxation processes@8–11#. Elec-
tron diffraction will be treated within the first Born approx
mation. However, since we are considering scattering fro
superposition of states rather than a pure state, the u
expression for the differential cross section must be modi
appropriately. The Born-Oppenheimer approximation
used, and the contributions from vibrational and rotatio
effects can be treated separately.

This paper is organized as follows: in Sec. II we pres
the theory of the femtosecond laser pumping process as
plied to the vibrational-rotational states of a linear molecu
and by use of the Liouville space formalism we show h
the tensorial components of the upper-state density matri
different ranks are created by the excitation process. A b
description of the subsequent relaxation process is also
cussed. In Sec. III, we consider the scattering of the electr
by the molecules in the mixed state resulting from the pum
ing and relaxation processes. A summary and conclus
will be presented in Sec. IV. In the Appendix we present
elementary derivation of the differential cross section
scattering from a mixed state.

*Permanent address: Guelph-Waterloo Program for Grad
Work in Physics~GWP!2, Department of Physics, University o
Waterloo, Ontario, Canada N2L 3G1.
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II. EXCITATION AND RELAXATION
OF LINEAR MOLECULES

The general theory of femtosecond laser excitation o
system has been presented previously@3,4#, and we shall
apply the results to the specific case of the electronic
vibrational-rotational states of a linear molecule. Under
dipole approximation, the interaction of the molecule w
the quasimonochromatic radiation is given by

Hint~ t !5@H8~V!e2 iVt1H8~2V!eiVt#L~ t !, ~1!

whereH8(V)52d–êE(V) with d being the molecular di-
pole matrix element, andê, V, E(V) being the polarization
vector, the frequency, and the electric field amplitude of
laser radiation, respectively.L(t) is the dimensionless puls
shape function satisfying

E
2`

`

L~ t !dt5T, ~2!

whereT is the pulse duration. Since the electromagnetic fi
is real, the field amplitude satisfiesE(2V)5E(V)* .

The jump in the electronic excited state density mat
elements can be obtained from perturbation theory as@3,4#

Dseb,eb85
1

\2(
a,a8

rga,ga8L̂~veb,ga2V!Heb,ga8 ~V!

3L̂~V2veb8,ga8!Heb8,ga8
8 ~2V!, ~3!

where rga,ga8 is the initial density matrix element, an
L̂(v) is the Fourier transform ofL(t),

L̂~v!5E
2`

`

dt eivtL~ t !. ~4!

Often L(t) is represented by the exponential for
L(t)5e22utu/T, for which L̂(v)5(4/T)/@v21(2/T)2# be-
comes a Lorentzian function. In Eq.~3!, the subscriptsg,e
denote the ground and excited electronic states, whilea,b
are collective indices denoting the vibrational-rotational le
els in the electronic ground and excited states, respectiv
\veb,ga is the energy difference between the excited-st
level ueb& and the ground-state leveluga&. In this paper, we
shall only consider excited states which are bounded.

te
641 © 1997 The American Physical Society
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642 55W.-K. LIU AND S. H. LIN
For a diatomic molecule, the vibrational-rotational sta
can be denoted explicitly bya5$va j ama%, where
va , j a ,ma represent the quantum numbers for vibration
rotational, and its projection along a space-fixedz axis, re-
spectively, and we shall write the density matrix eleme
Dseb,eb8
and rga,ga8 as Ds(evb j bmb ,evb8 j b8mb8 ) and
r(gva j ama ,gva8 j a8ma8 ). Furthermore, the dipole momen
d5d(R)R̂ lies along the direction of the relative interatom
coordinateR. Within the Born-Oppenheimer approximatio
neglecting vibration-rotation interaction, and ignoring theR
dependence of the electronic dipole matrix element~Condon
approximation!, the interaction energy matrix element can
written as

Heb,ga8 ~V!52deĝ evbugva&^ j amauR̂–êu j bmb&, ~5!

where deg is the electronic dipole matrix element, an
^evbugva& is the Frank-Condon factor. Equation~3! then
becomes

Ds~evb j bmb ,evb8 j b8mb8 !

5A (
jama

(
ja8ma8

L̂~veb,ga2V!L̂~V2veb8,ga8!

3^ j bmbuEu j b8mb8 &, ~6!

whereA5udegE(V)u2^evbugva&^gva8 uevb8 &/\2, and the ex-
citation operator is given by

E5 (
ma ,ma8

~R̂–ê!u j ama&r~gva j ama ,gva8 j a8ma8 !

3^ j a8ma8 u~R̂–ê!†, ~7!

which is a straightforward generalization of the excitati
operator given in Refs.@8,12,13,10#. Following Ref. @10#,
this excitation operator can be written in terms of Liouvi
operators and the coupled Liouville basis as

uE&&5(
KQ

F~K !* ~ ê!DQ
~K !~R̂!

3 (
KaQa

rQa

~Ka!
~va j a ,va8 j a8 !u j a~ j a8 !1;KaQa&&, ~8!

where

DQ
~K !~R̂!5(

qq8
~21!12qA2K11S 1 1 K

q 2q8 2QD R̂q^ R̂q8
* ,

~9!

FQ
~K !~ ê!5(

qq8
~21!11K2qA2K11S 1 1 K

q 2q8 2QD eqeq8* ,

~10!

in which R̂q ,êq are the spherical components ofR̂ and ê,
respectively. The irreducible tensorial components are
fined by
s

l,

s

e-

u j a~ j a8 !1;KaQa&&5 (
mama8

~21! ja2maA2Ka11

3S j a j a Ka

ma 2ma8 2Qa
D u j ama&^ j ama8 u

~11!

and

rQa

~Ka!
~va j a ,va8 j a8 !5 (

mama8
~21! ja2maA2Ka11

3S j a j a8 Ka

ma 2ma8 2Qa
D

3r~va j ama ,va8 j a8ma8 !, ~12!

where the dependence on the electronic states has been
pressed.

The Liouville operatorDQ
(K) can be expanded in a com

plete set of Liouville basis as

DQ
~K !5 (

KaQa
(
KbQb

(
ja ja8

(
jb jb8

3^^ j b~ j b8 !1;KbQbuDQ
~K !u j a~ j a8 !1;KaQa&&

3u j b~ j b8 !1;KbQb&&^^ j a~ j a8 !1;KaQau, ~13!

whose matrix elements satisfy the Wigner-Eckart theor
@13#

^^ j b~ j b8 !1;KbQbuDQ
~K !u j a~ j a8 !1;KaQa&&

5~21!Kb2QbS Kb K Ka

2Qb Q Qa
D

3^^ j b j b8
1KbuuD~K !uu j a j a8

1Ka&&. ~14!

The reduced matrix element is given by@10#

^^ j b j b8
1KbuuD~K !uu j a j a8

1Ka&&

5^ j buuR̂uu j a&^ j b8 uuR̂uu j a8 &* @KbKKa#1/2

3H j b j a 1

j b8 j a8 1

Kb Ka K
J ~15!

and

^ j buuR̂uu j a&5~21! jb@ j a j b#1/2S j b 1 j a

0 0 0 D . ~16!

Here, @x1 ,x2 , . . . # denotes the product (2x111)(2x2
11)•••.

Similar to Eq. ~12!, irreducible tensorial components o
the excited-state density matrix can be defined by
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55 643THEORY OF GAS-PHASE TIME-RESOLVED ULTRAFAST . . .
DsQb

~Kb!
~vb j b ,vb8 j b8 !5 (

mbmb8
~21! jb2mbA2Kb11

3S j b j b8 Kb

mb 2mb8 2Qb
D

3Ds~evb j bmb ,evb8 j b8mb8 !.

~17!

Substituting Eqs.~6!, ~8!, ~13!, and ~14! into Eq. ~17! then
gives

DsQb

~Kb!
~vb j b ,vb8 j b8 !

5A(
ja ja8

(
KQ

(
KaQa

L̂~veb,ga2V!

3L̂~V2veb8,ga8!FQ
~K !~ ê!*

3~21!Kb2QbS Kb K Ka

2Qb Q Qa
D

3^^ j b j b8
1KbuuD~K !uu j a j a8

1Ka&&

3rQa

~Ka!
~va j a ,va8 j a8 !. ~18!

Usually the initial state is isotropic, i.e.,

r~gva j ama ,gva8 j a8ma8 !5rgva ja
dvava8

d ja ja8
dmama8

, ~19!

where rgva ja
is the Boltzmann distribution for the leve

(gva j a), yielding

rQa

~Ka!
~va j a ,va8 j a8 !5rgva ja

A2 j a11dvava8
d ja ja8

dKa0
dQa0

.

~20!

In this case, Eq.~18! simplifies to

DsQ
~K !~vb j b ,vb8 j b8 !

5A(
ja

L̂~veb,ga2V!L̂~V2veb8,ga8!

3~21!KFQ
~K !~ ê!* @ j b j b8 #1/2S j a j b 1

0 0 0D
3S j a j b8 1

0 0 0
D H 1 j b j a

j b8 1 K J ~2 j a11!rgva ja
.

~21!

Thus, the tensorial ranks of the excited state distribution
determined by the tensorial character of the dipole radiat
It is clear from Eq.~10! thatK in general can take the value
0, 1, or 2. The dependence of the polarization of the pump
field is given by the factorFQ

(K) . For plane polarized radia
tion with the electric field along the space-fixedz direction,
q andq8 in Eq. ~10! are zero, andK can only be 0 or 2. The
Fourier transformsL̂ determine the excited state levels th
will be coherently pumped by the femtosecond laser.
re
n.

g

t

Equation~18! or ~20! establishes the initial conditions fo
the excited-state density matrix elements after the passag
the pumping pulse. In an isotropic environment, the rel
ation of the upper-state levels can be described by a re
ation matrixL (K) which is diagonal inK,Q and independen
of Q @7#. The equation of motion for the excited state dens
matrix is then given by

d

dt
rQ

~K !~b,b8;t !52 ivb,b8rQ
~K !~b,b8;t !

2 (
b̄ , b̄8

L~K !~b,b8;b̄,b̄8!rQ
~K !~ b̄,b̄8;t !,

~22!

with rQ
(K)(b,b8;0)5DsQ

(K)(b,b8). Here b denotes collec-
tively (vb , j b). \vb,b8 is the energy difference between th
vibrational-rotational levelsb and b8 within the excited
electronic manifold. Usually the inelastic transition rat
are much less than the diagonal relaxation ra
L (K)(b,b8;b,b8). Hence as a first approximation, we ca
ignore the relaxation matrix elements withbÞb̄ and b8
Þb̄8 so that

rQ
~K !~b,b8;t !5exp$@2 ivb,b82L~K !~b,b8;b,b8!#t%

3DsQ
~K !~b,b8!. ~23!

III. ELECTRON DIFFRACTION FROM DIATOMIC
MOLECULES IN MIXED STATE

A. General considerations

In the time-resolved ultrafast electron diffraction expe
ments@1,2#, the molecular system is pumped by a femtos
ond laser pulse, so that an excited state distribution as g
by Eq. ~18! or ~21! is prepared. After a time delaytd in
which the system in the excited-state manifold evolves
cording to Eq.~22!, it is probed by high-energy~10–100
keV! electron diffraction. Since the system is in a mixe
state described by the density matrixr with elements
rQ
(K)(vb j bvb8 j b8 ;td), the differential cross section for electro
scattering is given by@14,15#

ds

dV
5S me

2p\2D 2TrTk8krTkk8
†

Trr
, ~24!

whereme is the mass of the electron.Tk8k is the transition
matrix for electron scattering from initial momentum\k to
final momentum\k8, and is related to the scattering amp
tude byfk8k5(me/2p\2)Tk8k . Equation~24! was originally
used for spin-polarization considerations, and a derivat
for the present situation is given in the Appendix.

At high energy, the transition matrix operator can
evaluated using the first Born approximation@14,15#,

Tk8k5E dr e2 iq–rV~r ,x,X!, ~25!

whereq5k82k is the momentum transfer,r is the position
vector of the scattering electron, andx,X represent collec-
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644 55W.-K. LIU AND S. H. LIN
tively the position vectors of the bound electrons a
nucleus, respectively, of the molecule. For a diatomic m
eculeAB, the potential is

V~r ,x,X!52
ZAe

2

ur2RAu
2

ZBe
2

ur2RBu
1(

i

e2

ur2r i u
, ~26!

wheree is the electronic charge,Zn ,Rn are the atomic num-
ber and the position vector of the nucleus of atomn, respec-
tively, andr i is the position vector of thei th electron. Using
the Fourier representation of the Coulomb interact
(1/r )5(2p)23*dK (4p/K2)exp(iK–r ), the transition matrix
element becomes

Tk8k5
4p

q2 S (
i
e2 iq•r i2(

n
Zne

2 iq–RnD . ~27!

As pointed out by Iijimaet al. @16#, the explicit expression
for the cross section depends on the resolution of the elec
detector. We shall explore different cases in the followi
subsections.

B. High-resolution detection

If the detector can resolve electrons scattered from in
vidual or groups of molecular vibrational-rotational state
then for electronic elastic collisions, the trace in Eq.~24! is
given explicitly by

TrTk8krTkk8
†

5(
v jm

(
v9 j 9m9

(
v8 j 8m8

9^ev8 j 8m8uTk8kuev jm&

3^v jmuruv9 j 9m9&

3^ev8 j 8m8uTk8kuev9 j 9m9&* , ~28!

where the double prime over the sum overv8 j 8m8 implies
only states falling within the energy resolution of the dete
tor are included.

Next, we make the Born-Oppenheimer approximation a
write the molecular wave function as

fev jm~x,X!5ce~x;X!xev jm~X!, ~29!

where the electronic wave functionce depends on the
nuclear coordinatesX parametrically. The transition matri
element between the electronic states can then be expre
in terms of the electron densityr(r ) by

^ceuTk8kuce&5
4p

q2 H E dre2 iq–rr~r !2(
n

Zne
2 iq–RnJ ,

~30!

where

r~r !5E dr1•••drNuce~r1•••rN!u2(
i51

N

d~r2r i !, ~31!

andN5ZA1ZB is the total number of electrons of the mo
ecule. Within the independent-atom approximation~IAA !,
the electronic wave functionce is expressed as the produ
l-

n

on

i-
,

-

d

sed

of atomic orbitalsfA1•••fAZA
fB1•••fBZB

wherefAi and

fB j are atomic orbitals centered on atomsA andB, respec-
tively. Then

r~r !5 (
n5A,B

rn~r2Rn!, ~32!

where

rn~r ![(
i51

Zn E dr inufni~r in!u2d~r2r in! ~33!

with r in5r i2Rn . The same result can be obtained ifce is
represented in terms of a Slater determinant of linear com
nation of atomic orbitals–molecular orbitals~LCAO-MO’s!
and overlap integrals are neglected@17#. The IAA has been
shown to be adequate for structural analysis@16#. The tran-
sition matrix element of Eq.~30! then simplifies to

Tk8e,ke[^ceuTk8kuce&5
4p

q2 (n @Fn~q!2Zn#e
2 iq–Rn,

~34!

where the atomic structure factors are given
Fn(q)5*dre2 iq•rrn(r ).

Taking the origin at the center-of-mass of the diatom
molecule and defining the relative coordinate
R5RA2RB , the matrix element of the expression in E
~34! between vibrational-rotational states becomes

^ev8 j 8m8uTk8kuev jm&

5
4p

q2
$@FA~q!2ZA#^v8 j 8m8ue2 i ~m/mA!q–Ruv jm&

1@FB~q!2ZB#^v8 j 8m8uei ~m/mB!q–Ruv jm&%,

~35!

wheremA ,mB are the masses of the atomA andB, respec-
tively, andm5mAmB /(mA1mB) is the reduced mass of th
system. The matrix elements in Eq.~31! can be evaluated by
using the expansion@18#

exp~6 is–R!54p(
LM

~6 i !L j L~sR!YLM~R̂!YLM* ~ ŝ!, ~36!

where j L andYLM are the spherical Bessel function and t
spherical harmonics, respectively. Ignoring vibratio
rotation interaction, we obtain

^ev8 j 8m8uTk8kuev jm&

5(
LM

i LGL~v8,v !~21!m8@ j 8L j #1/2S j 8 L j

0 0 0D
3S j 8 L j

2m8 M mDYLM* ~ q̂!, ~37!

where
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55 645THEORY OF GAS-PHASE TIME-RESOLVED ULTRAFAST . . .
GL~v8,v !5
~4p!3/2

q2
$~21!L@FA~q!2ZA#^v8u j L~sAR!uv&

1@FB~q!2ZB#^v8u j L~sBR!uv&% ~38!

and si5(m/mi)q, i5A,B. The vibrational-dependent pa
can be simplified by making a first-order expansion of
spherical Bessel function about the equilibrium separa
R0 so that

^v8u j L~siR!uv&. j L~siR0!dvv81si^v8uuuv& j L8~siR0!,
~39!

where u5R2R0. For a simple harmonic oscillator with
natural frequencyv0, ^v8uuuv&5(\/2mv0)

1/2(dv8,v11Av8
1dv8,v21Av811).

Substituting Eq.~37! into Eq. ~28! and transforming the
density matrix elements into the irreducible tensorial com
nent similar to Eq.~12!, we obtain

TrTk8krTkk8
†

5(
KQ

(
v8 j 8

9(
v j

(
v9 j 9

(
LM

(
L8M8

i L2L8

3GL~v8,v !GL8~v8,v9!YLM~ q̂!YL8M8~ q̂!

3@ j 8L j #1/2@ j 8L8 j 9K#1/2~21! j 81 j 9

3S j 8 L j

0 0 0D S j 8 L8 j 9

0 0 0D
3S L8 K L

2M 8 Q 2M D H L8 K L

j j 8 j 9J
3rQ

~K !~v j ,v9 j 9;td!. ~40!

Explicit expression for the differential cross section can th
be obtained from Eq.~24!.

C. Medium-resolution detection

If the detector selects electrons which excite the sa
final electronic state of the molecule and all vibration
rotational states with equal efficiency, the scattering inten
is proportional to an expression similar to Eq.~28!, except
that the sum over (v8 j 8m8) is over the complete set
of vibrational-rotational states. By completene
(v8 j 8m8uv8 j 8m8&^v8 j 8m8u51, and we have

TrTk8krTkk8
†

5(
v jm

(
v9 j 9m9

^v jmuruv9 j 9m9&

3^v9 j 9m9uTke,k8e
† Tk8e,keuv jm&. ~41!

Substituting the IAA result of Eq.~34! into Eq. ~41! and
using the expansion of Eq.~36! with s replaced byq, we
obtain after some algebra the result
e
n

-

n

e
-
ty

,

TrTk8krTkk8
†

5S 4p

q2 D 2H @ uFA2ZAu21uFB2ZBu2#

3(
v j

A2 j11r0
~0!~v j ,v j ;td!

1A4p(
KQ

(
v j

(
v9 j 9

^v9u j K~qR!uv&@~2 i !K

3YKQ* ~ q̂!~FA2ZA!~FB2ZB!*1c.c.#

3~21! j@ j j 9#1/2S j 9 K j

0 0 0D
3rQ

~K !~v j ,v9 j 9;td!J , ~42!

where c.c. denotes complex conjugation. The vibrational
pendence can be simplified similar to Eq.~39!.

For the case that all the molecules are prepared in a p
statev i j i , the density matrix elements in Eq.~42! becomes
rQ
(K)(v j ,v9 j 9)5dvv id j j i

dvv9d j j 9dK0dQ0A(2 j i11), and Eq.
~42! reduces to

TrTk8krTkk8
†

5S 4p

q2 D 2~2 j i11!$@ uFA2ZAu21uFB2ZBu2#

1@~FA2ZA!~FB2ZB!*1c.c.#

3^v i u j 0~qR!uv i&%, ~43!

the conventional expression for the electron scattering in
sity by diatomic molecules@16,19#.

D. Low-resolution detection

Finally, if the detector accepts electrons scattered from
final vibronic states of the molecule, the intensity is prop
tional to

TrTk8krTkk8
†

5(
v jm

(
v9 j 9m9

(
e8v8 j 8m8

3^e8v8 j 8m8uTk8kuev9 j 9m9&*

3^e8v8 j 8m8uTk8kuev jm&^v jmuruv9 j 9m9&

5(
v jm

(
v9 j 9m9

^v jmuruv9 j 9m9&

3^ev9 j 9m9uTkk8
† Tk8kuev jm&, ~44!

where in the last equality, the completeness of the vibro
states (e8v8 j 8m8) has been used. Using Eq.~27!, the elec-
tronic matrix element of the bilinear product of the transiti
matrix can be expressed as
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646 55W.-K. LIU AND S. H. LIN
^ceuTkk8
† Tk8kuce&

5S 4p

q2 D 2H ~ZA1ZA
21ZB1ZB

2 !1E drrc~r !e
2 iq•r

1FZAZBe2 iq•R2S (
n5A,B

Zne
iq•RnD

3E drr~r !e2 iq•r1c.c.G J , ~45!

wherer(r ) is given by Eq.~31! and the second-order elec
tron density function is defined by@20#

rc~r !5E dr1•••drNuce~r1•••rN!u2(
iÞ j

N

d~r2r i1r j !.

~46!

Within the IAA, r(r ) is given by Eq.~32!, while the
Fourier transform ofrc(r ) can be expressed as

E drrc~r !e
2 iq•r5@FA~q!FB* ~q!e2 iq•R1c.c.#2D, ~47!

where

D5 (
n5A,B

(
i51

Zn

z^fniue2 iq•r inufni& z2 ~48!

is independent of the nuclear coordinatesRA andRB . Sub-
stituting Eqs.~32! and ~47! into Eq. ~45! and proceeding as
before, we can reduce Eq.~44! to the final result

TrTk8krTkk8
†

5S 4p

q2 D 2H (v j A2 j11r0
~0!~v j ,v j ;td!Gi

1A4p(
KQ

(
v j

(
v9 j 9

^v9u j K~qR!uv&

3@~2 i !KYKQ* ~ q̂!Gc1c.c.#

3~21! j@ j j 9#
1
2S j 9 K j

0 0 0D
3rQ

~K !~v j ,v9 j 9;td!J , ~49!

where Gi5ZA1ZA
21ZB1ZB

21(n$uFn(q)u22Zn@Fn(q)
1Fn* (q)#%2D, and Gc5ZAZB1FAFB*2ZAFB*2ZBFA* .
Again, if the molecules are initially in a pure state, Eq.~49!
will reduce to the conventional result@20# similar to Eq.
~43!.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have employed the Liouville space f
malism to derive explicit expression for the irreducible te
sorial components of the density matrix produced by a fe
tosecond pumping laser. Such tensorial components
particularly convenient for the consideration of relaxation
an isotropic environment. The main results are given by E
-
-
-
re

s.

~21! and~22!. For subsequent probing of the system by ele
tron diffraction, the coherence created by the pumping a
relaxation processes can be taken into account by cons
ing the transformation of the whole density matrix by t
collision processes. For high-energy electron scattering,
first Born approximation can be used to evaluate the sca
ing amplitudes. The result for elastic collision in which th
vibrational-rotational levels can be resolved is given by E
~40!. The vectorial coupling of various angular momenta
clearly demonstrated by the Wigner 6-j symbol appearing in
Eq. ~40!. Thus, the rotational angular momenta of the m
ecule,j andj 8, couple to formK whose magnitude gives th
tensorial rank of the rotational coherence of the system. D
to the collision with the probing electron, the intermedia
rotational angular momentumj 8 is produced by either cou
pling of j with the angular componentL of the Coulomb
interaction, or by coupling ofj 9 with the componentL 8. To
conserve angular momentum, the componentsL and L 8
couple vectorially to formK again. Information on the struc
ture of the molecule after initial excitation is contained in t
factorsGL andGL8. By measuring the electron diffractio
pattern at different time delaytd , information on theexcited
staterelaxation dynamics can be obtained from the last f
tor of Eq. ~40!, rQ

(K)(v j ,v9 j 9;td).
For medium- and low-resolution detection of the scatte

electrons, the dependence on the rotational and vibratio
states of the molecule is identical, as given by Eq.~42! and
Eq. ~49!, and issimpler than the case of high-resolution de
tection. The electronic contributions to these two cases
course, are different. Here, the angular dependence of
momentum transferq is determined by the spherical harmo
ics with exactly the same order as the tensorial characte
the coherence of the molecular system. If the molecules
prepared in a pure state, only the (K,Q)5(0,0) component
of the density matrix is nonvanishing, which corresponds
the population of the initial state, and the results reduce
the conventional expressions for electron scattering inte
ties. Thus, in this case there appears to be no advantag
using high resolution electron detection to study the coh
ence dynamics of the molecules.
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APPENDIX: ELECTRON SCATTERING
FROM MOLECULES IN A MIXED STATE

Consider the scattering of an electron beam, with incid
momentum peaked at\k0, by a molecule in the superpos
tion state(babfb . We shall derive Eq.~24! following the
Lippmann-Schwinger equation approach discussed in Ch
7 of Rodberg and Thaler@15#, with suitable generalization
The incident beam can be represented by the wave pack

uf~ t !&5(
b

E d3k

~2p!3
A~k!abufkb&e2 iEkbt/\ ~A1!
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where the amplitude functionA(k) is sharply peaked a
k5k0, fkb5fbexp(ik–r ), and Ekb5Ek1eb with eb and
Ek5\2k2/2me being the molecular energy in stateb and the
electron kinetic energy, respectively. The total wave funct
is then given by

uc~ t !&5(
b

E d3k

~2p!3
A~k!abuckb

1 &e2 iEkbt/\, ~A2!

whereuckb
1 & satisfies the Lippmann-Schwinger equation

uckb
1 &5ufkb&1~Ekb2H01 i01!21Vuckb

1 &, ~A3!

in whichH0 is the Hamiltonian of the noninteracting system
The second term of Eq.~A3! when substituted into Eq.~A2!
gives rise to the scattered wavecsc(t), which behaves as
ymptotically as

lim
t→`

ucsc~ t !&522p i(
b

E d3k

~2p!3
A~k!abd~Ekb2H0!V

3uckb
1 &e2 iEkbt/\, ~A4!

since only poles on the real energy axis contribute
csc(t) as t→` @15#.

The probability of detecting the electrons scattered i
the momentum rangeDk8 is given by

PDk85 lim
t→`

(
b8

E
Dk8

d3k8

~2p!3
z^fk8b8e

2 iEk8b8t/\ucsc~ t !& z2.

~A5!

Substituting Eq.~A4! into Eq. ~A5!, defining the transition
matrix element by

Tk8b8,kb5^fk8b8uVuckb
1 & ~A6!

and recognizing that it is a slowly varying function ofk so
that it can be replaced byTk8b8,k0b , and ignoring the energy
J.

,

o
-
,

n

.

o

o

differences between the different vibrational-rotational lev
within the wave packet compared to the kinetic energy of
scattering electron, the probability of Eq.~A5! becomes

PDk85
mek8

~2p!3\2dV

3 (
bb8b9

Tk8b8,k0babab9
* Tk8b8,k0b9

* ~2p!2

3E d3k1
~2p!3

E d3k2
~2p!3

A~k1!A~k2!* d~Ek1
2Ek2

!.

~A7!

Since the incident flux is given by

j inc5
\k0
me

E
2`

` E dxE dXu^rxX uf~ t !&ur50
2

5
2p\2k0
me

(
b

uabu2E d3k1
~2p!3

E d3k2
~2p!3

3A~k1!A~k2!* d~Ek1
2Ek2

!, ~A8!

dividing Eq. ~A7! by Eq. ~A8! gives the differential cross
section

ds

dV
5S me

2p\2D 2k8k0
3 (

bb8b9
Tk8b8,k0babab9

* Tk8b8,k0b9
* Y (

b
uabu2.

~A9!

Realizing that at high electron energy,k8.k0, and the den-
sity matrix elements are defined byrbb95abab9

* , Eq. ~24!
follows immediately from Eq.~A9!.
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