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Theory of gas-phase time-resolved ultrafast electron diffraction
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A theory of high-energy electron diffraction from diatomic molecular gases after excitation by a femtosec-
ond laser is presented. Rotational and vibrational coherence created by the excitation pulse are taken into
account. The use of the spherical tensor components of the density matrix along with the Liouville space
formalism allows a systematic derivation of the resulting equati®s050-294{®7)08901-4

PACS numbsg(s): 34.50.Rk, 34.80-i, 33.20.Sn, 33.20.Tp

I. INTRODUCTION Il. EXCITATION AND RELAXATION
OF LINEAR MOLECULES

Recently, ultrafast electron diffraction experiments using The general theory of femtosecond laser excitation of a

a femtos'econd Iasgr sys'Fem, a picosecond eIectrQn gun tgystem has been presented previoJgy], and we shall
gether with a two-dimensional charge-coupled device detecypny the results to the specific case of the electronic and
tion system, showed great promise for studying the temporajipyational-rotational states of a linear molecule. Under the
evolution of a gas-phase molecular system after coherent exjipole approximation, the interaction of the molecule with

Citation [1,2] In th|S papel’, we present a formal theOI’y for the quasimonochromatic radiation iS given by
the electron diffraction from diatomic molecules after exci-

tation by a femtosecond laser. The rotational and vibrational Hintd(H)=[H"(Q)e "M+ H'(—Q)e'M]L(t), (1)
coherence effects created by the excitation processes are con- R
sidered in detail. whereH’ (Q)=—d-eE({) with d being the molecular di-

We shall employ the density matrix formalism. The gen-Pole matrix element, ané, £, E(}) being the polarization
eral theory of the pumping process by femtosecond pulse¥ector, the frequency, and the electric field amplitude of the
has been presented previou§B-5]. For rotational invari- laser radiation, respectively.(t) is the dimensionless pulse
ance considerations, the irreducible spherical tensor tecighape function satisfying
nigue together with the Liouville space description are par- "
ticularly appropriate. Such procedures were first used in J L(t)dt=T, 2)
pressure broadening studigg7] and have been extended to o
study various gas-phase relaxation proce$8edl]]. Elec-
tron diffraction will be treated within the first Born approxi-
mation. However, since we are considering scattering from
superposition of states rather than a pure state, the usuall
expression for the differential cross section must be modifie§
appropriately. The Born-Oppenheimer approximation is 1 R
used, and the contributions from vibrational and rotational ~ Aceges = ?2 Pgaga’L(®eg ga= Q) Heg ga(2)
effects can be treated separately. aa’

This paper is organized as follows: in Sec. Il we present Co / _
the theory of the femtosecond laser pumping process as ap- XL~ wepr gar)Hepr gor (D), ®
plied to the wbrauongl-rqtatlonal states of'a linear moIecuIeWhere Pawanr is the initial density matrix element, and
and by use of the Liouville space formalism we show how- 9.9 .
the tensorial components of the upper-state density matrix d‘f(“’) is the Fourier transform ot (t),
different ranks are created by the excitation process. A brief "
description of the subsequent relaxation process is also dis- f_(w):f dte“tL(t). (4)
cussed. In Sec. lll, we consider the scattering of the electrons —o
by the molecules in the mixed state resulting from the pump-
ing and relaxation processes. A summary and conclusior@ften L(t) is represented by the exponential form
will be presented in Sec. IV. In the Appendix we present anL(t)=e 2T, for which L(w)=(4/T)/[w?+(2/T)?] be-
elementary derivation of the differential cross section forcomes a Lorentzian function. In E¢B), the subscriptg,e
scattering from a mixed state. denote the ground and excited electronic states, whjj@

are collective indices denoting the vibrational-rotational lev-
els in the electronic ground and excited states, respectively.
*Permanent address: Guelph-Waterloo Program for Graduatéweg 4, IS the energy difference between the excited-state
Work in Physics(GWP)?, Department of Physics, University of level |eg) and the ground-state leviga). In this paper, we
Waterloo, Ontario, Canada N2L 3G1. shall only consider excited states which are bounded.

whereT is the pulse duration. Since the electromagnetic field
‘jj‘s real, the field amplitude satisfi&{ —Q)=E(Q)*.

The jump in the electronic excited state density matrix
ements can be obtained from perturbation theor3a§
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For a diatomic molecule, the vibrational-rotational states

can be denoted explicity byoa={v,j,m,}, where
VgarlaM, represent the quantum numbers for vibrational,
rotational, and its projection along a space-fixeéxis, re-

spectively, and we shall write the density matrix elements

Aoegep

and  pga.ga’ as  Ao(evggmg,ev zj zmp) and
P(9V o) oMy, QU o ,M;). Furthermore, the dipole moment
d=d(R)R lies along the direction of the relative interatomic
coordinateR. Within the Born-Oppenheimer approximation,
neglecting vibration-rotation interaction, and ignoring tRe
dependence of the electronic dipole matrix elem@&@undon
approximation, the interaction energy matrix element can be
written as

Hig gal Q)= —deg(€v 4 G0 ) (j MR- & gmp),  (5)

where dgq is the electronic dipole matrix element, and
(evglgu,) is the Frank-Condon factor. EquatidB) then
becomes

Ao(evgjgmg,ev gj sMp)

AY Y L@epga— QL= wep gar)

JaMy j/m’
aa

X(j gmgl€lj gmp), (6)
where A=|d.4E(Q)|*(ev 4lgv,)(gu ,lev z)/#?, and the ex-
citation operator is given by

E= 2 (R-®)|jaMu)p(QV4f oMy, Qo Li ML)

’
m,.m,

X(j Mgl (R-®)T, (7)
which is a straightforward generalization of the excitation
operator given in Refs[8,12,13,10. Following Ref.[10],
this excitation operator can be written in terms of Liouville
operators and the coupled Liouville basis as

|<‘3>>=KEQ K+ (BDI(R)

X 2 poWaiaw b ialil) T KQu)) (®)
KU(Q[X @
where
R 1 K
DgI(R)=2 (~1)*72K+1 : Ry® R},
qq’ q _Q
©)
. 1 K .
(@)= (1)KL , &gl
qq’ q _Q
(10)

in which Ieiq,éq are the spherical components Bfand &,

Halin) T KaQu))= 2 (—1)la™Mey2K 41

’
m,m/,

d

jD( jD( a

) [ aMa)(j oMl

mCY _mék _QCY
(11)
and
Po " (Wala0hil)= 2 (= 1)l Me2K, +1
m,m/,
(J'a in Ka>
X
m, _m; _Qa
X (U o aMe sV o] M), (12

where the dependence on the electronic states has been sup-
pressed.

The Liouville operatorD(QK) can be expanded in a com-
plete set of Liouville basis as

D=2 2 2>
KaQa KgQp i’ jgij
X((ip(p) " iKeQa DGl alin) 1K aQu))
X|J,B(J£3)+1K,BQB>><<Ja(J;)+uKaQa|’ (13)

whose matrix elements satisfy the Wigner-Eckart theorem
[13]

{iplp " KeQa D i alin) 1K aQa))
Kg K KD,)

-Q; Q Q.

X<<JBJ,,B+Kﬁ||D(K)||]a];erKa))

=(—1)KB_Q,B<
(14
The reduced matrix element is given 0]
(gl " Kl D" o Ka))

= (i AlIRIT )i BRI L) * [K KK ]2
jﬁ ja 1
g da 1
Ksg K, K

4
CYJCV

X

(15

jﬁ ja

0 o 0). (16)

<jﬁ||ﬁ2||ja>:(_1)jﬁ[jajﬁ]llz(

Here, [Xq,Xs,
+1). ..

...] denotes the product &+ 1)(2x,

respectively. The irreducible tensorial components are de- Similar to Eq.(12), irreducible tensorial components of

fined by

the excited-state density matrix can be defined by
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, Equation(18) or (20) establishes the initial conditions for
AO—E?K;)(Uﬁjﬁ Wplp)= 2 (—1))s"MBy2K 5+ 1 the excited-state density matrix elements after the passage of
mgMg the pumping pulse. In an isotropic environment, the relax-
- o K ation of the upper-state levels can be described by a relax-
x( le s k ) ation matrixA () which is diagonal irk,Q and independent
Mg — m[’; —Qp of Q [7]. The equation of motion for the excited state density

. Ly matrix is then given by
X Ao(evgjgmg,ev g sMg).

d .
17 GiP8 (bbit)=—iwp el (b,b7;1)
Substituting Egs(6), (8), (13), and(14) into Eq. (17) then
gives — > A®(b,b";b,b")pd(b,b";1),
AO'(K’B)(U J vrjr) b,b’
Qp Bl Yplp (22)
=A> > > I:(weﬂga_ﬂ) with pgq(b,b’;0)=A08<)(b,b’). Here b denotes collec-
iai!, KQ KaQa ' tively (vg,jg). hwyy is the energy difference between the
R A vibrational-rotational levelsb and b’ within the excited
XL(Q— wepr gar) DY (&)* electronic manifold. Usually the inelastic transition rates
are much less than the diagonal relaxation rates
X(—l)Kﬁ_Qﬂ( g K Ka) A®(b,b";b,b"). Hence as a first approximation, we can
—Qp Q Q, ignore the relaxation matrix elements with=b and b’
. L, #b' so that
X (gl g Kl D" jad o K
(K) Pt — i ,— (K) ’. ’
Xp(QKaa)(UaJa,U&];) (18) pQ (b,b ,t) eXp[[ |wb’b A (b,b ,b,b )]t}
xAcd(b,b). (23
Usually the initial state is isotropic, i.e.,
: Py ) LS ) IIl. ELECTRON DIFFRACTION FROM DIATOMIC
POV o] M 200 o] M) = Py 1, B0 0,93, O, (19) MOLECULES IN MIXED STATE

where pg, ; is the Boltzmann distribution for the level
(Q,iq), yielding

A. General considerations

In the time-resolved ultrafast electron diffraction experi-
pg(")(vaja,v;j W)= Pgo,j N2iat 18, ' 6 i’ 3k 09q 0- ments[1,2], the molecular system is pumped by a femtosec-
“ oo (20) ond laser pulse, so that an excited state distribution as given
by Eq. (18) or (21) is prepared. After a time delaly in

In this case, Eq(18) simplifies to which the system in the excited-state manifold evolves ac-
cording to Eq.(22), it is probed by high-energy10-100
AaS(vgig.v i) keV) electron diffraction. Since the system is in a mixed
state described by the density matrpx with elements
~ ~ (K) . rer . . . .
=AY L(wes 00— Q)L(Q— 0oz o pq (v ] gv gl g :ta), the differential cross section for electron
1'23 (@eng . o6’ ga’) scattering is given by14,15
~ L. ja ]ﬁ 1 do m 2-|—er/ka1' '
X (=15 (&)*[] 1’]1’2( ) i kk
e A o 00 a0\ 2ar?) — Tp 24
Ja dp N1 ip la 2j +1) wherem, is the mass of the electroiiy, is the transition
0 0 O j% 1 K (24 Pav,ia matrix for electron scattering from initial momentubk to

final momentumzk’, and is related to the scattering ampli-
tude byf = (Mmy/274%) T, . Equation(24) was originally

Thus, the tensorial ranks of the excited state distribution ar sed for spln-po_larlz_auo.n can|d_erat|ons, and.a derivation
or the present situation is given in the Appendix.

determined by the tensorial character of the dipole radiation. At hiah the t i i ) b
It is clear from Eq(10) thatK in general can take the values Igh energy, the ftransition matrix operator can be
0, 1, or 2. The dependence of the polarization of the pumpin&valu"’1t6d using the first Born approximatided, 19,

field is given by the facto{" . For plane polarized radia- _

tion with the electric field along the space-fixediirection, Tk’k:f dre™"9"V(r,x,X), (25)
g andq’ in Eq. (10) are zero, an& can only be 0 or 2. The

Fourier transformg. determine the excited state levels thatwhereq=k’ —k is the momentum transfer,is the position
will be coherently pumped by the femtosecond laser. vector of the scattering electron, angdX represent collec-

(21)
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tively the position vectors of the bound electrons andof atomic orbitals¢A1-~-¢AZA¢Bl-~-¢BZB where ¢,; and
nucleus, respectively, of the molecule. For a diatomic moI—¢Bj are atomic orbitals centered on atossandB, respec-

eculeAB, the potential is tively. Then
Z,€? Zge? e’
V(r’x'x)__|r—RA|_|r—RB|+Ei Ir—r,|’ 8 p(N= 2, polT=Ru), (32

n=AB

wheree is the electronic charg&,,,,R,, are the atomic num-
ber and the position vector of the nucleus of ateymespec-
tively, andr; is the position vector of theth electron. Using Z,
the Fourier representation of the Coulomb interaction Pn(r)EE f drinl ni(rin)|28(r —rin) (33
(1r)=(2m) 3fdK (47/K?)exp(K -r), the transition matrix =1

element becomes

where

with r;,=r;,—R,,. The same result can be obtainedif is
4 g iqR represented in terms of a Slater determinant of linear combi-
Twk= rd Z e '_; VAR (27)  nation of atomic orbitals—molecular orbitaltCAO-MO’s)
and overlap integrals are neglectdd]. The IAA has been
As pointed out by lijimaet al. [16], the explicit expression Shown to be adequate for structural analydi]. The tran-

for the cross section depends on the resolution of the electrg#ion Matrix element of EQ30) then simplifies to
detector. We shall explore different cases in the following

. 4 )
subsections. Tereke= (el Tendve) = 772 [Fa(e)=Zgle %,
B. High-resolution detection (34

If the detector can resolve electrons scattered from indiyhere the atomic structure factors are given by
vidual or groups of molecular vibrational-rotational states,r_(q)= fdre='9"p(r).

then for electronic elastic collisions, the trace in E24) is Taking the origin at the center-of-mass of the diatomic
given explicitly by molecule and defining the relative coordinate by
R=R,—Rg, the matrix element of the expression in Eq.

Ter’kPle:Z > > ev'j'm!|Tylevjm) (34) between vibrational-rotational states becomes

vjim U"j”m” U’j’m’
X<Ujm|p|vuj/lmn <ev Jm |Tk’k|evjm>

Pt 150 A 4 i
X<eU Jj'm |Tk,k|ev J'm >*, (28 :?{[FA(q)_ZA:KU/j/mr|efl(,U«/mA)Q'R|Ujm>

where the double prime over the sum owgj'm’ implies

_ 1t/ | ol (u/mg)g-RY,, i
only states falling within the energy resolution of the detec- T[Fa(@)~Zgl{v'j'm'e »9vjm)},

tor are included. (35
Next, we make the Born-Oppenheimer approximation and
write the molecular wave function as wherem, ,mg are the masses of the atofnandB, respec-
tively, and u=mpmg/(ma+ mg) is the reduced mass of the
Depjm(X, X) = Phe(X; X) Xepjm(X), (29)  system. The matrix elements in E@1) can be evaluated by

using the expansiofi8]
where the electronic wave functiogy, depends on the
nuclear coordinateX parametrically. The transition matrix ) AL LSRN
element between the electronic states can then be express@&di'S'R):“”% (D5LSRYLMR)Yiu(S),  (36)
in terms of the electron densip(r) by

wherej,_ andY,y, are the spherical Bessel function and the

4 ) ) - - . . . .
(el Tl o) = — J'dreflqu(r)_z Z,e 19Rnl spherical harmonics, respectively. Ignoring vibration-
q n rotation interaction, we obtain

(30)
(ev'j'm'[Ty|evjm)
where . .
il ’ m'rir q1/2 J’ L ]
N => itGLv ) (- D)™} L]]
2 ™M 0O 0 O
P(r):f dry---drylge(ry- - -ry)| 21 o(r—r;), (31
- L .
X Y¥ , 3
andN=Z,+ Zg is the total number of electrons of the mol- ( -m" M m) (@) S

ecule. Within the independent-atom approximatidAA ),
the electronic wave functiogl, is expressed as the product where
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(477_)3/2 . .
G (v'v)= % {(=DFa(@)—Zal(v']iL(saR) |v)
+[Fa(a)—ZgKv'|jL(ssR)|v)} (38
and s;=(u/m;)q, i=A,B. The vibrational-dependent part

t 4
Ter’kakk’ = Ez‘

2
{[|FA_ZA|2+|FB_ZB|2]

xEJa 1pQ(v],vj;te)

can be simplified by making a first-order expansion of the

spherical Bessel function about the equilibrium separation

Ry so that

(v'jiL(siR)|v)=]jL(siRg) 8,, +si(v"|ulv)j{ (SiRo),
(39

where u=R—R,.
natural frequencywg, (v'|ulv)=(A/2uwe) (8, yi1v"

+5U/,l)*l\ U’+l).

Substituting Eq.(37) into Eq. (28) and transforming the

For a simple harmonic oscillator with

+FEEEWMWMHW

// "
v

XYko(@)(FA—Zp)(Fg—Zg)* +c.c]

, I J
—1PUIW1”(O 0 O)

X (0]} m} 42

density matrix elements into the irreducible tensorial compo-

nent similar to Eq(12), we obtain

TrTewp Ty = 25 222> XY

v ] Uj UHJII LM L'm’
XGL(v',0)GL/(v",0")YLm(AD)YLw ()

X[] rLj]1/2[j/L/j//K]1/2(_1)j'+j”
j/ L J j/ L’ jrr
0O 0 0\0 O O

L’ K L )|L’ K L]
-MQ —m/[j

Xpg (0] v"|" ta). (40

X

X

Explicit expression for the differential cross section can then

be obtained from Eq24).

C. Medium-resolution detection

where c.c. denotes complex conjugation. The vibrational de-
pendence can be simplified similar to E§9).

For the case that all the molecules are prepared in a pure
statev;j;, the density matrix elements in EGl2) becomes

p(QK)(U] U” ”) 0, vi5jji5vv”5jj”5K05Q0\/(2ji+1)! and Eq
(42) reduces to

2
T T = |2} (2), + D[ FaeZal24 [Fo—Za[?
Myekp g 7 (2)i+ D{[|FA—Za|*+|Fg—Zg|?]
+(FA=Za)(Fp—

X(viljo(aR)|vi)}, (43

Zg)* +c.c]

the conventional expression for the electron scattering inten-
sity by diatomic moleculef16,19.

D. Low-resolution detection

Finally, if the detector accepts electrons scattered from all
final vibronic states of the molecule, the intensity is propor-
tional to

If the detector selects electrons which excite the same
final electronic state of the molecule and all vibrational-TrTpTh =2 > >
rotational states with equal efficiency, the scattering intensity oIm i " v m’
is proportional to an expression similar to E8), except
that the sum over ('j'm’) is over the complete set
of vibrational-rotational states. By completeness,
S,melv’i'm ) v’j'm’|=1, and we have

>< <e!U /j /m/ |Tklk|ev”j”m”>*

x(e'v'j'm’|Tnlevjm)(wim|plv”j"m

_z Z <va|p| " ”m/I

Ter’kalkr 2 E <UJm|p|v" " vjm """

va VG . .
v T ><<ev”J”m"|le'Tk’k|eU]m>’ (44
X<U”j"m”|Tke,kfeTk’e,ke|Ujm>- (41)

where in the last equality, the completeness of the vibronic

Substituting the 1AA result of Eq(34) into Eq. (41) and
using the expansion of Ed36) with s replaced byq, we
obtain after some algebra the result

states €'v’j’'m’) has been used. Using E@Q7), the elec-
tronic matrix element of the bilinear product of the transition
matrix can be expressed as
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<¢e|T|tk'Tk’k|¢e>
47\ 2
o

ZAZBe—iQ'R_

(Zp+ZA+Z5+20)+ f drpg(r)e "

+

> zne“*'Rn)

n=A,B

xf drp(rye % +c.c.

] : (49)

wherep(r) is given by Eq.(31) and the second-order elec-

tron density function is defined 0]

N
Pc(r):j dry---dry|ge(ry- - -rN)|ZZ,j o(r—ri+r;).
(46)
Within the 1AA, p(r) is given by Eq.(32), while the
Fourier transform op(r) can be expressed as

fdrpc(r)e”q'r=[FA(q)FE(q)e”q'RJrc-c.]—A, (47)

where

Zn
A= 3 3 Koule s @9

n=A,B i

is independent of the nuclear coordinales and Rg . Sub-

stituting Eqs.(32) and(47) into Eq. (45 and proceeding as

before, we can reduce E(4) to the final result

% 2 i o
?) [Ej V2] +1p0 (vj.vjite)G

+
Ter'kakk’ =

+ims S S wlikaRle)

vj v//j//
X[(=1) Yko(@)Gctc.cl

j"/ll j" K ]
X(=1D)[jj"]2 0 0 0

X p(v] ,v"j”;td>] , (49)

where  Gi=Zx+Zj+Zg+Zg+ Zof|Fo(0)|° = Z,[Fo(q)
Again, if the molecules are initially in a pure state, E49)

will reduce to the conventional resyl20] similar to Eq.

(43).

IV. SUMMARY AND DISCUSSIONS

(21) and(22). For subsequent probing of the system by elec-
tron diffraction, the coherence created by the pumping and
relaxation processes can be taken into account by consider-
ing the transformation of the whole density matrix by the
collision processes. For high-energy electron scattering, the
first Born approximation can be used to evaluate the scatter-
ing amplitudes. The result for elastic collision in which the
vibrational-rotational levels can be resolved is given by Eg.
(40). The vectorial coupling of various angular momenta is
clearly demonstrated by the Wignerj &ymbol appearing in
Eqg. (40). Thus, the rotational angular momenta of the mol-
ecule,j andj’, couple to formK whose magnitude gives the
tensorial rank of the rotational coherence of the system. Due
to the collision with the probing electron, the intermediate
rotational angular momentuii is produced by either cou-
pling of j with the angular componerit of the Coulomb
interaction, or by coupling of” with the componentL.’. To
conserve angular momentum, the compondnt@and L'
couple vectorially to fornK again. Information on the struc-
ture of the molecule after initial excitation is contained in the
factorsG, and G, ;. By measuring the electron diffraction
pattern at different time delaty;, information on theexcited
staterelaxation dynamics can be obtained from the last fac-
tor of Eq. (40), pS?(vj,v"j";ta).

For medium- and low-resolution detection of the scattered
electrons, the dependence on the rotational and vibrational
states of the molecule is identical, as given by &#) and
Eq. (49), and issimplerthan the case of high-resolution de-
tection. The electronic contributions to these two cases, of
course, are different. Here, the angular dependence of the
momentum transfeq is determined by the spherical harmon-
ics with exactly the same order as the tensorial character of
the coherence of the molecular system. If the molecules are
prepared in a pure state, only thk,Q)=(0,0) component
of the density matrix is nonvanishing, which corresponds to
the population of the initial state, and the results reduce to
the conventional expressions for electron scattering intensi-
ties. Thus, in this case there appears to be no advantage in
using high resolution electron detection to study the coher-
ence dynamics of the molecules.
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APPENDIX: ELECTRON SCATTERING
FROM MOLECULES IN A MIXED STATE

Consider the scattering of an electron beam, with incident
momentum peaked dtky, by a molecule in the superposi-
tion stateX gaz¢;. We shall derive Eq(24) following the
Lippmann-Schwinger equation approach discussed in Chap.

In this paper, we have employed the Liouville space for-7 of Rodberg and Thaldi15], with suitable generalization.

sorial components of the density matrix produced by a fem-
tosecond pumping laser. Such tensorial components are
particularly convenient for the consideration of relaxation in
an isotropic environment. The main results are given by Egs.

p(1)=3 f Ok A Ka e B (AD
> | @3l b
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where the amplitude functioA(k) is sharply peaked at
k= ko, ¢k6 (ﬁﬁexp(k r) and EKB— Ek+ Eﬂ W|th GB and
E=%2k?/2m, being the molecular energy in stgéeand the
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differences between the different vibrational-rotational levels
within the wave packet compared to the kinetic energy of the
scattering electron, the probability of EGA5) becomes

electron kinetic energy, respectively. The total wave function

is then given by

Wt)y=> f Ik A Bl (a2)
7 ) 2m)?3 pITkp '

Where|z//,fﬂ) satisfies the Lippmann-Schwinger equation

| ep) =1 dis) + (Exg—Ho+i0") "WV|ihi),  (A3)

in which Hg is the Hamiltonian of the noninteracting system.

The second term of EqA3) when substituted into EqA2)
gives rise to the scattered wave(t), which behaves as-
ymptotically as

lim | (1)) =

t—o

, d3k
_2m2ﬁ fWA(k)aﬁﬁ(EkB—Ho)V

X | ihyegye Eslh, (A4)

since only poles on the real energy axis contribute to

Pst) ast—oo [15].

mek’

X 2 Tk "B’k Baﬁaﬁ/,Tk 18" k B,/(27T)
BB'B"

d3k, ‘s
Xf 277)3f 2m) 3A( DA(K2)* 8(Ex, —Ey,).
(AT)
Since the incident flux is given by
ine=m2 | [ ax [ axioolawylz
27Th ko dgkl d3k2
5 1o ) e
X A(K1)A(K2)* 6(Ey —Ey,), (A8)

The probability of detecting the electrons scattered intadividing Eq. (A7) by Eq. (A8) gives the differential cross

the momentum rangak’ is given by

lim >,

t—oo /3’

3kr .
k,WK(ﬁkfﬁ'e_'Ek'ﬁ'uﬂ¢sc(t)>|2-

(A5)

Substituting Eq.(A4) into Eq. (A5), defining the transition
matrix element by

T g7 k= b gV )

and recognizing that it is a slowly varying function kfso
that it can be replaced b-yk'ﬁ’,koﬁv and ignoring the energy

PAk’:

(AB)

section
do [ me 2k’
dQ | 27A? k_o

2
X E Tk’ﬁ’ ,Baﬁaﬁ”Tk’B’ ﬂ/// % |a'3| .

BB'B"

Realizing that at high electron enerdy, =k, and the den-
sity matrix elements are defined W;B,,—aﬁa Eq. (24)
follows immediately from Eq(A9).
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