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Photon generation by time-dependent dielectric: A soluble model
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A soluble model of electromagnetic field interacting with time-dependent dielectric medium is given. The
main assumption is that the dielectric constant is switched rapidly from the initial to the final value. Generation
of electromagnetic field and photon statistics are foli6d.050-294®6)07712-§

PACS numbdps): 12.20—m

[. INTRODUCTION standing of the quantization, the idea of photons, will pro-
vide a tool for the study of these effects.

The notion of the photon is the most basic concept in The present paper is devoted to a detailed study of a
guantum electrodynamics. However, the quantum nature ofimple system with an explicitly time-dependent environ-
the electromagnetic field is well understood in the case oment. Instead of discussing a cavity with oscillating mirrors,
electromagnetic field in empty space only. In the case ofvhich is a rather difficult problem, we will discuss a much
fields interacting with external currents and other sources theimpler, yet nontrivial case of a cavity from which a dielec-
notion of photons is not so clear. Of particular interest hagric slab is rapidly removed. This system contains most of the
become the case of electromagnetic field in cavities. If théngredients of much more complicated ones, especially with
cavity consists of perfect conductors proper boundary conditime-dependent components. Our model also contains an ex-
tions for the field mimic the interaction of the field with ternal time-dependent element, the dielectric slab. Its time
charges in the mirrors. The case of field quantization in thelependence leads to a variety of phenomena — photon cre-
presence of dielectrics without dispersion was studied iration, squeezing of electromagnetic field, etc. On the other
some detail[1]. Dispersion inevitably leads to damping, hand, the model is simple enough to be solved exactly, as
which makes the field quantization and hence the notion obpposed to much more complicated ones. Our discussion of
photons rather complicated and not yet fully understi@dd  the model sheds some light on cavity QED processes with
The even more complicated case of photons in a cavity witlexplicit time dependence.
oscillating perfect mirrors has attracted a lot of interest re-
cently. The corresponding classical problem of electromag-
netic field in a cavity with oscillating mirrors does not have Il. THE SYSTEM
a solution in the closed form, but many approximate solu- ) ) ] ) )
tions have been found and discussed. The system under consideration consists of a cavity with

Quantum effects in the electromagnetic field confined to eperfectly reflecting metallic mirrors. The mirrqrs are of the
cavity with moving mirrors has attracted a lot of interga} shape of two parallel planes separated by a distance denoted

This problem is also interesting from the point of view of by 2L +d. Because of the planar symmetry we will consider
plasma physic§4]. The quantization of the field in such a €lectromagnetic waves propagating in the direction perpen-
situation with explicit time dependence does not follow indicular to the mirrors, in this way the problem is reduced to
any natural way from the standard quantization proceduregne dimension. The dielectric medium is present between the
Some purely quantum effects such as photon noise reductionirrors forming the cavity. It forms a slab parallel to the
have been discussé¢f]. cavity mirrors, has widthl, and is characterized by dielectric

Yet another aspect of quantum electrodynamics in rapidlyconstante, which for simplicity is assumed to be indepen-
changing geometry was discussed recently in R&f. The dent of the frequency. The geometry of the system is shown
fully inhibited spontaneous emission of the atom placed in an Fig. 1. We will consider a case when the electromagnetic
node of the resonant cavity mode is assumed. Then, suddenfigld is in the state of vacuurti.e., the lowest-energy eigen-
one of the cavity mirrors is removed. Now the atom is free tostate for timest<<0. At time t=0 the dielectric slab is re-
emit a photon. The paper predicts an instantaneous respons®ved. This is done instantaneously, i.e., faster than any
of the detector exposed by the removed mirror. other characteristic time scale in the problem. The question

Quantization of the electromagnetic field in the case ofwe will ask and solve in the paper is what is the state of the
time-dependent boundaries is thus needed. Deeper undetectromagnetic field for>0.
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The explicit form of the function$,,(x) will not be given

d here. It suffices to say that they form a complete, orthonor-
mal set of functions
L L Every solution of the Maxwell equations in the cavity can
. , . , be expanded into the eigenmodg$x):
E(x,)=i 2 (27hi o) Byfa()exp —iwpt) —c.cl, (7)
n

FIG. 1. The system consists of a cavity with perfectly reflecting P
metallic mirrors. The mirrors are of the shape of two parallel planesgx,t) = CE 2ahl o) By —fa(X)exp —iw,t)+c.c.|,
separated by a distancé 2 d. 28
®
lll. ELECTROMAGNETIC FIELD IN THE PRESENCE ] N
OF THE DIELECTRIC whereg,, are expansion coefficients. Planck’s constatias
) o been introduced into this classical formula in order to sim-
Let us consider now the electromagnetic field in the cavyjify the quantization.
ity with the dielectric slab present, i.e., for times0. Quan- Quantization of the electromagnetic field consists in re-

tum theory of electromagnetic field in the presence of a dISp|aC|ng theg, coefficients by operatofs, satisfying canoni-
persionless dielectric was given fii]. The first step in field 5| commutation relations:

guantization is to find the classical eigenmodes of the field,
i.e., monochromatic solutions to the Maxwell equations with

proper boundary conditions. We assume that the mirrors are
perfectly reflecting, thus the electric field, parallel to the mir-
ror, vanishes at the boundaries. Apart from coefficients thaf\Iter duantization the fieldg,B become operators:
will be specified later, the vector potential for each mode can

be written as E(x,1) =i, (2ahiwn) YA b,fn(X)exp —iwat)—H.cl,
AL(x,t)=f (X)exp —iw,t)+c.c., 1) (20

[Bnaﬁg/]:b‘n,n’- 9

wheref,(x) satisfies the equation

&2 wn2e(X)
— +
X2 fr(x) c2

B(x,t)=c>, (2mhlw,)Y3 E)naixfn(x)exp( —iw)+H.C..
fa(x)=0. 2 (1)

The states of the electromagnetic field are constructed
from the vacuunt}, the state for whiclb,Q0 =0, by apply-

The fields are then

(X, ) =iw,/cf(X)exp —iw,t) +c.C., (3)  ing creation operatorbl, . In what follows we will assume
that the electromagnetic field is in the vacuum state for
t<0.

B,(x,t)= —f n(X)exp(—iwpt)+c.c. (4)

IV. ELECTROMAGNETIC FIELD

In the previous equations, is the frequency of the mode WITHOUT THE DIELECTRIC
andc denotes the speed of light in the vacuum. The values of
the allowed wave vectok,,, and hence of the frequencies
w, , follow from the boundary conditions for the field at the
cavity mirrors. The electric field must vanish at the mirrors,
and both the electric field and magnetic field must be con-
tinuous at the surfaces between the slab and the vacuu
When these conditions are imposed, the valuekpfre
solutions of the transcendental equation

At time t=0 the dielectric slab is suddenly removed.
Thus the cavity between the mirrors becomes empty and the
electromagnetic field can be characterized by free field. We
can repeat the quantization procedure for the case of an
empty cavity. For an empty cavity the solutions of the Max-
Well equations can be written as

E(x,t)=iw,/cgj(x)exp(—iwjt)+c.c., (12
dik,(2L+nd)] 1orexp—2ikil) (5)
exdli n *1, d .
—r exp(2ikyL) B(x,1)=—g;(x)exp —iwjt) +c.c., (13
wheren is the index of refractiom= ¢*? and
where the values of the frequencigscan be found from the
el2—q condition that the electric field vanishes at the walls. Hence
= e (6)  we get the equation

The complex equatiofb) defines the values df, uniquely. kj(2L+d)= 7] (14
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and w;=ck;. This time the equation can be solved to givethat changes in a continuous way when the dielectric is re-
kj=mj/(2L+d), wherej=+*1,=2,.... Theexact form of moved. Maxwell's equations contain the time derivative of
theg;(x) functions will not be given here; when we combine the D field, not theE field. Discontinuous dependence of

together the functiong;(x) andg_;(x) we obtain the cor- D on time would mean that Maxwell's equation could not be
rect modes, which are just standing waves. We shall indicateatisfied.

these modes witlp;(x), wherej=1,2, ... Every solution ~_ Relations(20) and(21) can be expressed in terms of the
of the Maxwell equations can be expressed as a linear conty, , b! aj, éj’r operators. They should be considered as a set
bination of the monochromatic solutions: of equations ford;, a as unknowns. These operators, ex-

pressed in terms df,, b/ operators, will provide the solu-
E(x,0)=i2 pj(x)(2mhw,) ?ajexp —iojt)+c.c, (15  tion of the Heisenberg equations of motion.

] The solution can be found by making use of the complete-
ness relations for th&,(x). These relations provide the so-
lution to our dynamical problem: creation and annihilation
operatoréj , éjT in the future are expressed as linear func-
(16)  tions of the creation and annihilation operatbfs b;ﬁ in the

J
B(x,t)= c; x P;(X)(2h] wn) e exp( —iw;t) +c.c.

. - A e ast:
Replacing the coefficients; by operatorsy;, aJ-T, satisfying P
canonical commutation relations, R . -
o ajzg (hj nbntgj.abl), (22)
[aj,aj,]=5j’j,, (17)
we get the quantum theory of the electromagnetic field in the At * ot %
. o a = h* br+g¥.b,). 23
free cavity. The states of the electromagnetic field are char- ] Z (NfnbntGjnbn) (23
acterized by amplitudes of finding a given photon number in
each mode. Such relations between creation and annihilation operators
are also found in, e.g., parametric processes and are known
V. SUDDEN REMOVAL OF THE SLAB as the Bogoliubov transformation. The exact fornhpf, and

) ) ) ) gj.n, although simple in principle, will not be reproduced

We will use the Heisenberg picture and Heisenberg equanhere. We will only note that they are related to overlap inte-

tions of motion to discuss the evolution of the electromag-grals of the mode functions with and without the dielectric
netic field. Fort<O the evolution is very simple; the opera- g|ap.

tors Bj E)]T satisfy the free equations of motion. Itis only the  This is the main result of our paper. We have found exact

phase of the operators that changes with time: solution of the dynamical equations of motion for quantized
. R electromagnetic field in the presence of the dielectric with a
b,(t)=b,(tg)exd —iw,(t—tg)]. (18 time-dependent dielectric constant. This has been possible

) ) because of our assumption of rapid change of the dielectric
Botht andt, should be negative and, is the frequency of constant. A similar approach is often used in quantum theory

thenth mode. _ _ and is called sudden approximation. Here we have applied it
For positive times the time evolution of the electromag-to electrodynamics.

netic field is also free in the cavity without the dielectric
slab. Sincea; operators correspond to frequency eigenmodes VI. PHOTON CREATION
we have
. . . Relations(20) and (21) lead to spontaneous photon cre-
aj(t)=a;(ty)exd —iwj(t—ty)], (19 ation. Removal of the slab and thus a change in the spatial
shape of the eigenmodes as well as a change in the spectrum
of the wave vectors provide the mechanism of creation of
. ) 3 . feal photons. In this section we will find the average number
d_lelectrlc that leads to the nontrivial part of the time evolu—of photons and the spectrum of photons created by sudden
tion. . . .removal of the slab.
_ Sqdden removal of the slab results in matching condi- The average photon number in the mofdor times
tions: t>0 is given by the expectation value of the photon number
D(x,07)=D(x,0%), (200  operator; =éjTé,- . The state of the field is the vacuum, i.e.,
the state that is annihilated by all theg .
B(x,07)=B(x,0"), (21 In Fig. 2 we have plotted the dependence of the photon
numberN in jth mode as a function of the mode number
valid for all x. j- Since the frequency of the field is given by
The continuity of the magnetic field is natural; the me- w;=cwj/(2L+d), the numberj can be considered as a
dium is nonmagnetic both far<0 as well as fot>0. The measure of the frequency. Note that the number of photons
continuity of theD field requires a comment since continuity N approaches a constant for large frequencies. This rather
of D leads to a discontinuity of th& field. A look at the  unphysical limit is due to our assumption of sudden switch-
Maxwell equations clearly shows that it should be Ehéield  ing of the dielectric constant. If the dielectric constant was

where botht andt; should be positive. It is only the relation
between the field just before and just after the removal of th
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FIG. 2. Photon numbeX in jth mode as a function of the mode

numberj for n=1.5,d=0.4L, andd=20L. FIG. 3. Dispersion o&j as a function of mode numbgrfor
n=1.5,d=0.4L, andd=20L.

changed smoothly from an initial value to the final value,
high-frequency photons would not be emitted. that there is no classical counterpart of this effect. In classi-

We can also consider the opposite case.tob the cav- cal electrodynamics a sudden change of the dielectric con-
ity is empty and the electromagnetic field is in the vacuumstant is not equivalent to a current radiating electromagnetic
state(empty vacuuni att=0 the dielectric slab is suddenly field. Thus there is no radiation in the framework of classical
inserted. In this case we need the relations that express thieory. Quantum theory, on the other hand, allows for radia-
b; operators in terms of tha, and a! operators. Such rela- tion, and in fact predicts it. The expectation value of the
tions have the same form as E¢®2) and(23). Then we find  radiated field is equal to zero, as could be expected from the

spontaneous photon creation also in this case. correspondence principle. The intensity of the radiated field,
however, is different from zero. This is characteristic for
VIl. SQUEEZING OF THE FIELD qguantum theory. In fact, as we have shown, the state of the

radiated field is a squeezed state, which has many nonclassi-
The electromagnetic field created in the cavity has discal features. As an example let us mention that the flux of
tinctly quantum features. One such feature is squeezingadiated energy goes to zero in the limit of the Planck con-
Squeezing is a reduction of field fluctuations below theirstant going to zero. In this way we have shown that the time
vacuum value at the expense of the fluctuations of the condependence of the dielectric leads to a nonclassical effect—
jugate variable. Let us define a Hermitian operator related tereation of photons from vacuum.
the éj field: Nonlinear optical effects, such as, e.g., the parametric ef-
. ) . fect (see, e.g.[7]) are often believed to be needed to obtain
Xi(p)=explip)a;+exp(—ig)a], (24)  squeezed states of light. In fact nonlinear effects are not es-
) sential. We have shown here that an explicitly time-
where ¢ is a parameter. Fluctutation of the(¢#) operator dependent dielectric constant can also lead to squeezing.
may be reduced below their vacuum value equal to 1 fofThis fact was also mentioned [d4].
some ¢. If this is the case we say that the field is in @ We have considered a time-dependent problem; the di-
quadrature squeezed state. Our solution allows one to calcefectric constant exhibits explicit time dependence. In the
late directly the fluctuations oij(qb). We have found that remote past and remote future the system becomes stationary
squeezing indeed occurs in our system. This is quite naturaind it is therefore possible to quantize the elecromagnetic
since the solution foaj gives a linear combination df, and field using standard methods. In this way our system is much
b!. This is just the squeezing transformation. simpler than systems with oscillating walls, or oscillating
The largest fluctuation reduction occurs foe=7/2 but it ~ dielectric constant, where quantization is a conceptual prob-
extends for¢ from about 40° to about 140° for all cases |€m. Thus we have been able to give a natural quantum
considered. In Fig. 3 we have shown the dispersioﬁheory and. ¢scus_s such quantum effects as, e.g., squeezing.
02=(X2—(X)?) for $=90°. Squeezing is evident in all Aftgr writing th|s_ paper we Ieameq that Artoni, Bulatov,
modes; it is rather small for small values dfand assumes @and Birman[8] studied a problem similar to ours. They con-
larger values for larger values df Squeezing is stronger for Sider the removal of a lossless dielectric slab that éllshe
modes with small frequencies. space between the mirrors. They obtal_n relations similar to
Egs.(22) and(23), which lead to squeezing and photon cre-

ation.
VIIl. CONCLUSIONS

We have considered the quantum theory of electromag-
netic field in cavity with a time-dependent dielectric. A very
simple time dependence, sudden removal of the dielectric M.C. wishes to thank the Centrum Fizyki Teoretycznej of
slab, leads to a soluble model. We have shown that explicithe Polish Academy of Sciences for the warm hospitality.
time dependence leads to a variety of effects. The most inFhis research was partially supported by KBN Grant No.
teresting one is the creation of photons. It should be note@P30B03809.
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