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Photon generation by time-dependent dielectric: A soluble model
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A soluble model of electromagnetic field interacting with time-dependent dielectric medium is given. The
main assumption is that the dielectric constant is switched rapidly from the initial to the final value. Generation
of electromagnetic field and photon statistics are found.@S1050-2947~96!07712-8#

PACS number~s!: 12.20.2m
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I. INTRODUCTION

The notion of the photon is the most basic concept
quantum electrodynamics. However, the quantum natur
the electromagnetic field is well understood in the case
electromagnetic field in empty space only. In the case
fields interacting with external currents and other sources
notion of photons is not so clear. Of particular interest h
become the case of electromagnetic field in cavities. If
cavity consists of perfect conductors proper boundary co
tions for the field mimic the interaction of the field wit
charges in the mirrors. The case of field quantization in
presence of dielectrics without dispersion was studied
some detail@1#. Dispersion inevitably leads to dampin
which makes the field quantization and hence the notion
photons rather complicated and not yet fully understood@2#.
The even more complicated case of photons in a cavity w
oscillating perfect mirrors has attracted a lot of interest
cently. The corresponding classical problem of electrom
netic field in a cavity with oscillating mirrors does not ha
a solution in the closed form, but many approximate so
tions have been found and discussed.

Quantum effects in the electromagnetic field confined t
cavity with moving mirrors has attracted a lot of interest@3#.
This problem is also interesting from the point of view
plasma physics@4#. The quantization of the field in such
situation with explicit time dependence does not follow
any natural way from the standard quantization procedu
Some purely quantum effects such as photon noise reduc
have been discussed@5#.

Yet another aspect of quantum electrodynamics in rap
changing geometry was discussed recently in Ref.@6#. The
fully inhibited spontaneous emission of the atom placed i
node of the resonant cavity mode is assumed. Then, sudd
one of the cavity mirrors is removed. Now the atom is free
emit a photon. The paper predicts an instantaneous resp
of the detector exposed by the removed mirror.

Quantization of the electromagnetic field in the case
time-dependent boundaries is thus needed. Deeper un
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standing of the quantization, the idea of photons, will p
vide a tool for the study of these effects.

The present paper is devoted to a detailed study o
simple system with an explicitly time-dependent enviro
ment. Instead of discussing a cavity with oscillating mirro
which is a rather difficult problem, we will discuss a muc
simpler, yet nontrivial case of a cavity from which a diele
tric slab is rapidly removed. This system contains most of
ingredients of much more complicated ones, especially w
time-dependent components. Our model also contains an
ternal time-dependent element, the dielectric slab. Its t
dependence leads to a variety of phenomena — photon
ation, squeezing of electromagnetic field, etc. On the ot
hand, the model is simple enough to be solved exactly
opposed to much more complicated ones. Our discussio
the model sheds some light on cavity QED processes w
explicit time dependence.

II. THE SYSTEM

The system under consideration consists of a cavity w
perfectly reflecting metallic mirrors. The mirrors are of th
shape of two parallel planes separated by a distance den
by 2L1d. Because of the planar symmetry we will consid
electromagnetic waves propagating in the direction perp
dicular to the mirrors, in this way the problem is reduced
one dimension. The dielectric medium is present between
mirrors forming the cavity. It forms a slab parallel to th
cavity mirrors, has widthd, and is characterized by dielectri
constante, which for simplicity is assumed to be indepe
dent of the frequency. The geometry of the system is sho
in Fig. 1. We will consider a case when the electromagne
field is in the state of vacuum~i.e., the lowest-energy eigen
state! for times t,0. At time t50 the dielectric slab is re-
moved. This is done instantaneously, i.e., faster than
other characteristic time scale in the problem. The ques
we will ask and solve in the paper is what is the state of
electromagnetic field fort.0.
62 © 1997 The American Physical Society
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55 63PHOTON GENERATION BY A TIME-DEPENDENT . . .
III. ELECTROMAGNETIC FIELD IN THE PRESENCE
OF THE DIELECTRIC

Let us consider now the electromagnetic field in the c
ity with the dielectric slab present, i.e., for timest,0. Quan-
tum theory of electromagnetic field in the presence of a d
persionless dielectric was given in@1#. The first step in field
quantization is to find the classical eigenmodes of the fie
i.e., monochromatic solutions to the Maxwell equations w
proper boundary conditions. We assume that the mirrors
perfectly reflecting, thus the electric field, parallel to the m
ror, vanishes at the boundaries. Apart from coefficients
will be specified later, the vector potential for each mode c
be written as

An~x,t !5 f n~x!exp~2 ivnt !1c.c., ~1!

where f n(x) satisfies the equation

]2

]x2
f n~x!1

vn
2e~x!

c2
f n~x!50. ~2!

The fields are then

En~x,t !5 ivn /c fn~x!exp~2 ivnt !1c.c., ~3!

Bn~x,t !5
]

]x
f n~x!exp~2 ivnt !1c.c. ~4!

In the previous equations,vn is the frequency of the mod
andc denotes the speed of light in the vacuum. The value
the allowed wave vectorkn , and hence of the frequencie
vn , follow from the boundary conditions for the field at th
cavity mirrors. The electric field must vanish at the mirro
and both the electric field and magnetic field must be c
tinuous at the surfaces between the slab and the vacu
When these conditions are imposed, the values ofkn are
solutions of the transcendental equation

exp@ ikn~2L1nd!#
12r exp~22iknL !

12r exp~2iknL !
561, ~5!

wheren is the index of refractionn5e1/2 and

r5
e1/221

e1/211
. ~6!

The complex equation~5! defines the values ofkn uniquely.

FIG. 1. The system consists of a cavity with perfectly reflect
metallic mirrors. The mirrors are of the shape of two parallel pla
separated by a distance 2L1d.
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The explicit form of the functionsf n(x) will not be given
here. It suffices to say that they form a complete, orthon
mal set of functions.

Every solution of the Maxwell equations in the cavity ca
be expanded into the eigenmodesf n(x):

E~x,t !5 i(
n

~2p\vn!
1/2@bnf n~x!exp~2 ivnt !2c.c.#, ~7!

B~x,t !5c(
n

~2p\/vn!
1/2Fbn

]

]x
f n~x!exp~2 ivnt !1c.c.G ,

~8!

wherebn are expansion coefficients. Planck’s constant\ has
been introduced into this classical formula in order to si
plify the quantization.

Quantization of the electromagnetic field consists in
placing thebn coefficients by operatorsb̂n satisfying canoni-
cal commutation relations:

@ b̂n ,b̂n8
†

#5dn,n8. ~9!

After quantization the fieldsE,B become operators:

Ê~x,t !5 i(
n

~2p\vn!
1/2@ b̂nf n~x!exp~2 ivnt !2H.c.#,

~10!

B̂~x,t !5c(
n

~2p\/vn!
1/2F b̂n ]

]x
f n~x!exp~2 ivnt !1H.c.G .

~11!

The states of the electromagnetic field are construc
from the vacuumV, the state for whichb̂nV50, by apply-
ing creation operatorsb̂n8

† . In what follows we will assume
that the electromagnetic field is in the vacuum state
t,0.

IV. ELECTROMAGNETIC FIELD
WITHOUT THE DIELECTRIC

At time t50 the dielectric slab is suddenly remove
Thus the cavity between the mirrors becomes empty and
electromagnetic field can be characterized by free field.
can repeat the quantization procedure for the case of
empty cavity. For an empty cavity the solutions of the Ma
well equations can be written as

E~x,t !5 ivn /cgj~x!exp~2 iv j t !1c.c., ~12!

B~x,t !5
]

]x
gj~x!exp~2 iv j t !1c.c., ~13!

where the values of the frequenciesv j can be found from the
condition that the electric field vanishes at the walls. Hen
we get the equation

kj~2L1d!5p j ~14!

s
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64 55CIRONE, RZA̧ŻEWSKI, AND MOSTOWSKI
andv j5ckj . This time the equation can be solved to gi
kj5p j /(2L1d), where j561,62, . . . . Theexact form of
thegj (x) functions will not be given here; when we combin
together the functionsgj (x) andg2 j (x) we obtain the cor-
rect modes, which are just standing waves. We shall indic
these modes withpj (x), where j51,2, . . . .Every solution
of the Maxwell equations can be expressed as a linear c
bination of the monochromatic solutions:

E~x,t !5 i(
j
pj~x!~2p\vn!

1/2a jexp~2 iv j t !1c.c., ~15!

B~x,t !5c(
j

]

]x
pj~x!~2p\/vn!

1/2a jexp~2 iv j t !1c.c.

~16!

Replacing the coefficientsa j by operatorsâ j , â j
† , satisfying

canonical commutation relations,

@ â j ,â j 8
†

#5d j , j 8, ~17!

we get the quantum theory of the electromagnetic field in
free cavity. The states of the electromagnetic field are ch
acterized by amplitudes of finding a given photon numbe
each mode.

V. SUDDEN REMOVAL OF THE SLAB

We will use the Heisenberg picture and Heisenberg eq
tions of motion to discuss the evolution of the electroma
netic field. Fort,0 the evolution is very simple; the opera
tors b̂ j ,b̂ j 8

† satisfy the free equations of motion. It is only th
phase of the operators that changes with time:

b̂n~ t !5b̂n~ t0!exp@2 ivn~ t2t0!#. ~18!

Both t and t0 should be negative andvn is the frequency of
thenth mode.

For positive times the time evolution of the electroma
netic field is also free in the cavity without the dielectr
slab. Sinceâ j operators correspond to frequency eigenmo
we have

âj~ t !5â j~ t1!exp@2 iv j~ t2t1!#, ~19!

where botht andt1 should be positive. It is only the relatio
between the field just before and just after the removal of
dielectric that leads to the nontrivial part of the time evo
tion.

Sudden removal of the slab results in matching con
tions:

D~x,02!5D~x,01!, ~20!

B~x,02!5B~x,01!, ~21!

valid for all x.
The continuity of the magnetic fieldB is natural; the me-

dium is nonmagnetic both fort,0 as well as fort.0. The
continuity of theD field requires a comment since continui
of D leads to a discontinuity of theE field. A look at the
Maxwell equations clearly shows that it should be theD field
te
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that changes in a continuous way when the dielectric is
moved. Maxwell’s equations contain the time derivative
the D field, not theE field. Discontinuous dependence o
D on time would mean that Maxwell’s equation could not
satisfied.

Relations~20! and ~21! can be expressed in terms of th
b̂n , b̂n

† â j , â j
† operators. They should be considered as a

of equations forâ j , â j
† as unknowns. These operators, e

pressed in terms ofb̂n , b̂n
† operators, will provide the solu

tion of the Heisenberg equations of motion.
The solution can be found by making use of the comple

ness relations for thef n(x). These relations provide the so
lution to our dynamical problem: creation and annihilati
operatorsâ j , â j

† in the future are expressed as linear fun
tions of the creation and annihilation operatorsb̂n , b̂n

† in the
past:

â j5(
n

~hj ,nb̂n1gj ,nb̂n
†!, ~22!

â j
†5(

n
~hj ,n* b̂n

†1gj ,n* b̂n!. ~23!

Such relations between creation and annihilation opera
are also found in, e.g., parametric processes and are kn
as the Bogoliubov transformation. The exact form ofhj ,n and
gj ,n , although simple in principle, will not be reproduce
here. We will only note that they are related to overlap in
grals of the mode functions with and without the dielect
slab.

This is the main result of our paper. We have found ex
solution of the dynamical equations of motion for quantiz
electromagnetic field in the presence of the dielectric wit
time-dependent dielectric constant. This has been poss
because of our assumption of rapid change of the dielec
constant. A similar approach is often used in quantum the
and is called sudden approximation. Here we have applie
to electrodynamics.

VI. PHOTON CREATION

Relations~20! and ~21! lead to spontaneous photon cr
ation. Removal of the slab and thus a change in the spa
shape of the eigenmodes as well as a change in the spec
of the wave vectors provide the mechanism of creation
real photons. In this section we will find the average num
of photons and the spectrum of photons created by sud
removal of the slab.

The average photon number in the modej for times
t.0 is given by the expectation value of the photon num
operatorN̂j5â j

†â j . The state of the field is the vacuum, i.e
the state that is annihilated by all theb̂n .

In Fig. 2 we have plotted the dependence of the pho
numberN in j th mode as a function of the mode numb
j . Since the frequency of the field is given b
v j5cp j /(2L1d), the numberj can be considered as
measure of the frequency. Note that the number of phot
N approaches a constant for large frequencies. This ra
unphysical limit is due to our assumption of sudden switc
ing of the dielectric constant. If the dielectric constant w
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55 65PHOTON GENERATION BY A TIME-DEPENDENT . . .
changed smoothly from an initial value to the final valu
high-frequency photons would not be emitted.

We can also consider the opposite case. Fort,0 the cav-
ity is empty and the electromagnetic field is in the vacu
state~empty vacuum!; at t50 the dielectric slab is suddenl
inserted. In this case we need the relations that express
b̂ j operators in terms of theân and ân

† operators. Such rela
tions have the same form as Eqs.~22! and~23!. Then we find
spontaneous photon creation also in this case.

VII. SQUEEZING OF THE FIELD

The electromagnetic field created in the cavity has d
tinctly quantum features. One such feature is squeez
Squeezing is a reduction of field fluctuations below th
vacuum value at the expense of the fluctuations of the c
jugate variable. Let us define a Hermitian operator relate
the â j field:

x̂ j~f!5exp~ if!â j1exp~2 if!â j
† , ~24!

wheref is a parameter. Fluctutation of thex̂ j (f) operator
may be reduced below their vacuum value equal to 1
somef. If this is the case we say that the field is in
quadrature squeezed state. Our solution allows one to ca
late directly the fluctuations ofx̂ j (f). We have found that
squeezing indeed occurs in our system. This is quite nat
since the solution forâ j gives a linear combination ofb̂n and
b̂n
† . This is just the squeezing transformation.
The largest fluctuation reduction occurs forf5p/2 but it

extends forf from about 40° to about 140° for all case
considered. In Fig. 3 we have shown the dispers
s25Šx̂22^x̂&2‹ for f590°. Squeezing is evident in a
modes; it is rather small for small values ofd and assumes
larger values for larger values ofd. Squeezing is stronger fo
modes with small frequencies.

VIII. CONCLUSIONS

We have considered the quantum theory of electrom
netic field in cavity with a time-dependent dielectric. A ve
simple time dependence, sudden removal of the dielec
slab, leads to a soluble model. We have shown that exp
time dependence leads to a variety of effects. The mos
teresting one is the creation of photons. It should be no

FIG. 2. Photon numberN in j th mode as a function of the mod
numberj for n51.5,d50.4L, andd520L.
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that there is no classical counterpart of this effect. In clas
cal electrodynamics a sudden change of the dielectric c
stant is not equivalent to a current radiating electromagn
field. Thus there is no radiation in the framework of classi
theory. Quantum theory, on the other hand, allows for rad
tion, and in fact predicts it. The expectation value of t
radiated field is equal to zero, as could be expected from
correspondence principle. The intensity of the radiated fie
however, is different from zero. This is characteristic f
quantum theory. In fact, as we have shown, the state of
radiated field is a squeezed state, which has many noncl
cal features. As an example let us mention that the flux
radiated energy goes to zero in the limit of the Planck c
stant going to zero. In this way we have shown that the ti
dependence of the dielectric leads to a nonclassical effe
creation of photons from vacuum.

Nonlinear optical effects, such as, e.g., the parametric
fect ~see, e.g.,@7#! are often believed to be needed to obta
squeezed states of light. In fact nonlinear effects are not
sential. We have shown here that an explicitly tim
dependent dielectric constant can also lead to squeez
This fact was also mentioned in@4#.

We have considered a time-dependent problem; the
electric constant exhibits explicit time dependence. In
remote past and remote future the system becomes statio
and it is therefore possible to quantize the elecromagn
field using standard methods. In this way our system is m
simpler than systems with oscillating walls, or oscillatin
dielectric constant, where quantization is a conceptual pr
lem. Thus we have been able to give a natural quan
theory and discuss such quantum effects as, e.g., squee

After writing this paper we learned that Artoni, Bulato
and Birman@8# studied a problem similar to ours. They co
sider the removal of a lossless dielectric slab that fillsall the
space between the mirrors. They obtain relations simila
Eqs.~22! and~23!, which lead to squeezing and photon cr
ation.
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FIG. 3. Dispersion ofx̂ j as a function of mode numberj for
n51.5,d50.4L, andd520L.
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