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Phase of harmonics from strongly driven two-level atoms

F. I. Gauthey'? C. H. Keitel,! P. L. Knight,* and A. Maquet
1Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, England
2| aboratoire de Chimie-Physique-Matéeet Rayonnement, UniversiRierre et Marie Curie, Paris, France
(Received 10 June 1996

Harmonic generation is studied in an idealized model medium in which the laser field essentially interacts
only with a single atomic transition and where ionization can be neglected. Such two-level models are known
to generate high harmonics with a plateau and a cutoff. We put forward a quantitative rule for the cutoff
frequency in the harmonic spectrum in this model which we relate to the-3Up rule” in real systems with
ionization. We examine the phase properties of the emitted harmonics and show that their coherence and thus
phase matching is more favorable in the cutoff regime than in the plateau of the harmonic spectrum. This
behavior is known to occur in realistic models of neon, and that this occurs also for the simple idealized
two-level model strongly suggests that the sudden change of phase coherence from the cutoff to the plateau
regime is as intrinsic a property of nonlinear systems as are the plateau and the cutoff.
[S1050-294@7)03401-X]

PACS numbdis): 42.50.Hz, 42.65.Ky, 32.80.Wr

I. INTRODUCTION that the intensity dependence of the phase of the harmonics
of laser driven neon atoms is substantially stronger in the
In the field of harmonic generation from the interaction of plateau regime than in the cutoff regime.
atoms with intense laser fields, single atom theoretical mod- In this paper we investigate the phase coherence of har-
els [1-6] have been very successful in predicting the mainmonic generation of strongly driven two-level systems and
features of the spectrum. These éaka rapid decrease in the present results which are qualitatively very similar to those
perturbative part of the harmonic spectrufio, a successive of Refs.[18,19 for neon although quantitative differences
plateau regime of harmonics with approximately constant inexist due to the differing parameters of our system. This
tensity, and finally(c) the cutoff region with an abruptly strongly suggests that the improved phase coherence of har-
decreasing harmonic intensity. This behavior has proven genonics in the cutoff regime is a generic property of the in-
neric for all theoretical models of high harmonic generationiaaction of strong laser fields with nonlinear systems.
presently studied, including in particular the strongly driyen In the following preliminary considerationSec. 1) we
two-level systenj7—13. In the case of model atoms which yofine the central concepts and the main working expres-
allow lonization, & W|del_y accepted interpretation of the C.Ut'sions, and summarize the results of Salget al. [18]. This
g{{egr}?;%ﬁgzéci;ut?]ge:lr?gxir;%m)elfr:ziﬁ:s égirgggiséng&i_is foIIowgd by a presentgtion of the two-level _model in Sec.
lll. Then in Sec. IV we display typical harmonic spectra and

mately three times the ponderomotive enetdy plus the put forward and interpret a rule for the two-level cutoff fre-

ionization energyl p, which the ionized electron optimally . . -
releases when it returns from the continuum and recombined-€McYy as a function of the atomic transition frequency and

with the atomic core to reemerge in the ground sfa@. In the Rabi fr_equ_ency of the driving field. Before concl_uding
the case of a two-level system where no ionization is pos!V€ determine in Sec. V the phase of various harmonics as a
sible, Sundaram and Milonr{i7], Kaplan and Shkolnikov function of the Rabi f_requengy and relate_ this behavior to
[12], and Ivanov and Corkurfil5] have proposed a linear that of the corresponding stationary states in the Flogquet pic-
dependence of the cutoff harmonic order on the Rabi freture. Finally in Sec. V, we compare the slopes of this phase
quency of the driving laser field in the intense field limit. For dependence in the plateau and the cutoff regime and make
the entire multiatom ensemble, which is of course of morecomments on its implications for phase matching.

relevance for experimental realizatidri$,17], phase match-

ing among the harmonics from the various atoms becomes an

important issue. For this reason experimental observation of II. PRELIMINARY CONSIDERATIONS

high harmonics is implemented in the forward direction of .. - )

the laser beam, where in principle phase matching is essen- In the recent study of Salies, L'Huillier, and Lewenstein
tially perfect given that the laser is assumed to have neaf-18] on the conditions for optimal coherence of harmonics
perfect coherence and has a constant intensity over thHgom strongly driven atoms, it was shown that the variations
spread of the atomic sampJ&0]. However, in reality, the of the phase of the atomic dipole moment due to the focusing
necessity to focus the laser beam implies a variable intensitgeometry affect dramatically the spatial and spectral coher-
dependence. Under these circumstances, the intensity depeamice of the generated harmonics. Their theoretical approach,
dence of the phases of the harmonics becomes relevant agdiased on an atomic model consisting of a single bound state
even for forward detection. Very recently Lewenstein andcoupled to a flat continuum, is that developed5f see also
co-workers have addressed this probldr®,19, and showed for an alternative viewpoinf6]. The single atom spectrum
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considered here is the “coherent” part of the total spectrum, Il. TWO-LEVEL MODEL
that is, the spectrum of the mean dip&ee[13], and refer-

ences therein We consider a two-level system whdg® and|e) repre-

sent the ground and excited states, respectively, with corre-
sponding energiegy andE,. We denotew,=(E.—Eg)/%

Sc(w)=|d(w)|?, (1) as the atomic frequency between the two levels. We assume
the laser driving field to be in a coherent state so that we can
whered(w) is defined as adopt a semiclassical model in which the quantum atomic

system interacts with the classical electric field

E=Egsin(w t) with o, being the laser frequency aitg its
d(w)=f dte'“x(t)). (20  amplitude, orientated along the polarization axjs This

model is furthermore justified as we only consider the spec-

trum radiated by the source, which remains unchanged if we

We use here the dipole form rather than the more correglgpiace the quantized driving field by an approximate classi-
dipole acceleratioi20] to describe the spectrum, as in the ¢ field. The interaction Hamiltonian in the dipole approxi-
absence of ionization these differ only by unimportant mul-mation is

tiplicative constants. The dipole momedf at theqth har-

monic frequencyjw, is hence given by H d- E(t) =5 Qgsin{ w, ) @
= —hilosl oL L)

dq=f dt €9e(x(t))=r €' ¢a (3)  dis the quantum dipole operator which is expressed in terms
of the atomic transition operators o,,=|n){m|:

' _ d=X&=u(oget 0eg) € With u=pugse=pueq the electric-
and we definep, as the phase of a particular harmonic of dipole transition matrix element between the two states and
orderq, andr, as its amplitude. Theth component of the ¢, the unit polarization vector of the dipole, taken to be
dipole, dg, is a function which depends in particular upon orientated along the direction of polarization of the laser
whether the harmonic belongs to the “cutoff” regigto-  field. We have introduced in the above expressidnthe
cated afmae=(l,+3Up) 0, with U,=E¥/4w{ for the realis-  Rabi frequencyQo=—Eq- e /%, and will also denote
tic atomic models in the tunneling regime, 4&¢14] ], orto A= wy— w, as the detuning between the atomic and the laser
the “plateau.” frequencies. All calculations are performed numerically be-

The study performed ifil8] consisted of looking at the yond the RWA(see[13)]).
intensity dependence of the phase of the dipole moment The coherent spectrum, or spectrum of the mean dipole, is
¢q, at a particular harmonic, in the cutoff and the plateauexpressed as
region. It revealed that in the cutoff region, the phase de-
creases linearly as-—3.2U,/w_, whereas in the plateau
region it varies essentially linearly but more rapidlsts Sc(w)=jdte“‘"<x(t)>
~—5.8U,/w ). These dependences are believed to be re-
lated to the time needed for the electron to return to the
nucleus during the recombination proc¢s8]. An immedi-  wherex(t) represents the dipole operator in the Heisenberg
ate conclusion concerning the phase dependence of thmcture: x(t)=UT(t)xU(t) with U(t) being the evolution
gth-harmonic dipole component upon the field intensity isoperator of the system, andthe dipole operator prior to the
that the best conditions for phase matching for harmonics arepplication of the laser pulse. The intensity of harmonics
obtained when the intensity in the medium is such that thédql2 as a function of the ordey is presented in Fig. 1, for
harmonics are in the cutoff regime. some particular driving frequencies and Rabi frequencies,

We are here interested in relating these results to thosehen the system is initially prepared in its ground state. All
obtained from the case of a model in which ionization doesalculations were performed with square laser pulses of 64
not exist, and hence for which the recombination theand cycles. The spectra show similar features as those observed
thus the argument of different return times leading to differ-in the case of real atoms, i.e., a rapid decrease in harmonic
ent slopes is not applicable. We present here results ob-intensity, followed by a plateau and a cutoff. The full spectra
tained for a strongly driven two-level system. Surprisingly,also show sidebandsiyper-Raman linegsee[13])] which
perhaps, we come to strikingly similar conclusions providedare here manually suppressed in these figures for clarity. The
I, and Up are replaced by transition frequencies and Rabpositions and lengths of the regimes depend sensitively on
frequencies. We use a semiclassical model and perform ndhe parameters we use, i.e., the Rabi frequency of the driving
merical calculations beyond the rotating-wave approximatiorfield, the energy difference between the two levels, and the
[referred to as RWA from now offor details se¢13])]. We  detuning of the laser frequency from atomic resonance.
first define an appropriate cutoff law formula for the two- Comparing Figs. (8 and Ib) we notice that the plateau
level system in the strong field limit; this empirical formula increases with increasing Rabi frequency. We also find that
is expressed in terms of the relevant parameters for the casa increased laser frequency with respect to that in Ra, 1
of a two-level system and allows us to define the cutoff andand therefore a reduced detuning, leads to an increased effi-
plateau region for each harmonic. We then study the evolueiency in harmonic generation, in the sense that the harmonic
tion of the phase of a particular high harmonic as a functiorpeaks have a higher intensity. Nevertheless, the length of the
of the Rabi frequency. The paper ends with conclusions. plateau, as evaluated here as a function of the harmonic or-
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der, is decreased by a factor of about 2 when the laser frevhich the harmonic generation starts to decrease rapidly. We
guency is doubled. This means that the cutoff frequency, i.edefine the cutoff harmonic ordey,,., as the highest integer
the “cutoff” harmonic order times the laser frequency, is for which the corresponding harmonic intensity is, on a loga-
essentially unchanged. We can relate this to the fact thaithmic scale, still at least half as strong as in the plateau
Up, which is a function of the square of the laser frequencyregime. This definition is slightly different from that adopted
cannot play a role in the expression of the cutoff frequencyby some authors.

in the case of a two-level atofthis will be discussed in Sec. We have found that the cutoff harmonic observed in all
IV). We also found finally that the increase of the atomicharmonic spectra from a two-level model can be determined
frequency yields a slightly extended plateau for the relativelyby an empirical formula expressed in terms of the Rabi fre-
large Rabi frequencies that we have applied here, howeveguencyQ,= —Eq- ne,/# and of the atomic or transition fre-
with smaller harmonic intensities. This indicates that thegquency wg. The maximum order of harmonics before the
atomic frequencywy contributes to the expression for the cutoff is given by

cutoff frequency.

Omax=(wo/2+20)/ w . (6)
IV. CUTOFF LAW FORMULA . . .
Figure 2 shows a curve fit between our formula given by Eq.
We have noted from Fig. 1, as is well known, that there is(6) above and data from numerical studies of two-level har-
a final harmonic order at the end of the plateau regime, aftemonic spectra. This formula is in good agreement with
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45 tablish a relation between the cases of the two-level system
w0l and of a real atom, and find similarities in the cutoff laws

" when making the correspondence:
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© 15+
10 - The ionization energyp of the ground state for real at-
5 oms and the energy difference of the two levkls, repre-

12 sent the maximal potential energies that can be released via
transitions from the lowest continuum staffor the real
atom or from the highest bound statéor the two-level

FIG. 2. The cutoff harmonic order as a function of the Rabi atom to the ground state. Thls would lead to a correspon-

. dence oflp to Awgy. We believe, however, that the factor

frequency(l,, in atomic units, for a two-level system with atomic - . .
transition frequencw,=0.3 a.u. is represented as dots for the Iaserll2 in front of 7w, is due to the fact that harmonics are

frequencyw,=0.0516 a.u. The line corresponds to the values op-9€nerated on a time scale of several Rabi oscillations be-
tained by the cutoff law formula defined in Sec. IV. The cutoff is tWeen the two levels. Then the potential energy is on average
taken to be located at approximately the highest integer for whictPetween both states and onfywy/2 can be released by a
the corresponding harmonic intensity is, on a logarithmic scale, stilfransition to the ground state.
at least half as strong as in the plateau regime. The correspondence of the two kinetic energy contribu-
tions 22Q, and Jp is somewhat more subtle. When we
Sundaram and Milonni7], who predicted a proportionality apply the laser fieldE=Egsin(w.t) with Rabi frequency
of gaxt0 ) for the case when the contribution duedgis  Qo=Eou/f each level can be envisaged as being split by
negligible. Moreover, it is similar to the one obtained for a% (), via the dynamical Stark shift. The maximal energy dif-
two-level system also in the strong field limit but when usingference between the two sets of dressed states then increases
a perturbation theory im,/w, (see Ivanov and Corkum in by just 22€,. A clearer picture of the relationship between
[15]). In such a casedy<w,) the maximum frequency in the ponderomotive energy and the Rabi interaction energy
the spectrum isgm.=20y/w_. We see that in our case may be obtained by considering the displacentantl hence
(wp>w,) the cutoff law is corrected by a termy/2w, , dipole moment of an electron by tunneling from the ionic
analogous to the ionization potential term in the well-knowncore. If we imagine a laser field which exceeds the Coulomb
tunneling case. Our law differs slightly from that obtained byfield, then the displacement of the electron from the core
Kaplan and Shkolnikoy12] as a consequence of a minor may be obtained by solving the classical equation of motion
difference in the definition of the cutoff position. of an electron in just the laser fielhsin(w, t). This results in
The linear dependence of the maximum harmonic ordethe usual peak ponderomotive displacemxeﬁteEO/me,
on the field amplitude is characteristic of two-level systemsand an effective dipolg.c=e?Ey/mw? . If we loosely iden-
and is very different from the dependemge,axocE(Z, found in  tify this tunneling dipole with the quantum dipole of the
the case of real atoms in the tunneling regime. We can eswo-level systemu= uc, then we find the correspondence
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ezE(z) lg,n’>
2hQog=2uEq=2—-=8Up. (7)
Mw
The energy 8 is the energy the classical electron can l
maximally acquire in a laser field. Our simple comparison le,’>

has not led to the “proper” prefactor 3.17, which arises from

the fact that, in the tunneling recollision model, not the maxi- '&%-1>
mal dipole but that at the moment of recollision is relevant.

This could be included of course but does not seem relevant

for our two-level model. To emphasize our point, we do not

claim there is a ponderomotive energy in the two-level lem’-1>
model, but merely that the dynamical quantities of both dif-

ferent modelg), andU can be associated once the relevant

physical quantities, here the electric dipoles, are compared.

V. THE PHASE OF THE HARMONICS

We are interested in the variation of the phase of the lg,n>
dipole momenty, [see Eq(3)] with respect to the laser field
amplitude for a particular harmonic. When the Rabi fre-
guency is increased, a harmonic located initially in the cutoff 1
region joins the plateau onc8y>Q . ,.oi IS fulfilled. We
consider the dependence of the phase on the Rabi frequency,
in both the cutoff and plateau regions. lg.n-1>
The results presented here correspond to an atomic fre-
guencywy=0.3 a.u., a driving frequency, =0.0258 a.u.,
and a Rabi frequency varying from 0.2 to 0.6 a.u. The laser
field was applied in square pulses of 64 cycles. The behavior
of the phase of the 29th harmonic as a function(hyf is . . _
presented in Fig. 3 fop, betweer{ — 7, 7]. The respective increasing Rabi frequency
Rabi frequency at the cutoff) ., iS approximately equal FIG. 4. Schematic diagram of Floquet state energies as a func-
to 0.3 a.u. tion of an increasing Rabi frequency in the case of the two-level
We have performed similar studies for several harmonicsystem, for the same parameters as in Fig. 3. The range over which
of different orders. We clearly note, even within the restric-the Rabi frequency is increased is equal to 0.06 a.u. Crossings and
tion to the period of 2, that the behavior of the phases anticrossings are visible for particular Rabi frequencies. The arrows
changes dramatically when we move from the cutoff regior‘indicate the locations of the anticrossings, at which population
to the plateau region. In the cutoff regime the phase appeaf&@nsfers can take place.
to be rather scattered, while in the plateau regime we have
distinct “jumps” of the phase between essentialty2 and  sitions of the typgg)—|g) and|e)—|e)), so that couplings
— /2 at various particular Rabi frequencies. These jump&nd interferences occur of the two kinds of transitions lead-
can be associated with avoided crossings of Floquet statégg to the same harmonic frequency. In addition to the in-
which occur at precisely these particular Rabi frequenciesvolvement of hyper-Raman lines, we also have at these an-
We have checked this quantitatively following the well- ticrossings a coupling of theg)—|g) and |e)—|e)
known Floquet approad21]. However, to enable us to con- transitions leading to the same harmonic. Furthermore, there
centrate on explaining the underlying physics, we have demay be a transfer of population between these two groups of
cided to display in Fig4 a qualitative picture of the main states giving rise to this harmonic transition at the anticross-
features of the Floquet states as a function of the Rabi freings; these couplings and transfers of population can only
quency. The Floguet states are designatedxpy), where  occur at anticrossings of the Floquet states. We shall address
xe{e,g} represents an atomic state ands the Floquet- this issue elsewhere.
Fourier index, which can be a positive or negative integer. Let us now consider that the phase varies regularly, i.e.,
The energy of these states varies as a function of the Ralfiat dq rotates around the trigonometric circle in only one
frequency as indicated in a periodical pattern in the verticaflirection, and cease restricting ourselves to a single period of
direction (with respect to the laser frequenay). The hori- 27 of the phase. We then find that the phase decreases, that
zontal direction also shows a certain degree of periodicity as, thatd, rotates in the negative sense along the trigonomet-
we have alternately crossings and anticrossifmysavoided ric circle. The corresponding phase behavior for the 29th
crossings of the Floquet states. The latter, where populationharmonic is shown in Fig. 5. We find that the phase de-
transfers can take place, are indicated by an arrow, and thefreases linearly in the cutoff region as—1.5x10°Q or
width increases slightly when increasing the Rabi frequency~ —3.87<10?Q¢/w_ , but there is an abrupt change in slope
At the anticrossings, we find that the hyper-Raman i@  around(Q . after which the phase decreases more steeply
(given by transitions of the typée)—|g) and |g)—|e))  but still linearly, following ~—2.9x10°Q, or
match in frequency the harmonic transitiofgven by tran- ~—7.48X10°Q4/w, . We have performed this analysis for

o)

le,m-1>
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various harmonic orders. We found that all the respectivébetween the harmonics will be crucial for the realization of
phases present the same behavior, and moreover have idesuch a proposal.
tical slopes, depending upon whether the particular harmonic
is in the plateau or in the cutoff region. The ratio of the phase
slope in the plateau region to the slope in the cutoff region is
given in all cases by~ 1.9. This is in good agreement with In this paper we have investigated the dependence of the
the results presented by Saéis et al. in [18] for the atom  phase of high harmonics on the Rabi frequency for a strongly
modeled by a Volkov continuum plus a discrete state tunneldriven two-level system. We were able to reproduce results
ing model, in that we find a similar linear behavior both in similar to those obtained in the case of models which allow
the cutoff and plateau regions, with an abrupt change ofonization and for which the difference in the phase variation
slope around the cutoff Rabi frequency. Moreover, the ratiovith the laser intensity is believed to be related to the differ-
in [18] between the two slopes is given by~1.81, and ence in time spent by the electron before recombining. In a
hence has a value which is very close to the one found in thewo-level model one cannot talk of a free electron and recol-
case of the two-level system. Let us note here that the diflisions play no role. Therefore we see that the above expla-
ferences between the absolute values of the slopes presenteation, relevant for real atoms, is not unique in explaining
here and those obtained i8] are due to the fact that the the phase variation; ours explains the linear dependence of
parameters which govern the excitation of the system aréhe harmonic phase with the Rabi frequency as well as the
quite different. In particular, the number of laser pulse cyclescharacteristic change of slope around the cutoff. We have
involved in our model is much larger than that considered inrshown that this change of slope arises due to phase jumps at
[18]; and indeed we found that the magnitude of the phasavoided crossings of Floguet states in the plateau regime.
slope is directly proportional to the number of cycles of theThis issue will be discussed elsewhere in another context.
laser pulse excitation: the phase seems to accumulate durivge believe that the sudden change in slope of the phase is
the Rabi oscillations, becoming more negative as the laseactually an intrinsic and generic property of the interaction of
pulse lasts longer; we are currently investigating this issug¢he laser field with a nonlinear system, in the same way as
further. However, the ratigy does not depend on the number the plateau and cutoff are generic. All these common char-
of cycles. acteristics between the response of a real atom and that of the
The implications of the reduced phase dependence in thisvo-level system, when driven by strong laser fields, should
cutoff regime are rather significant for phase matching as haise part of a fundamental behavior of strongly driven nonlin-
been thoroughly investigated by Lewenstein and co-workergar systems.
[18,19. In a focused laser pulse geometry the atoms are After completion of this manuscript, our attention was
affected by different laser intensities such that the harmonicdrawn to the work of Liu and Clark26], who addressed
from the various atoms still contribute with different phasesrelated issues for the one-dimensional Rochester potential.
even for forward detection. This undesirable effect is re-
duced if there is a decreased dependence of the phase of the
harmonics on the driving Rabi frequency. Therefore, from
the point of view of phase coherence, harmonic generation is We would like to thank D. G. Lappas, M. Lewenstein, P.
more efficient in the cutoff regime. Antoiret al.[23] have  Saliges, and R. Tab for valuable discussions. We acknowl-
discussed how a set of high harmonics can be recombined dge financial support from the European Community, the
an appropriately phased superposition to generate attosecoBdRET (French Ministry of Defencg and the UK Engineer-
pulse trains(see alsg24,25). Clearly the relative phases ing and Physical Sciences Research Council.
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