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Phase of harmonics from strongly driven two-level atoms

F. I. Gauthey,1,2 C. H. Keitel,1 P. L. Knight,1 and A. Maquet2
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2Laboratoire de Chimie-Physique-Matie`re et Rayonnement, Universite´ Pierre et Marie Curie, Paris, France
~Received 10 June 1996!

Harmonic generation is studied in an idealized model medium in which the laser field essentially interacts
only with a single atomic transition and where ionization can be neglected. Such two-level models are known
to generate high harmonics with a plateau and a cutoff. We put forward a quantitative rule for the cutoff
frequency in the harmonic spectrum in this model which we relate to the ‘‘I P13UP rule’’ in real systems with
ionization. We examine the phase properties of the emitted harmonics and show that their coherence and thus
phase matching is more favorable in the cutoff regime than in the plateau of the harmonic spectrum. This
behavior is known to occur in realistic models of neon, and that this occurs also for the simple idealized
two-level model strongly suggests that the sudden change of phase coherence from the cutoff to the plateau
regime is as intrinsic a property of nonlinear systems as are the plateau and the cutoff.
@S1050-2947~97!03401-X#

PACS number~s!: 42.50.Hz, 42.65.Ky, 32.80.Wr
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I. INTRODUCTION

In the field of harmonic generation from the interaction
atoms with intense laser fields, single atom theoretical m
els @1–6# have been very successful in predicting the m
features of the spectrum. These are~a! a rapid decrease in th
perturbative part of the harmonic spectrum,~b! a successive
plateau regime of harmonics with approximately constant
tensity, and finally~c! the cutoff region with an abruptly
decreasing harmonic intensity. This behavior has proven
neric for all theoretical models of high harmonic generat
presently studied, including in particular the strongly driv
two-level system@7–13#. In the case of model atoms whic
allow ionization, a widely accepted interpretation of the c
off energy~in the tunneling regime! relates the highest radi
ated frequency to the maximum kinetic energy of appro
mately three times the ponderomotive energyUP plus the
ionization energyI P , which the ionized electron optimally
releases when it returns from the continuum and recomb
with the atomic core to reemerge in the ground state@14#. In
the case of a two-level system where no ionization is p
sible, Sundaram and Milonni@7#, Kaplan and Shkolnikov
@12#, and Ivanov and Corkum@15# have proposed a linea
dependence of the cutoff harmonic order on the Rabi
quency of the driving laser field in the intense field limit. F
the entire multiatom ensemble, which is of course of m
relevance for experimental realizations@16,17#, phase match-
ing among the harmonics from the various atoms become
important issue. For this reason experimental observatio
high harmonics is implemented in the forward direction
the laser beam, where in principle phase matching is es
tially perfect given that the laser is assumed to have n
perfect coherence and has a constant intensity over
spread of the atomic sample@10#. However, in reality, the
necessity to focus the laser beam implies a variable inten
dependence. Under these circumstances, the intensity de
dence of the phases of the harmonics becomes relevant a
even for forward detection. Very recently Lewenstein a
co-workers have addressed this problem@18,19#, and showed
551050-2947/97/55~1!/615~7!/$10.00
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that the intensity dependence of the phase of the harmo
of laser driven neon atoms is substantially stronger in
plateau regime than in the cutoff regime.

In this paper we investigate the phase coherence of
monic generation of strongly driven two-level systems a
present results which are qualitatively very similar to tho
of Refs. @18,19# for neon although quantitative difference
exist due to the differing parameters of our system. T
strongly suggests that the improved phase coherence of
monics in the cutoff regime is a generic property of the
teraction of strong laser fields with nonlinear systems.

In the following preliminary considerations~Sec. II! we
define the central concepts and the main working exp
sions, and summarize the results of Salie`reset al. @18#. This
is followed by a presentation of the two-level model in Se
III. Then in Sec. IV we display typical harmonic spectra a
put forward and interpret a rule for the two-level cutoff fr
quency as a function of the atomic transition frequency a
the Rabi frequency of the driving field. Before concludin
we determine in Sec. V the phase of various harmonics a
function of the Rabi frequency and relate this behavior
that of the corresponding stationary states in the Floquet
ture. Finally in Sec. V, we compare the slopes of this ph
dependence in the plateau and the cutoff regime and m
comments on its implications for phase matching.

II. PRELIMINARY CONSIDERATIONS

In the recent study of Salie`res, L’Huillier, and Lewenstein
@18# on the conditions for optimal coherence of harmon
from strongly driven atoms, it was shown that the variatio
of the phase of the atomic dipole moment due to the focus
geometry affect dramatically the spatial and spectral coh
ence of the generated harmonics. Their theoretical appro
based on an atomic model consisting of a single bound s
coupled to a flat continuum, is that developed in@5#; see also
for an alternative viewpoint@6#. The single atom spectrum
615 © 1997 The American Physical Society
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616 55GAUTHEY, KEITEL, KNIGHT, AND MAQUET
considered here is the ‘‘coherent’’ part of the total spectru
that is, the spectrum of the mean dipole~see@13#, and refer-
ences therein!:

SC~v!5ud~v!u2, ~1!

whered(v) is defined as

d~v!5E dt eivt^x~ t !&. ~2!

We use here the dipole form rather than the more cor
dipole acceleration@20# to describe the spectrum, as in th
absence of ionization these differ only by unimportant m
tiplicative constants. The dipole momentdq at theqth har-
monic frequencyqvL is hence given by

dq5E dt eiqvLt^x~ t !&5r qe
iwq ~3!

and we definewq as the phase of a particular harmonic
orderq, and r q as its amplitude. Theqth component of the
dipole, dq , is a function which depends in particular upo
whether the harmonic belongs to the ‘‘cutoff’’ region@lo-
cated atqmax.(Ip13Up)/vL with Up5E0

2/4vL
2 for the realis-

tic atomic models in the tunneling regime, see@5,14# #, or to
the ‘‘plateau.’’

The study performed in@18# consisted of looking at the
intensity dependence of the phase of the dipole mom
wq , at a particular harmonic, in the cutoff and the plate
region. It revealed that in the cutoff region, the phase
creases linearly as;23.2Up /vL , whereas in the platea
region it varies essentially linearly but more rapidly~as
;25.8Up /vL). These dependences are believed to be
lated to the time needed for the electron to return to
nucleus during the recombination process@19#. An immedi-
ate conclusion concerning the phase dependence of
qth-harmonic dipole component upon the field intensity
that the best conditions for phase matching for harmonics
obtained when the intensity in the medium is such that
harmonics are in the cutoff regime.

We are here interested in relating these results to th
obtained from the case of a model in which ionization do
not exist, and hence for which the recombination theory~and
thus the argument of different return times leading to diff
ent slopes! is not applicable. We present here results o
tained for a strongly driven two-level system. Surprising
perhaps, we come to strikingly similar conclusions provid
I P andUP are replaced by transition frequencies and R
frequencies. We use a semiclassical model and perform
merical calculations beyond the rotating-wave approximat
@referred to as RWA from now on~for details see@13#!#. We
first define an appropriate cutoff law formula for the tw
level system in the strong field limit; this empirical formu
is expressed in terms of the relevant parameters for the
of a two-level system and allows us to define the cutoff a
plateau region for each harmonic. We then study the ev
tion of the phase of a particular high harmonic as a funct
of the Rabi frequency. The paper ends with conclusions.
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III. TWO-LEVEL MODEL

We consider a two-level system whereug& and ue& repre-
sent the ground and excited states, respectively, with co
sponding energiesEg andEe . We denotev05(Ee2Eg)/\
as the atomic frequency between the two levels. We ass
the laser driving field to be in a coherent state so that we
adopt a semiclassical model in which the quantum ato
system interacts with the classical electric fie
E5E0sin(vLt) with vL being the laser frequency andE0 its
amplitude, orientated along the polarization axisêx . This
model is furthermore justified as we only consider the sp
trum radiated by the source, which remains unchanged if
replace the quantized driving field by an approximate cla
cal field. The interaction Hamiltonian in the dipole approx
mation is

HI52d•E~ t !5\V0sin~vLt !. ~4!

d is the quantum dipole operator which is expressed in te
of the atomic transition operatorssnm5un&^mu:
d5xex5m(sge1seg)ex with m5mge5meg the electric-
dipole transition matrix element between the two states
ex the unit polarization vector of the dipole, taken to b
orientated along the direction of polarization of the las
field. We have introduced in the above expression~4! the
Rabi frequencyV052E0•mex /\, and will also denote
D5v02vL as the detuning between the atomic and the la
frequencies. All calculations are performed numerically b
yond the RWA~see@13#!.

The coherent spectrum, or spectrum of the mean dipole
expressed as

SC~v!5U E dt eivt^x~ t !&U25ud~v!u2, ~5!

wherex(t) represents the dipole operator in the Heisenb
picture: x(t)5U†(t)xU(t) with U(t) being the evolution
operator of the system, andx the dipole operator prior to the
application of the laser pulse. The intensity of harmon
udqu2 as a function of the orderq is presented in Fig. 1, for
some particular driving frequencies and Rabi frequenc
when the system is initially prepared in its ground state.
calculations were performed with square laser pulses of
cycles. The spectra show similar features as those obse
in the case of real atoms, i.e., a rapid decrease in harm
intensity, followed by a plateau and a cutoff. The full spec
also show sidebands@hyper-Raman lines~see@13#!# which
are here manually suppressed in these figures for clarity.
positions and lengths of the regimes depend sensitively
the parameters we use, i.e., the Rabi frequency of the driv
field, the energy difference between the two levels, and
detuning of the laser frequency from atomic resonan
Comparing Figs. 1~a! and 1~b! we notice that the plateau
increases with increasing Rabi frequency. We also find t
an increased laser frequency with respect to that in Fig. 1~a!,
and therefore a reduced detuning, leads to an increased
ciency in harmonic generation, in the sense that the harm
peaks have a higher intensity. Nevertheless, the length o
plateau, as evaluated here as a function of the harmonic
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55 617PHASE OF HARMONICS FROM STRONGLY DRIVEN . . .
FIG. 1. The logarithm of the harmonic inten
sitiesudqu2 as a function of their orderq is shown
under different conditions of excitation from th
ground level of the system. The Fourier tran
forms are computed for pulses that are 64 cyc
of the laser frequency in duration, and the fr
quency unit is the laser frequency. The atom
transition frequency is equal tov050.3 a.u. and
the laser frequency tovL50.0258 a.u. The Rab
frequencies are, respectively, equal toV050.55
a.u. ~a! and V050.8 a.u. ~b!. All units are in
atomic units if not specified otherwise.
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der, is decreased by a factor of about 2 when the laser
quency is doubled. This means that the cutoff frequency,
the ‘‘cutoff’’ harmonic order times the laser frequency,
essentially unchanged. We can relate this to the fact
UP , which is a function of the square of the laser frequen
cannot play a role in the expression of the cutoff frequen
in the case of a two-level atom~this will be discussed in Sec
IV !. We also found finally that the increase of the atom
frequency yields a slightly extended plateau for the relativ
large Rabi frequencies that we have applied here, howe
with smaller harmonic intensities. This indicates that t
atomic frequencyv0 contributes to the expression for th
cutoff frequency.

IV. CUTOFF LAW FORMULA

We have noted from Fig. 1, as is well known, that there
a final harmonic order at the end of the plateau regime, a
e-
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,
y

y
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s
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which the harmonic generation starts to decrease rapidly.
define the cutoff harmonic orderqmax as the highest intege
for which the corresponding harmonic intensity is, on a log
rithmic scale, still at least half as strong as in the plate
regime. This definition is slightly different from that adopte
by some authors.

We have found that the cutoff harmonic observed in
harmonic spectra from a two-level model can be determi
by an empirical formula expressed in terms of the Rabi f
quencyV052E0•mex/\ and of the atomic or transition fre
quencyv0. The maximum order of harmonics before th
cutoff is given by

qmax.~v0 /212V0!/vL . ~6!

Figure 2 shows a curve fit between our formula given by E
~6! above and data from numerical studies of two-level h
monic spectra. This formula is in good agreement w
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618 55GAUTHEY, KEITEL, KNIGHT, AND MAQUET
Sundaram and Milonni@7#, who predicted a proportionality
of qmax toV0 for the case when the contribution due tov0 is
negligible. Moreover, it is similar to the one obtained for
two-level system also in the strong field limit but when usi
a perturbation theory inv0 /vL ~see Ivanov and Corkum in
@15#!. In such a case (v0,vL) the maximum frequency in
the spectrum isqmax.2V0 /vL . We see that in our cas
(v0.vL) the cutoff law is corrected by a termv0/2vL ,
analogous to the ionization potential term in the well-kno
tunneling case. Our law differs slightly from that obtained
Kaplan and Shkolnikov@12# as a consequence of a min
difference in the definition of the cutoff position.

The linear dependence of the maximum harmonic or
on the field amplitude is characteristic of two-level syste
and is very different from the dependenceqmax}E0

2 found in
the case of real atoms in the tunneling regime. We can

FIG. 2. The cutoff harmonic order as a function of the Ra
frequencyV0, in atomic units, for a two-level system with atom
transition frequencyv050.3 a.u. is represented as dots for the la
frequencyvL50.0516 a.u. The line corresponds to the values
tained by the cutoff law formula defined in Sec. IV. The cutoff
taken to be located at approximately the highest integer for wh
the corresponding harmonic intensity is, on a logarithmic scale,
at least half as strong as in the plateau regime.
r
s

s-

tablish a relation between the cases of the two-level sys
and of a real atom, and find similarities in the cutoff law
when making the correspondence:

v0/2↔I p ,

2V0↔3Up .

The ionization energyI P of the ground state for real at
oms and the energy difference of the two levels\v0 repre-
sent the maximal potential energies that can be released
transitions from the lowest continuum state~for the real
atom! or from the highest bound state~for the two-level
atom! to the ground state. This would lead to a correspo
dence ofI P to \v0. We believe, however, that the facto
1/2 in front of \v0 is due to the fact that harmonics a
generated on a time scale of several Rabi oscillations
tween the two levels. Then the potential energy is on aver
between both states and only\v0/2 can be released by
transition to the ground state.

The correspondence of the two kinetic energy contrib
tions 2\V0 and 3UP is somewhat more subtle. When w
apply the laser fieldE5E0sin(vLt) with Rabi frequency
V05E0m/\ each level can be envisaged as being split
\V0 via the dynamical Stark shift. The maximal energy d
ference between the two sets of dressed states then incr
by just 2\V0. A clearer picture of the relationship betwee
the ponderomotive energy and the Rabi interaction ene
may be obtained by considering the displacement~and hence
dipole moment! of an electron by tunneling from the ioni
core. If we imagine a laser field which exceeds the Coulo
field, then the displacement of the electron from the c
may be obtained by solving the classical equation of mot
of an electron in just the laser fieldE0sin(vLt). This results in
the usual peak ponderomotive displacementx5eE0 /mvL

2 ,
and an effective dipolemC5e2E0 /mvL

2 . If we loosely iden-
tify this tunneling dipole with the quantum dipole of th
two-level system,m>mC , then we find the correspondenc
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FIG. 3. The phase of the 29th harmonicwq ,
when defined between@2p,p#, as a function of
the Rabi frequencyV0 varying from 0.2 a.u. to
0.6 a.u. The atomic transition frequency
v050.3 a.u. and the laser frequency
vL50.0258. The laser was applied in square
ser pulses of a duration of 64 cycles and the R
frequency corresponding to the cutoff is approx
mately equal to 0.3 a.u.
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55 619PHASE OF HARMONICS FROM STRONGLY DRIVEN . . .
2\V052mE0>2
e2E0

2

mv2 58UP . ~7!

The energy 8UP is the energy the classical electron c
maximally acquire in a laser field. Our simple comparis
has not led to the ‘‘proper’’ prefactor 3.17, which arises fro
the fact that, in the tunneling recollision model, not the ma
mal dipole but that at the moment of recollision is releva
This could be included of course but does not seem rele
for our two-level model. To emphasize our point, we do n
claim there is a ponderomotive energy in the two-le
model, but merely that the dynamical quantities of both d
ferent modelsV0 andUP can be associated once the releva
physical quantities, here the electric dipoles, are compar

V. THE PHASE OF THE HARMONICS

We are interested in the variation of the phase of
dipole momentwq @see Eq.~3!# with respect to the laser field
amplitude for a particular harmonic. When the Rabi fr
quency is increased, a harmonic located initially in the cut
region joins the plateau onceV0.Vcutoff is fulfilled. We
consider the dependence of the phase on the Rabi freque
in both the cutoff and plateau regions.

The results presented here correspond to an atomic
quencyv050.3 a.u., a driving frequencyvL50.0258 a.u.,
and a Rabi frequency varying from 0.2 to 0.6 a.u. The la
field was applied in square pulses of 64 cycles. The beha
of the phase of the 29th harmonic as a function ofV0 is
presented in Fig. 3 forwq between@2p,p#. The respective
Rabi frequency at the cutoff,Vcutoff , is approximately equa
to 0.3 a.u.

We have performed similar studies for several harmon
of different orders. We clearly note, even within the restr
tion to the period of 2p, that the behavior of the phase
changes dramatically when we move from the cutoff reg
to the plateau region. In the cutoff regime the phase app
to be rather scattered, while in the plateau regime we h
distinct ‘‘jumps’’ of the phase between essentiallyp/2 and
2p/2 at various particular Rabi frequencies. These jum
can be associated with avoided crossings of Floquet st
which occur at precisely these particular Rabi frequenc
We have checked this quantitatively following the we
known Floquet approach@21#. However, to enable us to con
centrate on explaining the underlying physics, we have
cided to display in Fig. 4 a qualitative picture of the main
features of the Floquet states as a function of the Rabi
quency. The Floquet states are designated byux,n&, where
xP$e,g% represents an atomic state andn is the Floquet-
Fourier index, which can be a positive or negative integ
The energy of these states varies as a function of the R
frequency as indicated in a periodical pattern in the vert
direction~with respect to the laser frequencyvL). The hori-
zontal direction also shows a certain degree of periodicity
we have alternately crossings and anticrossings~or avoided
crossings! of the Floquet states. The latter, where populat
transfers can take place, are indicated by an arrow, and
width increases slightly when increasing the Rabi frequen
At the anticrossings, we find that the hyper-Raman lines@22#
~given by transitions of the typeue&→ug& and ug&→ue&)
match in frequency the harmonic transitions~given by tran-
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sitions of the typeug&→ug& andue&→ue&), so that couplings
and interferences occur of the two kinds of transitions le
ing to the same harmonic frequency. In addition to the
volvement of hyper-Raman lines, we also have at these
ticrossings a coupling of theug&→ug& and ue&→ue&
transitions leading to the same harmonic. Furthermore, th
may be a transfer of population between these two group
states giving rise to this harmonic transition at the anticro
ings; these couplings and transfers of population can o
occur at anticrossings of the Floquet states. We shall add
this issue elsewhere.

Let us now consider that the phase varies regularly,
that dq rotates around the trigonometric circle in only on
direction, and cease restricting ourselves to a single perio
2p of the phase. We then find that the phase decreases,
is, thatdq rotates in the negative sense along the trigonom
ric circle. The corresponding phase behavior for the 2
harmonic is shown in Fig. 5. We find that the phase d
creases linearly in the cutoff region as;21.53104V0 or
;23.873102V0 /vL , but there is an abrupt change in slop
aroundVcutoff after which the phase decreases more stee
but still linearly, following ;22.93104V0 or
;27.483102V0 /vL . We have performed this analysis fo

FIG. 4. Schematic diagram of Floquet state energies as a f
tion of an increasing Rabi frequency in the case of the two-le
system, for the same parameters as in Fig. 3. The range over w
the Rabi frequency is increased is equal to 0.06 a.u. Crossings
anticrossings are visible for particular Rabi frequencies. The arr
indicate the locations of the anticrossings, at which populat
transfers can take place.
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FIG. 5. The phase of the 29th harmonicwq ,
when considered as a monotonous function of
Rabi frequency. The parameters are the same
in Fig. 3.
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various harmonic orders. We found that all the respec
phases present the same behavior, and moreover have
tical slopes, depending upon whether the particular harmo
is in the plateau or in the cutoff region. The ratio of the pha
slope in the plateau region to the slope in the cutoff regio
given in all cases byh;1.9. This is in good agreement wit
the results presented by Salie`reset al. in @18# for the atom
modeled by a Volkov continuum plus a discrete state tunn
ing model, in that we find a similar linear behavior both
the cutoff and plateau regions, with an abrupt change
slope around the cutoff Rabi frequency. Moreover, the ra
in @18# between the two slopes is given byh;1.81, and
hence has a value which is very close to the one found in
case of the two-level system. Let us note here that the
ferences between the absolute values of the slopes pres
here and those obtained in@18# are due to the fact that th
parameters which govern the excitation of the system
quite different. In particular, the number of laser pulse cyc
involved in our model is much larger than that considered
@18#; and indeed we found that the magnitude of the ph
slope is directly proportional to the number of cycles of t
laser pulse excitation: the phase seems to accumulate d
the Rabi oscillations, becoming more negative as the la
pulse lasts longer; we are currently investigating this is
further. However, the ratioh does not depend on the numb
of cycles.

The implications of the reduced phase dependence in
cutoff regime are rather significant for phase matching as
been thoroughly investigated by Lewenstein and co-work
@18,19#. In a focused laser pulse geometry the atoms
affected by different laser intensities such that the harmo
from the various atoms still contribute with different phas
even for forward detection. This undesirable effect is
duced if there is a decreased dependence of the phase o
harmonics on the driving Rabi frequency. Therefore, fro
the point of view of phase coherence, harmonic generatio
more efficient in the cutoff regime. Antoineet al. @23# have
discussed how a set of high harmonics can be recombine
an appropriately phased superposition to generate attose
pulse trains~see also@24,25#!. Clearly the relative phase
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between the harmonics will be crucial for the realization
such a proposal.

VI. CONCLUSIONS

In this paper we have investigated the dependence of
phase of high harmonics on the Rabi frequency for a stron
driven two-level system. We were able to reproduce res
similar to those obtained in the case of models which all
ionization and for which the difference in the phase variat
with the laser intensity is believed to be related to the diff
ence in time spent by the electron before recombining. I
two-level model one cannot talk of a free electron and rec
lisions play no role. Therefore we see that the above ex
nation, relevant for real atoms, is not unique in explaini
the phase variation; ours explains the linear dependenc
the harmonic phase with the Rabi frequency as well as
characteristic change of slope around the cutoff. We h
shown that this change of slope arises due to phase jump
avoided crossings of Floquet states in the plateau regi
This issue will be discussed elsewhere in another cont
We believe that the sudden change in slope of the phas
actually an intrinsic and generic property of the interaction
the laser field with a nonlinear system, in the same way
the plateau and cutoff are generic. All these common ch
acteristics between the response of a real atom and that o
two-level system, when driven by strong laser fields, sho
be part of a fundamental behavior of strongly driven nonl
ear systems.

After completion of this manuscript, our attention wa
drawn to the work of Liu and Clark@26#, who addressed
related issues for the one-dimensional Rochester potenti
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