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Multiphoton ionization as time-dependent tunneling

Klaus Ergenzinger*
Institut für Theoretische Physik, Universita¨t Zürich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland

~Received 17 April 1996!

A semiclassical approach to ionization by an oscillating field is presented. An asymptotic analysis is per-
formed with respect to a quantityh, defined~up to a factor! as the ratio of photon energy to ponderomotive
energy. Thish appears formally equivalent to Planck’s constant in a suitably transformed Schro¨dinger equation
and allows us to formally use semiclassical methods. Systematically, a picture of tunneling wave packets in
complex time is developed, which by interference account for the typical ponderomotive features of ionization
curves. For a one-dimensionald-function atom, these analytical results are compared to numerical simulations
@Scharf, Sonnenmoser, and Wreszinski, Phys. Rev. A44, 3250~1991!# and are shown to be in good agreement.
@S1050-2947~97!01201-8#
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I. INTRODUCTION

A lot of effort was dedicated recently to a better und
standing of ionization by strong laser fields~reviews, e.g., in
@2,3#!, especially since the discovery of nonperturbative p
nomena, like above-threshold ionization~ATI ! ~for a review
see@4#!, the sensitivity of ionization rates, and stabilizatio
in superintense fields@5–7#.

But there succeeded no analytical solution for the simp
model, i.e., a one-dimensional electron bound by an att
tive d potential in the presence of an oscillating electric fie
One of the main reasons is that there exist two separate
gions. The binding potential dominates inside the atom
core, whereas the electric field dominates outside the c
~this is also the main point that makes perturbation the
work so poorly!. For both regions, the distinct propagato
are exactly known, but they cannot be combined to solve
ionization problem exactly.

This problem can be treated nonperturbatively by a se
classical approach, which we will use to construct the se
classical propagator explicitly for such a one-dimensio
d-function atom. The choice of this model has three adv
tages: first, there is a clear distinction between inside
outside the atom. So there does not exist any intermed
region. Second, there is only one bound state for thed po-
tential ~as in H2), so there arise no difficulties with interme
diate resonances and induced resonances by ac-Stark sh
it happens in real atoms. Third, the exact problem can
reduced to a Volterra type integral equation in time,
which accurate numerical solutions can be computed@1# and
which allows precise tests.

The one-dimensionald-function model has shown to b
useful for real physical systems, e.g., H2 in a static electric
field @8#. For high electric fields, in which we are intereste
the driven motion of the electron along the field direction
much more important than the other degrees of freedom
that the essential dynamics reduces to one dimension.

The above described problem~as well as its more genera
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settings in three dimensions with more realistic binding p
tentials! has been treated in the literature in several wa
The so-called Keldysh-Faisal-Reiss~KFR! approach@9–11#
consists in expressing the exact propagatorÛ in terms of the
known Volkov propagatorÛV @12# ~for a free electron in the
electromagnetic field! and in terms ofVd , the atomic binding
potential:Û5ÛV2 iÛ VVd Û. The unknownÛ on the right-
hand side is approximated byÛV ~equivalent to the Born
approximation!, and matrix elements for ionization are ca
culated between the ground state and so-called Volkov st
@12# in the continuum. This approach has been refined
extended by many authors, and we will compare our res
with two such typical extensions@13,14#.

Another approach, the so-called two-step model@15–17#,
clearly distinguishes between ionization first and class
propagation in the~laser! field afterwards. This proved to b
very useful especially in calculating high-harmonic gene
tion @18#. This separation into two steps will be used in t
following, but now justified in a fully semiclassical contex

In addition, there exist several other approaches. A v
common method is using the Floquet theory@19–21#, which
explicitly incorporates the periodicity of the time-depende
Hamiltonian. Our issue here is not to obtain better results
a simple model, but to gain better physical insight into t
mechanisms of ionization processes using semiclass
methods.

This paper is organized as follows: After basic definitio
~Sec. II!, we show characteristic elements of generic ioniz
tion curves~Sec. III!, which we want to understand semicla
sically. Using a ‘‘sum over classical paths’’ technique, t
total semiclassical propagator is constructed by identify
the paths which are relevant for ionization. First we constr
the propagator for the part remaining bound~Sec. IV!, and
second we construct the propagator for the free wave pac
stemming from time-dependent tunneling in complex tim
~Sec. V!. Using the total semiclassical propagator~Sec. VI!,
the total ionization rate is derived and compared to numer
simulations as well as to other theories in the literature~Sec.
VII !. Finally, in Appendix A, it is shown how these resul
can be generalized to other binding potentials.
577 © 1997 The American Physical Society
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578 55KLAUS ERGENZINGER
II. BASICS

A. Definition of the model

We want to study the ionization of a one-dimension
d-function atom with binding potentialVd52ad(x), which
possesses exactly one bound state with binding en
E052a2/2 ~for the three-dimensional analog cf.@22# and
the solutions by@23,24#, using complex quasienergies!. This
atom is exposed to an oscillating electric fieldV0
52mx cos(vt) in the so-called dipole approximation. Th
parametera represents the strength of the binding potent
m is the amplitude of the applied electric field, andv is its
angular frequency. The Schro¨dinger equation in atomic unit
(\5m51) is

i
]

]t
c5F2

1

2

]2

]x2
2ad~x!2mx cos~vt !Gc. ~1!

From these three parameters, there can be derived~due to
the scaling properties of the one-dimensionald potential!
two independent, meaningful, and dimensionless quanti
first, z5m2/(4v3), which is the ratio of ponderomotive en
ergy Upond5m2/(4v2) to photon energyv . Upond is the
mean kinetic energy of a free electron in an oscillating fie
And, second, the so-called Keldysh factor@9# g5av/m,
which is the ratio of the~adiabatic! tunneling time to the
period of the applied field. Thisg characterizes the ioniza
tion process;g!1 corresponds to~adiabatic! tunneling, and
g@1 is better described in a pure multiphoton frame@25,26#.

These are the two quantities by which the model will
described below. A third, but no more independent quan
is nio , the ratio of binding energyE0 to photon energy

nio5a2/~2v!52g2z. ~2!

B. Transformation of the Schrödinger equation

With the following coordinate and time transformatio
we cast the above Schro¨dinger equation~1! in a very suitable
form:

x85
v2

m
x, t85vt. ~3!

Using the scaling relationd(ax)5d(x)/uau ~which is identi-
cal to the scaling behavior of the Coulomb potential! and
omitting the primes, we obtain

ih
]

]t
c5S 2

1

2
h2

]2

]x2
2hgd~x!2x cos~ t ! Dc. ~4!

Hereh:5v3/m251/(4z) is written very suggestively to in
dicate that we have obtained a parameterh formally equiva-
lent to Planck’s constant\ in ordinary quantum mechanic
@using Syste`me International~SI! units#. Of course we can
give h any value we like. Restricting ourselves to stro
fields withUpond@v, i.e., z@1, h can get arbitrarily small.
This will allow us to use the normal semiclassical metho
exploiting the formal analogy between the parameterh, in-
troduced above, and Planck’s constant\. Quite remarkable
is the appearance of the factorh in front of the bindingd
potential, its implications in the semiclassical limit will b
l

gy

l,

s:

.

y

,

derived below. For the three-dimensionald potentiald3(r )
or the regularized potentiald3(r ) (]/]r ) r , such a transfor-
mation is no longer possible because of the different sca
behavior.

The ~normalized! ground-state wave function for the one
dimensionald-function atom without an applied externa
field is

c0~x!5S g

hD 1/2expS 2
g

h UxU D , ~5!

Ĥ0c052
g2

2
c0 , ~6!

c0~x,t !5c0~x!expS i g2

2h
t D .

For smallh, this leads to a strong localization of the wav
function c0 around the origin. In the limiting caseh→0,
c0(x) approaches~appropriately scaled! the spatial Diracd
function

1

2 S g

hD 1/2c0~x!→d~x!. ~7!

In the following, this approximation will be used only fo
the calculation of scalar products, so that no mathemat
ambiguities will arise.

III. PROMINENT SEMICLASSICAL FEATURES
IN IONIZATION RATES

The ionization rates from a numerical analysis@1# of this
model show certain characteristic features. In Fig. 1, we c
see the raw results~dotted!, these results smoothed~thicker!,

FIG. 1. Numerical ionization rates, raw~dotted! and smoothed
~thicker! vs number of ponderomotive photonsz, compared with
WKB background~thick, smooth decaying curve!. The Keldysh
parameterg and not the depth of the binding potential is kept fixe
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55 579MULTIPHOTON IONIZATION AS TIME-DEPENDENT . . .
and the adiabatically averaged WKB value@thick and mono-
tonically decreasing, see Eq.~16!#. The ionization rateG is
shown againstz, the ratio of ponderomotive energy ove
photon energy. The WKB rate accounts fine for the ba
ground, but on the actual rate, there is a modulation and a
of fine structure superposed. The~slow! modulation becomes
obvious after having smoothed the raw data~using a
Savitzky-Golay filter technique!.

The cycle length of this modulation can be understood
the so-called channel closing arguments@27#, but there is up
to now no argument for the amplitude of this modulatio
The kth channel means a multiphoton ionization byk pho-
tons with energy balance~here in atomic units!

kv5niov1zv1Ekin , ~8!

niov is the binding energy,zv is the ponderomotive energ
Upond, andEkin is the additional kinetic energy the electro
gains in this ionization process. This channel is energetic
only allowed forEkin>0, otherwise it is forbidden.

The thresholdzk for the kth channel is defined using th
conditionEkin50. In terms ofg andzk , Eq. ~8! at threshold
is

k52g2zk1zk ~9!

and the specific valuezk at threshold becomes

zk5
k

112g2 , ~10!

yielding cycles with lengthDz51/(112g2). In Fig. 1, this
yields a cycle of approximately 0.5 forg50.7.

An important point to note is that the numerical resu
give strong evidence for regular behavior of ionization ra
G at threshold, whereas the usual prediction of appropr
theories ~e.g., those of the KFR type! is a divergence a
threshold.

The features described above are definitely not restric
to thed-function atom alone. Numerical simulations for va
ous model potentials in the literature exhibit similar featur
often with remarkable quantitative correspondence~see Fig.
8 in @1#, comparing thed-function atom to an atom with a
smoothed binding potentialV(x)52exp(2uxu)/Ax21x0

2 as
used by Greenwood and Eberly@28#!.

In the following, a semiclassical theory is derived th
accounts for the information contained in smoothed ra
The WKB background and the properties of the modulat
are contained in a single, divergence free theory, which c
structs the propagator using the semiclassical sum o
paths, cf., e.g.,@29#.

IV. QUASIENERGIES

A. Calculation of WKB coefficient

The main effect of applying an external field to an atom
that the bound state becomes metastable and tunneling
occur. In the static case, this tunneling rateD can be approxi-
mated using the usual WKB coefficient for the correspo
ing barrier. For a linear potential barrierV(x)52hx and a
given ~negative! energyE0, the well-known expression fo
D is
-
ot

y

.

ly

s
te
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-

D~h!'expS 2
2

hE0
2E0 /h

up~x!udxD . ~11!

Using the ~imaginary! local momentum p(x)
5A2(E01hx) and the ground-state energyE052g2/2, this
evaluates to

D~h!'expS 2
2

3

g3

hhD . ~12!

Of course, this approach gives only the exponential p
But since the preexponential part is well known from t
literature for this simple case~e.g., @14,30#!, we can take it
from there. This factor is just twice the atomic frequency,
our units 2E0 /h

D~h!5
g2

h
expS 2

2

3

g3

hhD . ~13!

If we consider a time-dependent external field, the para
eterh becomes time dependent too and represents the ins
taneous strength of the electric field:h5ucos(t)u. If the tun-
neling process occurs on a much shorter time scale than
period 2p of the oscillation, it is a good idea to consider th
ionization taking place adiabatically. So we calculate the
stantaneous ionization rateD(ucos(t)u) and average it over a
whole period. This case corresponds tog!1, i.e., the
Keldysh factor must be quite small.

In calculating the cycle averageD̄ over a period of the
external field, one has to integrate and to normalize sub
quently

D̄5
1

2pE0
2pg2

h
expS 2

2

3

g3

ucos~ t !uhDdt. ~14!

Because we want to examine the asymptotic caseh→0, we
best evaluate this integral using the method of steepest
scent~also called the saddle-point integration!. The deriva-
tion of the exponential argument with respect to timet yields

d

dt S 2
2

3

g3

cos~ t ! D52
2

3
g3

sin~ t !

cos~ t !2
. ~15!

The relevant times are the zeros of this expression, i.e.
multiples ofp. These are the instants where the electric-fi
strengthucos(t)u is at a maximum. For symmetry reasons,
these instants are equivalent and it is sufficient to evalu
the above integral at one such instant using the metho
steepest descent. The result is

D̄5S 3h

pg3D 1/2g2

h
expS 2

2

3

g3

h D ~16!

5S 3h

pg3D 1/2D~h51!. ~17!

This shows that the averageD̄ is the instantaneous ionizatio
rate at maximum field strength, up to a preexponential fac

Note that the method of steepest descent becomes exa
the limit of vanishingh. This allows a very interesting inter
pretation. In this case, the ionization effectively takes pla
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580 55KLAUS ERGENZINGER
only in the vicinity of the instants with maximal field
strength (h51). This means that there exist ionizatio
bursts, separated by half a period, between which practic
no other ionization occurs. In the following, this proper
will be used to construct a scenario of propagating wa
packets. These wave packets emerge at timest5kp, propa-
gate freely afterwards, and interfere with one another
with the part of the wave function remaining bound.

B. ac-Stark effect

The second effect of applying an external field is the
called Stark effect, in the time-dependent case called the
Stark effect. We will treat this effect adiabatically too~cf.
@31#!; the well-known value~e.g.,@14,30,32#! for the instan-
taneous energy shiftEac is Eac(h)525h2h2/(8g4). Cycle
averaging results in

Ēac5
1

2
Eac~h51!52

5h2

16g4 . ~18!

This effect means an additional phase factor in the propa
tor exp(2iĤt/h), whereas the tunneling rate, calculated
taking absolute squares of the wave function, is not affec
by Eac. Note that the influence of Eq.~18! will be quite small
in the following because of its proportionality toh2.

In order to express tunneling and Stark shift together, i
useful to write the exponential decay of the bound state us
an imaginary contributionEI to the total energyEm. Setting

EI~h!52 i
g2

2
expS 2

2

3

g3

hh D52
ih

2
D~h!, ~19!

Em~h!5E01Eac~h!1EI~h!, ~20!

the adiabatic development of the ground state can be
scribed by the propagator

Ûd~ t f !5expS 2
i

hE0
t f
Em~ ucos~ t !u!dtD P̂0 , ~21!

using the total quasienergyEm and the projection operato
P̂0, projecting onto the ground state. This adiabatic desc
tion is useful if we want to describe the propagation of t
wave function for arbitrary times. If we restrict ourselves
considering only full cycles, we can use the appropriate
erages.

ĒI5S 3h

pg3D 1/2EI~h51!, ~22!

Ēm5E01Ēac1ĒI , ~23!

Ū
ˆ d~ t f !5expS 2

i

h
Ēmt f D P̂0 . ~24!

By applying this propagator to the ground state and by tak
absolute squares, we obtain just the exponential decay
rate D̄. This will be sufficient for the forthcoming conside
ations. Fort f52kp,k50,1,2,. . . , both propagators are o
course identical, due to the very construction of the avera
lly

e

d

-
c-

a-

d

s
g

e-

-

-

g
ith

e.

When comparing these expressions with the numerica
sults described later, we will see that they can account for
monotonic background of the ionization rate~see Fig. 1!. But
if we want to explain the superposed modulations, which
responsible for the nonmonotonicity of the rate, we have
go further in our semiclassical description.

V. SEMICLASSICAL PROPAGATORS

A. General construction

In order to construct the semiclassical propagator outs
the binding potential, we start with the~formal! path-integral
expression

U~x,t f ;y,t i !5E
t i

t f
Dx~ t !expH ih S@x~ t !#J , ~25!

S@x~ t !#5E
t i

t f
L„x~ t !,ẋ~ t !…dt, ~26!

L5T2V5L02Vd5T2V02Vd . ~27!

HereT is the kinetic-energy operator,L is the full Lagrang-
ian, andL0 is the Lagrangian for the electric fieldV0 alone,
without the binding potentialVd . The usual procedure in th
semiclassical limith→0 consists in finding the stationar
paths withdS50. This yields the classical paths by means
the Euler-Lagrange equation@33#. The remarkable point here
is thatVd52hgd contains a factorh. This becomes impor-
tant in the semiclassical limit, because thish cancels in the
exponentiS/h. Consequently this part of the phase does
more fluctuate arbitrarily fast for nonstationary paths in t
semiclassical limit.

Applying ~the analogy to! saddle-point integration in
function space, we notice that we only have to va
S05*L0 in order to find the stationary paths todS050. This
condition gives the classical pathxcl(t) to L0 by means of
the Euler-Lagrange equation

d

dt S ]

] ẋ
L0D 2

]

]x
L050, ~28!

subject to the boundary conditions imposed by the path in
gral.

xcl~ t i !5y, xcl~ t f !5x, ~29!

xcl~ t !5xcl~ tux,t f ;y,t i !, ~30!

52cos~ t !1cos~ t i !1y

1
x2y1cos~ t f !2cos~ t i !

t f2t i
~ t2t i !. ~31!

ThenVd in the full LagrangianL only accounts for an addi
tional phase factor exp(igf) to the propagator

f5E
t i

t f
d„xcl~ t !…dt, ~32!
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5(
t0
j
1/uẋcl~ t0

j !u, ~33!

where the t0
j denote the zeros of the classical pa

xcl(t0
j )50. This phasef jumps every time the classical pa

xcl(tux,t f ;y,t i) crosses thed potential at the origin.
The result for the semiclassical propagatorUsc is

Usc~x,t f ;y,t i !5
1

A2p ih
S 2

]2

]x]y
S0D 1/2

3expS ih S0Dexp~ igf!, ~34!

5
1

A2p ih~ t f2t i !

3expF ihEt i
t f
L0„xcl~ t !,ẋcl~ t !…dtG

3exp~ igf!. ~35!

The same result is derived in Appendix B using the tim
dependent WKB ansatz.

In general, one would have to include so-called Mas
phase factors@34#, but we can omit them here because we
not encounter any caustics in this problem. Sin
V052x cos(t) is linear in x, the appropriate semiclassic
propagator forL0 is identical@35# to the exact one, namely
the well-known Volkov propagatorUV @12#. The result can
now be understood as the Volkov propagatorUV plus addi-
tional phase jumps for every crossing of the origin,

Usc5UVexp~ igf!. ~36!

B. Special tunneling propagator

There is one important point to note. The construction
the propagator using regular classical paths is only justi
after the electron has tunneled out. So in order to include
tunneling paths, which classically do not exist, one has
modify the above description. A common method is to int
duce complex time and coordinates~for the mathematica
background see@36#, for ~recent! applications see, e.g
@37,38#!. This allows trajectoriesxT to pass through region
which are classically forbidden by energy conservation. H
this occurs is demonstrated in Appendix C by a simple
ample.

In our case, we know the bound statec0

5Ag/h exp(2guxu/h), which formally resembles a plan
wave exp(ipx/h) with complex momentump056 ig. This is
consistent with a negative energyE5p0

2/252g2/2, which is
just the ground-state energyE0 of the d potential.

For the construction of the tunneling propaga
UT(x,t f ;y,t0), we assume that at timet0 the electron is lo-
cated at positiony, with complex momentump0. We choose
the following complex boundary conditions~a similar rea-
soning appeared in@39#! for the complex tunneling path
xT : the initial momentum~imaginary part Im considered
only!
-

v
o
e

f
d
e
o
-

-

r

Im@ ẋT~ t0!#5p051 ig ~37!

~the positive sign chosen to ensure exponential decay
wave functions and not growth!, and the initial position

xT~ t0!5y. ~38!

Additionally, xT must fulfill the final condition

xT~ t f !5x, ~39!

which is the boundary condition at the end of the path. T
additional free constantt0 is necessary because we impo
three boundary conditions. But the ordinary different
equation~28!, which xT must obey, is of order 2, and there
fore has only two free constants.

The idea is that tunneling takes place in the imagin
part betweent5t0 andt5t f . On the other hand, free propa
gation Usc ~under the influence of the oscillating electr
field! takes place in the real part. This interpretation is
lowed by the usual decomposition rules for semiclassical
erators~cf. @40,41#!.

The general expression for such a pathxT fulfilling the
~now complex valued! equation of motion~28! is

xT~ t !52cos~ t !1cos~ t0!1y1v0~ t2t0!, ~40!

ẋT~ t !5sin~ t !1v0 . ~41!

The first condition Im@ ẋT(t0)#5p0 yields

ig5Im@sin~ t0!1v0#. ~42!

Now we see the meaning oft0; it must account for the com
plex boundary condition and so we set

t05 i arcsinh~g!, ~43!

in order to allowv0 to remain real~see also@39# for this
result!. The second boundary condition~38! is fulfilled trivi-
ally by the ansatz~40!, and from the third conditon we obtai

v05
x2y1cos~ t f !2cos~ t0!

t f2t0
. ~44!

Using Eqs.~40!, ~43!, and ~44!, we can easily construc
the complete propagatorUT which describes tunneling a
well as normal propagation in the electric field. The resul
just the analytic continuation of our former resultUsc in Eq.
~35!

UT~x,t f ;y,t0!5
1

A2p ih~ t f2t0!

3expF ihEt0
t f
L0„xT~ t !,ẋT~ t !…dtG

3exp~ igf@xT# !. ~45!

Note that the argument of the square root in the denomin
is now truly complex, so that we have an ambiguity
choosing a certain sheet of the complex root. We decide
defineAr exp(iw)52Ar exp(iw/2),wP@0,2p#. Note further
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582 55KLAUS ERGENZINGER
that the propagatorUT starts att05 i arcsinh(g). In order to
reach t0, we first have to propagate the ground state fr

t50 to t0, usingŪ
ˆ d(t0) which is the analytic continuation in

time of Eq.~24!. This path in the complext plane is depicted
in Fig. 2.

According to the composition rule for propagators, t
complete propagatorÛc for the ground state fromt50 to
t f is

Ûc~ t f ,0!5ÛT~ t f ,t0!Ū
ˆ d~ t0! ~46!

or in coordinate representation

Ûc~x,t f ;y,0!5E
2`

1`

ÛT~x,t f ;z,t0!Ū
ˆ d~z,t0 ;y,0!dz.

~47!

C. Generalization to other ionization bursts

The result of the preceding section can be easily gene
ized to later ionization bursts. Figure 2 shows in the comp
t plane that the electron does not become instantaneo
free. It propagates fromt50 to t5t0 under the propagato

Ū
ˆ d(t0) ~valid inside the binding potential!, and then it tun-
nels and propagates fromt0 to t f52p according to the
complex-valued propagatorÛT. The line integrals along the
depicted paths are path independent@36#, so there does no
exist a unique path. The important point is that the tim
evolution consists of different propagators with distinct sta
ing points and with distinct end points. This describes
first ionization burst, but in order to describe the wave pa
ets emerging from the bursts at timestk5kp
(k50,1,2,3,. . . ,kp,t f), one can repeat the above calcu
tions.

The propagatorÛk
c(t f ,0) for the wave packet stemmin

from t5kp is just

FIG. 2. Path in the complext plane, describing the evolution o
the first wave packet stemming fromt50. Since the line integra
for the calculation of the semiclassical propagator is path indep
dent, these paths can be chosen at random. It is important tha
propagation fromt50 to t5t0 uses another propagator~namely,

Ū
ˆ d) than the propagation fromt0 to t f52p afterwards~with propa-
gator ÛT).
l-
x
sly

e
-
e
-

-

Ûk
c~ t f ,0!5ÛT~ t f ,kp1t0!Ū

ˆ d~kp1t0!. ~48!

In this notation,Û0
c is identical to the aboveÛc. The inter-

pretation is that the electron remains bound fromt50 to
t5kp. It then propagates into the complext plane up to

t5kp1t0, according toŪ
ˆ d. After this, it tunnels and propa

gates fromt5kp1t0 to t5t f , according toÛ
T ~45! ~i.e., the

complexified Volkov propagator plus phase jumps!. Figure 3
contains the four paths corresponding to four wave pack
created att50,p,2p,3p, which interfere att f54p.

VI. INTERFERENCE BETWEEN PATHS

The electron has two possibilities, it can tunnel and pro
gate, or it can remain bound by the binding potential. T
quantum-mechanical amplitudes for both processes
known and they can be added in order to obtain a be
description of the time evolution of the system. This is ju
the ‘‘semiclassical sum over classical paths’’ method.

The full propagatorÛ is the sum of the propagatorŪ
ˆ d,

valid for the electron bound by thed potential, and the
Ûk
c’s, the propagators for tunneling att5kp and ~free!

propagation afterwards.

Û~ t f ,0!5Ū
ˆ d~ t f !1 (

k50,1,2, . . .
Ûk
c~ t f ,0!. ~49!

A. First period

For simplicity and notational reasons, we will at first co
sider only the wave packet originating from the ionizati
burst att50. The other wave packets can be considered
similar way, and the resulting integrals can be evaluated
ing the same techniques as described below. We will res
ourselves to examining the wave function after full perio
t f52 np, and we will deal mostly with one single period
The second burst occuring att5p during the first period is
of secondary importance, because this free electron follow
classical trajectoryxcl5a1b(t2p)212cos(t), and its cen-

n-
the

FIG. 3. The various paths in the complext plane are depicted
for four wave packets. The path for the wave packet emerging
kp goes from 0 tokp1t0 and afterwards tot f54p. Again we
have path independence for the two parts.
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ter is about22 to the left att f52 np. Therefore the overlap
of this wave packet with the ground statec0 can be ne-
glected.

This effect, as well as the influence of considering seve
periods and wave packets, will be demonstrated when
compare the analytic expressions derived below with
merical results in Sec. VIIA.

The propagator~49! must be applied to the ground sta
c0 ~5! in order to obtain the wave functionc(t f) at a certain
time t f

c~ t f !5Û~ t f ,0!c0 . ~50!

Applying the propagatorŪ
ˆ d(t) results in a phase facto

exp(2(iĒm/h)t), and expression~50! simplifies to ~for one
period t f52p)

c~x,t f !5expS 2
iĒm

h
t f Dc0~x!1exp~ igf!

3expS 2
iĒm

h
t0D E

2`

1`

UV~x,t f ;y,t0!c0~y!dy.

~51!

Using the property~7! that c0(y) approaches the spatiald
function in the semiclassical limith→0, the integral can be
evaluated to

c~x,t f !5expS 2
iĒm

h
t f Dc0~x!1exp~ igf!

3expS 2
iĒm

h
t0D 2S hg D 1/2UV~x,t f ;0,t0!.

~52!

In order to calculate the probability amplitudep for the
electron remaining bound, one has to project onto the gro
statec0(x)

p5E
2`

1`

c~x,t f !c0* ~x!dx. ~53!

Using the normalization ofc0 and the spatial localization
property~7! again, this simplifies to

p5expS 2
iĒm

h
t f D 1expS 2

iĒm

h
t0D 4hgUV~0,t f ;0,t0!.

~54!

Ēm and t0 are known from Eqs.~23! and ~43!, respectively.
The phasef is identical to 0 because the relevant classi
pathxcl512cos(t) never crosses the origin. The first part
this expression clearly accounts for the background, whe
the second part determines the properties of the superp
~slow! modulation.
al
e
-

d

l

as
ed

B. Fundamental channel closing thresholds

The phase of the first term in Eq.~54! is mainly given by
the expression2E0t f /h, and the phase of the second term
dominated by the actionScl/h along the classical path
xcl512cos(t).

Scl5E
0

t f
@ ẋcl

2 ~ t !1xcl~ t !cos~ t !#dt52ztf . ~55!

The last identity is straightforward~also in atomic units!.
Combining the phases and comparing them to multiples
2p results ~for t f52p) exactly in Eq.~8! with Ekin50.
This is just the threshold condition for channel closing, a
this therefore implies the same dependence onz. The differ-
ence in z between two channel closing thresholds
Dz51/(112g2), if g is kept fixed. Otherwise, if the dept
of the binding potentiala is kept fixed, the difference inz is
Dz51 ~see Fig. 7 later!.

C. More periods

Again this result can be generalized easily to more bu
and longer final timest f.2p. Be t f52 np, then one has to
sum over 2n bursts and amplitudes, and the result forp is
~this time written explicitly!

p5expS 2
i

h
Ēmt f D1 (

k50

2 n21
24h

gA2iph~ t f2t02kp!
exp~zk!,

~56!

zk5
2 i

4h~ t f2t02kp!
@~ t01kp!21~ t f2t02kp!

3cos~ t0!sin~ t0!22~ t01kp!t f14 cos~ t0!~21!k22

1t f
222 cos2~ t0!# 2

i

h
Ēm~ t01kp!. ~57!

Note the useful relations cos(t0)5A11g2 and sin(t0)5ig.
Propagating the system for longer timest f.2p means to
have more phase built up in the exponents of Eq.~56!. This
results in a finer resolution in the ionization rateG; higher
frequencies than the basic modulation can be accounted
How this can explain the fine structure is demonstrated la
on in Fig. 6.

In the above sum~56!, only the contributions withk even
are important. This is because the centers of wave pac
stemming fromk odd are located at about22 to the left at
t f52 np, and therefore the overlap is very small.

D. Ionization rate

The probabilityw for not being ionized is now calculate
by taking the absolute squarew5upu2. The corresponding
ionization rate G, fitting the exponential decay
w5exp(2Gtf /(2p)), can be defined as

G52
2p

t f
ln~ upu2!. ~58!

In the following, we compare the above semiclassical res
for G with the results from numerical simulations@1#.
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VII. COMPARISONS

A. Comparison with numerical results

The numerical results are obtained by an integral equa
method, implemented by Sonnenmoser~ @1# for details!. This
allows high-resolution scans and exhibits a lot of fine str
ture. Whileg is kept fixed,z is varied, and so the semiclas
sical limit h→0 corresponds just toz→`. This means that
the agreement will become better the largerz is.

The interesting region forg is, of course,g'1, because
this is the transition region between adiabaticity and mu
photon regime. Forg!1, the adiabaticity criterion is ful-
filled. In this case, the averaged WKB valueD̄ can be justi-
fied, and is in good agreement due to the very constructio
our theory. Forg@1, one should better choose a pure m
tiphoton description@25,26#.

Figure 4 shows the numerical result~thin and jagged! for
g50.7, together with the results of our theory. The bac
ground as well as the properties of the modulation are v
well comprised in the semiclassical theory forz not too
small.

The same is done in Fig. 5 forg51.1. Here again, one
recognizes that the characteristic elements of the ioniza
curves are in good agreement. The same is valid for all o
valuesg'1 and this result can be extended up tog'2.5,
clearly beyond the adiabaticity regime.

If we want to incorporate more fine structure superpo
onto the modulation, we can consider longer periods t
2p. The result is a behavior like that in Fig. 6. This r
sembles closely the fine structure, though there can be
one-to-one correspondence with every small wiggle. H
the wave packets stemming from ionization burstsp and
3p were also taken into account, but they have very lit
influence on the result fort f54p. The main contributions
come, of course, from the wave packets stemming fr
t50 and t52p. This can be considered as an example

FIG. 4. Numerical ionization rate~thin and jagged! and semi-
classical approximation~thick and smooth! vs number of pondero-
motive photonsz for g50.7.
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the qualitative statement above, describing the relative im
portance of ionization at times that are even or odd multipl
of p.

The result~56! for fixed g andz can easily be transcribed
to other parameter combinations. A common representati
of ionization ratesG is to keepnio52g2z5a2/(2v) fixed,
i.e., the depth of the binding potential~the last expression in
atomic units, as in Sec. II A!. One varies the intensitym2 at
fixed frequencyv, which corresponds better to experimenta
situations. If one plotsG versus the intensity or versus
z5m2/(4v2), one again obtains equidistant thresholds wit

FIG. 5. Numerical ionization rate~thin and jagged! and semi-
classical approximation~thick and smooth! vs number of pondero-
motive photonsz for g51.1.

FIG. 6. More fine structure by considering more periods of th
external field. Here two cycles~t f54p) are considered.
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55 585MULTIPHOTON IONIZATION AS TIME-DEPENDENT . . .
Dz51 by ponderomotive channel closing@27#. This is de-
picted in Fig. 7, together with numerical data. Note that
semiclassical limit no more corresponds simply toz→`, but
is more involved and cannot be included simply into t
representation. One again notices that the characteristic
ments of ionization curves can be calculated in the semic
sical theory.

B. Comparison with other theories

One major advantage and distinction of our theory fro
others~even from those claiming to be semi- or quasiclas
in some sense! is that we encounter no divergencies of io
ization rates at channel closing thresholds, a result stron
supported by numerical evidence. Such divergencies t
cally occur in theories that~somehow artificially! separate
the ionization process into different channels, each one
lated to ionization by a distinct number of photons. Eve
time a channel closes, the corresponding ionization rate
the next higher channel~and so the overall rate! becomes
infinite.

One earlier representative„Eq. ~31! by Perelomov, Popov
and Terent’ev@13#; including quasiclassical features… and
one more recent representative†Eq. ~44!‡ by Susskind, Cow-
ley, and Valeo@14#; asymptotic in the number of photon
required for ionization… of this kind of theory is shown in
Fig. 8, in comparison with our result. The spikes in th
figure are related to the closing of certain ionization chann
with, say, k photons atz5zk @Eq. ~10!#, and they can be
traced back to the divergence in the next higher channel w
k11 photons.

In between these channel closing events, the backgro
and the imposed modulation is approximately the same
all three theories. But in contrast to these more implicit th
ries, where results are quite involved, our result@Eqs. ~56!
and ~58!# allows the direct, separate, and explicit evaluat

FIG. 7. Now the depth of the binding potential is kept fixed, a
z is varied. The semiclassical theory~thick smooth curve! is com-
pared to numerical results~thin and jagged!.
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of the background rate as well as of the amplitude and ph
of the modulation.

VIII. SUMMARY

We succeeded in a semiclassical description of tim
dependent tunneling and ionization in an oscillating fie
The characteristic features of typical ionization curves c
now be explained using a picture of tunneling, propagat
and interfering wave packets@Eq. ~56!#. The main ingredi-
ents are, first, the separation of the ionization process
two distinct steps, motivated by the asymptotic evaluation
instantaneous WKB rates. And, second, the usage of c
plex time and analytical continuation of propagators, nec
sary to account for tunneling by a classical path descripti
The slow modulation with channel closing thresholds~an
idea stemming from a multiphoton viewpoint! can be de-
scribed correctly with respect to amplitude and phase. E
the rich superposed fine structure can be accounted fo
considering a multitude of interfering wave packets.
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APPENDIX A: EXTENSIBILITY AND COMPARISON
TO OTHER MODELS

In Sec. II B, there was explicit use made of the scali
propertyd(bx)5d(x)/b ~for b.0) of the one-dimensiona

FIG. 8. Comparison with other theories containing divergenc
at channel closing thresholds: semiclassical theory~thick and
smooth! vs Perelomov, Popov, and Terent’ev@13# ~thin line! and
Susskind, Cowley, and Valeo@14# ~dashed!. These two theories
nearly coincide between the channel closing thresholds.
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d function. For the Coulomb potentialVC , the scaling be-
havior is identical, so that the whole calculation can be
peated. The main difference consists in a different phase
tor fC @cf. Eq. ~32!#, which is now the line integral over th
Coulomb potential:

fC5E
t i

t f
VC„xcl~ t !…dt. ~A1!

This is due to the fact that the binding potential is su
pressed by a factorh in the transformed Schro¨dinger equa-
tion ~4!. As derived in Secs. VA and Appendix B, such
suitably suppressed binding potential does not influence
classical trajectories, but only changes the phase transpo
along these trajectories by an additional phase factorfC
~given above!.

This separation is no longer valid for other types of p
tentials with different~or without! scaling properties. Here
the classical equations of motion must be solved fully for
binding potential plus the electromagnetic field. In the tim
dependent case, there generally does not exist a first inte
of motion ~like the energy in the static case!, and so the
classical system is not integrable in closed form.

The physics of the ionization process should remain
same: complex time-dependent tunneling followed by f
propagation~two-step models!. This is reflected by the fac
that ionization curves for other model potentials show qu
tatively the same characteristics~and even quantitatively, se
the remark in Sec. III!. The semiclassical ‘‘sum over class
cal paths’’ method claims to work in this case anyway, b
unfortunately this cannot be done in analytical closed fo
because of the nonintegrability already on the classical le

APPENDIX B: SEMICLASSICAL PROPAGATOR
USING THE WKB ANSATZ

This is an alternative to the construction of the semicl
sical propagatorUsc(x,t;y,t i) using the path-intgral ap
proach~cf. Sec. VA!. We constructUsc(x,t;y,t i) in such a
way that it fulfills the time-dependent Schro¨dinger equation
~4! with respect tot andx up toO(h2).

ih
]

]t
Usc5ĤUsc5F2

1

2
h2

]2

]x2
2hgd~x!2x cos~ t !GUsc,

~B1!

lim
t→t i

Usc~x,t;y,t i !5d~x2y!. ~B2!

We make the ansatz

U5w~x,t;y,t i !expF ih S~x,t;y,t i !G ~B3!

and yield

ih] tw2w] tS5
1

2
~]xS!22 ih]xw]xS2

ih

2
w]x

2S2
h2

2
]x
2w

2hgd~x!w2x cos~ t !w. ~B4!

Comparing the distinct orders ofh:
-
c-

-

e
ted

-

e
-
ral

e
e

i-

t

l.

-

h0:05] tS1 1
2 ~]xS!22x cos~ t !, ~B5!

h1: igd~x!w5] tw1]xw]xS1 1
2w]x

2S, ~B6!

2igd~x!w25
]

]t
w21

]

]x
~w2]xS!. ~B7!

The right-hand side of Eq.~B7! is just a conservation
equation with densityw2 and floww2]xS, which is fulfilled
everywhere except the origin. Equation~B5! for h0 is easily
solvable, it is just the Hamilton-Jacobi equation2] tS
5H(x,]xS) for the motion of an electron in an oscillatin
electric field~with LagrangianL0). One can easily solve th
appropriate equation of motion and yields the classical p
xcl(t) with boundary conditionsxcl(t)5x andxcl(t i)5y,

xcl~t!52cos~t!1cos~ t i !1y

1
x2y1cos~ t !2cos~ t i !

t2t i
~t2t i !. ~B8!

The actionS is the time integral over the classical L
grangianL0

S5E
t i

t

L0„xcl~ t8!,ẋcl~ t8!…dt8. ~B9!

Then, as usual, the expressionw05A2]x]yS51/At2t i
solves Eq.~B6! for h1 outside the origin. Now we make th
ansatz

w5b~x,t;y,t i !w05
b

At2t i
. ~B10!

Inserting this in Eq.~B6!, we yield

igd~x!b5] tb1]xb]xS. ~B11!

This linear partial differential equation of first order ca
be solved using the method of characteristics. The~ordinary!
differential equation for the characteristicxT is

d

dt
xT5]xS~x,t;y,t i !. ~B12!

But S is, as we know, the action for the classical path a
therefore]xS is just the momentum of the classical pa
]xS5 ẋcl(t). So we conclude that the characteristic is just
classical pathxT5xcl . We obtain the following~ordinary!
differential equation forb :

d

dt
buxcl5] tb1]xb

d

dt
xcl5 igd~x!buxcl. ~B13!

This can be integrated straightforwardly and the result is

b~ t !uxcl5expF igE
t i

t

d„xcl~ t8!…dt8Gb0 , ~B14!
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which again can be understood as a phase jump every
the pathxcl(t) crosses thed potential at the origin. The con
stantb0 can be fixed tob051/A2p ih by requiring normal-
ization ~B2! of Usc.

To summarize, we end up with the following result, ide
tical to Eq.~35!:

Usc~x,t;y,t i !5
1

A2p ih~ t2t i !
expS ih S@xcl#~x,t;y,t i ! D

3expS igE
t i

t

d„xcl~ t8!…dt8D . ~B15!

APPENDIX C: COMPLEX TIME DESCRIPTION
OF TUNNELING PROCESSES

The usefulness of a complex time coordinate for desc
ing tunneling processes can be demonstrated by a sim
example@37#. Consider an inverse harmonic potential barr
V(x)52x2/2, and a particle coming in from2` with en-
ergyE521/2. The classical equation of motionẍcl5xcl is
fulfilled by the classical trajectoryxcl(t)52cosh(t), restrict-
ing the particle toxcl<21.

In this time-independent problem, the total energyE is a
constant of motion

E5
ẋ2

2
2
1

2
x252

1

2
. ~C1!
e

f
d

na

p.

. A
e

-
le
r

This differential equation can be solved fort(x)

t~x!56E
21

x dx8

A2E1x82
. ~C2!

The range ofx can now be extended formally tox.21,
then t acquires an imaginary part forxP@21,1#. After the
electron has tunneled through the barrier atx51, the imagi-
nary part of the timet is

E
21

1 dx8

A2E1x82
5 ip. ~C3!

After the tunneling, i.e., forx.1, only the real part oft
increases, the imaginary part is fixed atip.

One can conclude that the total tunneling trajecto
through the barrier can be described in the complext plane
by the path (2`,0#,@0,ip#,@ ip,1`1 ip). The second in-
terval represents the actual tunneling process through
barrier, noting that

xcl~ i t!52cosh~ i t!52cos~t!.

The third interval describes the propagation on the other s
of the barrier, noting that

xcl~ t1 ip!52cosh~ t1 ip!51cosh~ t !.
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