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Multiphoton ionization as time-dependent tunneling
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A semiclassical approach to ionization by an oscillating field is presented. An asymptotic analysis is per-
formed with respect to a quantity, defined(up to a factoy as the ratio of photon energy to ponderomotive
energy. Thish appears formally equivalent to Planck’s constant in a suitably transformeddiudpeo equation
and allows us to formally use semiclassical methods. Systematically, a picture of tunneling wave packets in
complex time is developed, which by interference account for the typical ponderomotive features of ionization
curves. For a one-dimensionéifunction atom, these analytical results are compared to numerical simulations
[Scharf, Sonnenmoser, and Wreszinski, Phys. Red4,/8250(1991)] and are shown to be in good agreement.
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PACS numbdrs): 32.80.Rm, 03.65.Sq

[. INTRODUCTION settings in three dimensions with more realistic binding po-
. tentialg has been treated in the literature in several ways.
A lot of effort was dedicated recently to a better under The so-called Keldysh-Faisal-Reié&FR) approach9—11]

standing of ionization by strong laser fiel@dsviews, e.g., in . ; .
[2,3)), especially since the discovery of nonperturbative pheSONSIStS in expressing the exact propagatan terms of the

nomena, like above-threshold ionizatiohT!) (for a review ~known Volkov propagatot)¥ [12] (for a free electron in the
see[4]), the sensitivity of ionization rates, and stabilization €lectromagnetic fieldand in terms o¥ 5, the atomic binding
in superintense fieldsb-7]. potential:U=UY—iUVV; U. The unknownU on the right-

But there succeeded no analytical solution for the simpleshand side is approximated UQV (equivalent to the Born
model, i.e., a one-dimensional electron bound by an attracapproximation, and matrix elements for ionization are cal-
tive & potential in the presence of an oscillating electric field.culated between the ground state and so-called Volkov states
One of the main reasons is that there exist two separate r¢i2] in the continuum. This approach has been refined and
gions. The binding potential dominates inside the atomicextended by many authors, and we will compare our results
core, whereas the electric field dominates outside the corgith two such typical extensiord3,14.

(this is also the main point that makes perturbation theory Another approach, the so-called two-step mddé17,
work so poorly. For both regions, the distinct propagators clearly distinguishes between ionization first and classical
are exactly known, but they cannot be combined to solve thgropagation in thelase field afterwards. This proved to be
ionization problem exactly. very useful especially in calculating high-harmonic genera-

This problem can be treated nonperturbatively by a semition [18]. This separation into two steps will be used in the
classical approach, which we will use to construct the semifollowing, but now justified in a fully semiclassical context.
classical propagator explicitly for such a one-dimensional |n addition, there exist several other approaches. A very
o-function atom. The choice of this model has three advancommon method is using the Floquet theptp—21], which
tages: first, there is a clear distinction between inside andxplicitly incorporates the periodicity of the time-dependent
outside the atom. So there does not exist any intermediatgamiltonian. Our issue here is not to obtain better results for
region. Second, there is only one bound state fordtgo-  a simple model, but to gain better physical insight into the
tential (as in H™), so there arise no difficulties with interme- mechanisms of ionization processes using semiclassical
diate resonances and induced resonances by ac-Stark shift,ragthods.
it happens in real atoms. Third, the exact problem can be This paper is organized as follows: After basic definitions
reduced to a Volterra type integral equation in time, for(Sec. I), we show characteristic elements of generic ioniza-
which accurate numerical solutions can be comp{itgénd  tion curves(Sec. Il)), which we want to understand semiclas-
which allows precise tests. sically. Using a “sum over classical paths” technique, the

The one-dimensionad-function model has shown to be total semiclassical propagator is constructed by identifying
useful for real physical systems, e.g.; lih a static electric the paths which are relevant for ionization. First we construct
field [8]. For high electric fields, in which we are interested, the propagator for the part remaining bouf®kc. I\), and
the driven motion of the electron along the field direction issecond we construct the propagator for the free wave packets
much more important than the other degrees of freedom, sstemming from time-dependent tunneling in complex time
that the essential dynamics reduces to one dimension. (Sec. V). Using the total semiclassical propagatBec. V),

The above described problefas well as its more general the total ionization rate is derived and compared to numerical

simulations as well as to other theories in the literafi@ec.
VII). Finally, in Appendix A, it is shown how these results
*Electronic address: erg@physik.unizh.ch can be generalized to other binding potentials.
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Il. BASICS

0.4 I ‘I T T I T T T I T T T |
A. Definition of the model i :

We want to study the ionization of a one-dimensional L |
S-function atom with binding potential ;= — «8(x), which S
possesses exactly one bound state with binding energy 0.3~
Eo=— a?/2 (for the three-dimensional analog ¢22] and
the solutions by 23,24, using complex quasienergjed his
atom is exposed to an oscillating electric fiel, e
= —puXcost) in the so-called dipole approximation. The g2l .
parameteir represents the strength of the binding potential, @
w is the amplitude of the applied electric field, andis its -
angular frequency. The Scltfimger equation in atomic units -
(h=m=1) is i

0.1+ —
9 [ 1 5 . L I 7
I ¥=| — 5 2~ @d(X)— uxcogwt) 4. (1) i ]
From these three parameters, there can be defoeel to 0 I "1 L é it T |

the scaling properties of the one-dimensio@dapotentia)
two independent, meaningful, and dimensionless quantities:

first, z=1°/(4"), which is the ratio of ponderomotive en FIG. 1. Numerical ionization rates, ra@otted and smoothed

—,2 2 i
ergy UPP”“?'“ /(40%) to photon Energyw . UPO’.‘d IS the_ (thicken vs number of ponderomotive photoms compared with
mean kinetic energy of a free electron in an oscillating field.\yxg packgroundithick, smooth decaying curyeThe Keldysh

And, second, the so-called Keldysh facl®] y=aw/w,  parameter and not the depth of the binding potential is kept fixed.
which is the ratio of theladiabati¢ tunneling time to the

period of the applied field. Thiy characterizes the ioniza- yeriveq below. For the three-dimensiongipotential 5(r)
tion process;y<1 corresponds t¢adiabati¢ tunneling, and or the regularized potentia®®(r) (d/dr) r, such a transfor-

v>1 is better described in a pure multiphoton fra@,26|. L . , ,
These are the two quantities by which the model will beg]ear::vri]c;rs no longer possible because of the different scaling

Qescribed belpw. A .thir_d, but no more independent quantity The (normalized ground-state wave function for the one-
IS Ny, the ratio of binding energi, to photon energy dimensional 5-function atom without an applied external

8
z at y=0.7

Nio= a?/(2w)=2y%Z. (2 fieldis
1/2
. Y Y
B. Transformation of the Schrodinger equation Po(X) = (H) ex;{ “hlX ) 5)
With the following coordinate and time transformation,
we cast the above Schtimger equatiorfl) in a very suitable ~ ¥
form: Hopo=— 5 o, (6)
' w’ t/ t (3) 72
X'=—1xX, = wt. _ Y
M IJIO(XII)_I//O(X)eXF(I th .

Using the scaling relatiod(ax) = 5(x)/|a| (which is identi-
cal to the scaling behavior of the Coulomb potentiaihd
omitting the primes, we obtain

For smallh, this leads to a strong localization of the wave
function ¢y around the origin. In the limiting cask—0,
¥o(X) approachesappropriately scaledhe spatial Diracs

2 function

ih d _ 1h2(9 h
ih—i=| = 5h*—5—hyd(x)—xcogt) |y.  (4)

1 ¥ 1/2

§(ﬁ> Po(X)— &(X). 7
Hereh: = w® u?=1/(42) is written very suggestively to in-
dicate that we have obtained a paramétéormally equiva- In the following, this approximation will be used only for

lent to Planck’s constantt in ordinary quantum mechanics the calculation of scalar products, so that no mathematical
[using Systee InternationalSl) units]. Of course we can ambiguities will arise.

give h any value we like. Restricting ourselves to strong
fields withU o, w, i.e.,2>1, h can get arbitrarily small.
This will allow us to use the normal semiclassical methods,
exploiting the formal analogy between the paramétein-
troduced above, and Planck’s consténtQuite remarkable The ionization rates from a numerical analyfis$ of this

is the appearance of the factbrin front of the bindingé  model show certain characteristic features. In Fig. 1, we can
potential, its implications in the semiclassical limit will be see the raw resultglotted, these results smoothéthicker),

IIl. PROMINENT SEMICLASSICAL FEATURES
IN IONIZATION RATES
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and the adiabatically averaged WKB valdkick and mono- 2 (—Eoln
tonically decreasing, see E(L6)]. The ionization ratd" is D(ﬂ)*“ﬁ{ h |p(x)|dx). (11)
shown againstz, the ratio of ponderomotive energy over 0
photor(; inergy. r;I'he WKIB ratehaccqunts firtljelfo_r the ZaCII(USing the (imaginary local momentum p(x)
ground, but on the actual rate, there is a modulation and alot 5= oy } .2 ;
of fine structure superposed. Ttetow) modulation becomes evalzu(aEthsr g)x) and the ground-state energy v'12, this
obvious after having smoothed the raw datasing a
Savitzky-Golay filter technique 2 ¥

The cycle length of this modulation can be understood by D( ﬂ)*eXF< ~3 _h) : (12)
the so-called channel closing argumefig], but there is up K
to now no argument for the amplitude of this modulation.  Of course, this approach gives only the exponential part.
The kth channel means a multiphoton ionization byho-  But since the preexponential part is well known from the
tons with energy balanogere in atomic unifs literature for this simple casge.g.,[14,30), we can take it
from there. This factor is just twice the atomic frequency, in

ko=njow+2z0+Epn, ®  our units E,/h
nj,w is the binding energyze is the ponderomotive energy 52 2 8
Upond, andEy, is the additional kinetic energy the electron D(7n)= Fexp{ ~3 %> (13

gains in this ionization process. This channel is energetically
only allowed forg,;,=0, otherwise it is forbidden.

The thresholdz, for the kth channel is defined using the
conditionE,;,=0. In terms ofy andz,, Eq.(8) at threshold

If we consider a time-dependent external field, the param-
eter» becomes time dependent too and represents the instan-
taneous strength of the electric fielg=|cos()|. If the tun-

IS neling process occurs on a much shorter time scale than the
k=2722+2 (9) _per.iod _27r of t_he oscillatior], it i; a good idea to consider th_e
ionization taking place adiabatically. So we calculate the in-
and the specific valug, at threshold becomes stantaneous ionization raf2(|cos¢)|) and average it over a
whole period. This case corresponds $6<1, i.e., the
- k (10 Keldysh factor must be quite small..
K"1+24% In calculating the cycle averade over a period of the

external field, one has to integrate and to normalize subse-

yielding cycles with length\z=1/(1+2+?). In Fig. 1, this quently
yields a cycle of approximately 0.5 for=0.7.

An important point to note is that the numerical results — 1 (2my? 2 48
give strong evidence for regular behavior of ionization rates D= 27 )0 P Y |cogt)|h dt. (14)
I' at threshold, whereas the usual prediction of appropriate
theories(e.g., those of the KFR types a divergence at Because we want to examine the asymptotic dased, we
threshold. best evaluate this integral using the method of steepest de-

The features described above are definitely not restrictedcent(also called the saddle-point integratiohe deriva-

to the 5-function atom alone. Numerical simulations for vari- tion of the exponential argument with respect to timgelds
ous model potentials in the literature exhibit similar features,

often with remarkable quantitative corresponde(see Fig. d 2 9 2 sin(t)

8 in [1], comparing thes-function atom to an atom with a dt\ ~ 3 codt) -7 37 W- (15
smoothed binding potentia¥(x) = —exp(~|X|)/\x*+x2 as

used by Greenwood and Ebef38]). The relevant times are the zeros of this expression, i.e., all

In the following, a semiclassical theory is derived thatmultiples of7. These are the instants where the electric-field
accounts for the information contained in smoothed ratesstrength|cosg)| is at a maximum. For symmetry reasons, all
The WKB background and the properties of the modulatiorthese instants are equivalent and it is sufficient to evaluate
are contained in a single, divergence free theory, which corthe above integral at one such instant using the method of
structs the propagator using the semiclassical sum ovesteepest descent. The result is
paths, cf., e.g.[29].

_ 3h 1/2 ')’2 2 ,y3
D= (—3) —exp( - —) (16)
IV. QUASIENERGIES Ty h 3 h
A. Calculation of WKB coefficient 1/2
The main effect of applying an external field to an atom is - ( 7773) D(7=1). (17

that the bound state becomes metastable and tunneling can .

occur. In the static case, this tunneling rBtean be approxi- This shows that the avera@keis the instantaneous ionization
mated using the usual WKB coefficient for the correspond+ate at maximum field strength, up to a preexponential factor.
ing barrier. For a linear potential barri®i(x)=— »x and a Note that the method of steepest descent becomes exact in
given (negative energyE,, the well-known expression for the limit of vanishingh. This allows a very interesting inter-
Dis pretation. In this case, the ionization effectively takes place
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only in the vicinity of the instants with maximal field When comparing these expressions with the numerical re-
strength (7=1). This means that there exist ionization sults described later, we will see that they can account for the
bursts, separated by half a period, between which practicallynonotonic background of the ionization résee Fig. 1. But

no other ionization occurs. In the following, this property if we want to explain the superposed modulations, which are
will be used to construct a scenario of propagating waveesponsible for the nhonmonotonicity of the rate, we have to
packets. These wave packets emerge at timdsr, propa-  go further in our semiclassical description.

gate freely afterwards, and interfere with one another and

with the part of the wave function remaining bound. V. SEMICLASSICAL PROPAGATORS

B. ac-Stark effect A. General construction

- S In order to construct the semiclassical propagator outside
The second effect of applying an external field is the so- - X . i
called Stark effect, in the time-dependent case called the a(t,be blnd!ng potential, we start with theormal) path-integral
Stark effect. We will treat this effect adiabatically tdcf. expression
[31]); the well-known valude.g.,[14,30,32) for the instan- t i
taneous energy shiff? is E3{#)= —5h?%?%/(8y%). Cycle U(X,tf ;y,ti):f Dx(t)exp{ HS[x(t)]), (25)
averaging results in ti

— 1 5h? t :
B EN(p=1)=— . 19 sp1= [ Lo Kot 26
2 16y t;
This effect means an additional phase factor in the propaga- L=T—V=Ly—Vy=T—Vo—V,. 27)

tor exp(=iHt/h), whereas the tunneling rate, calculated by

taking absolute squares of the wave function, is not affectegio e T is the kinetic-energy operatd, is the full Lagrang-
by E*. Note that the influence of EGL8) will be quite small 5 andl , is the Lagrangian for the electric fiel, alone,
in the following because of its proportionality td. _without the binding potentia¥/s. The usual procedure in the
In order to express tunneling and Stark shift together, it i emijclassical limith—0 consists in finding the stationary
useful to write the exponential decay of the bound state USiNgaths withsS=0. This yields the classical paths by means of
an imaginary contributiof' to the total energf™. Setting e Euler-Lagrange equati¢83]. The remarkable point here
ih is thatV ;= —h+y§ contains a factoh. This becomes impor-
=——=D(p), (199  tantin the semiclassical limit, because thi€ancels in the
2 exponentS/h. Consequently this part of the phase does no
more fluctuate arbitrarily fast for nonstationary paths in the
E™(7)=Eo+E*(n)+E'(n), 20 semiclassical limit.
Applying (the analogy tp saddle-point integration in
nction space, we notice that we only have to vary

2 3
(=i Lexd — 27
E'(n) |2ex4 3 hy

the adiabatic development of the ground state can be deh-J

scribed by the propagator So=[Lg in order to find the stationary paths 8,=0. This
R i [t R condition gives the classical paty (t) to Ly by means of
Uo(t)= exp( “h Em(|cos(t)|)dt) Po., (21)  the Euler-Lagrange equation
0
using the total guasienergy™ and the projection operator di(iL(’) _ iLO=0, (29)
Po, projecting onto the ground state. This adiabatic descrip- th ax X

tion is useful if we want to describe the propagation of the N ) )
wave function for arbitrary times. If we restrict ourselves to Subject to the boundary conditions imposed by the path inte-
considering only full cycles, we can use the appropriate avaral-

erages.

Xa(t) =y, Xaltp)=Xx, (29
— 3h 1/2 |
E :(77_73 E(7=1), @2 Xei(1) =Xe (L X, t5 5y, 1), (30
EM=E,+E3+E, (23) = —cogt)+cogt) +y
~ S X—y+cogt;)—cogt;)
U'S(tf)=exp( - %E%) Po. (24) + t—t, (t=t). (31)

By applying this propagator to the ground state and by takin
absolute squares, we obtain just the exponential decay wit
rate D. This will be sufficient for the forthcoming consider- t
ations. Fort;=2km,k=0,1,2,. .., both propagators are of ¢:j S(x¢i(1))dt, (32
course identical, due to the very construction of the average. t;

henV in the full LagrangiarL only accounts for an addi-
ional phase factor expy¢) to the propagator
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= 1xq(th)], (33) IM[X7(to)]=po=+i7y (37)
tj

(the positive sign chosen to ensure exponential decay of

- . wave functions and not growthand the initial position
where the t) denote the zeros of the classical path growth P

xc|(t{,)=0. This phasep jumps every time the classical path x1(tg) =Y. (39
Xai(t|X,t;y,t;) crosses the potential at the origin.
The result for the semiclassical propagatb¥ is Additionally, x; must fulfill the final condition
52 1/2 X7(tf) =X, (39
Use(x,ts Y t) = ——| — o »
Gty 1) 2#ih o"x&yso) which is the boundary condition at the end of the path. The
_ additional free constartt, is necessary because we impose
r . three boundary conditions. But the ordinary differential
><ex;< h So|expliye), (34) equation(28), which x; must obey, is of order 2, and there-
fore has only two free constants.
1 The idea is that tunneling takes place in the imaginary
= part between=t, andt=t;. On the other hand, free propa-
v2mih(t—t) gation U¢ (under the influence of the oscillating electric
it _ field) takes place in the real part. This interpretation is al-
xexy{ﬁf Lo(xd(t),xd(t))dt} lowed by the usual decomposition rules for semiclassical op-
fi erators(cf. [40,41)).

X exp(i yd). (35) The general expression for such a pathfulfilling the
(now complex valuedequation of motion28) is

The same result is derived in Appendix B using the time-
dependent WKB ansatz.

In general, one would have to include so-called Maslov . .
phase factorg34], but we can omit them here because we do xr(t)=sin(t) +vo. (41)
not encounter any caustics in this problem. Since ) » . )

Vo= —xcosf) is linear inx, the appropriate semiclassical 1he first condition Irixr(to)]=po yields

propagator foil, is identical[35] to the exact one, namely, — .

the well-known Volkov propagatodV [12]. The result can Hy=Imsin(to) +-vo]. (42
now be understood as the Volkov propagaitf plus addi-  Now we see the meaning &f; it must account for the com-
tional phase jumps for every crossing of the origin, plex boundary condition and so we set

XT(t):_Coit)+Coito)+y+vo(t_to), (40)

Use=U"exp(iyo). (36) to=i arcsintiy), (43

in order to allowuv, to remain real(see alsq39] for this
resul). The second boundary conditi¢88) is fulfilled trivi-

There is one important point to note. The construction ofyly py the ansat#40), and from the third conditon we obtain
the propagator using regular classical paths is only justified

B. Special tunneling propagator

after the electron has tunneled out. So in order to include the X—Yy+cogt;)—cogty)

tunneling paths, which classically do not exist, one has to Vo= =t : (44)
modify the above description. A common method is to intro-

duce complex time and coordinaté®r the mathematical Using Eqgs.(40), (43), and (44), we can easily construct

background sed36], for (receni applications see, e.g., the complete propagatdd” which describes tunneling as
[37,38). This allows trajectoriegy to pass through regions well as normal propagation in the electric field. The result is

which are classically forbidden by energy conservation. Howyst the analytic continuation of our former result¢ in Eq.
this occurs is demonstrated in Appendix C by a simple ex{35)

ample.
In our case, we know the bound state, 1
= Jy/hexp(=y[x|/h), which formally resembles a plane UT(x,ts:y,to)= NI
wave expipx/h) with complex momentunpy,= *ivy. This is 2mih(ti—to)
consistent with a negative energy= p3/2= — ¥212, which is i [t )
just the ground-state enerd, of the & potential. Xexl{ﬁft LO(XT(t)vXT(t))dt}
0

For the construction of the tunneling propagator
UT(x,t;y,to), we assume that at tintg the electron is lo- X exp(i yo[x1]). (45
cated at positioty, with complex momentunp,. We choose
the following complex boundary conditioria similar rea- Note that the argument of the square root in the denominator
soning appeared ifi39]) for the complex tunneling path is now truly complex, so that we have an ambiguity in
x7: the initial momentum(imaginary part Im considered choosing a certain sheet of the complex root. We decide to
only) define \ expip)=—r expi¢/2),0 [0,2r]. Note further
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Im(t) Im(¢)

to to

<o

™ 2I7T Re(t) ™ 21 3 4 Re(t)

) . . FIG. 3. The various paths in the complexplane are depicted
FIG. 2. Path in the complexplane, describing the evolution of o foyr wave packets. The path for the wave packet emerging at
the first wave packet stemming frot=0. Since the line integral | . goes from O tokw+t, and afterwards td;=4 . Again we
for the calculation of the semiclassical propagator is path indepeng5ye path independence for the two parts.

dent, these paths can be chosen at random. It is important that the
propagation fromt=0 to t=t, uses another propagat@mamely,

u?) than the propagation frofty to t;= 2 afterwardgwith propa- UR(t;,00=UT(t; km+to)U’(km+to). (48)
gatorUT).

T : _ In this notation,Ug is identical to the abov&)°. The inter-
that the propagatdd " starts atto=i arcsinh(y). In order to  pretation is that the electron remains bound from0 to
reachty, we first have to propagate the ground state fromt=ks. It then propagates into the compléxplane up to

t=0 toto, usingU?(t,) which is the analytic continuation in t=km+t,, according tdJ®. After this, it tunnels and propa-

time of Eq.(24). This path in the complekplane is depicted gates fromt=km+t, tot=t,, according tdJT (45) (i.e., the

in Fig. 2. complexified Volkov propagator plus phase jumpsgure 3
According to the composition rule for propagators, thecontains the four paths corresponding to four wave packets

complete propagatod® for the ground state from=0 to  created at=0,7,27,3m, which interfere at;=4 .

tf is

VI. INTERFERENCE BETWEEN PATHS

0(t,0)= 0Tty to) Ut 46
(tr.0) (tr:t)Uto) 49 The electron has two possibilities, it can tunnel and propa-

or in coordinate representation gate, or it can remain bound by the binding potential. The
quantum-mechanical amplitudes for both processes are
- IR = known and they can be added in order to obtain a better
US(x,ts1y,00= J_m UT(x,tt:2,t))U%(z,t0;y,0)dz description of the time evolution of the system. This is just
(47) the “semiclassical sum over classical paths” method.
The full propagatoiU is the sum of the propagatai?,
valid for the electron bound by thé potential, and the
v's, the propagators for tunneling @tk and (free)
The result of the preceding section can be easily generapropagation afterwards.
ized to later ionization bursts. Figure 2 shows in the complex
t plane that the electron does not become instantaneously ~
free. It propagates fromm=0 to t=t, under the propagator fJ(tf,o):Ué(tf)Jr Uﬁ(tf,O). (49)
= k=0,1,2, ...

+

C. Generalization to other ionization bursts

U?(t,) (valid inside the binding potentigland then it tun-
nels and propagates fromy to t;=2m according to the _ _
complex-valued propagatdt’. The line integrals along the A. First period
depicted paths are path independgt], so there does not  For simplicity and notational reasons, we will at first con-
exist a unique path. The important point is that the timesider only the wave packet originating from the ionization
evolution consists of different propagators with distinct start-purst att=0. The other wave packets can be considered in a
ing points and with distinct end points. This describes thesimilar way, and the resulting integrals can be evaluated us-
first ionization burst, but in order to describe the wave packing the same techniques as described below. We will restrict
ets emerging from the bursts at timesy=k7  ourselves to examining the wave function after full periods
(k=0,1,2,3,... kw<t;), one can repeat the above calcula-t;=2 n, and we will deal mostly with one single period.
tions. . The second burst occuring &t 7 during the first period is
The propagatoitJy(t;,0) for the wave packet stemming of secondary importance, because this free electron follows a
from t=kmr is just classical trajectory.,=a+ b(t— ) —1—cost), and its cen-
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ter is about- 2 to the left att;=2 nr. Therefore the overlap B. Fundamental channel closing thresholds

of this wave packet with the ground stafg can be ne- The phase of the first term in E€54) is mainly given by

glected. _ o the expression- Eqt;/h, and the phase of the second term is
This effect, as well as the influence of considering severa};minated by the actiors®/h along the classical path
periods and wave packets, will be demonstrated when we \=1-cosf).

compare the analytic expressions derived below with nu-°

merical results in Sec. VIIA. | .,
The propagatof49) must be applied to the ground state s ZJ [Xci() +Xei(t)cogt) Jdt=—zt;. (55
o (5) in order to obtain the wave functiop(t;) at a certain 0
time t; The last identity is straightforwardalso in atomic units
~ Combining the phases and comparing them to multiples of
P(t1) =U (11,0 ¢o. (50 2 1 results(for t;=2 7) exactly in Eq.(8) with E;,=0.

This is just the threshold condition for channel closing, and

ADDIVi h rtAJ_‘s Its i h ¢ this therefore implies the same dependence.ofhe differ-
pplying_the propagatoJ°(t) results in a phase factor ence in z between two channel closing thresholds is

exp_(—(iE”Vh)t), and expressior{50) simplifies to (for one Az=1/(1+2v?), if v is kept fixed. Otherwise, if the depth
periodt;=2) of the binding potentiak is kept fixed, the difference inis
Az=1 (see Fig. 7 later

iE™
c//(x,tf)=ex;{ - th) Po(X) +expliye) C. More periods

Em e Again this result can be generalized easily to more bursts
Xexp( - I_to) J' UVt Y, to) do(y)dy. and longer final time$;>2 . Betf=2 nsr, then one ha§ to
h — sum over 2h bursts and amplitudes, and the result fors
(51) (this time written explicitly

. 2n—-1
i — —4h
Using the property(7) that ¢o(y) approaches the spatial p=exp{ - HEmtf> + E - exp(Z9),
function in the semiclassical limh—0, the integral can be k=0 gy2imh(ti—to—km)
evaluated to (56)
— -

wo«u>=ex4~—Lﬁ—u)¢dx>+exniy¢>

iE™ h| Y2
xex;{ - Tto) 2(; UV(x,t;;01t0).

Note the useful relations cdg(=+1+7? and sinfy)=iy.

In order to calculate the probability amplitugefor the ~ Propagating the system for longer timgs-2 7 means to

electron remaining bound, one has to project onto the groun'aaVe more phase built up in the exponents of &6). This
state () results in a finer resolution in the ionization rdte higher

frequencies than the basic modulation can be accounted for.
- How this can explain the fine structure is demonstrated later
_ * on in Fig. 6.
P ﬁx Yt o (X)dx 53 In the above suni56), only the contributions wittk even
are important. This is because the centers of wave packets
stemming fromk odd are located at about2 to the left at
t;=2n, and therefore the overlap is very small.

i
§k=m[(to+ k) 2+ (ty—to— k)

X cog tg)sin(ty) — 2(to+ km)ts+4 cogty)(—1)<—2

+12—2 co(tg)] — 'HE"(to+ k). (57)
(52

Using the normalization off, and the spatial localization
property(7) again, this simplifies to

iE™
p=exp — th

E™ andt, are known from Eqs(23) and(43), respectively.
The phasep is identical to 0 because the relevant classical
pathx.,=1—cosf) never crosses the origin. The first part of
this expression clearly accounts for the background, whereas
the second part determines the properties of the superposétthe following, we compare the above semiclassical results
(slow) modulation. for I' with the results from numerical simulations].

D. lonization rate

m
+exp< - Tt()) 4—UV(0ts:0t0). The probabilityw for not being ionized is now calculated
Y (54) by taking the absolute squawve=|p|?. The corresponding
ionization rate I', fitting the exponential decay
w=exp(-Tt;/(27)), can be defined as

2
r=—Sin(pl?). (59)
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FIG. 4. Numerical ionization ratéhin and jaggefiand semi- FIG. 5. Numerical ionization ratéhin and jaggegiand semi-
classical approximatiofthick and smoothvs number of pondero- classical approximatiofthick and smoothvs number of pondero-
motive photong for y=0.7. motive photons for y=1.1.
ViI. COMPARISONS the qualitative statement above, describing the relative im-
A. Comparison with numerical results portance of ionization at times that are even or odd multiples

The numerical results are obtained by an integral equatioﬁf
method, implemented by SonnenmoéEt] for detailg. This
allows high-resolution scans and exhibits a lot of fine struc
ture. While vy is kept fixed,z is varied, and so the semiclas-
sical limit h—0 corresponds just ta—o0. This means that
the agreement will become better the largds.

.

The result(56) for fixed y andz can easily be transcribed

to other parameter combinations. A common representation
‘of ionization rated” is to keepn;,=27y%z=a?/(2w) fixed,

i.e., the depth of the binding potentighe last expression in
atomic units, as in Sec. 1A One varies the intensity? at

) . ) ) fixed frequen which corr n tter to experimental
The interesting region foy is, of course,y~1, because ed frequency, ch corresponds better to experime

this is the transition region between adiabaticity and multi_s[uat;ons.zlf one pIo_tsF VErsus th? Intensity or versus
photon regime. Fory<1, the adiabaticity criterion is ful- z=u“/(4w"), one again obtains equidistant thresholds with
filled. In this case, the averaged WKB vallecan be justi-

fied, and is in good agreement due to the very construction of 0.4 — T —
our theory. Fory>1, one should better choose a pure mul- r 1
tiphoton descriptiori25,26|. i 1

Figure 4 shows the numerical res(thin and jaggegdfor
vy=0.7, together with the results of our theory. The back-
ground as well as the properties of the modulation are very
well comprised in the semiclassical theory farnot too L 1
small. - .

The same is done in Fig. 5 foy=1.1. Here again, one
recognizes that the characteristic elements of the ionization
curves are in good agreement. The same is valid for all other
valuesy~1 and this result can be extended upys 2.5,
clearly beyond the adiabaticity regime.

If we want to incorporate more fine structure superposed 0.1
onto the modulation, we can consider longer periods than L
27r. The result is a behavior like that in Fig. 6. This re- -
sembles closely the fine structure, though there can be no -
one-to-one correspondence with every small wiggle. Here
the wave packets stemming from ionization burstsand 0 6 8
37 were also taken into account, but they have very little z at y=0.7
influence on the result for;=4 7. The main contributions
come, of course, from the wave packets stemming from FIG. 6. More fine structure by considering more periods of the
t=0 andt=27. This can be considered as an example forexternal field. Here two cycle&;=41) are considered.
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FIG. 7. Now the depth of the binding potential is kept fixed, and  FIG. 8. Comparison with other theories containing divergencies
z is varied. The semiclassical thed(thick smooth curvkis com-  at channel closing thresholds: semiclassical thethick and
pared to numerical resultghin and jaggeq smooth vs Perelomov, Popov, and Terent'i3] (thin line) and
Susskind, Cowley, and Valefdl4] (dashedl These two theories

Az=1 by ponderomotive channel closifig7]. This is de- nearly coincide between the channel closing thresholds.

p|ct9d n Flg. 7 t'ogether with numerical (:!ata. Note that theof the background rate as well as of the amplitude and phase
semiclassical limit no more corresponds simplyte o, but ;

) ; : : . of the modulation.

is more involved and cannot be included simply into the

representation. One again notices that the characteristic ele-

ments of ionization curves can be calculated in the semiclas- Vill. SUMMARY
sical theory. We succeeded in a semiclassical description of time-
dependent tunneling and ionization in an oscillating field.
B. Comparison with other theories The characteristic features of typical ionization curves can

One major advantage and distinction of our theory from"OW P& explained using a picture of tunneling, propagating
others(even from those claiming to be semi- or quasiclassi(:and mterfe_rmg wave packgttEq. (56)]._Th_e main mgredl-_
in some senseis that we encounter no divergencies of ion- ents are, first, the separation of the ionization process into

ization rates at channel closing thresholds, a result strongl} 0 distinct steps, motivated by the asymptotic evaluation of

supported by numerical evidence. Such divergencies typii'Stantaneous WKB rates. And, second, the usage of com-

cally occur in theories thatsomehow artificially separate P1€X time and analytical continuation of propagators, neces-
the ionization process into different channels, each one r ary 1o account for_ tunne_lmg by a classu:_al path description.
lated to ionization by a distinct number of photons. Every, he slow modulation with channel closing thresholds

time a channel closes, the corresponding ionization rate d{deffj1 stemming ffom a multiphoton v?ewpo)man be de-
the next higher channdlnd so the overall ratebecomes scrlbgd correctly with respect to amplitude and phase. Even
infinite. the rich superposed fine structure can be accounted for by

One earlier representativ&q. (31) by Perelomov, Popov, considering a multitude of interfering wave packets.
and Terent'ev[13]; including quasiclassical featupesind
one more recent representat&y. (44)] by Susskind, Cow- ACKNOWLEDGMENTS
ley, and Valeo[14]; asymptotic in the number of photons G gcharf is thanked for valuable discussions and sugges-
required for ionizatiop of this kind of theory is shown in {jong at all stages of this work. The numerical calculations
Fig. 8, in comparison with our result. The spikes in this;seq for comparison were done with a program packet kindly
figure are related to the closing of certain ionization channelgupp”ed by K. Sonnenmoser, who is also thanked for two

with, say, k photons atz=z, [Eq. (10)], and they can be yajyable discussions. This work was supported by Schweiz-
traced back to the divergence in the next higher channel Wit ischer Nationalfonds.

k+1 photons.

In between these channel closing events, the background
and the imposed modulation is approximately the same for
all three theories. But in contrast to these more implicit theo-
ries, where results are quite involved, our regélgs. (56) In Sec. IIB, there was explicit use made of the scaling
and(58)] allows the direct, separate, and explicit evaluationproperty §(8x) = 8(x)/ 8 (for >0) of the one-dimensional

APPENDIX A: EXTENSIBILITY AND COMPARISON
TO OTHER MODELS
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6 function. For the Coulomb potentidl, the scaling be- h°:0=r9t8+%((9xS)2—xcos{t), (B5)
havior is identical, so that the whole calculation can be re-
peated. The main difference consists in a different phase fac- hLiy8(X) o= oy + 0y 00, S+ %(Pa)z(S’ (B6)

tor ¢¢ [cf. Eq.(32)], which is now the line integral over the
Coulomb potential:
2iyé 2_ 0 g2, 0 20,S B7
4 1y8(X) @7 == 0"+ — (¢70S). (B7)
¢c=ft Ve(xe(1))dt. (A1)
' The right-hand side of Eq(B7) is just a conservation
This is due to the fact that the binding potential is sup-equation with density? and flow ¢?4,S, which is fulfilled
pressed by a factdn in the transformed Schdinger equa- €verywhere except the origin. Equatit®s) for h® is easily
tion (4). As derived in Secs. VA and Appendix B, such a solvable, it is just the Hamilton-Jacobi equationd,S
suitably suppressed binding potential does not influence the H(x,d,S) for the motion of an electron in an oscillating
classical trajectories, but only changes the phase transportétectric field(with LagrangianL o). One can easily solve the
along these trajectories by an additional phase fagter appropriate equation of motion and yields the classical path

(given above Xq(7) with boundary conditiong(t) =x andx.(t;) =Y,
This separation is no longer valid for other types of po-
tentials with different(or withou scaling properties. Here Xq(7)=—cog 7)+cogt;)+y

the classical equations of motion must be solved fully for the
N X—y+cogt)—cogt;)

binding potential plus the electromagnetic field. In the time- (r—1t). (B8)
dependent case, there generally does not exist a first integral t—t; '

of motion (like the energy in the static cgseand so the

classical system is not integrable in closed form. The actionS is the time integral over the classical La-

The physics of the ionization process should remain thegrangianL
same: complex time-dependent tunneling followed by free
propagation(two-step models This is reflected by the fact t N ,
that ionization curves for other model potentials show quali- S= J_Lo(Xm(t ). X (t7))dt’. (B9)
tatively the same characteristi@nd even quantitatively, see '
the remark in Sec. I})I The semiclassical “sum over classi- Then, as usual, the expressiap,=/—d,d,5= LIt

cal paths” method claims to work in this case anyway, bUIsolves Eq(B6) for h! outside the origin. Now we make the

unfortunately this cannot be done in analytical closed form nsatz
because of the nonintegrability already on the classical levef

APPENDIX B: SEMICLASSICAL PROPAGATOR

B
= B(X,t;y,t: = B10
USING THE WKB ANSATZ P=AGY.L)e0 Vi—t (B10

1

This is an alternative to the construction of the semiclas-Insertingl this in Eq(B6), we yield
sical propagatorUs®(x,t;y,t;) using the path-intgral ap- '
proach(cf. Sec. VA. We construcU3%(x,t;y,t;) in such a
way that it fulfills the time-dependent Scldinger equation
(4) with respect ta andx up to O(h?).

i y8(X) B= 3,8+ 3, 3,S. (B11)

This linear partial differential equation of first order can

9 . 2 be solved using the method of characteristics. {drdinary)
ih o USC=HU3%=| — > hzm —hyd8(x)—x cos(t)} use, differential equation for the characteristig is
(B1) d
—X1= 35S(X,t;V,1t;). B12
limUSS(x,t;y,t)=8(x—y). (B2) = ASOULY ) (B12)
t—1;
But S is, as we know, the action for the classical path and
We make the ansatz therefore,S is just the momentum of the classical path:
i d,S=X¢(t). So we conclude that the characteristic is just the
U:@(x,t;y,ti)exp{ﬁS(x,t;y,ti)} (B3) classical pathxr=x. . We obtain the following(ordinary
differential equation foiB :
and yield q q
. 1 , ih ) h2 ) aﬂ|xc|:&tﬁ+&xﬁaxclzi75(X)B|XC|' (813)
ihdio— @dS= E(é’XS) —ihdypd,S— ?cpr?XS— 7(?X<p

This can be integrated straightforwardly and the result is
—hyd8(x)e—xcogt)e. (B4)

t
Comparing the distinct orders of ,8(t)|xcl=ex+ yJ S(Xg(t'))dt" | Bo, (B14)
§
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which again can be understood as a phase jump every timEghis differential equation can be solved fifx)

the pathx.(t) crosses th& potential at the origin. The con-

stantB, can be fixed tg8y=1/y2wih by requiring normal- X dx’

ization (B2) of US®, t(x)= if —_—. (C2
To summarize, we end up with the following result, iden- “IV2E+X

tical to Eq.(35):
9-(39 The range ofx can now be extended formally to>—1,

thent acquires an imaginary part fore[ —1,1]. After the

1 i
Use(x,t;y,t) = .—exp(—S[xC,](x,t;y,ti)) electron has tunneled through the barriexatl, the imagi-
v2aih(t—t) h nary part of the time is

xex% i yftﬁ(xd(t’))dt’ . (B15)
4

fl dx’

—=im (C3)
~1y2E+x'?
APPENDIX C: COMPLEX TIME DESCRIPTION

OF TUNNELING PROCESSES After the tunn(—?ling,. ie., forx>},_ only the real part ot
increases, the imaginary part is fixediat
The usefulness of a complex time coordinate for describ- One can conclude that the total tunneling trajectory
ing tunneling processes can be demonstrated by a simptarough the barrier can be described in the compleiane
example[37]. Consider an inverse harmonic potential barrierpy the path ¢,0],[0,i#],[i#7,+%+iw). The second in-
V(x)=—x%2, and a particle coming in from-s with en-  terval represents the actual tunneling process through the
ergy E=—1/2. The classical equation of motioR,= X, is barrier, noting that
fulfilled by the classical trajectory,,(t) = — cosh(), restrict-

ing the particle tax,<—1. X¢i(i7)=—cosHiT)=—cog 7).
In this time-independent problem, the total eneEgys a
constant of motion The third interval describes the propagation on the other side
. of the barrier, noting that
x> 1, 1
E=5 273 €D Xc(t+im)=—cosht+im)=+cosht).
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