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Quantum-mechanical interference between optical transitions and the effect of laser phase noise
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We consider three-photon—one-photon phase control of resonance-enhanced photonioization with a phase-
diffusion field. As is well known, control is achieved because excitation via the fundamental field interferes
with excitation via the third harmonic field, and the form of the interfereee, constructive or destructiye
depends on the relative phase difference between the two fields. In the problem, the stochastic nature of the
field influences control because the propagation constant of a dispersive medium depends on the field's
fluctuating frequency. Here, we approach the influence of laser phase noise on contidlavighysically
intuitive zeroth-order approximatiortii) first-order perturbation theory, ar(di) numerical simulation. Our
results show that first-order perturbation theory is not attractive for the study of this problem, since it requires
the evaluation of very high order correlation functions associated with the fundamental field’s fluctuating
frequency. More importantly, however, numerical simulation demonstrates that highly efficient control can be
attained even in the presence of very large linewidth fidl8#4050-294{06)08712-4

PACS numbsg(s): 32.80.Rm, 32.80.Qk

I. INTRODUCTION dices[7]. Moreover, a density-matrix description of multiple
interfering pathways has been develog&l allowing the
Over the past several years, there has been a growirgvestigation of phase control with strong fields, and this has

interest among physicists and chemists with interference ef€en successfully employed to investigate interfering path-

fects arising from independent pathways of optical excita-)[’."r?gjma[sgﬁocmed with discrete states imbedded in a con-

tion. In part, this interest stems from a desire to direct the' Even without detailed analvsis. one miaht expect the co-
explicit course of atomic and molecular processes. Since ir\g-E ysIS, 9 P

; o ; erence characteristics of the field employed in thel3
dependent pathways of optical excitation can interfere, an chnique to significantly influence the degree of control
since the constructive or destructive nature of this interfertonsider the standarcHa phase-control experiment shown.
ence can be controlled via the relative phase of the fieldg, Fig. 1. There, a field is tripled in some nonlinear medium
involved, it may be possible to use laser-phase as a tool fQfafore passing through a dispersive medium of lerigth
tailoring atomic and molecular wave functions and hence fof\ye assume thabs(t) equals ;(t) for all t, and taken; as
manipulating branching ratios. One of the better knownthe refractive index of the dispersive medium at either the
methods for achieving this phase control is known as theyndamental frequency,, or third harmonic frequencys.]

“3 +1” technique[1,2], and it has motivated much theoreti- |f the fundamental is a phase-diffusion fiel@DF), where

cal and experimental effort. Nonlinear
In 3+1 phase control, an optical transition is excited via a Laser Medium

three-photon and a one-photon pathway. The field at the fun- Sl)" = 4409 ""L@

damental frequency, has a phase;, while the third har- ©=1nsec A

monic field with frequencyw; has a phasey;. The rate of

3= 147.0 nm

excitation is proportional to the square of the total transition Xenon ) ) Krypton
amplitude, and hence is proportional [tb+cos ¢;—3¢;)]. WIW P D;Vslzgi’:r'""e P =10 torr
(We have assumed equal one-photon and three-photon tran- 6s [32] L=50cm
sition amplitudes, and we have ignored any constant phase L Ao, 1

difference between the two quantum-mechanical paths, since wy| toy

even in those cases where it might be nonzero it can be o 5p® 1S

incorporated into the relative phase difference between the °

two fields) Thus, control of the relative phaste=¢;—3¢,;

yields control over the atomic or molecular wave function. i, 1. standard 31 phase-control experiment. A fundamental
To date, the 31 technique has been demonstrated Viafie|d from a laser is tripled in a nonlinear medium, and then both the
bound-bound transitions in both atonfi8] and molecular  fundamental and third harmonic pass through a dispersive medium.
systemg4]; it has been extended to two-photon—four-photonsince the refractive indices of the dispersive medium for the fun-
interfering pathway$5]; it has been observed with bound- damental and third harmonic fields are different, a relative phase
continuum transitions in polyatomic moleculés, and it has  difference between the two fields is created. Our numerical simula-
been used as a means of measuring gas-phase refractive iions consider 31 phase-control of xenon photoionization.
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the stochastic characteristics of the field derive solely from TABLE I. Parameters associated with the excitation of xenon’s
the stochastic characteristics of the field’s phage[or  [5p° 'Sp)—[6s[3/2],) transition computed via MQDT. The inten-

equivalently from the field’s instantaneous frequency,sity | is in units of W/cnd.
w(t)=y(t)], then at the exit of the dispersive medium the

ith field may be written as Parameter Valuesec )
e — Three-photon Rabi frequenc), 5x10°7 1372
Ei()=eisiMoit+6yi() + i+ ¢i(1)] |6s[3/2],) two-photon ionization ratey,, 7x10 132
. —_— - e . . . a
=g;sinf[w; + Sw;(t) Jt+ ¢+ Sebi(1)}. (1)  Transition ac stark shift coefficienk; +36(1) or 0
|6s[3/2],) decay rate;y, 5x10°

Here,w is the average field frequen t) is a mean-zero - — -
@ 9 d CFAL) aThe ac Stark shift coefficient corresponds to the shift of the ground

stochastic phase variation of the fielély(t) is a mean-zero _ .
stochastic frequency fluctuation of the field, angt) is the state, and was estimated from the ground state polarizability and not
added phase arising from passage through the dispersive m t-QDkT'h.'\fAtQDTﬁ_d.OeSt .'nd'catlf’bthough’ that the excited state ac
dium. Due to the fact that the dispersive medium’s propaga- ark shitt coetiicient 1s small by comparison.
tion constant depends on frequency, this added phase isla

stochastic quantity by virtue of the stochastic nature of the™ A;=440.9 nm and\;=147.0 nm. Due to the fact that the
q y Dy e}\é field will be much more intense than tig field, so as to

laser frequency. Consequently, the added phase is written %eep the two excitation amplitudes comparable. s8],

the sum of an average added phage,and a _mean-zero o : )
. . L . - state is ionized predominantly via two photons from e
stochastic added-phase variatiahi(t): ¢(t)= ¢+ d4(t), field, and the total amount of photoionization is the signal of

where interest. Moreover, consistent with experiméat, krypton
n; Sw; ()L is taken as the dispersive medium with a nominal pressure of
odi(t)= . (2 10 torr and a path length of 50 cm. Then, interpolating the

¢ data of Leonard10] and Chashchina and Shreidér], we

. . , have ng(\)—1=4.4x10"*% and ny(\y)—1=7.1x10"*
:arhsl':z’c:\gestgslsg\rﬁbﬁ;ﬁ;a :dg(f)ir%rgz?) ,bsvtr\:veizn the two fields 'sl‘hus,éa(t)z a&w(t_), wherga eqpals 1.&10 “sec. Other _
parameters associated with this system, calculated using
3oL MQDT [12], are collected in Table I.
[n3—n4] (38 As discussed above, the total transition rate for excitation
from the ground state to tHs[3/2],) state is found by add-
ing and then squaring the separate transition amplitudes for
the two optical excitation pathways. Assuming equal excita-
wq ()L tion amplitudes, and including any intrinsic phase delay be-
60(t)= ————[n3—n4]. (3b)  tween the two paths if,, a zeroth-order approximation for
¢ the total fluctuating excitation rat&,, can be written as

. In the following sections _of thi§ paper we will explore the To(8,t)~1+cog g+ 56(1)]= 1= co§ adw,(1)], (4)
influence of these stochastic variations on the phase control

of photoionization, and show that significant control can bewhere the plus and minus signs refer¢g=0 and, respec-
attained even in the presence of large linewidth PDF's. Irtively. The average excitation rate is then obtained by aver-
Sec. I, we will outline the specific experiment to be simu-agingI" over dw,:

lated, and discuss a physically intuitive zeroth-order approxi-
mation for the effect of laser phase fluctuations on control.
Then in Sec. lll we will present a first-order perturbation
theory treatment of the problem, and demonstrate that the
zeroth-order approximation requires an unphysical decorren this equationP(dw,) is the Gaussian probability distribu-
lation betweensw and 56. Finally, in Sec. IV we will present tion for the frequency fluctuations of thg field, and for a
results from numerical simulations of phase control withPDF
both a weak and strong PDF. In the case of a weak PDF, we
will find that even though the zeroth-order approximation is 1 ex;{ (8wq)?
not exact, it is a very reasonable approximation up to very > 0n )
large linewidth PDF’s under the experimental conditions ex- 2myp K
amined here. In the case of strong fields, we will show thatyherey and g are defined by the correlation function of the
the results are qualitatively similar to the weak field casejaser frequency fluctuations:

though the ac Stark shift of the levels plays a significant role.

902

c

and

<F(00)>0~1if:cp(ﬁwl)cos(aﬁwl)d[éwl]. (5)

P( (S(Ul) =

: (6a)

(Sw1(t)Swy(t—17))=yBe ", (6b)
Il ZEROTH-ORDER APPROXIMATION Here, 2y essentially defines the linewidth of the field
To connect our analysis to realizable systems, and for ouFWHM), and B is a parameter describing the non-
latter numerical computations, we consider the specific caskeorentzian falloff of the field’s line-shape wind4.3]. (For
of xenon’s |5p® 1S,)—|6s[3/2],) transition excited via a future reference we note that ff is proportional toy, then
one-photon and three-photon pathway as illustrated in Figthe spectral profile of the field maintains its shape as the
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field’s linewidth varieg. Evaluating the integral of Eq5) P L o3
yields the zeroth-order approximation: (F'(6o,0))1=1 Joe rATHR (7)€l (2 30T

2 ; —
(r( 0o)>o~1texp[ - gﬁ}- @) FRE(neiivSadr, 19
wherey, is the decay rate d) andR(7) is the autocorrela-

In the limit that o®yB<1, which is the limit of physical in- tion function of the perturbation:
terest,(I'(0)), is approximately constant, whild'(m)), is a
monotonically increasing function of y8 [i.e., R(7)=(U(t)U3,(t—7)). (12)
(C(m)o~a?ypi2].

We define the contrast of phase control as the ratio ofSince we are only interested here in the case @f=3w,;,
constructive to destructive interference signals, and paranEd. (10) becomes
etrize the contrast by its logarithrd, Thus, as our signal is
the degree of photoionization, which is proportional to the
excitation rate in weak fields,

i O] 8
{o=log; T 19 02558

where we have assumed thetyB < 1. Consistent with in-
tuition, the zeroth-order approximation predicts tljgis a o _
monotonically decreasing function of the field linewidth pa- + €' fo( g3 (Mgl adwn(7)y
rameter,y; and that forg proportional toy, {,~—log;( vl

<r(¢9o,t)>1=2fr2f0t ReR(7)]e 712dr. (12

®) Then, substituting fotJ,4(t) in Eq. (11), we have

Q2 [t _ o _
<F( 00 ,t)>1:7 f Re{<e|3A(r)> 4 e7|00<e|3A(‘r)efla§wl(0)>
0

4 <ei3A(T)ei af Swy(7)— 6w1(0)]}e7 ’}/2|T|/2d7_, (13)

lll. FIRST-ORDER PERTURBATION THEORY where we have se®,=0,=0, and

An inherent assumption of the zeroth-order approximation .
is that the excitation rate at tinteonly depends on the rela- D ,(7)=3Sy(7)— 5¢1(0):f Sw,(t)dt, (143
tive phase difference between the two excitation pathways at 0
that particular instant. This assumption, however, is ques-

tionable on physical grounds. Labeling the excited state as n,L

|2) and the ground state &%), the probability of a|1)—|2) 6P 4(7)=6¢1(7) = 6¢1(0) = | ——|[6w1(7) — 61 (0) ],
transition at timet will depend on the atomic state at that (14b)
instant. This in turn depends on previous probabilities for

|1)—|2) transitions, since the atom does not have a A(T)=P (1) + 6P (7). (149

Ssfunction response to an impulsive perturbation. Thus, in

general we expedl’(6y,t)) to depend ong(t’ <t). In this  Note that the stochastic characteristics /ofr) define the
section, we employ first-order perturbation theory to investithird-harmonic-field spectrum at the exit of the dispersive
gate this issue by computing a first-order approximation tanedium. In particular, the first term in brackets on the right-
the contrasty; . hand side of Eq.(13) corresponds to the third-harmonic
Since the standard density-matrix equations describing afe|d’s autocorrelation function. Thus, even in the absence of
n-photon transition between two discrete stdtb$,15 can  interfering pathways and phase control, the laser light's pas-
be used to define an effectivephoton perturbationV™,  sage through the dispersive medium has an effect on the

we write a total effective perturbation for phase control asfield-atom interaction by increasing the field’s phase noise.
the sum of a one-photon and three-photon g)erturbatlon: To proceed, we make the identifications
n

VE3=yvM 1 v The diagonal components & are re-
lated to the individual levels’ ac Stark shifts, while the off- (ei3MngFiador(Vy = (gi3A(MY(gFiadur(y 4 C (7,1),

diagonal components are determined by thphoton Rabi (159
frequency coupling the two levels. In particular, for the
present case <ei3A(7)ei a[ﬁml(r)—(‘iwl(O)]> — <ei3A(7)><ei a[&ul('r)—&ul(O)]>

o ‘ o +D(7,0), (15b)
V(2]i,3): _ E e|3(5¢1+ ¢1)[91+Qgel 0]e—|3a)1t
where
=Uy(t)e 3o, (9)

* (in+m)(i)m
where ), and (); are the Rabi frequencies associated with Ci(T't)En%‘;l n'm!
the A, and \; fields, respectively.

As discussed by Bonch-Bruevich and Khodo{dé] the —(A"(7)){SwT(1))] (16a
average excitation rate for an atom interacting with a sto-

chastic field may be written in first order pE7] and

(3"aM[(A"(7) dw(1))
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[’

(|n+m)(3nam) 30_Illllfl|! [Iil\ !l![l ] IITI[IT TTTTI |I1||'_

D(1,00= X ———— [(A"(7)[Swy(7) - ]

n,m=1 n:mi - (a) ]

25F 3

—6w1(0)]™ —(A"(7)}{[dw1(T)— Sw1(0)]T)]. . ;

(16b) 201 E

Substituting Egs(15) into Eq. (13) then yields »7 15; %

02 [t A . A 10F 1

(P(O0)i=- || Rel(@N )1+ (e a0on0) g E

o - ]

4 ei €0<eia5w1(r)>+ (ei a[5w1(7)75w1(0)]>] 5 E §

. . o by b b by b g by g by
+e"i%C_(7,0+€C, (,7) 3 4 5 6 7 8 9 10 1

LOG [2y (H2)]

+D(7,0)}e”72"2d 7, 17
. . . . . 14<1|||\|||||||||1|||1||| TT
The various correlation functions appearing in Etj7) are = ! ! | | ! "1
evaluated in the Appendix, and when these are substituted - (b)
into Eq. (17) the expression simplifies to B
QZ t 1 0.5
(T(8o,0)1= fo[zzsm S {l+ext-a®yp(1 =
|
SN
—e Al +e "8 cog 0y]| +e 1 %C_(7,0) o ——
+€%C, (1,7)+ D(T,O)] e "2dr, (18 i ]
_0_5|||114Llll\llxltltl\H||||||x|4|1|
3 4 5 6 7 8 9 10

where £5(7) is the autocorrelation function of the third har-
monic field at the exit of the dispersive mediufithe spec-
tral characteristics of this field are discussed in the Appen- _ _
dix.) FIG. 2. Results from a first-order perturbation theory calcula-

To the extent that the correlation functions of E¢gsg 1o Wheren=m=1 in Eqs.(163 and (16b. (&) & vs field line-
and(15b) are dominated by the first term on their respectivew'dth* logio(27y), where{, is the contrast predicted by first-order
perturbation theory(b) {;—¢p vs field linewidth, wheref, is the

right-hand sides, the field’s frequency fluctuatidne., theA ¢ . t h- S
termg are decorrelated from the fluctuations in the phaseC ontrast predicted by the zeroth-order approximation.
difference between the two fielflse., theadw,(t) termg. In o , o
this “decorrelation approximation, i), is very similar to (h€ summations in Eq$16) were restricted tm=m=1. In
('), except for the factor{1+eX|:[—a%yﬁ(l—e_ﬁ‘d)]}. If the calculations we assumed a pulsed field with a pulsewidth

however, the atomic system’s “memory” of the relative of 1 nsec, and two calculations were performed correspond-

phase difference is shoite., 7,5 ), then this factor can be N9 t0 B=2y and p=100y. Note that{~—log,q y] for nar-
evaluated at- = 0 and removed from the integrand. In that W linewidth fields, and that the contrast {82y is larger

case the zeroth-order approximation is essentially recoveredflan _the contrast fop=100y. Each of thv_ese pbservatiorjs is
The C. andD terms in Eqs(158 and (15b) are correc- consistent with the zeroth-order approximation embodied by

tions to the decorrelation approximation, and as seen via EqEd- (8)- At large values ofy the contrast diverges, indicating

(16) these will in general depend on very high order corre-N€ importance of high orddi\"(r)dw,(t)) terms to the de-

lation functions associated with the field's frequency fluctua{€rmination of contrast. This is shown more clearly in Fig.

tions. Note, however, that for a given value mfthe sum- 2(b), where the difference in contrast between first-order per-
mation coefficients are™n!, and these are all of the same turbation theory and the zeroth-order approximatiae.,
magnitude up ta=7. Thus, though one might reasonably 41— ¢ is plotted as a function of field IlneW|dth.7For the_ case
restrictC.. andD to m=1 sincea is small, it would still be ~ ©f =100y agreement breaks down at abo B’ Hz while
necessary to evaluate very high order correlation coefficientlO" =27 the agreement breaks down at about1®’ Hz.
like (A’(7)6w4(t)). Thus, as a practical matter first-order per-
turbation theory is not particularly attractive for studying the
effects of phase fluctuations on control. Nevertheless, the
first-order perturbation theory results can be used to gain a Given the limitations of first-order perturbation theory in
gualitativeunderstanding of field phase fluctuations and con-calculating the effects of laser phase noise on control, in this
trol. section we will use the density-matrix equations describing
In this vein, Fig. 2a) shows a perturbation theory compu- phase control to investigate the problem. Employing the per-
tation of the contrasf as a function of field linewidth, where turbationvV™? defined in the preceding section, it is possible

LOG [2y (Hz)]

IV. NUMERICAL SIMULATION
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to derive the following density matrix equations for phase 10 [T
control: B 1
:0-—0-—;-—0-0—.-0—0—0—‘*0\‘09,’\ 6=0 i
= > g
d . 1 i ~i3864(1) '15: ~e-e0e-00s-0 .o
T HIA+ S [y2t yien(D]|ow(t) =5 € W op(t) i 1
dt 2 2 - ]
20 [ ’..y:g,‘ﬂ 7
— 0D ][Q1+ Qe V] (193 T F SO
11 1 3 J 5 F o 47 Qf=m ]
@, o5 o el =
d 8 r ﬂ,»»’/,/ ]
gt 011D = 7202t) + c0s35¢y (DN IML oyA1) ] < ok G ]
C ,o//," ]
X[€Q1+ 05008 0) |+ Re 71A1) |235in( )} b o E
+5in3¢ (1)) {ReLo15(1) [ Q21+ Q3004 6)] o ]
_40 Lol b b b b b b b bern b LT
—Im[o5(t)]Q3sIiN(0)}, (19b) 0 1 2 3 4 5 6 7 8 9 10 11 12
LOG [2y (Hz)]
d
=+ Y2t Yion(t) |022(t) = —coI3 8P (1) {Im[ o15(1) ] FIG. 3. Numerical simulation results showing the photoioniza-
dt tion signal produced by a 1-ns pulse as a function of field linewidth,
X[Qq+ Q4009 6)] 2. Circles correspond t@=100y, while diamonds correspond to
! 3 B=2v; logarithms are base 10.
+Re o15(1)]Q3siN(0)}
—sin(B8¢,(1){R o15(1)] and destructive signals vs field linewidth. From the data in
Table 1, it is clear that at this intensity the three-photon Rabi
X[Q;+Q3c086)] frequency is less than the decay rate of tSg3&], state,y,.
_ . Additionally, the peak ac Stark shift of the transition is not
ImL A1) JQAaSIn(0)}- quite equal to the transform limited bandwidth of the pulsed
(199 field. Consequently, for the sake of clarity in comparing the
Here numerical results to first-order perturbation theory, we chose

to set the ac Stark shift coefficient to zero in the weak field
A=(3w1~ wy1) +30w1(t) = kl4(1), (190 calculations. Circles correspond to the caisel00y, while
the diamonds correspond to the cgse2y. For narrow line-
width fields the constructive interference signal is essentially

h o d h Ised i i of tha constant, while the destructive interference signal is propor-
photon excitation, and,(t) the pulsed intensity of th@, j5na1 10 42 Moreover, consistent with first-order perturba-

field. (All calculations to be discussed below were performed,[iOn theory this behavior changes at linewidths of roughly

with 3w;=w,;.) The oyj(t) are the usual slowly varying 3%10’ Hz and 3<10° Hz for B=100v and B=2~. respec-
parts of the density matrix, ang,,(t) is the ionization rate tively. A Oy p=2y P

. ~ 2 . ~ .
OL state[2) given by ol 1(t) with azlzthehge?)erallﬁeth\A{)q- Figure 4a) shows our density-matrix results of the con-
photon ionization cross section @. Further,(; is the Rabi 2 *s field linewidth, where=log,{ (0)/S()]. Here,

frequency correspondln_g to the field, and again we sd?, black circles correspond t8=100y while gray circles cor-
equal tof); so as to maximize the contrast between ConStr“Cfespond toB=2y, and the dashed line corresponds to the

tive and destructive interference. zeroth-order approximation. Perhaps the most noteworthy

Following our previously ogtlin_ed Monte .Car’lo method- conclusion to be drawn from the results is that even for fields
ology [18], we generate a realization of the field's frequencywith a linewidth of 3 cni* (i.e., 90 GH3, the contrast is very

fluctuations, and then numerically integrate the density mahigh (i.e.,{~5). Thus, excellent phase control should be pos-
trix equations for a 1-ns Gaussian pulse using a Runge

| : X Sible with PDF’s of | linewidth. Note also that the den-
Kutta-Fehlberg techniquel9]. Our signal,S(6y), is the total Sivle Wi s orlarge finewl ote aiso that the den

g . . = sity matrix results are in very good agreement with the
|qn|zat|on produced by the field during the pulse, which 'S zeroth-order approximation up to these large linewidth fields.
simply calculated as

This is shown more clearly in Fig(d) where{— ¢, is plotted

27 as a function of field linewidth. Based on the results shown
S(60)= fo Yion(t) o2o(t, 6p) dt, (200 in Fig. 2, the agreement betweérand £, is somewhat un-
expected, and suggests that successive summation terms as-

whereris the 1-ns field pulsewidttfield intensity FWHM. sociated with theC.. andD corrections to the decorrelation

(In the numerical simulation the Gaussian pulse only lasts fofPProximation have a mitigating influence on one another.
O<t<2r) A breakdown in the agreement betwegand{j is notice-

able in Fig. 4b) but only for field linewidths larger than the
transform limited width of the pulse. This is a consequence
of the conflicting influence of field frequency fluctuations on

Figure 3 shows the results of our density-matrix calcula-the destructive interference signal. Crudely, one can write the
tion for I,(peak=10® Wicn?; specifically, the constructive destructive interference signal as

with 3w, —w,, the field detuning from the unperturbed three-
photon resonancegl 1(t) the ac Stark shift due to the three-

Weak-field results
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FIG. 4. Numerical simulation results of contrasfor a weak
field [i.e., | ;(peak=10® W/cn?]. (a) ¢ vs field linewidth, 2. Black
circles correspond t@=100y, while gray circles correspond to
B=2y. The dashed line is the zeroth-order approximati@n,(b)
{—{y vs field linewidth. Again, black circles correspond to
B=100y, while gray circles correspond ®=2vy; Ay corresponds
to the transform limited linewidttFWHM) of the 1-ns pulse. Loga-

rithms are base 10.
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FIG. 5. Numerical simulation results of contrasfor a strong
field[i.e., | ;(peak=10" W/cn?], and where3=100y. (a) Signal vs
field linewidth, 2y. Black circles correspond to an ac Stark shift
coefficient, x, of 36 cn?/(W seg, while gray circles correspond to
«=0. The dashed line is simply meant as an aid to guide the(bye.
{—{p vs field linewidth. Again, black circles correspond te-36
cn?/(W seg, while gray circles correspond te=0; Avg corre-
sponds to the transform limited linewidfFWHM) of the 1-ns
pulse. Logarithms are base 10.

from resonance decreases the destructive interference excita-
tion rate. The net result is a smaller average destructive in-

terference signal than that predicted by the zeroth-order ap-

proximation, and hence a relatively larger contrast.

Strong-field results

For comparative purposes and completeness, Fig. 5 shows
our results of the photoionization signal afid ¢, as a func-
tion of field linewidth for a strong fieldi.e., I, (peak=10"
Wi/cn?]. The signal again was computed via E80). Two
cases are shown: black circles correspond to an ac Stark shift

whereAw is the transform limited bandwidth of the pulsed coefficient, of 36 crf(W sed, while gray circles correspond
field (FWHM), and the factor of 9 in the denominator mul- to «=0. In narrow linewidth fields withk=0 the photoion-
tiplying y comes from the three-photon nature of the transi-ization signal is saturated, and as one might expect the com-
tion [13]. For y < Awg the field’s frequency fluctuations in- puted contrast is less than that predicted by the zeroth-order
crease the average rate of destructive interference excitatioapproximation. Withk=36 cnf/(W seg, the dynamic detun-
and contrast follows the zeroth-order approximation. How-ing of the levels does not allow for saturation of the photo-
ever, wheny > Awg, then field frequency fluctuations play ionization signal, and the contrast is somewhat increased in
an additional role, since the field's instantaneous detuningarrow linewidth fields though still less than that predicted
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proximation,(ii) first-order perturbation theory, arii) nu-

L A iy L R LM A merical simulation. Our results have shown that in narrow
0.9 _ (@ 3 linewidth PDF'’s all three approaches yield the same value
08 F E for the contrast, indicating the utility of the zeroth-order ap-
> 07 - = proximation in this regime. In broad linewidth fields the
2 06 2 _§ zeroth-order approximation breaks down. However, since the
3 05 3 E zeroth-order approximation tends tmderestimatehe de-
s F 3 gree of control(i.e., contrast) in the cases studied here, it
5 041 E may still be of value in the broad linewidth PDF regime. The
& 03F 3 breakdown of the zeroth-order approximation is a conse-
02 F 3 quence of very high order correlation functions associated
g E with the fundamental field's fluctuating frequency, as shown
01F E by our first-order perturbation th lysis of the prob-
ok b b e ialgy e y our first-order perur.alon eoryane_lyS|SO . epro.
50 _40 30 -20 -10 0 10 20 30 40 50 lem. Moreov_er, these hlgh-ord(_ar correlation fun_cthns limit
Frequency/y the utllle of flrst—ord.er pe.rturbapon theory, and highlight the
necessity of numerical simulation for an accurate treatment
1T I M B B S A ) M of phase control with a stochastic field.
09 F () E ~ Perhaps the most interesting result from the present stud-
08 E E ies concerns the magnitude of contrast obtained with a PDF.
“F E Even for PDF’s with linewidths on the order of ¢ our
> 07F E results show four to five orders of magnitude difference be-
g 06 F E tween constructive and destructive interference signals. This
A o5F 3 degree of contrast has yet to be realized in any phase-control
s 0.4 = = experiment, and clearly indicates that the experimental limi-
t; T E b H 1
b - E tations to phase control do not come from the laser’'s phase
& 03 3 E fluctuations. As suggested by a number of authors, the laser
02F = beam’s spatial profile may have an important influence on
01FE = the observed degree of phase control. Additionally, as the
0 e .J IS B . experiments done to date have employed multimode lasers,
-1000 -500 0 500 1000 field amplitude fluctuations could play an important role in
Frequency/y limiting phase control. We intend to address this latter issue
in future numerical simulations of the phase-control prob-
1 :l LI | LI | LI | LB UL | LI ] LU ‘ L I: Iem.
09 F ©
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g 04 E APPENDIX
@ 03F E
0.2 E 3 Evaluation of (exp[—inA(7)])
01 E 3 Following a procedure discussed by Jac{®g]|, we de-
o B N T fine P,(7) as the probability density oA at time delayr.
-2000 -1000 0 1000 2000 Thus,
Frequency/y

<e_inA(T)>:fw PA(T)e_inAdA- (Al)

FIG. 6. Spectral density of the third harmonic field prior to
passage through the dispersive medilgray curve and after pas-
sage through the dispersive medidblack curve. For these illus- Then, takingA to be Gaussian distributed
trative results3=30y and L=50 cm. (a) y=1.0x10" Hz; (b) '
y=1.5x10" Hz; (c) y=3.0x10" Hz.

by the zeroth-order approximation. Again, as the linewidth (e A7)y = g AI2oA(ngminAg |

becomes larger than the pulse’s transform limited bandwidth, ‘T( TIN2 f
Awg, the contrast becomes larger than that predicted by the
zeroth-order approximation.

(A2)

whereo(7) is the variance of\ at delayr. Completing the
V. CONCLUSIONS square of the integrand and integrating finally yields

We have considered-3l phase control with a PDF from

three perspectivesi) a physically intuitive zeroth-order ap- (e™InA(My — g n?e*(nI2

(A3)
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To proceed, it is necessary to determine the variancy of

2
and with the aid of Eqs(6b) and (14) we obtain (exd *iadw,(t)])= s (

V2 (e —x2/2¢2
;) JO e cog ax]dx,
0?7 =(D3(7))+( 5D 7)) + 2(D1(7) 6D1(7)), (A6)

(A48)  \wherex is a dummy variable replacingw,, and ¢® is the
variance of dw; given by Eq.(6b) as yB. Evaluating the

2 . !
(D3(7))= % [B|7]—1+e A, (A4b)  integral then yields
, (exd Tiadw,(t)])=e @752, (A7)
20y —of Mk -
<5¢1(7)>_2< o | yAll=e 7], (Adg) Evaluation of (exp{i a[ 6w(7)— e, ()}
and For ease of notation we define andy as dw;(7) and
dw,(0), each with variance/3, and note that the correlation
(®4(7)8P(7))=0. (A4d)  betweerx andy, defined as, is just yBe #. Then, taking

, x andy to be jointly normal, we can define two new random
Note that(e_'3A(T)) is the correlation function of the third  variablesw andz, which will also be jointly normal: w=x
harmonic field,C5(7), after it has exited the dispersive me- +y andz=x-y.
dium. Consequently, the Fourier transform £§(7) is the From Papoulig21] we have for the joint probability den-
third harmonic field spectrum;s(w), at the exit of the dis-  sity of w andz,P,,,:
persive medium. Examples of this field spectrum are shown

in Fig. 6 for the case 03=30y, andL=50 cm, where the b 1 z

black curve corresponds to the third harmonic field spectrum wem e OB T T

at the exit of the dispersive medium and the gray curve cor- AmyBV1=T 7B )

responds to the third harmonic field spectrum at the entrance w2

to the dispersive medium. Note that fer< 10" Hz the dis- XeXL{ T T B (A8)

persive medium has little effect on the third harmonic field
line shape, while fory > 3x 10" Hz the line shape is prima- and after integrating ovew this gives the probability density
rily influenced by the field's passage through the dispersiveyf z:
medium. Thus, not only does the dispersive medium give
rise to relative phase fluctuations between the fundamental b 1 . F{ } (A9)
and third harmonic fields, it also has a significant effect on T R T |

both the fundamental and third harmonic field line shapes. 2Nypm(l=r) 47B(1=1)

With the aid of Eq.(A9) the correlation function is easily

ZZ

Evaluation of {exg +iadw,(t)]) evaluated:
By definition, o
<exp[ia[5w1(7')—5wl(0)]}>=f e'“*Pdz,
<exp[iia5w1(t)]>=j P(Swq;t)exd ziadw,]d[ Swq], (A10)
(A5)  and after substituting from EqA9) and integrating this
yields

whereP(dw; ;t) is the probability density of théw, at time
t. Since dw, represents a stationary random process, (exp{ia[ dw;(7)— dw1(0)]})=exd — a?yB(1—e AT
P(Sw;;t) is independent of and given by Eq(6a). Thus, (A11)
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