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Quantum-mechanical interference between optical transitions and the effect of laser phase nois
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We consider three-photon–one-photon phase control of resonance-enhanced photonioization with a phase-
diffusion field. As is well known, control is achieved because excitation via the fundamental field interferes
with excitation via the third harmonic field, and the form of the interference~i.e., constructive or destructive!
depends on the relative phase difference between the two fields. In the problem, the stochastic nature of the
field influences control because the propagation constant of a dispersive medium depends on the field’s
fluctuating frequency. Here, we approach the influence of laser phase noise on control via~i! a physically
intuitive zeroth-order approximation,~ii ! first-order perturbation theory, and~iii ! numerical simulation. Our
results show that first-order perturbation theory is not attractive for the study of this problem, since it requires
the evaluation of very high order correlation functions associated with the fundamental field’s fluctuating
frequency. More importantly, however, numerical simulation demonstrates that highly efficient control can be
attained even in the presence of very large linewidth fields.@S1050-2947~96!08712-4#

PACS number~s!: 32.80.Rm, 32.80.Qk
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I. INTRODUCTION

Over the past several years, there has been a grow
interest among physicists and chemists with interference
fects arising from independent pathways of optical exc
tion. In part, this interest stems from a desire to direct
explicit course of atomic and molecular processes. Since
dependent pathways of optical excitation can interfere,
since the constructive or destructive nature of this inter
ence can be controlled via the relative phase of the fie
involved, it may be possible to use laser-phase as a too
tailoring atomic and molecular wave functions and hence
manipulating branching ratios. One of the better kno
methods for achieving this phase control is known as
‘‘311’’ technique@1,2#, and it has motivated much theoret
cal and experimental effort.

In 311 phase control, an optical transition is excited via
three-photon and a one-photon pathway. The field at the
damental frequencyv1 has a phasef1, while the third har-
monic field with frequencyv3 has a phasef3. The rate of
excitation is proportional to the square of the total transit
amplitude, and hence is proportional to@11cos~f323f1!#.
~We have assumed equal one-photon and three-photon
sition amplitudes, and we have ignored any constant ph
difference between the two quantum-mechanical paths, s
even in those cases where it might be nonzero it can
incorporated into the relative phase difference between
two fields.! Thus, control of the relative phaseu[f323f1
yields control over the atomic or molecular wave functio
To date, the 311 technique has been demonstrated
bound-bound transitions in both atomic@3# and molecular
systems@4#; it has been extended to two-photon–four-phot
interfering pathways@5#; it has been observed with bound
continuum transitions in polyatomic molecules@6#, and it has
been used as a means of measuring gas-phase refractiv
551050-2947/97/55~1!/552~9!/$10.00
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dices@7#. Moreover, a density-matrix description of multip
interfering pathways has been developed@8#, allowing the
investigation of phase control with strong fields, and this h
been successfully employed to investigate interfering pa
ways associated with discrete states imbedded in a c
tinuum @9#.

Even without detailed analysis, one might expect the
herence characteristics of the field employed in the 311
technique to significantly influence the degree of contr
Consider the standard 311 phase-control experiment show
in Fig. 1. There, a field is tripled in some nonlinear mediu
before passing through a dispersive medium of lengthL.
@We assume thatv3(t) equals 3v1(t) for all t, and takeni as
the refractive index of the dispersive medium at either
fundamental frequencyn1, or third harmonic frequencyn3.#
If the fundamental is a phase-diffusion field~PDF!, where

FIG. 1. Standard 311 phase-control experiment. A fundament
field from a laser is tripled in a nonlinear medium, and then both
fundamental and third harmonic pass through a dispersive med
Since the refractive indices of the dispersive medium for the f
damental and third harmonic fields are different, a relative ph
difference between the two fields is created. Our numerical sim
tions consider 311 phase-control of xenon photoionization.
552 © 1997 The American Physical Society
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55 553QUANTUM-MECHANICAL INTERFERENCE BETWEEN . . .
the stochastic characteristics of the field derive solely fr
the stochastic characteristics of the field’s phase,c @or
equivalently from the field’s instantaneous frequen
v(t)[ċ(t)#, then at the exit of the dispersive medium t
i th field may be written as

Ei~ t !5« isin@v̄ i t1dc i~ t !1f̄ i1df i~ t !#

>« isin$@v̄ i1dv i~ t !#t1f̄ i1df i~ t !%. ~1!

Here,v̄ is the average field frequency,dc(t) is a mean-zero
stochastic phase variation of the field,dv(t) is a mean-zero
stochastic frequency fluctuation of the field, andf(t) is the
added phase arising from passage through the dispersive
dium. Due to the fact that the dispersive medium’s propa
tion constant depends on frequency, this added phase
stochastic quantity by virtue of the stochastic nature of
laser frequency. Consequently, the added phase is writte
the sum of an average added phase,f̄, and a mean-zero
stochastic added-phase variation,df(t): f(t)5f̄1df(t),
where

df i~ t !5
nidv i~ t !L

c
. ~2!

Thus, the relative phase difference between the two field
a stochastic variable:u(t)5u01du(t), where

u05
3v̄1L

c
@n32n1# ~3a!

and

du~ t !5
3dv1~ t !L

c
@n32n1#. ~3b!

In the following sections of this paper we will explore th
influence of these stochastic variations on the phase co
of photoionization, and show that significant control can
attained even in the presence of large linewidth PDF’s.
Sec. II, we will outline the specific experiment to be sim
lated, and discuss a physically intuitive zeroth-order appro
mation for the effect of laser phase fluctuations on cont
Then in Sec. III we will present a first-order perturbatio
theory treatment of the problem, and demonstrate that
zeroth-order approximation requires an unphysical deco
lation betweendv anddu. Finally, in Sec. IV we will present
results from numerical simulations of phase control w
both a weak and strong PDF. In the case of a weak PDF
will find that even though the zeroth-order approximation
not exact, it is a very reasonable approximation up to v
large linewidth PDF’s under the experimental conditions
amined here. In the case of strong fields, we will show t
the results are qualitatively similar to the weak field ca
though the ac Stark shift of the levels plays a significant ro

II. ZEROTH-ORDER APPROXIMATION

To connect our analysis to realizable systems, and for
latter numerical computations, we consider the specific c
of xenon’s u5p6 1S0&→u6s[3/2]1& transition excited via a
one-photon and three-photon pathway as illustrated in
,
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1: l15440.9 nm andl35147.0 nm. Due to the fact that th
l1 field will be much more intense than thel3 field, so as to
keep the two excitation amplitudes comparable, the 6s@3/2#1
state is ionized predominantly via two photons from thel1
field, and the total amount of photoionization is the signal
interest. Moreover, consistent with experiment@4#, krypton
is taken as the dispersive medium with a nominal pressur
10 torr and a path length of 50 cm. Then, interpolating
data of Leonard@10# and Chashchina and Shreider@11#, we
have nKr~l1!2154.431024 and nKr~l3!2157.131024.
Thus,du(t)5adv(t), wherea equals 1.8310214 sec. Other
parameters associated with this system, calculated u
MQDT @12#, are collected in Table I.

As discussed above, the total transition rate for excitat
from the ground state to theu6s@3/2#1& state is found by add-
ing and then squaring the separate transition amplitudes
the two optical excitation pathways. Assuming equal exc
tion amplitudes, and including any intrinsic phase delay
tween the two paths inu0, a zeroth-order approximation fo
the total fluctuating excitation rate,G0, can be written as

G0~u0 ,t !;11cos@u01du~ t !#516cos@adv1~ t !#, ~4!

where the plus and minus signs refer tou050 andp, respec-
tively. The average excitation rate is then obtained by av
agingG over dv1:

^G~u0!&0;16E
2`

`

P~dv1!cos~adv1!d@dv1#. ~5!

In this equationP~dv1! is the Gaussian probability distribu
tion for the frequency fluctuations of thel1 field, and for a
PDF

P~dv1!5
1

A2pgb
expF2

~dv1!
2

2gb G , ~6a!

whereg andb are defined by the correlation function of th
laser frequency fluctuations:

^dv1~ t !dv1~ t2t!&5gbe2butu. ~6b!

Here, 2g essentially defines the linewidth of the fie
~FWHM!, and b is a parameter describing the no
Lorentzian falloff of the field’s line-shape wings@13#. ~For
future reference we note that ifb is proportional tog, then
the spectral profile of the field maintains its shape as

TABLE I. Parameters associated with the excitation of xeno
u5p6 1S0&→u6s[3/2]1& transition computed via MQDT. The inten
sity I is in units of W/cm2.

Parameter Value~sec21!

Three-photon Rabi frequency,V1 531027 I 3/2

u6s[3/2]1& two-photon ionization rate,gion 7310213 I 2

Transition ac stark shift coefficient,ka 136(I ) or 0
u6s[3/2]1& decay rate,g2 53108

aThe ac Stark shift coefficient corresponds to the shift of the gro
state, and was estimated from the ground state polarizability and
MQDT. MQDT does indicate, though, that the excited state
Stark shift coefficient is small by comparison.
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554 55J. C. CAMPARO AND P. LAMBROPOULOS
field’s linewidth varies!. Evaluating the integral of Eq.~5!
yields the zeroth-order approximation:

^G~u0!&0;16expF2
a2gb

2 G . ~7!

In the limit thata2gb!1, which is the limit of physical in-
terest,^G~0!&0 is approximately constant, whilêG~p!&0 is a
monotonically increasing function of gb @i.e.,
^G~p!&0;a2gb/2#.

We define the contrast of phase control as the ratio
constructive to destructive interference signals, and par
etrize the contrast by its logarithm,z. Thus, as our signal is
the degree of photoionization, which is proportional to t
excitation rate in weak fields,

z05 log10F ^G~0!&0
^G~p!&0

G> log10F 4

a2gb G , ~8!

where we have assumed thata2gb ! 1. Consistent with in-
tuition, the zeroth-order approximation predicts thatz0 is a
monotonically decreasing function of the field linewidth p
rameter,g; and that forb proportional tog, z0;2log10@g#.

III. FIRST-ORDER PERTURBATION THEORY

An inherent assumption of the zeroth-order approximat
is that the excitation rate at timet only depends on the rela
tive phase difference between the two excitation pathway
that particular instant. This assumption, however, is qu
tionable on physical grounds. Labeling the excited state
u2& and the ground state asu1&, the probability of au1&→u2&
transition at timet will depend on the atomic state at th
instant. This in turn depends on previous probabilities
u1&→u2& transitions, since the atom does not have
d-function response to an impulsive perturbation. Thus,
general we expect̂G~u0,t!& to depend onu(t8,t). In this
section, we employ first-order perturbation theory to inve
gate this issue by computing a first-order approximation
the contrast,z1.

Since the standard density-matrix equations describing
n-photon transition between two discrete states@14,15# can
be used to define an effectiven-photon perturbation,V(n),
we write a total effective perturbation for phase control
the sum of a one-photon and three-photon perturbat
V(1,3)5V(1)1V(3). The diagonal components ofV(n) are re-
lated to the individual levels’ ac Stark shifts, while the o
diagonal components are determined by then-photon Rabi
frequency coupling the two levels. In particular, for th
present case

V21
~1,3!52

\

2
ei3~dc11f1!@V11V3e

iu#e2 i3v̄1t

5U21~ t !e
2 i3v̄1t, ~9!

whereV1 andV3 are the Rabi frequencies associated w
thel1 andl3 fields, respectively.

As discussed by Bonch-Bruevich and Khodovoi@16# the
average excitation rate for an atom interacting with a s
chastic field may be written in first order as@17#
f
-

n
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s
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s
n:

-

^G~u0 ,t !&15\22E
0

t

e2g2utu/2$R~t!ei ~v2123v̄1!t

1R* ~t!e2 i ~v2123v̄1!t%dt, ~10!

whereg2 is the decay rate ofu2& andR~t! is the autocorrela-
tion function of the perturbation:

R~t![^U21~ t !U21* ~ t2t!&. ~11!

Since we are only interested here in the case of 3v̄15v21,
Eq. ~10! becomes

^G~u0 ,t !&152\22E
0

t

Re@R~t!#e2g2utu/2dt. ~12!

Then, substituting forU21(t) in Eq. ~11!, we have

^G~u0 ,t !&15
V2

2 E
0

t

Re$^ei3L~t!&1e2 iu0^ei3L~t!e2 iadv1~0!&

1eiu0^ei3L~t!eiadv1~t!&

1^ei3L~t!eia@dv1~t!2dv1~0!#%e2g2utu/2dt, ~13!

where we have setV15V3[V, and

F1~t![dc1~t!2dc1~0!5E
0

t

dv1~ t !dt, ~14a!

dF1~t![df1~t!2df1~0!5S n1Lc D @dv1~t!2dv1~0!#,

~14b!

L~t![F1~t!1dF1~t!. ~14c!

Note that the stochastic characteristics ofL~t! define the
third-harmonic-field spectrum at the exit of the dispers
medium. In particular, the first term in brackets on the rig
hand side of Eq.~13! corresponds to the third-harmon
field’s autocorrelation function. Thus, even in the absence
interfering pathways and phase control, the laser light’s p
sage through the dispersive medium has an effect on
field-atom interaction by increasing the field’s phase nois

To proceed, we make the identifications

^ei3L~t!e6 iadv1~ t !&5^ei3L~t!&^e6 iadv1~ t !&1C6~t,t !,
~15a!

^ei3L~t!eia@dv1~t!2dv1~0!#&5^ei3L~t!&^eia@dv1~t!2dv1~0!#&

1D~t,0!, ~15b!

where

C6~t,t ![ (
n,m51

`
~ i n1m!~6 !m

n!m!
~3nam!@^Ln~t!dv1

m~ t !&

2^Ln~t!&^dv1
m~ t !&# ~16a!

and
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D~t,0![ (
n,m51

`
~ i n1m!~3nam!

n!m!
@^Ln~t!@dv1~t!

2dv1~0!#m&2^Ln~t!&^@dv1~t!2dv1~0!#m&#.

~16b!

Substituting Eqs.~15! into Eq. ~13! then yields

^G~u0 ,t !&15
V2

2 E
0

t

Re$^ei3L~t!&@11e2 iu0^e2 iadv1~0!&

1eiu0^eiadv1~t!&1^eia@dv1~t!2dv1~0!#&#

1e2 iu0C2~t,0!1eiu0C1~t,t!

1D~t,0!%e2g2utu/2dt. ~17!

The various correlation functions appearing in Eq.~17! are
evaluated in the Appendix, and when these are substit
into Eq. ~17! the expression simplifies to

^G~u0 ,t !&15
V2

2 E
0

t H 2L3~t!F12 $11exp@2a2gb~1

2e2butu!#%1e2a2gb cos@u0#G1e2 iu0C2~t,0!

1eiu0C1~t,t!1D~t,0!J e2g2utu/2dt, ~18!

whereL3~t! is the autocorrelation function of the third ha
monic field at the exit of the dispersive medium.~The spec-
tral characteristics of this field are discussed in the App
dix.!

To the extent that the correlation functions of Eqs.~15a!
and~15b! are dominated by the first term on their respect
right-hand sides, the field’s frequency fluctuations~i.e., theL
terms! are decorrelated from the fluctuations in the pha
difference between the two fields@i.e., theadv1(t) terms#. In
this ‘‘decorrelation approximation,’’̂G&1 is very similar to
^G&0 except for the factor$11exp@2a2gb~12e2butu!#%. If,
however, the atomic system’s ‘‘memory’’ of the relativ
phase difference is short~i.e.,g2@b!, then this factor can be
evaluated att 5 0 and removed from the integrand. In th
case the zeroth-order approximation is essentially recove

TheC6 andD terms in Eqs.~15a! and ~15b! are correc-
tions to the decorrelation approximation, and as seen via
~16! these will in general depend on very high order cor
lation functions associated with the field’s frequency fluctu
tions. Note, however, that for a given value ofm the sum-
mation coefficients are 3n/n!, and these are all of the sam
magnitude up ton>7. Thus, though one might reasonab
restrictC6 andD to m51 sincea is small, it would still be
necessary to evaluate very high order correlation coefficie
like ^L7~t!dv1(t)&. Thus, as a practical matter first-order pe
turbation theory is not particularly attractive for studying t
effects of phase fluctuations on control. Nevertheless,
first-order perturbation theory results can be used to ga
qualitativeunderstanding of field phase fluctuations and c
trol.

In this vein, Fig. 2~a! shows a perturbation theory comp
tation of the contrastz as a function of field linewidth, where
ed

-

e

d.

s.
-
-

ts

e
a
-

the summations in Eqs.~16! were restricted ton5m51. In
the calculations we assumed a pulsed field with a pulsew
of 1 nsec, and two calculations were performed correspo
ing to b52g andb5100g. Note thatz;2log10@g# for nar-
row linewidth fields, and that the contrast forb52g is larger
than the contrast forb5100g. Each of these observations
consistent with the zeroth-order approximation embodied
Eq. ~8!. At large values ofg the contrast diverges, indicatin
the importance of high order̂Ln~t!dv1(t)& terms to the de-
termination of contrast. This is shown more clearly in F
2~b!, where the difference in contrast between first-order p
turbation theory and the zeroth-order approximation~i.e.,
z12z0! is plotted as a function of field linewidth. For the ca
of b5100g agreement breaks down at about 33107 Hz while
for b52g the agreement breaks down at about 33108 Hz.

IV. NUMERICAL SIMULATION

Given the limitations of first-order perturbation theory
calculating the effects of laser phase noise on control, in
section we will use the density-matrix equations describ
phase control to investigate the problem. Employing the p
turbationV~1,3! defined in the preceding section, it is possib

FIG. 2. Results from a first-order perturbation theory calcu
tion, wheren5m51 in Eqs.~16a! and ~16b!. ~a! z1 vs field line-
width, log10(2g), wherez1 is the contrast predicted by first-orde
perturbation theory.~b! z12z0 vs field linewidth, wherez0 is the
contrast predicted by the zeroth-order approximation.
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556 55J. C. CAMPARO AND P. LAMBROPOULOS
to derive the following density matrix equations for pha
control:

F ddt1 iD1
1

2
@g21g ion~ t !#Gs12~ t !5

i

2
e2 i3df1~ t !@s22~ t !

2s11~ t !#@V11V3e
2 iu~ t !#, ~19a!

d

dt
s11~ t !5g2s22~ t !1cos„3df1~ t !…$Im@s12~ t !#

3@V11V3cos~u!#1Re@s12~ t !#V3sin~u!%

1sin„3df1~ t !…$Re@s12~ t !#@V11V3cos~u!#

2Im@s12~ t !#V3sin~u!%, ~19b!

F ddt1g21g ion~ t !Gs22~ t !52cos„3df1~ t !…$Im@s12~ t !#

3@V11V3cos~u!#

1Re@s12~ t !#V3sin~u!%

2sin„3df1~ t !…$Re@s12~ t !#

3@V11V3cos~u!#

2Im@s12~ t !#V3sin~u!%.

~19c!

Here,

D[~3v̄12v21!13dv1~ t !2kI 1~ t !, ~19d!

with 3v̄12v21 the field detuning from the unperturbed thre
photon resonance,kI 1(t) the ac Stark shift due to the three
photon excitation, andI 1(t) the pulsed intensity of thel1
field. ~All calculations to be discussed below were perform
with 3v̄15v21.! The s i j (t) are the usual slowly varying
parts of the density matrix, andgion(t) is the ionization rate
of stateu2& given by ŝ2I 1

2(t) with ŝ2 the generalized two-
photon ionization cross section ofu2&. Further,Vi is the Rabi
frequency corresponding to theli field, and again we setV1
equal toV3 so as to maximize the contrast between constr
tive and destructive interference.

Following our previously outlined Monte Carlo metho
ology @18#, we generate a realization of the field’s frequen
fluctuations, and then numerically integrate the density m
trix equations for a 1-ns Gaussian pulse using a Run
Kutta-Fehlberg technique@19#. Our signal,S~u0!, is the total
ionization produced by the field during the pulse, which
simply calculated as

S~u0!5E
0

2t

g ion~ t !s22~ t,u0!dt, ~20!

wheret is the 1-ns field pulsewidth~field intensity FWHM!.
~In the numerical simulation the Gaussian pulse only lasts
0<t<2t.!

Weak-field results

Figure 3 shows the results of our density-matrix calcu
tion for I 1~peak!5108 W/cm2; specifically, the constructive
d

-

-
e-

r

-

and destructive signals vs field linewidth. From the data
Table I, it is clear that at this intensity the three-photon R
frequency is less than the decay rate of the 6s@3/2#1 state,g2.
Additionally, the peak ac Stark shift of the transition is n
quite equal to the transform limited bandwidth of the puls
field. Consequently, for the sake of clarity in comparing t
numerical results to first-order perturbation theory, we ch
to set the ac Stark shift coefficient to zero in the weak fi
calculations. Circles correspond to the caseb5100g, while
the diamonds correspond to the caseb52g. For narrow line-
width fields the constructive interference signal is essenti
constant, while the destructive interference signal is prop
tional to g2. Moreover, consistent with first-order perturb
tion theory this behavior changes at linewidths of rough
33107 Hz and 33108 Hz for b5100g and b52g, respec-
tively.

Figure 4~a! shows our density-matrix results of the co
trast vs field linewidth, wherez[log10[S(0)/S(p)]. Here,
black circles correspond tob5100g while gray circles cor-
respond tob52g, and the dashed line corresponds to t
zeroth-order approximation. Perhaps the most notewo
conclusion to be drawn from the results is that even for fie
with a linewidth of 3 cm21 ~i.e., 90 GHz!, the contrast is very
high ~i.e.,z;5!. Thus, excellent phase control should be po
sible with PDF’s of large linewidth. Note also that the de
sity matrix results are in very good agreement with t
zeroth-order approximation up to these large linewidth fiel
This is shown more clearly in Fig. 4~b! wherez2z0 is plotted
as a function of field linewidth. Based on the results sho
in Fig. 2, the agreement betweenz and z0 is somewhat un-
expected, and suggests that successive summation term
sociated with theC6 andD corrections to the decorrelatio
approximation have a mitigating influence on one anothe

A breakdown in the agreement betweenz andz0 is notice-
able in Fig. 4~b! but only for field linewidths larger than the
transform limited width of the pulse. This is a consequen
of the conflicting influence of field frequency fluctuations o
the destructive interference signal. Crudely, one can write
destructive interference signal as

FIG. 3. Numerical simulation results showing the photoioniz
tion signal produced by a 1-ns pulse as a function of field linewid
2g. Circles correspond tob5100g, while diamonds correspond to
b52g; logarithms are base 10.
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55 557QUANTUM-MECHANICAL INTERFERENCE BETWEEN . . .
G~p!5
1

2

V2~11cos@p1du#!2

9g1DvF/2
5
1

4

V2@adv1#
2

9g1DvF/2
,

~21a!

^G~p!&5
1

4

V2a2gb

9g1DvF/2
, ~21b!

whereDvF is the transform limited bandwidth of the pulse
field ~FWHM!, and the factor of 9 in the denominator mu
tiplying g comes from the three-photon nature of the tran
tion @13#. For g ! DvF the field’s frequency fluctuations in
crease the average rate of destructive interference excita
and contrast follows the zeroth-order approximation. Ho
ever, wheng @ DvF , then field frequency fluctuations pla
an additional role, since the field’s instantaneous detun

FIG. 4. Numerical simulation results of contrastz for a weak
field @i.e., I 1~peak!5108 W/cm2#. ~a! z vs field linewidth, 2g. Black
circles correspond tob5100g, while gray circles correspond to
b52g. The dashed line is the zeroth-order approximation,z0. ~b!
z2z0 vs field linewidth. Again, black circles correspond
b5100g, while gray circles correspond tob52g; DnF corresponds
to the transform limited linewidth~FWHM! of the 1-ns pulse. Loga-
rithms are base 10.
i-

n,
-

g

from resonance decreases the destructive interference ex
tion rate. The net result is a smaller average destructive
terference signal than that predicted by the zeroth-order
proximation, and hence a relatively larger contrast.

Strong-field results

For comparative purposes and completeness, Fig. 5 sh
our results of the photoionization signal andz2z0 as a func-
tion of field linewidth for a strong field@i.e., I I~peak!51011

W/cm2#. The signal again was computed via Eq.~20!. Two
cases are shown: black circles correspond to an ac Stark
coefficient, of 36 cm2/~W sec!, while gray circles correspond
to k50. In narrow linewidth fields withk50 the photoion-
ization signal is saturated, and as one might expect the c
puted contrast is less than that predicted by the zeroth-o
approximation. Withk536 cm2/~W sec!, the dynamic detun-
ing of the levels does not allow for saturation of the pho
ionization signal, and the contrast is somewhat increase
narrow linewidth fields though still less than that predict

FIG. 5. Numerical simulation results of contrastz for a strong
field @i.e., I 1~peak!51011W/cm2#, and whereb5100g. ~a! Signal vs
field linewidth, 2g. Black circles correspond to an ac Stark sh
coefficient,k, of 36 cm2/~W sec!, while gray circles correspond to
k50. The dashed line is simply meant as an aid to guide the eye~b!
z2z0 vs field linewidth. Again, black circles correspond tok536
cm2/~W sec!, while gray circles correspond tok50; DnF corre-
sponds to the transform limited linewidth~FWHM! of the 1-ns
pulse. Logarithms are base 10.
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by the zeroth-order approximation. Again, as the linewid
becomes larger than the pulse’s transform limited bandwi
DvF , the contrast becomes larger than that predicted by
zeroth-order approximation.

V. CONCLUSIONS

We have considered 311 phase control with a PDF from
three perspectives:~i! a physically intuitive zeroth-order ap

FIG. 6. Spectral density of the third harmonic field prior
passage through the dispersive medium~gray curve! and after pas-
sage through the dispersive medium~black curve!. For these illus-
trative resultsb530g and L550 cm. ~a! g51.03107 Hz; ~b!
g51.53107 Hz; ~c! g53.03107 Hz.
h,
e

proximation,~ii ! first-order perturbation theory, and~iii ! nu-
merical simulation. Our results have shown that in narr
linewidth PDF’s all three approaches yield the same va
for the contrast, indicating the utility of the zeroth-order a
proximation in this regime. In broad linewidth fields th
zeroth-order approximation breaks down. However, since
zeroth-order approximation tends tounderestimatethe de-
gree of control~i.e., contrastz! in the cases studied here,
may still be of value in the broad linewidth PDF regime. T
breakdown of the zeroth-order approximation is a con
quence of very high order correlation functions associa
with the fundamental field’s fluctuating frequency, as sho
by our first-order perturbation theory analysis of the pro
lem. Moreover, these high-order correlation functions lim
the utility of first-order perturbation theory, and highlight th
necessity of numerical simulation for an accurate treatm
of phase control with a stochastic field.

Perhaps the most interesting result from the present s
ies concerns the magnitude of contrast obtained with a P
Even for PDF’s with linewidths on the order of cm21, our
results show four to five orders of magnitude difference
tween constructive and destructive interference signals. T
degree of contrast has yet to be realized in any phase-co
experiment, and clearly indicates that the experimental li
tations to phase control do not come from the laser’s ph
fluctuations. As suggested by a number of authors, the l
beam’s spatial profile may have an important influence
the observed degree of phase control. Additionally, as
experiments done to date have employed multimode las
field amplitude fluctuations could play an important role
limiting phase control. We intend to address this latter iss
in future numerical simulations of the phase-control pro
lem.
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APPENDIX

Evaluation of Šexp†2inL„t…‡‹

Following a procedure discussed by Jacobs@20#, we de-
fine PL~t! as the probability density ofL at time delayt.
Thus,

^e2 inL~t!&5E
2`

`

PL~t!e2 inLdL. ~A1!

Then, takingL to be Gaussian distributed

^e2 inL~t!&5
1

s~t!A2p
E

2`

`

e2L2/2s2~t!e2 inLdL,

~A2!

wheres2~t! is the variance ofL at delayt. Completing the
square of the integrand and integrating finally yields

^e2 inL~t!&5e2n2s2~t!/2. ~A3!
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To proceed, it is necessary to determine the variance oL,
and with the aid of Eqs.~6b! and ~14! we obtain

s2~t!5^F1
2~t!&1^dF1

2~t!&12^F1~t!dF1~t!&,
~A4a!

^F1
2~t!&5

2g

b
@butu211e2butu#, ~A4b!

^dF1
2~t!&52S n1Lc D 2gb@12e2butu#, ~A4c!

and

^F1~t!dF1~t!&50. ~A4d!

Note that̂ e2 i3L(t)& is the correlation function of the third
harmonic field,L3~t!, after it has exited the dispersive m
dium. Consequently, the Fourier transform ofL3~t! is the
third harmonic field spectrum,L3~v!, at the exit of the dis-
persive medium. Examples of this field spectrum are sho
in Fig. 6 for the case ofb530g, andL550 cm, where the
black curve corresponds to the third harmonic field spectr
at the exit of the dispersive medium and the gray curve c
responds to the third harmonic field spectrum at the entra
to the dispersive medium. Note that forg , 107 Hz the dis-
persive medium has little effect on the third harmonic fie
line shape, while forg . 33107 Hz the line shape is prima
rily influenced by the field’s passage through the dispers
medium. Thus, not only does the dispersive medium g
rise to relative phase fluctuations between the fundame
and third harmonic fields, it also has a significant effect
both the fundamental and third harmonic field line shape

Evaluation of Šexp†6 iadv1„t…‡‹

By definition,

^exp@6 iadv1~ t !#&5E
2`

`

P~dv1 ;t !exp@6 iadv1#d@dv1#,

~A5!

whereP(dv1 ;t) is the probability density of thedv1 at time
t. Since dv1 represents a stationary random proce
P(dv1 ;t) is independent oft and given by Eq.~6a!. Thus,
et
s.
J.

vi
to
.

n,
n

m
r-
ce

e
e
tal
n

,

^exp@6 iadv1~ t !#&5
1

s S 2p D 1/2E
0

`

e2x2/2s2cos@ax#dx,

~A6!

wherex is a dummy variable replacingdv1, ands2 is the
variance ofdv1 given by Eq. ~6b! as gb. Evaluating the
integral then yields

^exp@6 iadv1~ t !#&5e2a2gb/2. ~A7!

Evaluation of Šexp̂ ia†dv1„t…2dv1„0…‡‰‹

For ease of notation we definex and y as dv1~t! and
dv1~0!, each with variancegb, and note that the correlatio
betweenx andy, defined asr , is justgbe2butu. Then, taking
x andy to be jointly normal, we can define two new rando
variables,w andz, which will also be jointly normal: w[x
1y andz[x2y.

From Papoulis@21# we have for the joint probability den
sity of w andz,Pwz :

Pwz5
1

4pgbA12r 2
expF2

z2

4gb~12r !G
3expF2

w2

4gb~11r !G , ~A8!

and after integrating overw this gives the probability density
of z:

Pz5
1

2Agbp~12r !
expF2

z2

4gb~12r !G . ~A9!

With the aid of Eq.~A9! the correlation function is easily
evaluated:

^exp$ ia@dv1~t!2dv1~0!#%&5E
2`

`

eiazPzdz,

~A10!

and after substituting from Eq.~A9! and integrating this
yields

^exp$ ia@dv1~t!2dv1~0!#%&5exp@2a2gb~12e2butu!#.
~A11!
.
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