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Chaotic behavior of triatomic clusters
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~Received 26 April 1996!

The dynamics of triatomic clusters is investigated employing two-body Lennard-Jones and three-body
Axilrod-Teller potential functions. Lyapunov exponents are calculated for the total energy range of22.70e
,E,20.72e. The effects of the initial geometry of the cluster, its angular momentum, and the magnitude of
three-body interactions are analyzed. It has been found that the dominating factor for the extent of chaotic
behavior is the energy assigned to vibrational modes. The introduction of the rotational motion regularizes the
dynamics in spite of a higher degree of nonlinearity. The three-body terms in the potential function affect the
extent of the chaos in different manners depending on the initial geometry of the cluster. Finally, the time
evolution of heterogeneous clusters generated by varying the size, mass, and the interaction strength of a single
atom is observed. Their Lyapunov exponent spectra show that the additional nonlinearity reduces the chaotic
behavior of the system in most of the cases.@S1050-2947~96!03012-0#

PACS number~s!: 36.40.2c, 05.45.1b
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I. INTRODUCTION

The dynamics of small systems poses interesting qu
tions concerning the mechanisms of isomerization and
fragmentation and time scales of these processes@1–14#. The
form of the essential dynamics, the internal energy distri
tion to various modes~whether local or nonlocal!, and the
factors governing the fragmentation are crucial questi
both for molecules and clusters. The basic difference
tween a cluster and a molecule can be explained in term
the strengths of interactions between atoms. The pote
energy hypersurface of a molecule usually displays w
defined minima and the molecules are trapped in these w
due to high-energy barriers separating them. Normal-mo
type approximations for the truncation of potential ener
functions are valid, and the dynamics can simply be trea
as weakly coupled small-amplitude vibrations around
minima. When the interactions between atoms are wea
the number of accessible optimum points along the hyper
faces for the given energy increases drastically and the c
ter moves between these points much more freely. This fl
ibility introduces a great degree of richness to the dynam
From the mathematical point of view, the normal modes lo
their meaning and the system can no longer be represe
by a set of uncoupled oscillators. The classical equation
motion governing the dynamics are now highly nonline
and one expects that their solutions should exhibit some
gree of chaos.

The large majority of investigations of chaotic behavior
Hamiltonian systems are restricted to problems with onl
few degrees of freedom, mostly because of the numer
complications in the computations of measures of chaos.
standard definition of chaos can be formulated in terms
the initial state dependence, that is, small perturbations to

*Author to whom correspondence should be addressed.
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initial conditions can result in vastly different developmen
even in the near future. It is no longer possible to ma
predictions for the outcome of events. This sensitivity to i
tial conditions can also be expressed in terms of the rate
loss of information about the initial state of the system. T
most commonly used criteria for observing this loss of info
mation are Lyapunov exponents or Kolmogorov entrop
which is the sum of all positive Lyapunov exponents. T
magnitude of positive Lyapunov exponents, especially
maximum one, is generally accepted as a unique and c
tinuous measure driving the system from regular~insensitive
to small perturbations! to chaotic dynamics. Usually an in
crease in the energy~Hamiltonian! is accompanied by an
increase in the maximum Lyapunov exponent with cert
critical values separating regular, transitional, and fully ch
otic regimes. However, the boundaries between these
gimes are not very sharp due to the complex structure of
phase space. Especially for systems with many degree
freedom, it is possible that the classical phase space for
given energy is not of uniform nature, that is, not all traje
tories with the same energy behave similarly. In that case
may be necessary to find out the relative measures of e
regime. This can be achieved by analyzing a bundle of
jectories that span the classical phase space as much as
sible, and then classifying them according to their qualitat
behavior. Such partitioning of the phase space is genera
property of its geometry and optimum points, hence a th
ough knowledge of the potential energy hypersurface is
quired.

In the case of chaotic dynamics of clusters, there are r
tively fewer reports and most of them by Berry and c
workers@15–23#. In these studies atomic clusters of vario
sizes that interact mostly via Lennard-Jones-type poten
are reported. The first large-scale calculations of such ma
dimensional problems were on the correlations of melt
and phase transitions to fractal dimensions and Kolmogo
entropy@17#. Here it was noted that the topology of the p
538 © 1997 The American Physical Society
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55 539CHAOTIC BEHAVIOR OF TRIATOMIC CLUSTERS
tential energy hypersurface played an extremely impor
role in identifying chaos, and later the various forms of t
dynamics were associated with saddle points of the surf
Another important contribution was the study of Lyapun
exponent distributions in order to understand the ergodi
of small clusters@20,21#. It was shown that the distribution
of exponents contained a great deal of information since
dividual exponents cannot be used as direct measures o
ergodicity. Finally it was noted that the early evolution
Lyapunov exponents displayed significant information ab
the dynamics@19#. The standard practice in the computati
of Lyapunov exponents is to discard the results obtained
ing the equilibration period and to study the limiting value
Even though this procedure is mathematically correct
identifying classical chaos, part of the physically releva
information is lost. All of these results point to the importa
role that the topology of the phase space plays in the rec
nition of chaos in cluster dynamics.

Our original interest was in the stability of carbon cluste
and their fragmentation processes. The mechanisms for t
processes involve a great deal of isomerizations, henc
thorough knowledge of the optimum points as well as
transitions between different structures is required. We h
previously looked at very simple force fields that are com
nations of Lennard-Jones and Axilrod-Teller-type poten
functions and have shown that relative stability of vario
isomers of C3–C6 can be fairly predicted once the strength
the three-body interactions is optimized@24#. Therefore we
decided to first follow the dynamics for C3 employing two-
body interactions and to investigate the effects of the ene
initial geometry, and angular momentum. Later by add
three-body terms the changes in the characteristics of
dynamics were studied. Finally we varied the mass, size,
interaction parameters of a single atom in triatomic Lenna
Jones clusters so that the chaotic behavior of heterogen
clusters could be measured.

II. COMPUTATIONAL METHOD

A. Lyapunov exponents

The nonlinear dynamics of the cluster is followed by so
ing Hamilton’s equations of motion with a constant-tim
step-Runge-Kutta integration of the fourth order. The cho
of the Runge-Kutta over the faster predictor-corrector me
ods is due to the difficulty in keeping the energy constan
the very early stages of the integration. Since for such m
ods, the higher derivatives of the velocity are taken as zer
t50, the energy may fluctuate slightly. However, this er
is not expected to affect the results, at least qualitatively.
tangent space method is used for computing Lyapunov
ponents. An infinitesimal 6N-dimensional hyperellipsoid is
placed at the initial conditions in phase space and the t
evolution of its axes is followed. Tangent space is defined
order to avoid the exponential divergence of these axes;
is, the equations of motion are written for the differenc
between the phase-space vector defining the cluster and
vector corresponding to the axes of the hyperellipsoid. Si
these differences are small, they can be expressed as T
series and keeping only the first terms, we end up with
earized equations for the time evolution of each of th
nt
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axes. We denote the vector function for the nonlinear
namics asF„x(t)… with the definition

F„x~ t !…5~]q1 /]t,]q2 /]t,...,]q3N /]t,

3]p1 /]t,]p2 /]t,...,]p3N /]t !, ~1!

which is explicitly given as

F„x~ t !…5~p1 ,p2 ,...,p3N ,2]H/]q1 ,2]H/]q2 ,...,

2]H/]q3N! ~2!

with q and p representing the coordinates and momenta
each atom. The linearized equations for the principal axes
then written as

ddxk~ t !/dt5]F„x~ t !…/]xux5x~ t !dx
k~ t ! ~3!

in which dxk denotes the vector containing 6N elements of
the kth principal axis. Since these equations are linear,
initial vectors can be taken as finite vectors, and in fact th
are normalized to 1. By following these vectors, the pha
space in the vicinity of the vectorx(t) is probed. Likex(t),
dxk(t) also diverges exponentially in case of chaotic dyna
ics. Therefore they have to be orthogonalized at regular
tervals. Each time we orthonormalize the vectors, we rec
the length of each axis which, in turn, gives the correspo
ing Lyapunov exponent as

lk5 limt21lndk~ t !/dk~0!. ~4!

Heredk is the length of thekth axis before orthonormaliza
tion. The frequency of the Gram-Schmidt orthonormalizati
does not really affect the results.

Equation~3! must be solved simultaneously with Hami
ton’s equations forF„x(t)…. Runge-Kutta integration require
the computation of the Hamiltonian’s derivatives four tim
at every time step. At each of these steps, the Jacobian h
be modified according to the intermediate values of the v
tor F.

B. Computations

Hamilton’s equations of motion are solved for 106 steps
for each trajectory. At small intervals they are stored so t
results can be compared to those from thermally equilibra
clusters. The integrations are carried out in atomic units
the constant time step is chosen as 50 a.u., which is in
order of 1023 ps. This time step is found as the largest inte
val, which keeps the energy constant to about six to se
digits. However, for the various step sizes consider
Lyapunov exponents display, qualitatively, similar behavi
Of course, due to the highly chaotic nature of the dynam
the actual values differ to an extent. At every 10 steps,
length of each vector is computed and then orthonormaliz
The Lyapunov exponents converge sufficiently well in t
integration time of 1200 ps. The integration and computat
of the full set of Lyapunov exponents of a single trajecto
takes about 40 min on a SGI workstation Indigo R4000 or
min on R8000.

The initial geometry of the structure is chosen either as
equilateral triangle ~minimum energy conformation fo
Lennard-Jones system! or as a linear one~global minimum
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540 55ERSIN YURTSEVER AND NURAN ELMACI
once the three-body term gains sufficient strength!. The mo-
mentum components of each particle are assigned rando
with the condition that the center of mass does not move.
identify the effects of the angular momentum, we compa
clusters of the same energy with both zero and nonzero
gular momentum. The nonrotating clusters are prepared
brute force Monte Carlo fashion. Random momenta are
signed to each atom with zero total linear momentum. Th
random components are changed slightly, the momentum
the center of mass is subtracted and then resulting ang
momentum is calculated to see whether it is decreased or
After several cycles of these processes, clusters with t
angular momentum of 1026 a.u. can be obtained. Afterward
momenta are scaled to the desired energy.

In this work the energy of the cluster is always expres
in units of Ne, wheree is the interaction parameter of th
Lennard-Jones potential andN is the number of atoms. Th
potential-energy expression up to three-body interactions

E5 1
2( VLJ~ i , j !1VAT~ i , j ,k!, ~5!

where the summation runs over all atoms. For two-body
teractions only, the potential-energy function takes the fo
of the Lennard-Jones potential:

VLJ~ i , j !54e@~s/r i j !
122~s/r i j !

6#. ~6!

In terms of these units the minimum potential energy is21.0
for the equilateral triangle and20.67 for the linear one
AboveE520.33 the cluster may dissociate. Upon dissoc
tion, the system turns into a one-dimensional problem o
diatomic cluster plus a free atom; therefore the dynam
quickly becomes a regular one. All these clusters that dis
ciate are excluded from any averaging process. The en
range from20.60 ~20.90 for triangular case! to 20.24 is
studied with varying numbers of initial conditions.

To represent three-body interactions, we employ
Axilrod-Teller functional form which is written as

VAT5Z~113 cosU icosU icosUk!r i j
23r ik

23r jk
23, ~7!

with r andU corresponding to the sides and angles of
triangle formed by atomsi , j , andk. The interaction strength
is controlled by a single parameterZ whose unit is 4es9.

For homonuclear clusters, the dynamics can be stud
independently of two parameters,e and s of the Lennard-
Jones function~or similarly the interaction strengthZ of the
Axilrod-Teller!. However, since we ultimately would like t
study carbon clusters, we choose two sets of parameters
are used in the simulations of carbon containing compou
with mass being 12.0 proton mass unit. In the first set~de-
noted by I! they are given ase50.706 56310221 J and
s53.35 Å. These parameters are used to simulate liquid2
@25#. The second set~II ! consists ofe59.9496310219 J and
s51.104 714 4 Å, which is obtained both fromab initio cal-
culations and from spectroscopic observations@26#. Set I is
used in all calculations with two-body forces and set II
used whenever three-body terms are included. The th
body interaction strengthZ is varied from 0.0 to 1.0 in units
of 4es9.
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III. RESULTS AND DISCUSSION

A. Angular momentum

Since a thorough search of an 18-dimensional phase s
is very difficult, we try a rough partitioning based on tw
initial geometrical structures, 16 energy values, and two s
of 50 random initial momenta corresponding to rotating a
nonrotating clusters. Half of the trajectories start from
equilateral triangle, which is the global minimum for th
Lennard-Jones cluster with corresponding interatomic d
tances of 21/6s. The other half start from the minimum en
ergy conformation of the linear cluster in which the distanc
between adjacent atoms are slightly shorter than those o
triangular form.

The same initial seed for the random number generato
used for different sets to sample the momentum space so
relatively similar parts of the phase space are spanned
though due to the differences in the geometric structure
consequently the potential energy as well as the total ene
each trajectory still originates from different initial cond
tions. The angular momentum is conserved during integ
tion; therefore trajectories with zero or nonzero angular m
mentum visit different parts of the phase space. In t
manner we are able to study the effects of the angular
mentum on chaotic behavior.

In Fig. 1 we present the variation of the maximu
Lyapunov exponents as a function of the energy for lin
and triangular nonrotating clusters. Exponents reported h
are averages over 50 trajectories. The low-energy regime
low E520.67 is not accessible in the linear cluster so
comparison cannot be made. As it was shown in Berr
work, the maximum Lyapunov exponent is very close to ze
at the bottom of the well, displaying regular dynamics due
the high separability of the nuclear motion~normal modes
are valid!. As the energy increases, the chaos starts to s
in up to the saddle point for the triatomic Lennard-Jon
system. Then, again, we observe a gradual decrease in
Lyapunov exponent. At the high-energy regime, both cur
for linear and triangular clusters agree well showing that
isomerization takes place at early stages and the initial
ometry does not really affect the dynamics if no rotation
motion exists.

In contrast, the rotating clusters display significantly d
ferent behavior for linear and triangular structures~Fig. 2!.

FIG. 1. Maximum Lyapunov exponent as a function of the to
energy for nonrotating clusters. ——, linear; ----, triangular.
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55 541CHAOTIC BEHAVIOR OF TRIATOMIC CLUSTERS
At low-energy values, initially linear clusters have high
Lyapunov exponents. There is a crossing point aroundE5
20.45 above which the linear clusters are less chaotic.
fore we assign any significance to the roles of the ini
geometry in generating chaos, it is necessary to analyze
the angular momentum is affecting the dynamics. For
nonrotating clusters, kinetic energy is only present in
vibrational degrees of freedom and the rotational kinetic
ergy is zero. Therefore it is clear that any degree of ch
could only result from the vibrational motion. In the case
the rotating clusters, the situation is different. Since the m
mentum components for each atom are selected rando
~only scaled to preset energy values!, the components and
the total angular momentum of each cluster in the sample
different. Consequently the partitioning of the initial kinet
energy assigned to each cluster in terms of rotational
vibrational terms varies throughout the bundle of trajector

Now there are two possible sources of the nonlinea
and hence chaotic behavior in the dynamics. First of
individual magnitudes of the vibrational and rotational e
ergy may be important. For rigid bodies, rotational kine
energy is constant, so it does not play any role in the cla
fication of the motion. In case of a nonrigid body, ev
though this partitioning does not remain constant but rat
is a function of time, it can nevertheless be a driving fac

FIG. 3. Maximum Lyapunov exponent as a function of the to
energy for clusters initiated as equilateral triangles. ——, rotati
----, nonrotating.

FIG. 2. Maximum Lyapunov exponent as a function of the to
energy for rotating clusters. ——, linear; ----, triangular.
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for the dynamics. Another source of nonlinearity may com
from the coupling between the vibrational and rotational m
tion. Since any such coupling would bring additional com
plexity to the problem, it should increase the chaotic char
ter. In Fig. 3 the average exponents for the rotating a
nonrotating clusters initiating from the triangular structu
are displayed to analyze these two somewhat contrasting
tors. At high-energy values aboveE520.4 the rotational
motion does not play any role in the dynamics, and b
curves agree well. One should be careful in this region si
the excess vibrational energy usually drives the cluster
fragmentation and those trajectories must be excluded f
the averaging process. However, there are significant dif
ences for the low-energy regime even around the almost
monic part of the potential.

The maximum Lyapunov exponents corresponding
nonrotating clusters are always larger than those for non
tating ones with ratios as large as two. In contrast to
nonrotating cluster displaying a maximum around the sad
point, there are no optimum points for the rotational ca
except at very-high energy values. In this region there se
to be fluctuations most likely due to the smaller number
nondissociating trajectories. It is clear that the coupling
tween the rotational and the vibrational motion does not
ally contribute to chaotic behavior and the dominating fac
is the available vibrational energy.

In Fig. 4, the variations of Lyapunov exponents obtain
from 50 trajectories are given for the triangular geomet
Initially, all the nonrotating clusters at the same energy ha

l
;

FIG. 4. Variation of Lyapunov exponents within an ener
shell. ~a! Rotating,~b! Nonrotating clusters.

l
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542 55ERSIN YURTSEVER AND NURAN ELMACI
equal vibrational kinetic energy values. As a result, the
viations of individual exponents are small. However, for r
tating clusters the assigned vibrational kinetic energy wit
the ensemble varies drastically, and consequently the s
dard deviations are larger. The largest deviations are
served around the saddle-point range. As the energy
either very low or very high, these deviations become re
tively smaller. The linear clusters that are not depicted h
display very similar behavior.

In order to carry out a further analysis of the effects of t
angular momentum, we plot at three different energy val
the maximum Lyapunov exponents as functions of the to
angular momentum, which is a conserved quantity~Fig. 5!.
At E520.26 there are few nondissociating trajectories
cause low angular momenta trajectories tend to kick ou
single atom before the Lyapunov exponent converg
Therefore, in order to reach a conclusion at low energie
larger sample is required. On the other hand, the other

FIG. 5. Distribution of maximum Lyapunov exponents as
function of the total angular momentum.~a! E520.26, ~b! E5
20.65, ~c! E520.80.
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figures atE520.65 andE520.80 display clearly the trend
that high angular momentum generates lower Lyapunov
ponents. Even though the coupling between rotational a
vibrational motion should be larger for high angular mome
tum cases, again the magnitude of the initial vibrational
netic energy seems to be the major factor for the determi
tion of chaos. The work with employing larger ensembles
in progress.

B. Three-body forces

The introduction of three-body interactions into th
Hamiltonian increases the nonlinearity of the system and o
expects a higher degree of chaos. The strength of three-b
interactions is controlled by the reduced parameterZ whose
value is assumed to change between 0 and 1. Obviously
relative magnitudes of two- and three-body forces do n
remain constant during the integration time and they chan
according to the instantaneous geometry of the cluster. T
limiting values of the angular part of the Axilrod-Teller po
tential are22 and 11

8 for the linear and equilateral triangle
respectively~in reduced units!. After Z50.5 the linear clus-
ter becomes the stable form. However, this initial partitio
ing of the potential energy into two- and three-particle inte
actions seems to play an important role in the measure
chaotic behavior. In Figs. 6~a! and 6~b!, we present the varia-
tion of the maximum Lyapunov exponent as a function of t

FIG. 6. Maximum Lyapunov exponent as a function of th
Axilrod-Teller strength parameterZ. ~a! Nonrotating linear cluster.
~b! Nonrotating triangular cluster. ——,E520.40; ----, E5
20.50; –––, E520.60; . . . , E520.65; –•–•, E520.70;
–••–••, E520.75.
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55 543CHAOTIC BEHAVIOR OF TRIATOMIC CLUSTERS
interaction strengthZ for nonrotating clusters. At high
energy valuesE.20.7 the maximum Lyapunov exponen
seems to be unaffected by the variation ofZ. Once the en-
ergy is below the saddle point for the Lennard-Jones po
tial surface, then linear and triangular clusters show differ
behavior. Clusters start initially at linear geometry~stable
form for Z.0.5!, the chaotic behavior increases with i
creasingZ whereas the clusters starting at triangular geo
etry show the opposite trend. Here it seems that the in
geometry of the cluster plays an important role in a som
what unexpected way; that increasing nonlinearity does
necessarily increase the extent of the chaos. A larger se
calculations to study this problem in detail is under way.

C. Heterogeneous clusters

In this part of the work, parameters corresponding to o
of the atoms are modified to generate heterogeneous clus
Starting with a nonrotating cluster of triangular structure,
Lennard-Jones parameterse ands, and mass of one atom ar
changed and the effects on chaotic behavior are obser
The interaction parameters for unlike atoms are computed
standard Berhelot rules of combination. The starting geo
etry is the minimum-energy conformation of the equilate
triangle except for the variation ofs, where a simple opti-
mization of the geometry is carried out for each case be

FIG. 7. Lyapunov exponent as a function ofeB . ——, E5
20.40; ----,E520.50; . . . , E520.60.

FIG. 8. Lyapunov exponent as a function ofsB . ——, E5
20.40; ----,E520.50; . . . , E520.60.
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the integration of equations of motion. In Figs. 7–9 the
variations at different energy values are presented. The s
dard values ofe, s, and mass are noted by vertical lines
figures. When the interaction strength is varied, the res
can be summarized as follows. Let us denote two equiva
atoms asA and the third, different one, asB. If one of the
atoms has a relatively smallere, then the motion is quite
regular. Such a system is equivalent to a diatomic clus
where the effect of the third particle is negligible and t
regular dynamics prevails. This behavior is observed u
the ratio of eB/eA is around 0.7. Above this threshold
Lyapunov exponents remain reasonably constant even
ratios as large as 4, implying that there is no additional
gree of chaos. According to Berthelot rules, the interact
strengths between unlike particles are calculated by geom
ric averages. Due to this slow change in off-diagonal int
actions, one may expect, again, a relative decrease in ch
behavior at very high ratios. On the other hand, upon
creasing thesB/sA ratio, we observe a gradual but contin
ous decrease. As one of the particles gets larger, the mo
becomes relatively more regular but not to the extent t
chaos disappears. The limiting case for such systems is
diatomic molecule on a surface, where if the surface is s
ficiently large then the motions of the diatomic molecule a
the surface are separable and again a regular dynamics
be observed. Finally, the effects of varying the mass o
particle are parallel to those of varying the size. Asympto
cally an integrable system is going to be obtained since
motion of the heavy particle will almost stop and a prac
cally one-dimensional motion should be observed.

In conclusion we would like to state that an increase
the nonlinearity of the interactions in a triatomic cluster do
not necessarily increase the degree of the chaotic beha
The major contributions to the chaotic motion come from t
energy stored in vibrational modes. The extent of the ene
in those modes classifies dynamics.
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FIG. 9. Lyapunov exponent as a function ofmB . ——, E5
20.40; ----,E520.50; . . . , E520.60.
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