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Chaotic behavior of triatomic clusters
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The dynamics of triatomic clusters is investigated employing two-body Lennard-Jones and three-body
Axilrod-Teller potential functions. Lyapunov exponents are calculated for the total energy rang®. o
<E< -0.72. The effects of the initial geometry of the cluster, its angular momentum, and the magnitude of
three-body interactions are analyzed. It has been found that the dominating factor for the extent of chaotic
behavior is the energy assigned to vibrational modes. The introduction of the rotational motion regularizes the
dynamics in spite of a higher degree of nonlinearity. The three-body terms in the potential function affect the
extent of the chaos in different manners depending on the initial geometry of the cluster. Finally, the time
evolution of heterogeneous clusters generated by varying the size, mass, and the interaction strength of a single
atom is observed. Their Lyapunov exponent spectra show that the additional nonlinearity reduces the chaotic
behavior of the system in most of the cad&1050-294{©6)03012-7

PACS numbd(s): 36.40—c, 05.45+b

[. INTRODUCTION initial conditions can result in vastly different developments
even in the near future. It is no longer possible to make
The dynamics of small systems poses interesting quespredictions for the outcome of events. This sensitivity to ini-
tions concerning the mechanisms of isomerization and/otial conditions can also be expressed in terms of the rate of
fragmentation and time scales of these procelske$4]. The  loss of information about the initial state of the system. The
form of the essential dynamics, the internal energy distribumost commonly used criteria for observing this loss of infor-
tion to various modegwhether local or nonlocal and the mation are Lyapunov exponents or Kolmogorov entropy,
factors governing the fragmentation are crucial questionsvhich is the sum of all positive Lyapunov exponents. The
both for molecules and clusters. The basic difference bemagnitude of positive Lyapunov exponents, especially the
tween a cluster and a molecule can be explained in terms shaximum one, is generally accepted as a unique and con-
the strengths of interactions between atoms. The potentiaginuous measure driving the system from reguiasensitive
energy hypersurface of a molecule usually displays wellto small perturbationsto chaotic dynamics. Usually an in-
defined minima and the molecules are trapped in these wellsrease in the energgHamiltonian is accompanied by an
due to high-energy barriers separating them. Normal-modeincrease in the maximum Lyapunov exponent with certain
type approximations for the truncation of potential energycritical values separating regular, transitional, and fully cha-
functions are valid, and the dynamics can simply be treatedtic regimes. However, the boundaries between these re-
as weakly coupled small-amplitude vibrations around thegimes are not very sharp due to the complex structure of the
minima. When the interactions between atoms are weakephase space. Especially for systems with many degrees of
the number of accessible optimum points along the hypersufreedom, it is possible that the classical phase space for the
faces for the given energy increases drastically and the clugfiven energy is not of uniform nature, that is, not all trajec-
ter moves between these points much more freely. This flextories with the same energy behave similarly. In that case, it
ibility introduces a great degree of richness to the dynamicsmay be necessary to find out the relative measures of each
From the mathematical point of view, the normal modes losaegime. This can be achieved by analyzing a bundle of tra-
their meaning and the system can no longer be representgettories that span the classical phase space as much as pos-
by a set of uncoupled oscillators. The classical equations dfible, and then classifying them according to their qualitative
motion governing the dynamics are now highly nonlinearbehavior. Such partitioning of the phase space is generally a
and one expects that their solutions should exhibit some deproperty of its geometry and optimum points, hence a thor-
gree of chaos. ough knowledge of the potential energy hypersurface is re-
The large majority of investigations of chaotic behavior of quired.
Hamiltonian systems are restricted to problems with only a In the case of chaotic dynamics of clusters, there are rela-
few degrees of freedom, mostly because of the numericaively fewer reports and most of them by Berry and co-
complications in the computations of measures of chaos. The&orkers[15—-23. In these studies atomic clusters of various
standard definition of chaos can be formulated in terms o&izes that interact mostly via Lennard-Jones-type potentials
the initial state dependence, that is, small perturbations to thare reported. The first large-scale calculations of such many-
dimensional problems were on the correlations of melting
and phase transitions to fractal dimensions and Kolmogorov
* Author to whom correspondence should be addressed. entropy[17]. Here it was noted that the topology of the po-
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tential energy hypersurface played an extremely importanaxes. We denote the vector function for the nonlinear dy-
role in identifying chaos, and later the various forms of thenamics ad=(x(t)) with the definition

dynamics were associated with saddle points of the surface.

Another important contribution was the study of Lyapunoy ™ *(1)=(d01/4t,90,/6t,....903x/dt,

exponent distributions in order to understand the ergodicity X APy 13t,apo 1 dt, ... dpan]dt), (1

of small clusterd20,21]. It was shown that the distribution

of exponents contained a great deal of information since inwhich is explicitly given as

dividual exponents cannot be used as direct measures of the

ergodicity. Finally it was noted that the early evolution of ~ FX(1))=(P1,P2,....psn, —dHI3qy, — dH/dqp, ...,
Lyapunov exponents displayed significant information about — OHI30ay) @)

the dynamicg19]. The standard practice in the computation

of Lyapunov exponents is to discard the results obtained dukgith q and p representing the coordinates and momenta of

ing the equilibration period and to study the limiting values. each atom. The linearized equations for the principal axes are
Even though this procedure is mathematically correct inhen written as

identifying classical chaos, part of the physically relevant

information is lost. All of these results point to the important d&(k(t)/dtzaF(x(t))/&xlX:X<t)5xk(t) 3
role that the topology of the phase space plays in the recog- .
nition of chaos in cluster dynamics. in which 6x* denotes the vector containindNéelements of

Our original interest was in the stability of carbon clustersthe kth principal axis. Since these equations are linear, the
and their fragmentation processes. The mechanisms for theggtial vectors can be taken as finite vectors, and in fact they
processes involve a great deal of isomerizations, hence &€ normalized to 1. By following these vectors, the phase
thorough knowledge of the optimum points as well as thespace in the vicinity of the vector(t) is probed. Likex(t),
transitions between different structures is required. We havéX*(t) also diverges exponentially in case of chaotic dynam-
previously looked at very simple force fields that are combi-ics. Therefore they have to be orthogonalized at regular in-
nations of Lennard-Jones and Axilrod-Teller-type potentialtervals. Each time we orthonormalize the vectors, we record
functions and have shown that relative stability of variousthe length of each axis which, in turn, gives the correspond-
isomers of G-C; can be fairly predicted once the strength of INg Lyapunov exponent as
the three-body interactions is optimiz€24]. Therefore we Lo
decided to first follow the dynamics for,@mploying two- M= limt™Hndi(t)/d(0). S
body interactions and to investigate the effects of the energ
initial geometry, and angular momentum. Later by addin
three-body terms the changes in the characteristics of th oes not really affect the results
dynamics were studied. Finally we varied the mass, size, an :

interaction parameters of a single atom in triatomic Lennard: Equation(3) must be solved simultaneously with Hamil-
Jones clusters so that the chaotic behavior of heterogeneoton s equations foF (x(t)). Runge-Kutta integration requires

clusters could be measured e computation of the Hamiltonian’s derivatives four times

' at every time step. At each of these steps, the Jacobian has to
be modified according to the intermediate values of the vec-
tor F.

X—Weredk is the length of the&th axis before orthonormaliza-
ion. The frequency of the Gram-Schmidt orthonormalization

1. COMPUTATIONAL METHOD
A. Lyapunov exponents B. Computations

The nonlinear dynamics of the cluster is followed by solv-  Hamilton’s equations of motion are solved for®1teps
ing Hamilton’s equations of motion with a constant-time- for each trajectory. At small intervals they are stored so that
step-Runge-Kutta integration of the fourth order. The choiceaesults can be compared to those from thermally equilibrated
of the Runge-Kutta over the faster predictor-corrector methelusters. The integrations are carried out in atomic units and
ods is due to the difficulty in keeping the energy constant athe constant time step is chosen as 50 a.u., which is in the
the very early stages of the integration. Since for such metherder of 103 ps. This time step is found as the largest inter-
ods, the higher derivatives of the velocity are taken as zero atal, which keeps the energy constant to about six to seven
t=0, the energy may fluctuate slightly. However, this errordigits. However, for the various step sizes considered,
is not expected to affect the results, at least qualitatively. Théyapunov exponents display, qualitatively, similar behavior.
tangent space method is used for computing Lyapunov exOf course, due to the highly chaotic nature of the dynamics,
ponents. An infinitesimal B-dimensional hyperellipsoid is the actual values differ to an extent. At every 10 steps, the
placed at the initial conditions in phase space and the timéength of each vector is computed and then orthonormalized.
evolution of its axes is followed. Tangent space is defined iffhe Lyapunov exponents converge sufficiently well in the
order to avoid the exponential divergence of these axes; thaitegration time of 1200 ps. The integration and computation
is, the equations of motion are written for the differencesof the full set of Lyapunov exponents of a single trajectory
between the phase-space vector defining the cluster and eatakes about 40 min on a SGI workstation Indigo R4000 or 10
vector corresponding to the axes of the hyperellipsoid. Sincenin on R8000.
these differences are small, they can be expressed as Taylor The initial geometry of the structure is chosen either as an
series and keeping only the first terms, we end up with lin-equilateral triangle (minimum energy conformation for
earized equations for the time evolution of each of thesd.ennard-Jones systgnor as a linear onéglobal minimum
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once the three-body term gains sufficient strepgfihe mo- 12
mentum components of each particle are assigned randomly
with the condition that the center of mass does not move. To s
identify the effects of the angular momentum, we compared i .
clusters of the same energy with both zero and nonzero an- K
gular momentum. The nonrotating clusters are prepared in a
brute force Monte Carlo fashion. Random momenta are as-
signed to each atom with zero total linear momentum. Then
random components are changed slightly, the momentum of s} ’
the center of mass is subtracted and then resulting angular g
momentum is calculated to see whether it is decreased or not. K
After several cycles of these processes, clusters with total % o0 om0 o0 o0 20
angular momentum of I a.u. can be obtained. Afterwards ) ) ‘ ) '
momenta are scaled to the desired energy. Energy

In this work the energy of the cluster is always expressed _ _
in units of Ne, wheree is the interaction parameter of the  FIG- 1. Maximum Lyapunov exponent as a function of the total
Lennard-Jones potential adlis the number of atoms. The ENergy for nonrotating clusters. ——, linear; ----, triangular.
potential-energy expression up to three-body interactions is

©
~§

Exponent
]
T

IIl. RESULTS AND DISCUSSION

E= %2 Vis(ih)) +Var(iLj k), (5) A. Angular momentum
Since a thorough search of an 18-dimensional phase space

. ._is very difficult, we try a rough partitioning based on two
where the summation runs over all atoms. For two-body in- y y gh p g

i . . Initial geometrical structures, 16 energy values, and two sets
teractions only, the potentlalfenergy function takes the formof 50 random initial momenta corresponding to rotating and
of the Lennard-Jones potential:

nonrotating clusters. Half of the trajectories start from an
equilateral triangle, which is the global minimum for the
Lennard-Jones cluster with corresponding interatomic dis-
) o ) tances of 2%s. The other half start from the minimum en-
In terms of these units the minimum potential energy 50 gy conformation of the linear cluster in which the distances
for the equilateral triangle ane-0.67 for the linear one. phetween adjacent atoms are slightly shorter than those of the
Above E= —0.33 the cluster may dissociate. Upon d'ssoc'a'triangular form.
tion, the system turns into a one-dimensional problem of & The same initial seed for the random number generator is
diatomic cluster plus a free atom; therefore the dynamicg,se for different sets to sample the momentum space so that
q.wckly becomes a regular one. All these clusters that d'ssor'elatively similar parts of the phase space are spanned, al-
ciate are excluded from any averaging process. The energyq,gh due to the differences in the geometric structure and
range from—0.60 (—0.90 for triangular cageto —0.24 is  cqnsequently the potential energy as well as the total energy,
studied with varying numbers of initial conditions. each trajectory still originates from different initial condi-
To represent three-body interactions, we employ thgjong The angular momentum is conserved during integra-
Axilrod-Teller functional form which is written as tion; therefore trajectories with zero or nonzero angular mo-
mentum visit different parts of the phase space. In this
Var=Z(1+3 coB;coD;coD)r ’ri % (7)) manner we are able to study the effects of the angular mo-
mentum on chaotic behavior.
with r and © corresponding to the sides and angles of the In Fig. 1 we present the variation of the maximum
triangle formed by atoms j, andk. The interaction strength Lyapunov exponents as a function of the energy for linear
is controlled by a single paramet&rwhose unit is 4c°. and triangular nonrotating clusters. Exponents reported here
For homonuclear clusters, the dynamics can be studiedre averages over 50 trajectories. The low-energy regime be-
independently of two parameters,and o of the Lennard- low E=—0.67 is not accessible in the linear cluster so a
Jones functior(or similarly the interaction strength of the  comparison cannot be made. As it was shown in Berry’s
Axilrod-Teller). However, since we ultimately would like to work, the maximum Lyapunov exponent is very close to zero
study carbon clusters, we choose two sets of parameters thatt the bottom of the well, displaying regular dynamics due to
are used in the simulations of carbon containing compoundghe high separability of the nuclear motignormal modes
with mass being 12.0 proton mass unit. In the first(get  are valid. As the energy increases, the chaos starts to settle
noted by ) they are given as=0.706 56<10 %' J and in up to the saddle point for the triatomic Lennard-Jones
0=3.35 A. These parameters are used to simulate liquid CSsystem. Then, again, we observe a gradual decrease in the
[25]. The second sell) consists 0fe=9.9496<10 '°J and  Lyapunov exponent. At the high-energy regime, both curves
0=1.104 714 4 A, which is obtained both froai initio cal-  for linear and triangular clusters agree well showing that an
culations and from spectroscopic observatif®8]. Set | is  isomerization takes place at early stages and the initial ge-
used in all calculations with two-body forces and set Il isometry does not really affect the dynamics if no rotational
used whenever three-body terms are included. The threenotion exists.
body interaction strength is varied from 0.0 to 1.0 in units In contrast, the rotating clusters display significantly dif-
of 4ed®. ferent behavior for linear and triangular structufégy. 2).

VLJ(iaj):46[(0'/rij)12_(U/rij)a]- (6)
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FIG. 2. Maximum Lyapunov exponent as a function of the total
energy for rotating clusters. ——, linear; ----, triangular.

At low-energy values, initially linear clusters have higher
Lyapunov exponents. There is a crossing point arobrd
—0.45 above which the linear clusters are less chaotic. Be-
fore we assign any significance to the roles of the initial
geometry in generating chaos, it is necessary to analyze how
the angular momentum is affecting the dynamics. For the
nonrotating clusters, kinetic energy is only present in the
vibrational degrees of freedom and the rotational kinetic en-
ergy is zero. Therefore it is clear that any degree of chaos
could only result from the vibrational motion. In the case of
the rotating clusters, the situation is different. Since the mo-
mentum components for each atom are selected randomly
(only scaled to preset energy valiiethe components and
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FIG. 4. Variation of Lyapunov exponents within an energy

the total angular momentum of each cluster in the sample arghell. (&) Rotating, (b) Nonrotating clusters.

different. Consequently the partitioning of the initial kinetic

0.00

energy assigned to each cluster in terms of rotational anfPr the dynamics. Another source of nonlinearity may come
vibrational terms varies throughout the bundle of trajectoriesfom the coupling between the vibrational and rotational mo-
Now there are two possible sources of the nonlinearityon- Since any such coupling would bring additional com-
and hence chaotic behavior in the dynamics. First of all plexity to the problem, it should increase the chaotic charac-
individual magnitudes of the vibrational and rotational en-t€r- In Fig. 3 the average exponents for the rotating and
ergy may be important. For rigid bodies, rotational kineticnonrqtatmg clusters initiating from the triangular stru_cture
energy is constant, so it does not play any role in the class'® d|splayed to analyze these two somewhat contrasting fac-
fication of the motion. In case of a nonrigid body, eventors: At high-energy values above=—0.4 the rotational
though this partitioning does not remain constant but rathef0tion does not play any role in the dynamics, and both
is a function of time, it can nevertheless be a driving factorcurves agree well. One should be careful in this region since

12

Exponent
@»

FIG. 3. Maximum Lyapunov exponent as a function of the total

-0.80 -0.60 -0.40 -0.20

Energy

the excess vibrational energy usually drives the cluster to
fragmentation and those trajectories must be excluded from
the averaging process. However, there are significant differ-
ences for the low-energy regime even around the almost har-
monic part of the potential.

The maximum Lyapunov exponents corresponding to
nonrotating clusters are always larger than those for nonro-
tating ones with ratios as large as two. In contrast to the
nonrotating cluster displaying a maximum around the saddle
point, there are no optimum points for the rotational case
except at very-high energy values. In this region there seem
to be fluctuations most likely due to the smaller number of
nondissociating trajectories. It is clear that the coupling be-
tween the rotational and the vibrational motion does not re-
ally contribute to chaotic behavior and the dominating factor
is the available vibrational energy.

In Fig. 4, the variations of Lyapunov exponents obtained

energy for clusters initiated as equilateral triangles. —, rotatingfrom 50 trajectories are given for the triangular geometry.
----, nonrotating.

Initially, all the nonrotating clusters at the same energy have
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ponents. Even though the coupling between rotational and
vibrational motion should be larger for high angular momen-

tum cases, again the magnitude of the initial vibrational ki-

netic energy seems to be the major factor for the determina-
tion of chaos. The work with employing larger ensembles is

in progress.

equal vibrational kinetic energy values. As a result, the de-
viations of individual exponents are small. However, for ro-
tating clusters the assigned vibrational kinetic energy within The introduction of three-body interactions into the
the ensemble varies drastically, and consequently the staiamiltonian increases the nonlinearity of the system and one
dard deviations are larger. The largest deviations are obexpects a higher degree of chaos. The strength of three-body
served around the saddle-point range. As the energy geisteractions is controlled by the reduced paramgtevhose
either very low or very high, these deviations become relavalue is assumed to change between 0 and 1. Obviously the
tively smaller. The linear clusters that are not depicted hereelative magnitudes of two- and three-body forces do not
display very similar behavior. remain constant during the integration time and they change
In order to carry out a further analysis of the effects of theaccording to the instantaneous geometry of the cluster. The
angular momentum, we plot at three different energy value$imiting values of the angular part of the Axilrod-Teller po-
the maximum Lyapunov exponents as functions of the totatential are—2 and 4! for the linear and equilateral triangle,
angular momentum, which is a conserved quarlfiig. 5.  respectively(in reduced units After Z=0.5 the linear clus-
At E=—0.26 there are few nondissociating trajectories beter becomes the stable form. However, this initial partition-
cause low angular momenta trajectories tend to kick out @ng of the potential energy into two- and three-particle inter-
single atom before the Lyapunov exponent convergesactions seems to play an important role in the measure of
Therefore, in order to reach a conclusion at low energies, ghaotic behavior. In Figs.(8) and b), we present the varia-
larger sample is required. On the other hand, the other twtion of the maximum Lyapunov exponent as a function of the

B. Three-body forces
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—-0.40; ----,E=—-0.50; ..., E=-0.60.
interaction strengthZ for nonrotating clusters. At high- the_ln_tegratlon_ of equations of motion. In Figs. 7-9 these
energy valuesE>—0.7 the maximum Lyapunov exponent variations at different energy values are present_ed. The s.tan—
seems to be unaffected by the variationZofOnce the en- ‘%'ard values of, o, _and mass are noted_ by vgrUcaI lines in
ergy is below the saddle point for the Lennard-Jones poter;‘_|gures. When t_he interaction strength is varied, the results
tial surface, then linear and triangular clusters show differenf@n be summarized as follows. Let us denote two equivalent
atoms asA and the third, different one, &. If one of the

behavior. Clusters start initially at linear geomefstable : one )
form for Z>0.5), the chaotic behavior increases with in- atoms has a relatively smaller then the motion is quite

creasingZ whereas the clusters starting at triangular geomregular. Such a system is equivalent to a diatomic cluster
etry show the opposite trend. Here it seems that the initiayvhere the effect of the third particle is negligible and the
geometry of the cluster plays an important role in a some¥egular dynamics prevails. This behavior is observed until
what unexpected way; that increasing nonlinearity does ndie ratio of eg/e, is around 0.7. Above this threshold,

necessarily increase the extent of the chaos. A larger set dfyapunov exponents remain reasonably constant even for
ratios as large as 4, implying that there is no additional de-

calculations to study this problem in detail is under way.
gree of chaos. According to Berthelot rules, the interaction

C. Heterogeneous clusters strengths between unlike particles are calculated by geomet-
éic averages. Due to this slow change in off-diagonal inter-

In this part of the work, parameters corresponding to one™ | ) i in chaoti
of the atoms are modified to generate heterogeneous clustefElONS, One may expect, again, a relative decrease in chaotic
goehavior at very high ratios. On the other hand, upon in-

Starting with a nonrotating cluster of triangular structure, th ' i :
Lennard-Jones parameterando, and mass of one atom are creasing therg/ o, ratio, we observe a gradual but continu-

changed and the effects on chaotic behavior are observe@US decrease. As one of the particles gets larger, the motion
The interaction parameters for unlike atoms are computed bpecomes relatively more regular but not to the extent that
standard Berhelot rules of combination. The starting geomchaos disappears. The limiting case for such systems is the
etry is the minimum-energy conformation of the equilateraldiatomic molecule on a surface, where if the surface is suf-
triangle except for the variation af, where a simple opti- ficiently large then the motions of the diatomic molecule and

mization of the geometry is carried out for each case beforghe surface are separable and again a regular dynamics will
be observed. Finally, the effects of varying the mass of a

particle are parallel to those of varying the size. Asymptoti-
cally an integrable system is going to be obtained since the
motion of the heavy particle will almost stop and a practi-
cally one-dimensional motion should be observed.

In conclusion we would like to state that an increase in
the nonlinearity of the interactions in a triatomic cluster does
not necessarily increase the degree of the chaotic behavior.
The major contributions to the chaotic motion come from the
energy stored in vibrational modes. The extent of the energy

in those modes classifies dynamics.

15 T

12

Exponent

oo 2 4 6 8 10 ACKNOWLEDGMENTS
Sigma (B)
We would like to acknowledge a critical reading of the
FIG. 8. Lyapunov exponent as a function ef,. —, E= manuscript by Gary Moore. This project was partially sup-
ported by the Volkswagen Stiftung Project No. 169/797.

—0.40; ----,E=—-0.50; ..., E=-0.60.



544 ERSIN YURTSEVER AND NURAN ELMACI 55

[1] On Clusters and Clusteringedited by P. J. Reynold®North- [14] T. Raz, U. Even, and R. D. Levine, J. Chem. PHy@3 5394

Holland, Amsterdam, 1993 (1995.

[2] Clusters and Colloidsedited by G. SchmidvCH, Weinheim,  [15] W. G. Hoover, H. A. Posch, and S. Bestiale, J. Chem. Phys.
1994 87, 6665(1987).

[3] S. Sugano, irMicrocluster PhysicgSpringer-Verlag, Heidel-  [16] H. A. Posch and W. G. Hoover, Phys. Rev238, 473(1988;
berg, 1991 H. A. Posch, W. G. Hoover, and B. L. Holian, Ber. Bunsenges.

[4] Clusters of Atoms and Molecules ddited by H. Haberland Phys. Chem94, 250(1990.
(Springer-Verlag, Heidelberg, 1985 [17] H. A. Posch and W. G. Hoover, Phys. Rev38, 2175(1989;

[5] Clusters of Atoms and Molecules Bdited by H. Haberland T. L. Beck, D. M. Leitner, and R. S. Berry, J. Chem. P88,
(Springer-Verlag, Heidelberg, 1994 1681(1988.

[6] K. Raghavachari and J. S. Binkley, J. Chem. PI8/.2191

[18] D. J. Wales and R. S. Berry, J. Phys2B, L351(1991).

[19] R. J. Hinde, R. S. Berry, and D. J. Wales, J. Chem. P8gs.
1376(1992.

[20] C. Amitrano and R. S. Berry, Phys. Rev. L8, 729(1992.

[21] C. Amitrano and R. S. Berry, Phys. Rev.4#, 3158(1993.

(1987.

[7] D. J. Wales and R. S. Berry, J. Chem. P82, 4283(1990.

[8] R. N. Barnett, U. Landman, A. Nitzan, and G. Rajagopal, J.
Chem. Phys94, 608 (199)).

[9] D. G. Vlachos, L. D. Schmidt, and R. Aris, J. Chem. PI88;.

6880(1992; 96, 6891 (1992. [22] C. Amitrano and R. S. Berry, Z. Phys. 25, 388 (1993.
[10] D. Zajfman, D. Kella, O. Heber, D. Majer, H. Feldman, z. [23] S. F. Chekmarev and F. S. Liu, Z. Phys.2D, 231 (199)).
Vager, and R. Naaman, Z. Phys. a8, 343 (1993. [24] E. Yurtsever and N. Elmaci, Ber. Bunsenges. Phys. Cio&m.
[11] R. S. Dumont and S. Jain, J. Chem. PHi@3, 6151 (1995. 467 (1991).
[12] D. I. Zhukhovitskii, J. Chem. Phy<4.03 9401(1995. [25] D. J. Tildesley and P. A. Madden, Mol. Phy&2, 1137(1981).

[13] C. Chakravarty, J. Chem. Phyk03 10 663(1995. [26] T. Haliciodu, Chem. Phys. Lettl79, 159 (199).



