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Quantum field theory of cooperative atom response: Low light intensity

Janne Ruostekoski and Juha Javanainen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046

~Received 29 May 1996!

We study the interactions of a possibly dense and/or quantum degenerate gas with driving light. Both the
atoms and the electromagnetic fields are represented by quantum fields throughout the analysis. We introduce
a field-theory version of Markov and Born approximations for the interactions of light with matter, and devise
a procedure whereby certain types of products of atom and light fields may be put to a desired, essentially
normal, order. In the limit of low light intensity we find a hierarchy of equations of motion for correlation
functions that contain one excited-atom field and one, three, five, etc., ground-state atom fields. It is conjec-
tured that the entire linear hierarchy may be solved by solving numerically the classical equations for a coupled
system of electromagnetic fields and charged harmonic oscillators. We discuss the emergence of resonant
dipole-dipole interactions and collective linewidths, and delineate the limits of validity of the column density
approach in terms of noncooperative atoms by presenting a mathematical example in which this approach is
exact.@S1050-2947~97!03901-2#

PACS number~s!: 03.75.Fi, 42.50.Vk, 05.30.Jp
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I. INTRODUCTION

Indications of Bose-Einstein condensation~BEC! in
trapped alkali-metal vapors have been reported rece
@1–3#. At this point all direct probing of such condensat
has been carried out optically. Correspondingly, in antici
tion of BEC and the role of light in the experiments, th
optical response of degenerate atomic gases has bee
subject of active theoretical research already for quite so
time @4–12#. Aside from the interest in BEC, in an evapor
tively cooled gas of alkali atoms one may have a homo
neously broadened, weakly interacting system at such a
density that there are many atoms in a cubic wavelen
rl3@1. This kind of a sample would in its own right serv
to further our understanding of the interactions of light w
matter.

Nonetheless, in spite of all the theoretical work, there s
are quite basic unsettled issues in the theory of the op
properties of dense and/or degenerate gases. Under the
dition rl3@1 the atoms no longer respond to the elect
magnetic fields individually, but their properties are modifi
by the presence of nearby atoms. For instance, the at
exhibit collective linewidths and line shifts. Inasmuch as
comes to the near-resonant response in the regimerl3@1,
all treatments of the optical properties of degenerate ga
known to the present authors~including ours! contain uncon-
trolled approximations that bear on linewidths and line shi
As a result, the regions of validity and the relations betwe
different treatments tend to be somewhat ill defined.

A rigorous study of atom-field interactions valid regar
less of atom density, atom statistics, optical detuning, and
forth, is clearly called for. The paper of Morice, Castin, a
Dalibard@9# is a step in this direction. They start from a fu
quantum-mechanical Hamiltonian, including quantized lig
and internal degrees of freedom and c.m. motion of the
oms. However, at an early stage these authors go over
classical treatment of the c.m. motion of the atoms. Th
then derive equations of motion for a few correlation fun
tions involving polarization and atom density, and solve
551050-2947/97/55~1!/513~14!/$10.00
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optical response including all photon exchange between
pair of atoms.

The program carried out in Sec. II of the present pape
similar to the agenda of Ref.@9#. We start in Sec. II A from
our field-theory version of the Hamiltonian as in Ref.@10#,
amended with the atom-atom contact interaction@13,9# that
derives from the Power-Zienau approach. The point of
parture from Ref.@9# is that we describe the atoms wit
quantum fields throughout. The mathematical techniques
troduced in the process are analogous to the time-hon
tools in quantum optics: the field-theory version of the Bo
Markov approximation~Sec. II B!, and procedures to mov
noncommuting operators to a certain advantageous o
~Sec. II C!. In the present paper we complete the derivat
by assuming the limit of low intensity for driving light. The
end result in Sec. II D is a hierarchy of equations of moti
for correlation functions that involve atomic polarization
one point and densities at 0,1, . . . , points in space. The low-
est two equations coincide with those given in Ref.@9#.

In the present paper the emphasis is on the structure o
theory. To gain more insight, we examine a few simple s
cial cases in Sec. III. We demonstrate the exquisite subt
of the propagation of radiation through an atomic sample
presenting one particular set of assumptions that yields
standard column density results of~optically! noncooperat-
ing atoms~Sec. III A!, and by reviewing the density expan
sion of Ref.@9# ~Sec. III B!. In the case of only two atoms
what we call cooperative linewidth and line shift emerge
manifestations of the dipole-dipole interaction. This is d
cussed in Sec. III C. Here we also point out that in our lim
of low intensity of the driving light, the collective linewidth
and line shift could perfectly well have been derived fro
classical electrodynamics of classical atoms~charged har-
monic oscillators!. In this paper we do not attempt to deriv
any new results from the hierarchy of correlation function
but the connection to classical physics points to a poss
future method for exact solution of the hierarchy: classi
simulations of a system of classical atoms. A few comme
to this effect are made in Sec. III D.
513 © 1997 The American Physical Society
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Concluding remarks about possible solutions and ex
sions of our hierarchy are made in the final Sec. IV. Cert
mathematical details concerning the divergence of the d
lar field and a summary of dipole matrix elements are
ferred to the Appendix.

II. MOTION OF ATOM FIELDS

A. Basic dynamics of the fields

We begin by recapping, reformulating, and extending
salient results of@10#. The main items of this section are th
coupled evolution equations for the light and matter fie
exemplified by Eqs.~4! and~15!. Overall, we emphasize th
similarities of the theory to the classical electrodynamics
polarizable media.

1. Hamiltonian

For better or worse, in this paper we regard atoms as p
dipoles. A mathematically rigorous treatment produces
d-function term in the field of a dipole at the position of th
dipole, which results in a contact interaction between
poles. For mathematical consistency, this time around
therefore also keep the contact interaction generated in
Power-Zienau transformation from thep•A to thed•E gauge
@13,9#. This interaction was ignored as presumably incon
quential in the limit of large detuning considered in Re
@10#, but for an arbitrary detuning it may become an issu

The atoms have two internal energy levels, which we
bel g for ‘‘ground’’ and e for ‘‘excited.’’ We allow for the
angular momentum degeneracy of the energy levels, so
complete specification of the internal state of an atomam
includes the level labela5e or g and thez component of
angular momentumm. We assume dipole coupling of eac
atom to light.

In first quantization, we add to the Hamiltonian of@10#
the contact interaction, the polarization energy

HP5
1

2e0
(
iÞ j

di•djd~r i2r j !. ~1!

Heredi andr i are the dipole operator and the center-of-m
position operator for thei th atom. There are also diverge
self-energies withi5 j , but we ignore these as we do n
attempt a quantitative calculation of the Lamb shift. Equat
~1! displays a standard two-body interaction, which is imm
diately converted to second quantization. As before,
many-atom system is described by Heisenberg picture q
tum fieldscam(r t), which obey the proper commutator rel
tions. While much of our development applies to fermions
well, in this paper we consider only bosons explicitly.
terms of the atom fields, the additional polarization energ
the integral of the Hamiltonian density

HP5
1

e0
(
m1m2
M1M2

@dm2M1
•dM2m1

cgm2
† ceM2

† ceM1
cgm1

1 1
2dM2m2

•dM1m1
ceM2

† ceM1

† cgm2
cgm1

1 1
2dm2M2

•dm1M1
cgm2
† cgm1

† ceM2
ceM1

#. ~2!
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The notation dmM stands for the matrix elemen
^gmudueM& of the dipole operator of one atom,d. We de-
note the energy level implicitly in such a way that a label
a Zeeman state with a lower casem refers to the ground
state, and an upper caseM to the excited state.

However, to simplify the notation as far as possible,
are going to adopt yet another convention that is in fo
unless we explicitly state otherwise. We do not write t
magnetic quantum numbers explicitly. For instance, we w
ce2

in lieu of ceM2
. Also, we write the matrix element

dmM asdge . Finally, if the same level index appears twice
a product, a sum over the magnetic substates of the lev
implied. With these conventions, we write Eq.~2! anew as

HP5
1

e0
@dg2e1•de2g1cg2

† ce2
† ce1

cg1

1 1
2de2g2•de1g1ce2

† ce1
† cg2

cg1

1 1
2dg2e2•dg1e1cg2

† cg1
† ce2

ce1
#. ~3!

2. Electromagnetic fields

Unlike in @10#, and similarly to@9#, we assume that ther
is a cutoff in the wave numbersq of the photons; we multi-
ply the density of the states of the electromagnetic fields
e2q2a2/4, with a.0 being a length scale. The cutoff remov
all mathematical problems concerning, e.g., the exchang
the order of derivatives and integrals, which are abundan
the theory without the cutoff. At the end of the calculatio
we ultimately take the limita→0.

In spite of the change in the Hamiltonian and the add
cutoff of photon frequencies, the analysis of the electrom
netic fields proceeds almost as in@10#. In accordance with
Ref. @13#, it emerges from our results that what was call
the electric field in@10# should more properly be interprete
as the electric displacement divided by the permittivity of t
vacuum e0. We henceforth adopt this interpretation. Th
positive frequency part of the electric displacement is
pressed in terms of the matter fields as

D1~r t !5DF
1~r t !1e0E

2`

t

dt8E d3r 8S~dge ;r2r 8,t2t8!

3cg
†~r 8t8!ce~r 8t8!. ~4!

In this approach electric displacement and matter fields
the primary degrees of freedom;DF

1(r t) is the free electric
displacement that would apply if there were no coupling b
tween matter and electromagnetic fields. The propagator
takes the radiation from the dipole source to the field poin

S~D;r t !5
ic

16p3e0
E d3q e2q2a2/4 q

q

q
3S qq3DD

3eiq•r~eicqt2e2 icqt! ~5a!

5
c

4pe0
~D3“ !3“

da@r2ct#2da@r1ct#

ur2r 8u
, ~5b!

where thed function has acquired a finite width as a result
the cutoff in the photon energy spectrum,
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55 515QUANTUM FIELD THEORY OF COOPERATIVE ATOM . . .
da~x!5
1

Apa
expF2S xa D 2G . ~6!

As before, we assume that there is a dominant freque
V in the problem. In fact, we generally assume that a fi
such asce(r t)e

iVt, and similarly for the electromagneti
quantities, varies ‘‘slowly’’ in time in comparison with
e2 iVt. From now on a notation such asce(r t) refers to the
slowly varying fieldce(r t)e

iVt, unless explicitly stated oth-
erwise.

Based on an implicit cutoff such asa, we argued in@10#
that d functions with plus and minus signs in Eq.~5b! con-
spire to remove a term}d(r2r 8) that results when the po
sition derivatives act onur2r 8u21. What we did not realize is
that thisd function does not outright vanish. Instead, it
smeared to a function whose integral overr is still unity but
which has a finite width of the ordera; see the Appendix,
Sec. 1. From now on, as long as the integral operator w
the kernelS acts on any smooth functionf(r t)e2 iVt of r
and t in which the exponential is the dominant time depe
dence, we write

E
2`

t

dt8E d3r 8S~D;r2r 8,t2t8!f~r 8t8!e2 iVt8

5e2 iVtE d3r 8S8~D;r2r 8!f~r 8td!. ~7!

Here

td5t2
ur2r 8u
c

~8!

is the retarded time. The monochromatic version of t
propagatorS, S8 may be written alternatively as

S8~D;r !5
1

4pe0
~D3“ !3“

eikr

r
~9a!

or

S8~D;r !5K ~D;r !1
2

3e0
Dd~r !. ~9b!

The final kernelK (D;r ) is equal to the positive-frequenc
component of the electric field from a monochromatic dipo
with the complex amplitudeD, given that the dipole reside
at the origin and the field is observed atrÞ0. The explicit
expression is, of course@14#

K~D;r !5
1

4pe0
H k2~ n̂3D!3n̂

eikr

r
1@3n̂~n•D!2D#

3S 1r 3 2
ik

r 2Deikr J , ~10!

with

n̂5
r

r
, k5

V

c
. ~11!
cy
d
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-

e

It should be noted that, as the dipole radiation has a 1r 3

singularity, integrals such as Eq.~7! are generally not abso
lutely convergent. According to Sec. 1 of the Appendix, w
resolve this problem by the rule that at least in the immed
vicinity of the divergencer 85r the integral is to be per-
formed in spherical polar coordinates, and the angles are
to be integrated over. It should also be borne in mind that
form ~7! does not apply if the functionf is singular inr .

We finally consider the quantum expectation value
Eq. ~4!. As is always done in this paper, we take the free fi
to be in a coherent state. We also assume that the expect
value ^DF

1& is effectively monochromatic. It is physically
evident that, at least in steady state, the expectation valu
the productcg

†ce will then be monochromatic, and a smoo
function of r as well. Inasmuch as the quantum expectat
value of Eq.~4! is concerned, the transformation from kern
S to kernelS8 is thus allowed. Moreover, the expectatio
value of the free field is a solution to the Helmholtz equatio
and the functioneikr /r is essentially the Green’s function o
the Helmholtz differential operator:

~“21k2!^DF
1&50, ~“21k2!

eikr

r
524pd~r !. ~12!

In view of Eqs.~7! and ~9a!, from Eq. ~4! we thus have

~“21k2!^D1&52“3~“3^P1&!. ~13!

Classically, the polarization of the medium is defined as
dipole moment per atom times the density of atoms. It
therefore clear that

P1~r !5dgecg
†~r !ce~r ! ~14!

should be identified as the~positive frequency part of the!
quantum-mechanical polarization operator.

The value of Eq.~13! is twofold. First, it is a local differ-
ential equation, as opposed to the integral equation~4!. Sec-
ond, it has a well-known counterpart in the classical elect
dynamics of polarizable media. This reinforces the int
pretations ofD andP as electric displacement and polariz
tion operators.

3. Matter fields

We now turn to the equations of motion of the matt
fields. Under the assumptions that the density of excited
oms is low and that an atom moves much less than a wa
length of resonant light during the time it remains excite
we have the equations of motion for the fields describ
excited- and ground-state atoms:

ċe~r t !5 idce~r t !1
i

\
deg•E

1~r t !cg~r t !, ~15a!

ċg~r t !5
i

\
E2~r t !•dgece~r t !

2 i
Hc.m.~r !

\
cg~r t !1

d

dt U
C

cg~r t !. ~15b!

As the notation implies,
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E1~r t !5
1

e0
@D1~r t !2P1~r t !# ~16!

is to be interpreted as the electric field. Furthermo
d5V2v0 is the detuning of the characteristic frequency
the light V from the atomic resonance frequencyv0. We
have carried out the rotating-wave approximation that ta
into account the dominant field frequencyV. Finally,Hc.m. is
the one-particle Hamiltonian governing the c.m. motion
the atoms, and the time derivative with the subscriptC rep-
resents collisions.

4. Summary remarks

The two-state model of quantum optics is immediat
seen to underlie Eqs.~15!, and Eq.~4! describes the tota
field as the incident field plus the fields radiated by the
poles, complete with propagation delays. In spite of the
miliar appearances, though, it should be noted that the o
real approximations so far have been to ignore the c.m.
tion and collisions of the excited atoms. The formulation s
fully accounts for quantum statistics of the many-atom s
tem, and for the quantized electromagnetic fields. The ef
of the dipole-dipole interactions on the transition frequenc
and linewidths of the atoms is still included. On the oth
hand, as we have ignored the c.m. Hamiltonian of exci
atoms, collisions between ground-state atoms and excite
oms can no longer be discussed.

B. Eliminating the vacuum field

Even in the absence of applied electromagnetic fields,
atoms bathe in vacuum fields that cause spontaneous e
sion and Lamb shifts. The purpose of the present section
account for the vacuum fields. While pursuing this goal,
need to be prepared for singular functions with rapid spa
and temporal variations. We therefore start with the gen
field equation~4!. Moreover, for the time being we argue
terms of the original atomic and electromagnetic fields
tempered by the exponentialeiVt.

To begin with, we insert Eq.~4! into Eq.~15a!, and obtain

ċe~r t !52 iv0ce~r t !1
i

\e0
deg•HDF

1~r t !cg~r t !

2dg8e8cg8
†

~r t !cg~r t !ce8~r t !

1e0 È t

dt8E d3r 8S~dg8e8;r2r 8,t2t8!

3cg8
†

~r 8t8!ce8~r 8t8!cg~r t !J . ~17!

We are ultimately interested in quantum expectation v
ues of atomic and electromagnetic field operators, and
wish to be able to take expectation values of express
such as Eq.~17! easily. It would be especially valuable t
have the free-field operatorDF

1(r t) farthest to the right. Be-
cause the~initial! free electromagnetic field is assumed to
in the coherent state, in an expectation value this oper
would then reduce to a multiplicative classical field: the
lation
,
f

s
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^ODF
1~r t !&5^O&^DF

1~r t !& ~18!

applies to any operatorO. Evidently we need commutator
between atom operators and free-field operators, so tha
may move the latter to the desired positions.

Any atom operator, of course, commutes with the to
electric displacement operatorD6 at the same time. Thus
from Eq. ~4! we have

Q5@cg~ r̃ t !,DF
1~r t !#

52e0E
2`

t

dt8E d3r 8S~dg8e ;r2r 8,t2t8!

3@cg~ r̃ t !,cg8
†

~r 8t8!ce~r 8t8!#. ~19!

Here we are preparing for the eventuality that the commu
tor is required for two different field points.

The standard way of dealing with vacuum fields in qua
tum optics is the duo of Born and Markov approximation
the atom operators evolve as if no electromagnetic fie
were present~Born! during the short vacuum correlatio
time ~Markov! @15#. For implementations of this idea in th
Heisenberg picture see, e.g.,@16–18#. We evaluate the com
mutatorQ under an approximation which, we think, is th
field-theory equivalent of the standard Born and Markov a
proximations: We assume that during the time it takes rad
tion reaction effects to assert themselves, the atom fie
evolve as if they were completely noninteracting. We te
porarily restore the explicit notation for magnetic quantu
numbers, and write the Born-Markov approximation for E
~19! as

cgm~r t8!5
1

AV(
k
ei [k•r2ek~ t82t !]bgmk~ t !,

~20!

ceM~r t8!5
1

AV(
k
ei [k•r2v0~ t82t !]beMk~ t !.

Here ek5\k2/2m gives the dispersion relation for an ato
with massm, b’s are boson operators, and the sums run o
the wave vectorsk appropriate for the quantization volum
V. In the standard continuum limit the relevant commuta
becomes

@cgm~ r̃ t !,cgm9
†

~r 8t8!#5
dmm9
~2p!3

E d3k eik•~ r̃2r8!2 i ek~ t2t8!.

~21!

We useS from Eq. ~5a!, the commutator from Eq.~21!,
cgm8
† from ~20!, and add the conventional convergence fac

e2ht to the time integral. Equation~19! is cast in the form

Q5
2 ic

16p3AV (
K ,M8

eiK• r̃beM8KE
0

`

dt e2htE d3q

3eiq•~ r̃2r !e2a2q2/4 q
q

q
3S qq3dmM8D

3~eicqt2e2 icqt!e2 i eK2qt1 iv0t. ~22!
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55 517QUANTUM FIELD THEORY OF COOPERATIVE ATOM . . .
Our final approximation is to ignore the c.m. energies
comparison with the energy of the internal transition of t
atom; we writev02eK2q.v0.V. The result is interesting

Q52e0E
0

`

dt S~dge ; r̃2r ,t!eiVtce~ r̃ t !. ~23!

The time integral is the same as the definition of the ker
S8(dge ; r̃2r ) in Eq. ~9!, albeit still containing the cutoff pa
rametera. The cutoff is truly needed: in our immediate a
plication to Eq. ~17! we are to setr̃5r , and without the
cutoff we would have to contend with a pernicious singul
ity of the typed(r )/r 3. For a small but nonzeroa, the result
is

@cg~r t !,DF
1~r t !#5dgeS 2p23/2

3a3 2 i
v0
3

6pc3Dce~r t !. ~24!

Given the sum rule for the dipole moment matrix e
ments, Eq.~A15!, the relevant terms in Eq.~17! become

ċe~r t !52 iv0ce~r t !1
i

\e0
deg•DF

1~r t !cg~r t !•••

52 iv0ce~r t !2Fg1 i
2D2Ap

3p2e0\a3Gce

1
i

\e0
deg•cg~r t !DF

1~r t ! . . . , ~25!

whereD is the reduced dipole moment matrix element. T
imaginary part in the second term on the right-hand side
Eq. ~25! diverges as the photon momentum cutoff goes
infinity with a→0. This part, after a proper renormalizatio
contributes to the Lamb shift. From now on we assume t
the Lamb shift is already included in the transition fr
quency, and ignore thea23 term in Eq.~25!. What remains
is the familiar spontaneous linewidth of the atomic transitio

g5
D2v0

3

6p\e0c
3 . ~26!

There are no divergence problems with the commutato
cg andDF

1 if the position arguments are different. We sim
ply write

@cg~ r̃ t !,DF
1~r t !#52e0S8~dge ;r2 r̃ !ce~ r̃ t !. ~27a!

In fact, if the divergent in-phase part of the dipole field
r̃5r is ignored ~or incorporated into the Lamb shift!, we
may interpret Eq.~27a! to be valid even forr̃5r .

By the same token, we may carry out all commutat
between atom fields and free electromagnetic fields. The
additional nonvanishing commutators that play some role
this paper are

@cg
†~ r̃ t !,DF

2~r t !#5e0ce
†~ r̃ t !@S8~dge ;r2 r̃ !#* , ~27b!

@ce~ r̃ t !,DF
2~r t !#52e0cg~ r̃ t !@S8~dge ;r2 r̃ !#* . ~27c!

At this point we restore our convention of slowly varyin
fields. We also add another assumption to the effect that l
l

-

e
f
o

at

,

f

t

s
o
n

ht

has ample time to propagate across the atomic sample du
the time that it takes the slowly varying fields to chan
appreciably. This permits us to ignore propagation delays
the time arguments of the slowly varying fields. The retard
time td is simply replaced by the external timet. We have
thus obtained an equation of motion for the excited-st
atom field that contains an explicit radiative damping,

ċe~r !5~ id2g!ce~r !1
i

\e0
deg• Hcg~r !DF

1~r !

2dg8e8cg8
†

~r !ce8~r !cg~r !

1e0E d3r 8S8~dg8e8;r2r 8!

3cg8
†

~r 8!ce8~r 8!cg~r !J . ~28!

Here, and in our subsequent expressions, the common
t is omitted in the notation.

Unlike in the ordinary treatments of spontaneous emiss
in the quantum optics of an isolated atom, no short vacu
correlation time suggests itself in our formulation. The use
the free-field evolution as in Eqs.~20! during the ‘‘vacuum
correlation time’’ may thus seem like anad hocassumption.
This approximation, however, did produce spontane
damping and Lamb shift in accordance with the one-at
theory. Of course, even in standard quantum optics
atomic variables do not evolve completely freely during t
vacuum correlation time. Spontaneous emission itself,
well as external driving electromagnetic fields and collisio
between the atoms in principle affect spontaneous emiss
but at ordinary conditions for laser spectroscopy these in
ences are negligible@15#. We conjecture that the same a
plies in our field-theory version of spontaneous emissi
Finally, ignoring c.m. energies in comparison with the e
ergy of the atomic transition is nothing new either. This is
standard approximation in the derivation of spontane
emission in the theory of light pressure@19#. If such energies
were included, a velocity-dependent spontaneous emiss
rate would emerge in manifest contradiction with spec
relativity @20#.

C. Hierarchy for operator products

A particularly relevant atomic variable is the polarizatio
operator~14!, which acts as the source for secondary rad
tion. Generalizing slightly, we now embark on a study of t
time evolution of the operator productcg

†(r )ce(r ).
We have in mind situations in which collisions and c.m

motion of the ground-state atoms have come to a steady
before the driving light is turned on. We regard the exter
field as a small perturbation, so that ground-state atoms
main materially unperturbed in the presence of the light.
the final item, we assume that collisions and c.m. motion
the ground-state atoms take place on a time scale m
longer than the spontaneous emission time scaleg21. They
are therefore not expected to interfere with spectrosco
probing of the atomic transition. Under these assumptions
will henceforth ignore the collision terms and the c.m. ev
lution of the ground-state atoms altogether. Nonethele
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mathematical consistency dictates that in the intermed
steps of our calculations we take into account some li
driven evolution even for the ground-state atoms.

We thus have the equation of motion from Eqs.~15b! and
~28!,

d

dt
cg
†ce5~ id2g!cg

†ce1
i

\e0
deg8• Hcg

†cg8DF
12cg

†P1cg8

1e0E d3r 8cg
†S8~P1~r 8!,r2r 8!cg8J

2
i

\e0
de8g• Hce8

† ceDF
12ce8

† P1ce

1e0E d3r 8ce8
† S8~P1~r 8!,r2r 8!ceJ , ~29!

where we have shown explicitly only the nonlocal positi
dependence. Generalizing, we are evidently about to deri
hierarchy of equations for operators of the typeP1,
cg
†P1cg , cg

†cg
†P1cgcg , . . . , with different position argu-

ments for the different fields.
Now, light has to be present in order to produce exci

atoms. Each excited-state field corresponds to one orde
the strength of the driving light. To first order inDF

6 we
might thus ignore the second term on the right-hand side
Eq. ~29! altogether. This is, generally speaking, what we w
do: only retain those products of operators that involve
most one of the operatorsDF

1 , DF
2 , ce , or ce

† . However,
caution must be exercised for two reasons. First, we
eventually arrange all atom fields to normal order; creat
operators to the left, annihilation operators to the right.
addition, we move the free-field operators to prescribed
sitions. In the process commutators are generated that
te
t

a

d
in

of
l
t

ll
n

-
ay

be of different order in the strength of the driving field tha
the original terms. Second, some of the commutators are
out divergent, analogous to the Lamb shift. It may be sho
that such extra Lamb shifts cancel exactly, order by orde
the strength of the driving field, but the cancellation
course fails if the calculations are not consistent in the
ders. We will not dwell on the latter aspect anymore, b
simply ignore all orders higher than the first immediately
the point when the operators have been brought to the
sired order.

We illustrate the process of deriving the hierarchy
equations for operator products with a detailed treatmen
the time evolution of a particular product,

d

dt
@cg1

† ~r 8!cg
†~r !ce~r !cg

18
~r 8!#

5F ddtcg1
† ~r 8!Gcg

†~r !ce~r !cg
18
~r 8!

1cg1
† ~r 8!F ddtcg

†~r !ce~r !Gcg
18
~r 8!

1cg1
† ~r 8!cg

†~r !ce~r !
d

dt
cg

18
~r 8!. ~30!

In the way of preparation, let us first note from Eq.~4!
and its Hermitian conjugate that the electric displacem
may be written in the form

D65DF
61DS

6 , ~31!

where the source termDS
6 is a normal-ordered combinatio

of atom fields. We begin our analysis with the third term
the right-hand side of Eq.~30!. By virtue of Eqs.~15b! and
~16! we first have
ation
hird
t as the
ll

lly, the
s. The
cg1
† ~r 8!cg

†~r !ce~r !
d

dt
cg

18
~r 8!5

i

\
cg1
† ~r 8!cg

†~r !ce~r !dg
18e8
•E2~r 8!ce8~r 8!

5
i

\e0
cg1
† ~r 8!cg

†~r !ce~r !dg
18e8
•@D2~r 8!2P2~r 8!#ce8~r 8!

5
i

\e0
@cg1

† ~r 8!cg
†~r !dg

18e8
•D2~r 8!ce~r !ce8~r 8!2cg1

† ~r 8!cg
†~r !ce~r !dg

18e8
•P2~r 8!ce8~r 8!#

5
i

\e0
@cg1

† ~r 8!cg
†~r !dg

18e8
•DS

2~r 8!ce~r !ce8~r 8!1cg1
† ~r 8!cg

†~r !dg
18e8
•DF

2~r 8!ce~r !ce8~r 8!

2cg1
† ~r 8!cg

†~r !ce~r !dg
18e8
•P2~r 8!ce8~r 8!#. ~32!

Since the total displacementD2 commutes with all atom fields, we first moved it between atom creation and annihil
operators. The term involving the source fieldDS

2 is then readily in normal order. In addition, here the source field term is t
order in the perturbation, so it may be omitted. However, we are not yet done with operator orderings. First, jus
free-field operatorDF

1 is profitably moved to the right of atom operators, the free-field operatorDF
2 should be transported a

the way to the left. By virtue of Eq.~27b!, this leaves behind two commutator terms. Nevertheless, both the term withDF
2

remaining and the commutators are formally third order in the strength of the driving field, and we ignore them all. Fina
term involvingP2 is not yet in normal order, but it may be made so easily by using the commutators of the atom field
rearranged term is third order and negligible, but the generated commutator is first order. We eventually have
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cg1
† ~r 8!cg

†~r !ce~r !
d

dt
cg

18
~r 8!52

i

\e0
dg

18e8
•deg9d~r2r 8!cg1

† ~r 8!cg
†~r !cg9~r 8!ce8~r 8!. ~33!

The same analysis may be carried out with the other two terms in Eq.~30!. The first term contributes nothing in the firs
order, while the second term gives a homogeneous term proportional toid2g, a driven term proportional toDF

1 , and
something of a two-atom analog of radiation reaction. The final result is

d

dt
@cg1

† ~r 8!cg
†~r !ce~r !cg

18
~r 8!#5~ id2g!cg1

† ~r 8!cg
†~r !ce~r !cg

18
~r 8!1

i

\e0
Hcg1

† ~r 8!cg
†~r !cg8~r !cg

18
~r 8!deg8•DF

1~r !

1cg1
† ~r 8!cg

†~r !cg8~r !ce8~r 8!deg8•@e0S8~dg
18e8
;r2r 8!2dg

18e8
d~r2r 8!#

2cg1
† ~r 8!cg

†~r !deg8•P
1~r !cg8~r !cg

18
~r 8!

1e0cg1
† ~r 8!cg

†~r !E d3r 9deg8•S8~P1~r 9!;r 92r !cg8~r !cg
18
~r 8!J . ~34!

Continuing in this manner, we obtain the equations of motion for an entire hierarchy of products of atomic operat
before, we put the positive-frequency free-field operators to the right, all atom operators to normal order, and then k
the terms that are first order in the perturbation strength. The full result is

d

dt
cgn
† ~rn! . . .cg1

† ~r1!ce~r1!cg
28
~r2! . . .cg

n8
~rn!

5~ id2g!cgn
† ~rn! . . .cg1

† ~r1!ce~r1!cg
28
~r2! . . .cg

n8
~rn!

1
i

\e0
H cgn

† ~rn! . . .cg1
† ~r1!cg~r1!cg

28
~r2! . . .cg

n8
~rn!deg•DF

1~r1!

2cgn
† ~rn! . . .cg1

† ~r1!deg•P
1~r1!cg~r1!cg

28
~r2! . . .cg

n8
~rn!

1e0cgn
† ~rn! . . .cg1

† ~r1!E d3r 8deg•S8„P1~r 8!;r12r 8…cg~r1!cg
28
~r2! . . .cg

n8
~rn!

1e0cgn
† ~rn! . . .cg1

† ~r1!cg~r1!(
k52

n

cg
28
~r2! . . .cg

k218 ~r k21!ce8~r k!cg
k118 ~r k11! . . .cg

n8
~rn!deg•W~dg

k8e8
;r12r k!J ,

~35!
el

h
r-
e

nd

A

-

nt
where the notation in the last term implies thatcg
k8
(r k) is

missing from thek term of the sum. We have defined

W~D;r !5S8~D;r !2
1

e0
Dd~r !5K ~D;r !2

1

3e0
Dd~r !.

~36!

This is precisely the classical expression of the electric fi
~not displacement! of a dipoleD residing at the origin, as
measured at the pointr . Even the peculiard-function diver-
gence of the dipolar field at the origin@14# is there.

D. Hierarchy for correlation functions

By taking expectation values of the operator hierarc
~35!, we obtain a hierarchy of equations of motion for co
relation functions. In order to simplify, in the rest of th
paper we only consider aJg50→Je51 transition. Then
there are no Zeeman substates in the ground level, a
single g suffices in all of the Eqs.~35!. The three excited
Zeeman states are also handled easily; cf. Sec. 2 of the
pendix.
d

y

a

p-

We define a succession of correlation functions

P1~ ;r1!5^cg
†~r1!dgece~r1!&[^P1~r1!&,

P2~r1 ;r2!5^cg
†~r1!P

1~r2!cg~r1!&, ~37!

P3~r1 ,r2 ;r3!5^cg
†~r1!cg

†~r2!P
1~r3!cg~r2!cg~r1!&,

. . . ,

and similarly

r1~r1!5^cg
†~r1!cg~r1!&,

r2~r1 ,r2!5^cg
†~r1!cg

†~r2!cg~r2!cg~r1!&, ~38!

. . . .

Pk(r1 , . . . ,r k21 ;r k) is the correlation function of the polar
ization at r k and the atom density atk21 positions
r1 , . . . ,r k21, and rk is a k-point density correlation func-
tion. All of these are normally ordered.

We finally reiterate that the driving field is in a cohere
state, so that the factorization~18! is warranted. In fact, with-
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out further ado, we letDF
1 stand for theexpectation valueof

the coherent free field, or, equally well, for a classical in
dent field. It is now a simple matter to derive a hierarchy
equations for the correlation functions from the opera
equations~35!. We consolidate the results into the form

Ṗ1~ ;r1!5~ id2g!P1~ ;r1!1 ikr1~r1!DF
1~r1!

1E d3r 2G~r12r2!P2~r1 ;r2!, ~39a!

Ṗ2~r1 ;r2!5~ id2g!P2~r1 ;r2!1G~r22r1!P2~r2 ;r1!

1 ikr2~r1 ,r2!DF
1~r2!

1E d3r 3G~r22r3!P3~r1 ,r2 ;r3!, ~39b!

Ṗ3~r1 ,r2 ;r3!5~ id2g!P3~r1 ,r2 ;r3!

1G~r32r1!P3~r3 ,r2 ;r1!

1G~r32r2!P3~r1 ,r3 ;r2!

1 ikr3~r1 ,r2 ,r3!DF
1~r3!

1E d3r 4G~r32r4!P4~r1 ,r2 ,r3 ;r4!,

. . . . ~39c!

We have defined the scalar constant

k5
D2

\e0
, ~40a!

and the 333 tensor

Gi j ~r !5 ikH F ]

]r i

]

]r j
2d i j“

2G eikr4pr
2d i jd~r !J . ~40b!

The first two equations of the hierarchy~39! coincide ex-
actly with the results of Morice, Castin, and Dalibard@9#.
These authors do not proceed any further, but their meth
which at this point had become tantamount to classical e
trodynamics, undoubtedly could have yielded the entire h
archy.

The terms in Eqs.~39! with id2g obviously come from
the damped free evolution of the polarization in each co
lation function, and the term}DF

1 corresponds to excitation
of a ground-state atom by the driving light to make polariz
tion. To grasp the dual role of the tensorG, let us consider
the equation of motion forP2(r1 ;r2) as an example, the
correlation function of polarization atr2 and density atr1.
The integral term obviously characterizes processes in w
a dipole at yet another positionr3 radiates and thereby pro
motes a ground-state atom atr2, so that density become
dipole density. On the other hand, the term withG(r22r1)
describes photon exchange between the two sitesr1 and r2;
an excited atom radiates atr1 and falls to the ground state
while the emitted radiation promotes an atom atr2 to the
excited state.

We have implemented several approximations. The m
relevant physical assumption is the perturbative limit w
respect to the strength of the driving light, the most co
spicuous technical assumption is theJg50→Je51 transi-
-
f
r

d,
c-
r-

-

-

h

st

-

tion. However, Eqs.~39! do not contain any assumption
concerning spontaneous emission except for our field-the
version of the Born and Markov approximations. Moreov
there are no assumptions,ad hocor otherwise, concerning
multiple scattering of light or resonant dipole-dipole intera
tions; these are included exactly. Hence so are collec
linewidths and line shifts.

As far as the interactions of atoms with electromagne
fields are concerned, we have regarded the atoms as p
dipoles. For real atoms at short distances, when higher m
tipoles and electron exchange become relevant, this assu
tion evidently fails. The relevance of contact interactions a
d-function contributions to the dipolar field is questionab
as both operate atzero distance between the atoms onl
Now, real atoms cannot overlap because of the hard cor
the interatomic potential. A reader troubled by thed func-
tions may therefore want to consider cutting off and sett
to zero all correlation functions at distances between the
oms shorter than the typical length scale of a molecu
bond. The effect is that alld-function contributions to the
field propagatorG of Eq. ~40b! should be omitted. As the
derivatives ofeikr /r also produced functions, such an omis
sion is tantamount to replacing the term2d i jd(r ) by
2 2

3d i jd(r ). However, in the present paper we use the pro
gator exactly as given in Eq.~40b!.

III. EXAMPLES

In this section we illustrate the correlation function hie
archy with a few simple examples. At this time we ha
made little progress toward a full, exact solution of the hi
archy ~39! in any nontrivial situation. Evidently, radically
different approaches are needed. We hope that either
selves or our readers will in the end be inspired to come
with a successful solution of, say, the optical response o
Bose-Einstein condensate~BEC! in the limit of truly dense
sample,rl3@1.

A. Semi-infinite BEC without collective coupling

1. Nature of condensate

An ideal Bose condensate of noninteracting particles
made of a macroscopic number of particles in the same o
particle quantum state. Traditionally, the condensate is
scribed by a macroscopic wave function, whose abso
square gives the particle density, and which also has a ph
More in the vein of quantum optics, one could assume t
the condensate is in a coherent state, albeit with an unkn
phase. In normally ordered operator expressions the field
eratorcg then behaves as ac number. We write

rk~r1 , . . . ,r k!5^cg
†~r1! . . .cg~r1!& ~41!

.cg* ~r1! . . .cg* ~r k!cg~r k! . . .cg~r1!

5cg* ~r1!cg~r1! . . .cg* ~r k!cg~r k!

5^cg
†~r1!cg~r1!& . . . ^cg

†~r k!cg~r k!&

5r1~r1! . . . r1~r k!. ~42!



o
ti
al
on

it
la
ti
al

n-
a

n
m

it
th

lie

ne

o
ol

e-
-
se
t
s,

t
th
r-

pli-

he

-

riz-
al
ely
ave
a

ive
is
is-
of
igh
n-

of

for

in-

55 521QUANTUM FIELD THEORY OF COOPERATIVE ATOM . . .
In other words, density correlation functions factorize. F
the purposes of the present paper, we take the factoriza
of normally ordered density correlation functions as the h
mark of the condensate even for a weakly interacting c
densate. We ignore noncondensate atoms altogether.

Contrary to the experimental realities, we ignore the fin
dimensions of the condensate. We cannot outright dec
r1(r ) as a constant all over space, because propaga
through an infinite medium would cause extinction of
light before it reaches any position with finiteur u. Instead, we
assume that a homogeneous condensate with densityr fills
the half-spacez>0. We assume that the incident and i
duced radiations as well as the induced polarizations
propagate in thez direction. Finally, as we have themg50
spherically symmetric ground state that cannot exhibit a
directional preferences, we take all fields to have the sa
transverse polarizationê. In particular, the initial free field is
written

DF
1~r !5DF ê e

ikz. ~43!

This has the dispersion relation of light in vacuum, an odd
in the presence of matter. In fact, in accordance with
Ewald-Oseen extinction theorem@21#, it will turn out that the
matter responds with a field that exactly cancels the app
field.

2. Optical response without collective coupling

We solve the response by ignoring the collective li
shifts and dampings, i.e., thoseG terms in Eqs.~39! that do
not appear inside integrals. It turns out that the simplest c
ceivable ansatz, a fully factorized, damped plane-wave s
tion of the form

Pn~r1 , . . . ;rn!5H Prn21ê eik8zn, z1>0, . . . ,zn>0

0 otherwise
~44!

succeeds for suitable choices ofP andk8, with Im(k8).0.
To see this, we need the integral

E
z2>0

d3r 2 ê* •G~r12r2!•ê e
ik8z2

5 ikF k2

k822k2
eik8z11

k82

2k~k2k8!
eikz1G , ~45!

where the vectorê takes care of the polarizations. The int
gral is valid for z1.0. For z1,0 the integral yields a re
flected wave}e2 ikz instead, but we do not consider this ca
any further. With the ansatz~44!, the integrals on the righ
hand sides of Eqs.~39! produce sums of two exponential
one with the wave numberk appropriate for light in vacuum
and the other with the wave numberk8 for light in the me-
dium. In steady state of Eqs.~39! the vacuum componen
}eikzmust cancel the corresponding free-field terms, and
remainingeik8z term must pair up with the polarization co
relation functionsPn . All Eqs. ~39! then reduce to the fol-
lowing two conditions:
r
on
l-
-

e
re
on
l

ll

y
e

y
e

d

n-
u-

e

S id2g1
irkk2

k822k2DP50, ~46a!

DF1
k82

2k~k2k8!
P50 . ~46b!

The first one gives the wave numberk8, and the second one
may then be read as a condition for the polarization am
tudeP.

One expects that the total displacement from Eq.~4!

should be of the formDê eik8z as well. With the choice
~46b!, the vacuum type contributionseikz indeed cancel. We
have the condition for the polarization amplitude and t
amplitude of electric displacement,

D5
k82

k822k2
P. ~47!

This implies that an electric field of the formEê eik8z also
propagates in the medium, with the amplitude given by

E5
D2P

e0
5

1

e0

k2

k822k2
P. ~48!

As is customary, we define the refractive indexn in such a
way thatk85nk, and susceptibilityx such thatP5e0xE.
Equations~46!–~48! immediately give the explicit expres
sions

n2215x52
rk

d1 ig
~49!

for these quantities.
The remarkable feature of the result~49! is that it is so

unremarkable: susceptibility is obtained as atomic pola
ability times atom density. This is precisely the convention
column density approach that the experimenters routin
use to analyze their BEC results. In other words, we h
proven that, for a plausible model of the BEC and within
precisely formulated approximation that ignores collect
linewidths and line shifts, the column density approach
exact. We regard this as an important result, in that it d
plays precisely and explicitly the underlying assumptions
the column density arguments. The flip side is that, at h
density, simply ignoring the collective effects is another u
controlled approximation.

B. Density expansion to second order

In the present section we review the density expansion
Morice, Castin, and Dalibard@9# from the point of view of
our development. In effect, they truncate the hierarchy
correlation functions by writing

P3~r1 ,r2 ;r3!.
r2~r1 ,r2!

r~r2!
P2~r2 ;r3!. ~50!

If ~and probably in some fairly strong sense only if! one
inserts this particular factorization into Eq.~39b!, one may at
the same time eliminate both the free-field term and the
tegral term from the steady-state versions of Eqs.~39a! and
~39b!. This gives an algebraic relation betweenP1 andP2,
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05P2~r1 ;r2!2
G~r22r1!

~ id2g!
P2~r2 ;r1!1

r2~r1 ,r2!

r1~r2!
P1~ ;r2!.

~51!

Now assume a constant density of atomsr in the half-
spacez>0, and write the physically justifiable ansatz

r2~r1 ,r2!5r2@11w~r12r2!#. ~52!

Relation~51! and its counterpart withr1 andr2 interchanged
may then be solved to give

P2~r1 ;r2!5
r@11w~r12r2!#

12@G~r12r2!/~ id2g!#2

3FP1~ ;r2!2
G~r12r2!

~ id2g!
P1~ ;r1!G

5rP1~ ;r2!1
r

12g2
@~w1g2!P1~ ;r2!

2gP1~ ;r1!#, ~53!
te
a
a
e
-
-

ss
no

th

m

av
si
th
where we have introduced an obvious temporary notat
The reason for the split in the second form of Eq.~53! is the
following. Suppose we attempt an ansatz of the form~43!,
together withP1(;r )5Pê eik8z. Then, when Eq.~53! is in-
serted into the integral in the right-hand side of Eq.~39a!, in
accordance with Eq.~45! the termrP1 will produce a term
with the spatial dependence of the free fieldeikz. All other
contributions to the integral will behave aseik8z, at least for
z→`. Now the requirement that the free-field contributio
cancel ~the Ewald-Oseen extinction theorem@21# again!
gives one relation betweenDF , P, and k8, and Eq.~13!
furnishes another. One then obtains an equation out of wh
one may solvek8, and therefore ultimately the entire re
sponse of~a thick slab of! the gas. This equation reads

k82

k2
512

kr

d1 ig

1

11C
, ~54a!

with
C5
r

id2gE d3r w~r !e2 ik8z ê* •G~r !•ê1rE d3r @11w~r !#ê* •Fe2 ik8z@G~r !/~ id2g!#32@G~r !/~ id2g!#2

12@G~r !/~ id2g!#2
G•ê.

~54b!
try
si-

-
tem
diant
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ns
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Ingenuous as the analysis of Ref.@9# is, it elicits two
questions. First, the factorization~50! is the way it is to fa-
cilitate the mathematics, not because Eq.~50! would be a
particularly apt physics assumption. There is no guaran
that correlations between the ground-state atoms are tre
adequately. Second, while Morice, Castin, and Dalibard
gued that the result is the correct expansion in the param
rl3 up to the order (rl3)2 and, in fact, includes all multiple
scattering events between anypair of atoms, the mathemati
cal structure of the hierarchy~39! does not directly bear this
out. The difficulty is that each integral of the form
*d3r kGPk must produce a component that cancels the a
ciated free-field term. In other words, the integral does
automatically signal an increasing power inrl3. Within the
present approach, a rigorous mathematical counting of
powers ofrl3 seems elusive.

C. Resonant dipole-dipole interaction of two atoms

Let us take two atoms with small nonoverlapping c.
wave packetsf6(r ) centered aroundr6 . Inasmuch as the
sizes of the wave packets are much smaller than the w
length of the exciting light, for the purposes of the analy
of optical response we may write the atom density and
density correlation function as

r1~r1!5uf1~r1!u21uf2~r1!u2.d~r12r1!1d~r12r2!,

r2~r1 ,r2!5uf1~r1!u2uf2~r2!u21uf1~r2!u2uf2~r1!u2

.d~r12r1!d~r22r2!1d~r22r1!d~r12r2!.

~55!
e
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To simplify the results further, we assume that the geome
of the situation is such that for the driving light at the po
tions of the atoms we haveDF

1(r1)5DF
1(r2)[DF

1 . In par-
ticular, this is justified if the atoms are well within a wave
length of one another. In such a case the two-atom sys
may be discussed in terms of Dicke states, some superra
and some subradiant. The field configuration we have cho
does not excite the subradiant states at all, so these will
come up in our analysis.

Since we have two atoms present, all correlation functio
referring to more than two atoms vanish:rn50 andPn50
for n53,4, . . . . The steady state of the hierarchy~39! is
then found trivially:

P1~ ;r1!5p@d~r12r1!1d~r12r2!#, ~56!

with

p52
ik

~ id2g!1G
DF

1 . ~57!

Unraveling Eq.~57! ~with the 333 tensorG in the de-
nominator! gives a complicated expression that depends
the polarization of the driving lightDF

1 , the direction be-
tween the atoms, and the distance between the atoms,r . The
main features, however, are intuitively obvious. Forr!l the
optical response shows a split resonance at

d5
k

4pr 3
, d52

k

2pr 3
. ~58!
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The configurations that produce only one or the other
these resonance are such that the polarization of the dri
field ~and, hence, of the induced dipoles! is perpendicular or
parallel to the vector joining the dipoles, respectively. The
correspond to the doubly degeneratepu and the nondegen
eratesu configurations of the molecule consisting of the tw
atoms. The cooperative width of the resonances is 2g instead
of the one-atom linewidthg. Incidentally, the subradian
states that are invisible within our approximations cor
spond to the molecular configurationspg and sg , which
appropriately do not have dipole coupling to the molecu
ground state.

Because our theory is linear in the external field, it sho
not come as a surprise that exactly the same dipole-di
response ensues for two classical, isotropic, charged
monic oscillators. In such a calculation one may want to
the one-oscillator dampingg in by hand in order to dispens
with an explicit treatment of the divergent radiation reactio
Nonetheless, the collective linewidth and dipole-dipole int
actions are easily derived from the classical analysis of
radiation that the oscillators exchange among themselves
the other hand, the molecular analogy also hints at so
aspects of physics that are missing from our formulati
First, once more, at close enough distances two atoms
no longer be regarded as point dipoles. Second, since
have ignored all c.m. evolution, the possibility of quantiz
vibrational states of the molecules and the ensuing opt
resonances have fallen by the wayside.

As the connection of our hierarchy to dipole-dipole inte
actions has now come up explicitly, we should point out t
there are numerous discussions of two- andn-atom re-
sponses in the literature in which~in effect! the dipole-dipole
interaction is derived~in effect! by eliminating vacuum elec
tromagnetic fields with the aid of Born and Markov appro
mations; see, e.g.,@16#. As it comes to dense and/or dege
erate gases, it seems that dipole-dipole interactions are g
to occupy an increasingly prominent position in theory a
eventually perhaps in experiments as well. ‘‘Nonlinear at
optics’’ @22–25#, in which the self-interaction of the atom
wave derives from dipole-dipole interactions, is a promin
example. In fact, the analysis of Zhang and Walls@23# in
terms of Heisenberg picture field operators is in spirit qu
close to our treatment, and it seems plausible that our co
lation function hierarchy could also be derived from t
Schrödinger picture master equation as presented by Le
Meystre, and Wright@24#.

D. Prospects of exact solution

Dipole radiation presents mathematical difficulties both
short and long distances. One has 1/r 3, and indeed a
d-function divergence at short distances, which means
the results are sensitive to short-range correlations betw
the atoms. Also, the dipole interaction falls off as 1/r at large
distances. Integrals involving the dipole interaction are
absolutely convergent on the falloff of the interaction alon
and local approximations of the type

E d3r 8G~r2r 8! f ~r 8!. f ~r !E d3r 8G~r2r 8!

cannot be made. There may be a global coupling between
f
ng

e

-

r

d
le
ar-
t

.
-
e
n
e
.
ay
e

al

t

ing
d

t

e
e-

z,

t

at
en

t
,

he

electromagnetic fields and the polarization reaching acr
the entire sample. In the face of such mathematical haza
any uncontrolled approximation should be viewed with s
picion. An essentially exact, most likely numerical, solutio
of the hierarchy~39! appears highly desirable.

The idea of attempting a direct numerical solution of t
hierarchy of integral equations~39! in any conceivable future
is clearly stillborn. Instead, on several occasions we h
seen hints of an alternative. We noted in our treatment of
atoms that in the limit of low light intensity the atoms a
like classical charged harmonic oscillators. Moreover, ev
though the derivation was in terms of commutator proper
of various fields, both the shift and the damping of the ato
associated with the dipole-dipole interaction could be view
simply as manifestations of the classical radiation transm
ted from one atom to the other. It is conceivable that a pro
~stochastic! spatial distribution of classical radiators cou
share the correlation function hierarchy~39!. The hierarchy
might thus be solved by simulating a system of classi
atoms and classical electromagnetic fields numerically. Ho
ever, so far we have no mathematically rigorous prescript
for such a simulation, let alone a practical implementatio

IV. CONCLUDING REMARKS

We have presented a fully quantum-mechanical, care
analysis of the response of a gas, possibly degenerate
electromagnetic fields. The main technical ingredients
the field-theory version of Born and Markov approximation
and procedures to move atom fields and electromagn
fields to a certain~basically normal! order. The outcome is a
hierarchy of equations of motion for atomic correlation fun
tions, specifically developed in this paper for the limit of lo
light intensity.

Under our assumptions, notably low intensity, the hier
chy is in a sense obvious. In retrospect, it could have b
outright guessed on the basis of classical electrodynam
We note, though, that our methods would work in ma
generalizations that go beyond classical physics. Given
even the simplest low-intensity limit has not yet been solv
satisfactorily for the near-resonance response of a dense
we do not address more complicated cases at any len
Nonetheless, a few possible generalizations should be m
tioned.

The price of an arbitrary intensity would be a more co
plicated hierarchy containing atomic correlation functio
with more than one excited-state fieldce . In the case of an
arbitrary intensity, a two-level atom no longer behaves id
tically to a charged harmonic oscillator, so that scatte
light may be nonclassical, and statistics of the atoms m
play a nontrivial role. The hierarchy for an arbitrary intens
most likely will not admit a classical simulation. Solution
for a finite number of atoms and density expansions migh
extracted, but the full hierarchy would present a truly dau
ing problem.

While we have treated the c.m. degrees of freedom qu
tum mechanically, and at all times properly retained t
quantum statistics of the atoms, for the most part we h
ignored the c.m. Hamiltonian. We have effectively co
signed the atoms to immobility. This is by no means nec
sary. We could add the kinetic energy of the atoms, a c
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fining potential, and even molecular potential curves to
theory. Of course, this again entails complications: the en
physics of molecules made of a single atomic species, p
ton recoil, cold collisions, etc., become special cases of
approach.

The ultimate objective of our formulation is to find th
expectation value of the polarization,^P1&. Out of ^P1& one
may deduce the expectation value of the scattered field,
hence, the expectation value of the total electric field^E1&.
The flaw here is that a typical detector of light does n
measure^E1&, but rather expectation values of quadra
quantities such aŝE2E1&. One may approximate, say, th
measured intensity as

I ~r t !5^E2~r t !E1~r t !&.^E2~r t !&^E1~r t !&, ~59!

but it is known in quantum optics that this type of an a
proximation broadly speaking misses the intensity ofinelas-
tically scattered light. Our hierarchy is tantamount to a c
lection of classical linear harmonic oscillators interacti
with light, a system in which one expects elastic scatter
only. However, when one goes beyond the low-intens
limit, even a single two-level atom scatters inelastically; a
if the c.m. Hamiltonian is fully included, photon recoil give
additional inelastic scattering. To include inelastic scatter
properly, one needs to develop a hierarchy starting fr
^P2(r t)P1(r 8t)&, and proceed consistently at least in t
secondorder in the strength of the driving electric field.

Finally, to calculate the spectrum of scattered radiati
one employs the two-time correlation function of the elect
field ^E2(r t)E1(r t8)&, which is obtainable from the two
time polarization correlation function̂P2(r t)P1(r 8t8)&. To
compute the latter, one needs not only the field-theory v
sion of Born and Markov approximations, but also furth
considerations that essentially amount to the regression t
rem @26#.

The modifications of the spectrum of the scattered ligh
the presence of the condensate discussed in Ref.@10# are due
to inelastic scattering associated with photon recoil. Iro
cally, to analyze even this seemingly simple case within
present framework, we would have to generalize so that
c.m. motion is included, and also develop a quantum reg
sion theorem. Our linear hierarchy is no panacea; major g
eralizations are needed in many relevant problems. None
less, we hope that the eventual solutions of the hierarchy
means of classical simulations or otherwise, will shed lig
on the near-resonance optical response of dense at
samples.
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APPENDIX: MATHEMATICAL DETAILS

1. Dipole radiation with wave-number cutoff

We first consider the following integral involving th
propagator that governs dipole radiation from matter field
e
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I ~r!5E
0

`

dtE
r,r

d3r S~D;r ,t !. ~A1!

Here ther integral runs over a sphere of radiusr. Given the
finite-width d-function ~6!, we have

I ~r!52
1

4pe0
E
r,r

d3r “3~D3“ !
erf~r /a!

r

52
1

4pe0
E
S
dSn̂3FD3“

erf~r /a!

r G , ~A2!

where the integral now runs over the surfaceS of the sphere.
Two obvious limiting cases emerge depending on the

dius of the sphere. Forr@a the error function inside the
integral may be regarded as a constant equal to 1, and
integral gives

I ~r!5
2

3e0
D, r@a. ~A3!

In the contrary caser!a we may expand the error functio
as a power series inr . This immediately yields

lim
r→0

I ~r!50 . ~A4!

We have, in effect, shown that there is something akin t
d-function, albeit with a finite width;a, in the immediate
proximity of the originr50 in the expression*dtS.

Next consider an integral of the form

I5E
0

`

dt8E d3r 8S~D,r2r 8,t2t8!f~r 8t8!e2 iV~ t2t8!,

~A5!

where the characteristic spatial and temporal scales of
functionf satisfy

Dr@a, Dt@a/c, Dt@V21. ~A6!

Moreover, we assume that the cutoff of electromagnetic
quencies is much higher thanV, c/a@V. With these condi-
tions, it is possible to choose a lengthr such that simulta-
neously a!r!Dr and r!cV215l/2p. We divide the
spatial integral into two regions: a sphere of radiusr, and the
complement of the sphere. In the outer region the funct
da acts effectively as ad function, so we have

I r>r5
1

4pe0
E
r>r

d3r 8“3~D3“ !

3Ff~r 8,t2ur2r 8u/c!eikur2r8u

ur2r 8u G
.E

r>r
d3r 8K ~D;r2r 8!f~r 8,t2ur2r 8u/c!, ~A7!

whereK is the standard dipole radiation formula~10!. On the
other hand, in analogy with the previous expression~A3!, the
integral over the inner region gives
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I r,r5
2

3e0
Df~r t !. ~A8!

Summarizing, when the result is used in conjunction w
a smooth function ofr and t that also varies slowly in com
parison withe2 iVt, we may write

E
0

`

dtS~D;r ,t !e2 iVt5
1

4pe0
„~D3“ !3“…

eikr

r

5
1

4pe0
FK ~D,r !1

8p

3
Dd~r !G . ~A9!

In addition, this prescription comes with explicit direction
about how to handle integrals involving the dipole radiatio
Because of the 1/r 3 divergence of the dipole radiationK ,
such integrals are generally not absolutely convergent,
their values depend on how they are performed. It is cl
from our development that the proper way to carry out su
integrals is to remove a sphere of a finite radiusr around the
divergence, calculate the integral, and then letr→0. In prac-
tice, this is the same as performing the integral in spher
coordinates with the origin at the divergence, and integra
over the angles first. This is the prescription adopted in
present paper.

One may wonder where precisely our rule for handli
the 1/r 3 singularity came from, and whether there are pla
sible alternatives. Mathematically, our rule originates fro
the assumption that the photon modes were truncated
manner that preserves the isotropy of photon phase sp
We surmise, albeit without proof, that our prescription,
deed, is essentially unique if there is to be no intrinsica
favored directions for photons.

2. Vectors and matrix elements

Alongside with the Cartesian unit vectors, we introdu
the conventional circular unit vectors as
an

et

n,
tt.

iz.

ev
.

nd
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h

al
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e

-

a
ce.
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y

ê152
1

A2
~ ê11ê2!, ê05ê3 , ê25

1

A2
~ ê12 i ê2!,

~A10!

These are orthonormal, in that

ês* •ês85dss8, (
s

êsês*51 . ~A11!

We also define a shorthand for the Clebsch-Gordan co
cients,

^JeM ;1Jgu1sJgm&[^M ums&[^msuM &. ~A12!

The dipole operator is defined as

d5D(
mMs

uJeM &^M ums&^Jgmuês*1H.c., ~A13!

whereD is the reduced dipole moment matrix element th
would pertain to a transition with unit Clebsch-Gordan co
ficient. In this paper we have chosenD to be real. The reason
for the complex conjugate in Eq.~A13! is that we want a
light field with the polarizationê1 to drive transitions with
M2m51. The dipole matrix elements are explicitly

dMm5D(
s

^M ums&ês* , dmM5dMm* . ~A14!

In particular, it may be verified from the orthonormality o
the Clebsch-Gordan coefficients that these matrix elem
satisfy

(
m

dMm•dmM85D
2dMM8. ~A15!

In the special caseJg50→Je51, we have

^21u021&5^0u00&5^11u011&51 . ~A16!
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