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Quantum field theory of cooperative atom response: Low light intensity
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We study the interactions of a possibly dense and/or quantum degenerate gas with driving light. Both the
atoms and the electromagnetic fields are represented by quantum fields throughout the analysis. We introduce
a field-theory version of Markov and Born approximations for the interactions of light with matter, and devise
a procedure whereby certain types of products of atom and light fields may be put to a desired, essentially
normal, order. In the limit of low light intensity we find a hierarchy of equations of motion for correlation
functions that contain one excited-atom field and one, three, five, etc., ground-state atom fields. It is conjec-
tured that the entire linear hierarchy may be solved by solving numerically the classical equations for a coupled
system of electromagnetic fields and charged harmonic oscillators. We discuss the emergence of resonant
dipole-dipole interactions and collective linewidths, and delineate the limits of validity of the column density
approach in terms of noncooperative atoms by presenting a mathematical example in which this approach is
exact.[S1050-294{@7)03901-3

PACS numbe(s): 03.75.Fi, 42.50.Vk, 05.30.Jp

I. INTRODUCTION optical response including all photon exchange between any
pair of atoms.
Indications of Bose-Einstein condensatidBEC) in The program carried out in Sec. Il of the present paper is

trapped alkali-metal vapors have been reported recentlgimilar to the agenda of Reff9]. We start in Sec. Il A from
[1-3]. At this point all direct probing of such condensatesour field-theory version of the Hamiltonian as in REE0],
has been carried out optically. Correspondingly, in anticipaamended with the atom-atom contact interactid8,9] that
tion of BEC and the role of light in the experiments, the derives from the Power-Zienau approach. The point of de-
optical response of degenerate atomic gases has been tharture from Ref.[9] is that we describe the atoms with
subject of active theoretical research already for quite somgquantum fields throughout. The mathematical techniques in-
time [4-12]. Aside from the interest in BEC, in an evapora- troduced in the process are analogous to the time-honored
tively cooled gas of alkali atoms one may have a homogetools in quantum optics: the field-theory version of the Born-
neously broadened, weakly interacting system at such a higklarkov approximationSec. |l B}, and procedures to move
density that there are many atoms in a cubic wavelengtmoncommuting operators to a certain advantageous order
pA\3>1. This kind of a sample would in its own right serve (Sec. Il Q. In the present paper we complete the derivation
to further our understanding of the interactions of light with by assuming the limit of low intensity for driving light. The
matter. end result in Sec. Il D is a hierarchy of equations of motion
Nonetheless, in spite of all the theoretical work, there stillfor correlation functions that involve atomic polarization at
are quite basic unsettled issues in the theory of the opticaine point and densities at 0,1 . , points in space. The low-
properties of dense and/or degenerate gases. Under the cast two equations coincide with those given in Réf.
dition pA3>1 the atoms no longer respond to the electro- In the present paper the emphasis is on the structure of the
magnetic fields individually, but their properties are modifiedtheory. To gain more insight, we examine a few simple spe-
by the presence of nearby atoms. For instance, the atontsal cases in Sec. lll. We demonstrate the exquisite subtlety
exhibit collective linewidths and line shifts. Inasmuch as itof the propagation of radiation through an atomic sample by
comes to the near-resonant response in the regikie-1,  presenting one particular set of assumptions that yields the
all treatments of the optical properties of degenerate gaseandard column density results @ptically) noncooperat-
known to the present authofiecluding ours contain uncon-  ing atoms(Sec. 1l A), and by reviewing the density expan-
trolled approximations that bear on linewidths and line shiftssion of Ref.[9] (Sec. Il B). In the case of only two atoms,
As a result, the regions of validity and the relations betweemwhat we call cooperative linewidth and line shift emerge as
different treatments tend to be somewhat ill defined. manifestations of the dipole-dipole interaction. This is dis-
A rigorous study of atom-field interactions valid regard- cussed in Sec. lll C. Here we also point out that in our limit
less of atom density, atom statistics, optical detuning, and sof low intensity of the driving light, the collective linewidth
forth, is clearly called for. The paper of Morice, Castin, andand line shift could perfectly well have been derived from
Dalibard[9] is a step in this direction. They start from a full classical electrodynamics of classical atofebarged har-
guantum-mechanical Hamiltonian, including quantized lightmonic oscillatorg. In this paper we do not attempt to derive
and internal degrees of freedom and c.m. motion of the atany new results from the hierarchy of correlation functions,
oms. However, at an early stage these authors go over tolaut the connection to classical physics points to a possible
classical treatment of the c.m. motion of the atoms. Theyuture method for exact solution of the hierarchy: classical
then derive equations of motion for a few correlation func-simulations of a system of classical atoms. A few comments
tions involving polarization and atom density, and solve theto this effect are made in Sec. Il D.
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Concluding remarks about possible solutions and extenfhe notation d,,, stands for the matrix element
sions of our hierarchy are made in the final Sec. IV. Certaingm|d|eM) of the dipole operator of one atord, We de-

mathematical details concerning the divergence of the diporote the energy level implicitly in such a way that a label of
lar field and a summary of dipole matrix elements are dea Zeeman state with a lower case refers to the ground

ferred to the Appendix. state, and an upper cabk to the excited state.
However, to simplify the notation as far as possible, we
Il. MOTION OF ATOM FIELDS are going to adopt yet another convention that is in force
unless we explicitly state otherwise. We do not write the
A. Basic dynamics of the fields magnetic quantum numbers explicitly. For instance, we write

We begin by recapping, reformulating, and extending the/e, in lieu of ey,. Also, we write the matrix elements
salient results of10]. The main items of this section are the d.,y asd,. Finally, if the same level index appears twice in
coupled evolution equations for the light and matter fieldsa product, a sum over the magnetic substates of the level is
exemplified by Egs(4) and(15). Overall, we emphasize the implied. With these conventions, we write EQ) anew as
similarities of the theory to the classical electrodynamics of L

olarizable media.
P HP:E_O [dgzel' dezgl’ﬂgzwlzlﬂel’ﬂgl
1. Hamiltonian

1 Tt

For better or worse, in this paper we regard atoms as point T 20ey0," Geygy Ve, Ve, Vi, Vo,
dipoles. A mathematically rigorous treatment produces a 1 ) tot
s-function term in the field of a dipole at the position of the T 20gs0, Aoy, U, Vo, ey Ve, ) ®
dipole, which results in a contact interaction between di- o
poles. For mathematical consistency, this time around we 2. Electromagnetic fields
therefore also keep the contact interaction generated in the Unlike in [10], and similarly to[9], we assume that there
Power-Zienau transformation from tpeA to thed- E gauge s a cutoff in the wave numbers of the photons; we multi-
[13,9]. This interaction was ignored as presumably inconseply the density of the states of the electromagnetic fields by
quential in the limit of large detuning considered in Ref. g-a%e%4 \yith >0 being a length scale. The cutoff removes
[10], but for an arbitrary detuning it may become an issue. 5| mathematical problems conceming, e.g., the exchange of

The atoms have two internal energy levels, which we lathe order of derivatives and integrals, which are abundant in
bel g for "ground” and e for “excited.” We allow for the  the theory without the cutoff. At the end of the calculations
angular momentum degeneracy of the energy levels, so thge itimately take the limiz—0.
complete specification of the internal state of an atem In spite of the change in the Hamiltonian and the added
includes the level labekr=e or g and thez component of  ¢ytoff of photon frequencies, the analysis of the electromag-
angular momentunm. \We assume dipole coupling of each netic fields proceeds almost as|[i0]. In accordance with

atom to light. o Ref. [13], it emerges from our results that what was called
In first quantization, we add to the Hamiltonian [d0]  the electric field in[10] should more properly be interpreted
the contact interaction, the polarization energy as the electric displacement divided by the permittivity of the
1 vacuum ;. We henceforth adopt this interpretation. The
= A St positive frequency part of the electric displacement is ex-
He=2e Ej di-d;o(ri—rj) @ pressed in terms of the matter fields as

Hered; andr; are the dipole operator and the center-of-mass D+(rt)=D;(rt)+eOJt dt’f d® S(dge;r—r',t—t")
position operator for théth atom. There are also divergent —

self-energies withi =j, but we ignore these as we do not e . 4
attempt a quantitative calculation of the Lamb shift. Equation Xig(r' ) ge(r't). 4

(1) displays a standard two-body interaction, which is MM this approach electric displacement and matter fields are

diately converted to Second quantization. As l_)efore, th?he primary degrees of freedor®g (rt) is the free electric
many-atom system is described by Heisenberg picture quan;

tum fieldsy,(rt), which obey the proper commutator rela- displacement that would apply if there were no coupling be-

. . : . tween matter and electromagnetic fields. The propagator that
tlons.'Whn.e much of our devglopment applies to fer.mllons 33akes the radiation from the dipole source to the field point is
well, in this paper we consider only bosons explicitly. In

terms of the atom fields, the additional polarization energy is ic o q (g
the integral of the Hamiltonian density S(D:rt)= dge P g I (I p
167 €p q q
1 x /4 T(glcat_ gicaty (53)
sze—om%z [dszl'dM2m1¢gm2¢lM2¢Elegm1
MM, ¢ DXV thsa[r—ct]—&a[r—i-ct] -
_47T60( ) Ir—r'] , (5D

+ %szmz' dMlmleMZ‘ﬂng‘/’gmzlpgml
1 ot where thes function has acquired a finite width as a result of
+20m,m,- dmlMl‘f/’sz'/'gml‘/’eMz'/’eMl]' 2) the cutoff in the photon energy spectrum,
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1 X\ 2 It should be noted that, as the dipole radiation hasrd 1/
Sp(X)= — ex;{ - (—) . (6) singularity, integrals such as E) are generally not abso-
Vra @ lutely convergent. According to Sec. 1 of the Appendix, we
. ) resolve this problem by the rule that at least in the immediate
As before, we assume that there is a dominant freque_zncyicinity of the divergencer'=r the integral is to be per-
Q in the proble% In fact, we generally assume that a fieldgrmed in spherical polar coordinates, and the angles are first
such asye(rt)e ,“and 5|,r,n|_larly for the electromagnetic {4 pe integrated over. It should also be borne in mind that the
quantities, varies “slowly” in time in comparison with 5 (7) does not apply if the functiob is singular inr.

7Qt H . . H
e~'*. From now on a notation such gg(rt) refers to the We finally consider the quantum expectation value of
slowly varying field(rt)e"", unless explicitly stated oth- gq (4). As is always done in this paper, we take the free field
erwise. to be in a coherent state. We also assume that the expectation

Based on an implicit cutoff such as we argued if10]  yque (D) is effectively monochromatic. It is physically
that § functions with plus and minus signs in EGb) con- — eyjgent that, at least in steady state, the expectation value of
spire to remove a term 5(r,—7r1) that result§ when th.e PO~ the producta,b;z,//e will then be monochromatic, and a smooth
sition d_envatlve_s act ofr —r’| .What we C.“d not reaI|ze_|s_ function ofr as well. Inasmuch as the quantum expectation
that this & functlon.does not gutrlght vamsh._ Inst_ead, LIS yalue of Eq.(4) is concerned, the transformation from kernel
smeared o a function whose integral oves still unity but g, \arnel s’ is thus allowed. Moreover, the expectation
which has a finite width of the order; see the AppendiX, e of the free field is a solution to the Helmholtz equation,

Sec. 1. From now on, as long as the !ntegral 9i%(?rator Wlﬂclsmd the functiore’®'/r is essentially the Green’s function of
the kernelS acts on any smooth functios(rt)e of r the Helmholtz differential operator:

andt in which the exponential is the dominant time depen-

dence, we write elkr
(V2+k2)(D{)=0, (V2+k2)T=—4775(r). (12)

t P
J dt’f d3r'S(D;r—r' t—t")p(r't’ )e ' ,
—o In view of Egs.(7) and(9a), from Eq.(4) we thus have

, 240 1 2\(Dt) = — +
:e_.mJ 'S (Dir—r)(r'ty). o (V2+K2)(D*)= = VX (VX (P)). (13
Classically, the polarization of the medium is defined as the
Here dipole moment per atom times the density of atoms. It is
| | therefore clear that
r—r’

ta=t= ® P (1) =dgetrg(1) (1) (14
is the retarded time. The monochromatic version of theshould be identified as thgpositive frequency part of the
propagatorS, S' may be written alternatively as gquantum-mechanical pplarlzanon operator. .
The value of Eq(13) is twofold. First, it is a local differ-
1 alkr ential equation, as opposed to the integral equa@pnSec-
S(D;r)= FEO('DX V)XV— (98 ond, it has a well-known counterpart in the classical electro-

dynamics of polarizable media. This reinforces the inter-
pretations oD andP as electric displacement and polariza-
tion operators.

or

2
S (D;r)=K(D;r) +¥Db‘(r). (9b) 3. Matter fields
° We now turn to the equations of motion of the matter
The final kernelK (D;r) is equal to the positive-frequency fields. Under the assumptions that the density of excited at-
component of the electric field from a monochromatic dipoleoms is low and that an atom moves much less than a wave-

with the complex amplitudeD, given that the dipole resides length of resonant light during the time it remains excited,
at the origin and the field is observedrat 0. The explicit ~We have the equations of motion for the fields describing

expression is, of courde4] excited- and ground-state atoms:
1 ikr . ) i N
K(Dir =7 [kz(ﬁX’D)XﬁT-i-[Sﬁ(n-’D)—’D] ‘/’e(rt):'5'/’e(rt)+gdeg'E (rt)ghg(rt), (153
TEQ
k) o - .
X r_3_r_2 e , (10) lﬁg(rt):gE (rt)'dgelpe(rt)
. Hem(r d
with —i cm ),/,g(rt)+ gi| %e(r. (15D
c
A_E k= 9 11)
=y X=¢ ( As the notation implies,
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1 OD{ (rt))=(O)Dg (rt 18
0 applies to any operataP. Evidently we need commutators
is to be interpreted as the electric field. FurthermorepPetween atom operators and free-field operators, so that we

5=0— wy is the detuning of the characteristic frequency of May move the latter to the desired positions.

the light Q from the atomic resonance frequenay. We Any atom operator, of course, commutes with the total
have carried out the rotating-wave approximation that take§lectric displacement operat@®™ at the same time. Thus
into account the dominant field frequen@y Finally,H, , is  from Ed.(4) we have

the one-particle Hamiltonian governing the ¢.m. motion of —

the atoms, and the time derivative with the subsc@ptep- Q=[¢g(rt),De(rt)]

resents collisions. t
:—eof dt’fd3r’S(dg,e;r—r’,t—t’)
4. Summary remarks -

The two-state model of quantum optics_is immediately X[l//g(?t),z//;,(r’t’)%(r’t’)]_ (19)
seen to underlie Eqg15), and Eq.(4) describes the total
field as the incident field plus the fields radiated by the di-Here we are preparing for the eventuality that the commuta-
poles, complete with propagation delays. In spite of the fator is required for two different field points.
miliar appearances, though, it should be noted that the only The standard way of dealing with vacuum fields in quan-
real approximations so far have been to ignore the c.m. maum optics is the duo of Born and Markov approximations:
tion and collisions of the excited atoms. The formulation stillthe atom operators evolve as if no electromagnetic fields
fully accounts for quantum statistics of the many-atom syswere present(Born) during the short vacuum correlation
tem, and for the quantized electromagnetic fields. The effecime (Markov) [15]. For implementations of this idea in the
of the dipole-dipole interactions on the transition frequencieHeisenberg picture see, e.fl6-18. We evaluate the com-
and linewidths of the atoms is still included. On the OthermutatorQ under an approximation which, we think, is the
hand, as we have ignored the c.m. Hamiltonian of excitedie|d-theory equivalent of the standard Born and Markov ap-
atoms, collisions between ground-state atoms and excited gbroximations: We assume that during the time it takes radia-

oms can no longer be discussed. tion reaction effects to assert themselves, the atom fields
evolve as if they were completely noninteracting. We tem-
B. Eliminating the vacuum field porarily restore the explicit notation for magnetic quantum
umbers, and write the Born-Markov approximation for Eq.

Even in the absence of applied electromagnetic fields, th
atoms bathe in vacuum fields that cause spontaneous emi
sion and Lamb shifts. The purpose of the present section is to

19) as

account for the vacuum fields. While pursuing this goal, we " (rt’)=i2 ek =gt ~vlp ()

need to be prepared for singular functions with rapid spatial om JVX gmict ™

and temporal variations. We therefore start with the general (20)
field equation(4). Moreover, for the time being we argue in 1 '

terms of the original atomic and electromagnetic fields un- Pem(rt’)=—=>, elkr=oot' =0l (1),
tempered by the exponential™. Wk

To begin with, we insert Eq4) into Eq.(15a, and obtain ) ) ) ) )
Here ¢, =#k/2m gives the dispersion relation for an atom

. . [ . with massm, b’s are boson operators, and the sums run over
Pe(rt) = —lwoipe(rt) + h_eodeg' Dr (rt) gg(rt) the wave vectork appropriate for the quantization volume
V. In the standard continuum limit the relevant commutator
—dgrer g, (1) g (1) e (1) becomes
td ’ d3 '(d R Y| =~ T T4\ — 6mm', d3k ik-(7fr’)fiek(t7t’)
+€0 t r S( g,e/,r rt—t ) [l/fgm(l’t),l/fgm,(l‘ t )] (27T)3 (S .
(21
T 141 1y
><‘/’g'(r ) her (1t )‘/’9(”)}' 17 We useS from Eq. (5a), the commutator from Eq(21),

z,/f;m, from (20), and add the conventional convergence factor

We are ultimately interested in quantum expectation val€~ 7 to the time integral. Equatiofl9) is cast in the form
ues of atomic and electromagnetic field operators, and thus

wish to be able to take expectation values of expressions _ —ic T o o[ 3
such as Eq(17) easily. It would be especially valuable to Q= m € beM’Kj0 dre f dq
have the free-field operat@; (rt) farthest to the right. Be- KoM

cause thdinitial) free electromagnetic field is assumed to be L 20, O [Q

in the coherent state, in an expectation value this operator X gld (T Ngata’s CIaX adeM')

would then reduce to a multiplicative classical field: the re- _ . , _
lation X (elcqr_ e*ICqT)e*IEK,qT‘FIa)()T. (22)
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Our final approximation is to ignore the c.m. energies inhas ample time to propagate across the atomic sample during
comparison with the energy of the internal transition of thethe time that it takes the slowly varying fields to change
atom; we writewy— ex _ = wo={). The result is interesting: appreciably. This permits us to ignore propagation delays in
the time arguments of the slowly varying fields. The retarded
time ty is simply replaced by the external tinle We have
thus obtained an equation of motion for the excited-state
atom field that contains an explicit radiative damping,

The time integral is the same as the definition of the kernel

Q=- eof:dTS(dge;?— r,7)e Ty (Tt). (23

S’(dge;"r'—r) in Eg. (9), albeit still containing the cutoff pa- . . [ N
rametere. The cutoff is truly needed: in our immediate ap- he(r)=(10—y)he(r) + h_GOdeg' g(r)De (1)
plication to Eq.(17) we are to set=r, and without the ;
cutoff we would have to contend with a pernicious singular- —dgrer thg (1) ther (1) thy(r)
ity of the types(r)/r3. For a small but nonzera, the result
'S +60f d®'S' (dgrersr—r")
-3/2 3
[ (1), DE ()] =dge] 5 —1 s | (1), (24
i 9| 343 6mce) e x¢;,(r')¢e,(r')¢g(r)}. (29

Given the sum rule for the dipole moment matrix ele-

ments, Eq(A15), the relevant terms in Eq17) become Here, and in our subsequent expressions, the common time

t is omitted in the notation.

) i Unlike in the ordinary treatments of spontaneous emission
Pe(r) = —Twoe(rt) + —deg De (rt)ghg(rt)- - - in the quantum optics of an isolated atom, no short vacuum
0 correlation time suggests itself in our formulation. The use of

20w the free-field evolution as in Eq§20) during the “vacuum

=—lwgie(rt)—| y+i 32 had e correlation time” may thus seem like @&t hocassumption.

T €Egh . . . .

This approximation, however, did produce spontaneous
i damping and Lamb shift in accordance with the one-atom
+h_60deg'd/g(rt)DE(rt) cee (25  theory. Of course, even in standard quantum optics the

atomic variables do not evolve completely freely during the

whereD is the reduced dipole moment matrix element. Thevacuum correlation time. Spontaneous emission itself, as
imaginary part in the second term on the right-hand side ofvell as external driving electromagnetic fields and collisions
Eq. (25) diverges as the photon momentum cutoff goes tgP€tween t_he atoms in principle affect spontaneous emission,
infinity with «—0. This part, after a proper renormalization, but at ordinary conditions for laser spectroscopy these influ-
contributes to the Lamb shift. From now on we assume thagnces are negligiblg15]. We conjecture that the same ap-
the Lamb shift is already included in the transition fre- Plies in our field-theory version of spontaneous emission.
quency, and ignore the 3 term in Eq.(25). What remains Finally, ignoring c.m. energies in comparison with the en-

is the familiar spontaneous linewidth of the atomic transition,ergy of the atomic transition is nothing new either. This is a
standard approximation in the derivation of spontaneous

Dzwg emission in the theory of light pressUri9]. If such energies
Y erhecd (260 were included, a velocity-dependent spontaneous emission
0 rate would emerge in manifest contradiction with special

There are no divergence problems with the commutator ofelativity [20].

¥y and D¢ if the position arguments are different. We sim-
ply write C. Hierarchy for operator products

~\ Nt Y N (Y A particularly relevant atomic variable is the polarization
[4g(rD), D (11)] €0S'(dge;r ~M)¥elrD). (279 operator(14), which acts as the source for secondary radia-
In fact, if the divergent in-phase part of the dipole field attion- Generalizing slightly, we now embark on a study of the

— ) . : : : T

F=r is ignored (or incorporated into the Lamb shiftwe  time evolution of the operator produgiy(r) e(r).

may interpret Eq(27a to be valid even for=r. We have in mind situations in which collisions and c.m.
By the same token, we may carry out all commutatorgnotion of the ground-state atoms have come to a steady state

between atom fields and free electromagnetic fields. The twhefore the driving light is turned on. We regard the external

additional nonvanishing commutators that play some role iffield as a small perturbation, so that ground-state atoms re-

this paper are main materially unperturbed in the presence of the light. As
the final item, we assume that collisions and ¢c.m. motion of
[tpg(?t),D;(rt)]:eowg('r"t)[S’(dge;r—?)]*, (270  the ground-state atoms take place on a time scale much

longer than the spontaneous emission time sgale They
[e(T1), D (rt) 1= — €othg(TH[S' (dge;r —T)1*. (2709  are therefore not expected to interfere with spectroscopic
probing of the atomic transition. Under these assumptions we
At this point we restore our convention of slowly varying will henceforth ignore the collision terms and the c.m. evo-
fields. We also add another assumption to the effect that ligHution of the ground-state atoms altogether. Nonetheless,
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mathematical consistency dictates that in the intermediatbe of different order in the strength of the driving field than
steps of our calculations we take into account some lighthe original terms. Second, some of the commutators are flat

driven evolution even for the ground-state atoms. out divergent, analogous to the Lamb shift. It may be shown
We thus have the equation of motion from E€5h) and  that such extra Lamb shifts cancel exactly, order by order in
(29), the strength of the driving field, but the cancellation of

g . course fails if the calculations are not consistent in the or-
. l ders. We will not dwell on the latter aspect anymore, but
ﬁ'/jg'/’e:(' 6=7) ‘pg'/’ﬁ ﬁ_eodeg’ ' [ ‘/’;‘/’Q’Dg_ ‘/’3P+ Yy simply ignore all orders higher than the first immediately at
the point when the operators have been brought to the de-
sired order.
We llustrate the process of deriving the hierarchy of
equations for operator products with a detailed treatment of

+E°j d3r’¢//;S'(P+(r'),r—r’)¢//g,]

_ i_de,g, [ lﬂT yeDf — lﬁT Pt e the time evolution of a particular product,
% e’ e’
d
o L, (T PN gy (1]
+eofdar’wZ/S'(PWr'),r—r')we], (29 disra TR
d
where we have shown explicitly only the nonlocal position =[a l/fgl(r')}lﬁé(f)l//e(r)l//gi(f')

dependence. Generalizing, we are evidently about to derive a
hierarchy of equations for operators of the tyf¥, v d T )
WP T g, WP Ygy, ..., with different position argu- + iy, (r )[a ‘ﬁg(r)‘ﬂe(r)}%;(r )
ments for the different fields. g

Now, light has to be present in order to produce excited , ,
atoms. Ee?ch excited-stage field correspondg to one order in + lp;l(r W;(rwe(r)ﬁ%i(r )- (30
the strength of the driving light. To first order iD; we _ )
might thus ignore the second term on the right-hand side of N the way of preparation, let us first note from He)
Eq. (29) altogether. This is, generally speaking, what we wil and its Heymmgn conjugate that the electric displacement
do: only retain those products of operators that involve aff@y be written in the form
mosf[ one of the operath;, De ., e, OF ¢Z. H_owever, . D*=D +Dg, (31)
caution must be exercised for two reasons. First, we will
eventually arrange all atom fields to normal order; creatiorwhere the source terig is a normal-ordered combination
operators to the left, annihilation operators to the right. Inof atom fields. We begin our analysis with the third term on
addition, we move the free-field operators to prescribed pothe right-hand side of Eq30). By virtue of Egs.(15b) and
sitions. In the process commutators are generated that mdy6) we first have

d i
P, (gD (1) g g7 (1) =2 g (1) (1) (1) dgrer - B (1) e (1)
i
= e YU PN g [D (1) =P~ (1) ]y (1)
i
= ﬁ—%[%l(r’)w;(r)dg;e/-D*(r’)we(r)wef(r’)—wgl(r')wg(r)%(r)dgie, P () (1]

[
= g [0, ¥g(N)dgjer- D (1)) v (1) + g (1) (1) dgger - D (1) 1) rer (1)

— 4 (PP Y1) dgrer - P (1) her (1), (32

Since the total displacemeBt™ commutes with all atom fields, we first moved it between atom creation and annihilation
operators. The term involving the source fi€ld is then readily in normal order. In addition, here the source field term is third
order in the perturbation, so it may be omitted. However, we are not yet done with operator orderings. First, just as the
free-field operatoD; is profitably moved to the right of atom operators, the free-field ope@foshould be transported all

the way to the left. By virtue of Eq(27b), this leaves behind two commutator terms. Nevertheless, both the ternDwith
remaining and the commutators are formally third order in the strength of the driving field, and we ignore them all. Finally, the
term involvingP~ is not yet in normal order, but it may be made so easily by using the commutators of the atom fields. The
rearranged term is third order and negligible, but the generated commutator is first order. We eventually have
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d i
zp;(r')w;(r)we(r)ngu'):—,L—Eodg;ef-degfﬁu—r')wgl(r'w;(r)wgff(r')wef(r'>. (33)

The same analysis may be carried out with the other two terms ii38y. The first term contributes nothing in the first
order, while the second term gives a homogeneous term proportioridi-tgy, a driven term proportional t®; , and
something of a two-atom analog of radiation reaction. The final result is

d i
a[w;(r')z,v;(r)we(r)wgi(r')]:(i5—wf;l(r')w;(rwe(r)wg;(r'w,L—EO Ug (1) (1) g (1) gy (1) e - DE (1)

+ g, (1) g1 by (1) Prer (1) dogr - [ €0S' (dgreriF —1") —dgrer S(r—17)]

— ¢4 (1) g deg - P (1) g (1) gy (1)

+eowgl<r'>¢;<r>f d3r"dog - S (PF(r");1" = 1) g (N gy (1) . (34)

Continuing in this manner, we obtain the equations of motion for an entire hierarchy of products of atomic operators. As
before, we put the positive-frequency free-field operators to the right, all atom operators to normal order, and then keep only
the terms that are first order in the perturbation strength. The full result is

d
Gi,(Ta) - g (r)Pe(r ) hgy(r2) - - gy (1)
=1 6= )y (Fn) -+ ¥, (1) Y1) Prgy(r2) - . g (Fp)

[
+ h_fo[ Yy (F) - - wgl(rl)ng(rl)wgé(rz) -+ g (T)deg DE (1)

=4 (Tn) -+ g, (r)deg P (1) Yig(r) gy (ra) - - - ! (1)

+ oty (o) - w;gmj A& deg: S'(PF(r')ira—r " Mg(ra) dhgy(r2) - . gy (1)

ol (To) - W) T gy(r2) -y (N2 V(g (Tcr) - Uiy (1) g W(dgrerira =1

(35
|
where the notation in the last term implies thbgﬁ(rk) is We define a succession of correlation functions
missing from thek term of the sum. We have defined P1(;r 1) = (4 (r)dgetbe(r1))=(P*(ry)),
1 1 . — /.7 +
W(.D,r):S/(.D'r)_e_Dé(r):K(:D,r)_s_e:Dg(r) PZ(rler) <lv[/g(r1)P (rz)ly[/g(rl)>x (37)
0 0
(36) P(r1.12:13) = (g(r ) Pi(r2) P (ra) drg(r2) hg(ra)),
This is precisely the classical expression of the electric field e
(not displacementof a dipole D residing at the origin, as o
measured at the poimt Even the peculias-function diver- ~and similarly
gence of the dipolar field at the origjd4] is there. P1(f1)=<lﬂ;(r1) Ug(rD)),
D. Hierarchy for correlation functions Pz(rl:"2):<¢g(r1)¢;(rz)lﬂg(r2) Py(ru)), (39
By taking expectation values of the operator hierarchy
(35), we obtain a hierarchy of equations of motion for cor-
relation functions. In order to simplify, in the rest of the P(rq, ... rx_1;ry) is the correlation function of the polar-
paper we only consider d,=0—J.=1 transition. Then ization atr, and the atom density ak—1 positions
there are no Zeeman substates in the ground level, andra, ... 1, andp, is a k-point density correlation func-

single g suffices in all of the Eqs(35). The three excited tion. All of these are normally ordered.
Zeeman states are also handled easily; cf. Sec. 2 of the Ap- We finally reiterate that the driving field is in a coherent
pendix. state, so that the factorizatigh8) is warranted. In fact, with-
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out further ado, we leb; stand for theexpectation valuef

tion. However, Eqs(39) do not contain any assumptions

the coherent free field, or, equally well, for a classical inci-concerning spontaneous emission except for our field-theory
dent field. It is now a simple matter to derive a hierarchy ofversion of the Born and Markov approximations. Moreover,
equations for the correlation functions from the operatorthere are no assumptionad hocor otherwise, concerning

equationg35). We consolidate the results into the form
Py(ir1) = (18— y)P1(;r) +ikpy(r)DE (1)

+J d3r2G(r1—r2)P2(rl;r2), (399

Po(ry;rp)=(i 86— y)Pa(rq;rp) + G(ro—ry)Py(rp;ryq)

+ikpa(re,ra)DE(ry)

+f d3r3G(ry—r3)Psa(ry,ry:rs3), (39b)

Pa(r1,r2:r3) = (i 86— ¥)Ps(r1,r5;r3)
+G(rg—rq)Ps(rs,ra;ry)
+G(rg—ry)Ps(ry,rs;ry)

+ikpa(ry,ra,r3)DE(r3)

+ J d3r4G(r3_r4)P4(rl1r21r3;r4)1

(399
We have defined the scalar constant
D2
K feg! (409
and the 3< 3 tensor
ikr
Gij(r):iK[ ar a—H—aijvz}m—aija(r)]. (40b)

The first two equations of the hierarcki§9) coincide ex-
actly with the results of Morice, Castin, and Dalibd@].

These authors do not proceed any further, but their method,

multiple scattering of light or resonant dipole-dipole interac-
tions; these are included exactly. Hence so are collective
linewidths and line shifts.

As far as the interactions of atoms with electromagnetic
fields are concerned, we have regarded the atoms as point
dipoles. For real atoms at short distances, when higher mul-
tipoles and electron exchange become relevant, this assump-
tion evidently fails. The relevance of contact interactions and
S-function contributions to the dipolar field is questionable,
as both operate atero distance between the atoms only.
Now, real atoms cannot overlap because of the hard core of
the interatomic potential. A reader troubled by thdunc-
tions may therefore want to consider cutting off and setting
to zero all correlation functions at distances between the at-
oms shorter than the typical length scale of a molecular
bond. The effect is that alb-function contributions to the
field propagatorG of Eq. (40b) should be omitted. As the
derivatives ofe'*/r also produce’ functions, such an omis-
sion is tantamount to replacing the term &;;6(r) by
- %b‘ij S(r). However, in the present paper we use the propa-
gator exactly as given in Eq40b).

. EXAMPLES

In this section we illustrate the correlation function hier-
archy with a few simple examples. At this time we have
made little progress toward a full, exact solution of the hier-
archy (39) in any nontrivial situation. Evidently, radically
different approaches are needed. We hope that either our-
selves or our readers will in the end be inspired to come up
with a successful solution of, say, the optical response of a
Bose-Einstein condensaBEC) in the limit of truly dense
sample,p\3>1.

A. Semi-infinite BEC without collective coupling

which at this point had become tantamount to classical elec-

trodynamics, undoubtedly could have yielded the entire hier-

archy.

1. Nature of condensate

An ideal Bose condensate of noninteracting particles is

The terms in Eqs(39) with i §—y obviously come from  made of a macroscopic number of particles in the same one-

the damped free evolution of the polarization in each correparticle quantum state. Traditionally, the condensate is de-

lation function, and the terrm DE corresponds to excitation scribed by a macroscopic wave function, whose absolute

of a ground-state atom by the driving light to make polariza-square gives the particle density, and which also has a phase.
tion. To grasp the dual role of the teng@r let us consider More in the vein of quantum optics, one could assume that

the equation of motion folP,(ry;r,) as an example, the the condensate is in a coherent state, albeit with an unknown
correlation function of polarization at, and density at;. phase. In normally ordered operator expressions the field op-
The integral term obviously characterizes processes in WhiCbratorz//g then behaves as@number. We write

a dipole at yet another positian radiates and thereby pro-

motes a ground-state atom @i, so that density becomes Pk(f1s - - r=(g(ry) - dg(re) (41
dipole density. On the other hand, the term w@&r,—r,)
describes photon exchange between the two sitemndr,; Zlﬁ;(rl) ce ng(rk) by(ri) -« Pg(re)
an excited atom radiates st and falls to the ground state,
Whil_e the emitted radiation promotes an atomrgtto the :¢§(r1) Yo(ry) .. . tp;(rk) o1
excited state.
We have implemented several approximations. The most s +
relevant physical assumption is the perturbative limit with =(g(r)Pg(ra)) - - (Pg(r) (1))
respect to the strength of the driving light, the most con-
spicuous technical assumption is thg=0—J.=1 transi- =p(ry) ...p1(ry. (42
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In other words, density correlation functions factorize. For . ipKk2

the purposes of the present paper, we take the factorization (|5— Y+ W) P=0, (469

of normally ordered density correlation functions as the hall-

mark of the condensate even for a weakly interacting con- K'2

densate. We ignore noncondensate atoms altogether. D+ =——-—~P=0. (46b)
Contrary to the experimental realities, we ignore the finite 2k(k—k")

dimensions of the condensate. We cannot outright declanle ' .
. The first one gives the wave number, and the second one
p1(r) as a constant all over space, because propagation

through an infinite medium would cause extinction of all may then be read as a condition for the polarization ampli-
X . - o tudeP.

light before it reaches any position with finitg. Instead, we .

assume that a homogeneous condensate with demgitlg One expects  that th? tﬁ(t,il d|splacem<?nt from IE4)
the half-spacez=0. We assume that the incident and in- Should be of the formDe €™ * as well. With the choice

. . k .
duced radiations as well as the induced polarizations af46b. the vacuum type contributiores* indeed cancel. We

propagate in the direction. Finally, as we have the,=0 ave the condition for the polarization amplitude and the
spherically symmetric ground state that cannot exhibit any@MPplitude of electric displacement,
directional preferences, we take all fields to have the same Kk'2
transverse polarizatiog In particular, the initial free field is D= WP' (47)
written

DY (1) =D, & alk? 3 This implies that an electric field of the forié e'*'Z also

F(r)=Dgee™ propagates in the medium, with the amplitude given by

This has the dispersion relation of light in vacuum, an oddity Eo b-P 1 k? b 48
in the presence of matter. In fact, in accordance with the e e k'P—K® (48)

Ewald-Oseen extinction theord@1], it will turn out that the
matter responds with a field that exactly cancels the applieds is customary, we define the refractive ind@xn such a

field. way thatk’=nk, and susceptibilityy such thatP=¢yxE.
Equations(46)—(48) immediately give the explicit expres-
2. Optical response without collective coupling sions

We solve the response by ignoring the collective line o . pK
shifts and dampings, i.e., tho§&terms in Eqs(39) that do n“=1=x=- S+iy (49)
not appear inside integrals. It turns out that the simplest con-
ceivable ansatz, a fully factorized, damped plane-wave soluor these quantities.

tion of the form The remarkable feature of the res(#t9) is that it is so
unremarkable: susceptibility is obtained as atomic polariz-
{ Pp"leek'm  2,>0,...2,>0 ability imes atom density. This is precisely the conventional
Pa(ry, ...;rp)= . column density approach that the experimenters routinely
0 otherwise use to analyze their BEC results. In other words, we have

(44) proven that, for a plausible model of the BEC and within a

precisely formulated approximation that ignores collective
linewidths and line shifts, the column density approach is
exact We regard this as an important result, in that it dis-
plays precisely and explicitly the underlying assumptions of
j BB, & G(r—1,)-& oik'z the c_olumn den_sity arguments. Th_e flip side is that, at high

2,20 2 ro2 density, simply ignoring the collective effects is another un-
controlled approximation.

succeeds for suitable choices Bfandk’, with Im(k’)>0.
To see this, we need the integral

2 12
=ik k ik'zq K

e s, (45

el 2t
k'?—k? 2k(k—k") B. Density expansion to second order

- L ) In the present section we review the density expansion of
where the vectoe takes care of the polarizations. The inte- \1orice Castin. and Dalibarfp] from the point of view of

gral is valid for_zk1>_0. Forz,<0 the integral yields a re- o development. In effect, they truncate the hierarchy for
flected wavexe™ "% instead, but we do not consider this casecorrelation functions by writing

any further. With the ansat@4), the integrals on the right

hand sides of Eq939) produce sums of two exponentials, pa(ry,r2)

one with the wave numbés appropriate for light in vacuum Ps(r1.r2;rs)= sz(rzirs)- (50

and the other with the wave numblet for light in the me- 2

dium. In steady state of Eq¢39) the vacuum component |f (and probably in some fairly strong sense only dhe
«e'** must cancel the corresponding free-field terms, and thenserts this particular factorization into E@9b), one may at
remaininge”"Z term must pair up with the polarization cor- the same time eliminate both the free-field term and the in-
relation functionsP,,. All Egs. (39) then reduce to the fol- tegral term from the steady-state versions of E§83 and
lowing two conditions; (39b). This gives an algebraic relation betweepand P,
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G(r,—ry) pa(ry,r2) where we have introduced an obvious temporary notation.
sz(fz;le p(—r)Pl(;rz)- The reason for the split in the second form of E5g) is the
12 (51  following. Suppose we attempt an ansatz of the fq#8),
_ . together withP;(;r)=Pe e’k'Z Then, when Eq(53) is in-
Now assume a constant density of atomsin the half-  serted into the integral in the right-hand side of E2Pa, in
spacez=0, and write the physically justifiable ansatz accordance with Eq45) the termpP; will produce a term
5 with the spatial dependence of the free fieltf. All other
r{,ro)=p [l+oe(ri—ro)l. 52 - . . i’
paArL o) =p L elri=r2)] (52 Contributions to the integral will behave a&'Z, at least for
Re|ation(51) and its counterpart Wlthl andr2 interchanged z—oo, Now the requirement that the free-field contributions

0=Py(ry;rp)—

may then be solved to give cancel (the Ewald-Oseen extinction theoref@l] again
gives one relation betweebg, P, andk’, and Eq.(13)
o pllte(ri—rr)] furnishes another. One then obtains an equation out of which
Py(raira)= 1-[G(ri—r)(i6—y)7T? one may solvek’, and therefore ultimately the entire re-
sponse ofa thick slab of the gas. This equation reads
_ G(ri—ra)
X|P1(iro) = —=<———"Pi(ir1)
(|5 7) er 1
—=1- AL (543
k? S+iy1+C’

=pP(ir2) + T ol (¢ + GIPLir2)
—gPi(Gryl, (53 with

efik’Z[G(r)/(i S—MP-[G(NI(i6—v)]?| .
1[G 5- 7T @

C:—ialiy dr ¢(r)e—ik'2é*-e(r).é+pf d3r[1+@(r)]e* -
(54b)

Ingenuous as the analysis of Réf] is, it elicits two  To simplify the results further, we assume that the geometry
questions. First, the factorizatiqb0) is the way it is to fa-  of the situation is such that for the driving light at the posi-
cilitate the mathematics, not because E80) would be a tions of the atoms we hav@; (r,)=Dg (r_)=D¢ . In par-
particularly apt physics assumption. There is no guarantegicular, this is justified if the atoms are well within a wave-
that correlations between the ground-state atoms are treatéghgth of one another. In such a case the two-atom system
adequately. Second, while Morice, Castin, and Dalibard armay be discussed in terms of Dicke states, some superradiant
gued that the result is the correct expansion in the parameteid some subradiant. The field configuration we have chosen
p\* up to the order g\3)? and, in fact, includes all multiple- does not excite the subradiant states at all, so these will not
scattering events between apgir of atoms, the mathemati- come up in our analysis.
cal structure of the hierarch39) does not directly bear this  Since we have two atoms present, all correlation functions
out. The difficulty is that each integral of the form referring to more than two atoms vanisy;=0 andP,=0
Jd3 GP, must produce a component that cancels the assder n=3,4, ... . The steady state of the hierardl3p) is
ciated free-field term. In other words, the integral does nothen found trivially:
automatically signal an increasing powergdk®. Within the
present approach, a rigorous mathematical counting of the P.Gr)=p[o(ri—r )+ 8(ri—r_)], (56)
powers ofp\® seems elusive.

with
C. Resonant dipole-dipole interaction of two atoms
Let us take two atoms with small nonoverlapping c.m. i Kk N
wave packetsp. (r) centered around.. . Inasmuch as the p=- (i6—9)+G Dr . (57)

sizes of the wave packets are much smaller than the wave-

Iength_ of the exciting light, for the purposes of th_e analysis Unraveling Eq.(57) (with the 3x3 tensorG in the de-

of optlcal response we may write the atom density and th‘?‘lominatoif gives a complicated expression that depends on
density correlation function as the polarization of the driving lighD¢ , the direction be-

p1(r) = (r) |2+ (r)|2=8(r,—r )+ 8(r—r_), tween the atoms, and the distance between the atoriisie
main features, however, are intuitively obvious. Fer\ the
pa(r1,r2)=| b+ (r)Id_(r)|2+ | (ra)? d_(r1)|? optical response shows a split resonance at
=0(ry=r)o(ro=r_)+8(ry=r)o(ry—r_). K K

(55) 0= gmrd T T o (58)
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The configurations that produce only one or the other oklectromagnetic fields and the polarization reaching across
these resonance are such that the polarization of the drivinidpe entire sample. In the face of such mathematical hazards,
field (and, hence, of the induced dipolés perpendicular or any uncontrolled approximation should be viewed with sus-
parallel to the vector joining the dipoles, respectively. Thesepicion. An essentially exact, most likely numerical, solution
correspond to the doubly degeneratg and the nondegen- of the hierarchy(39) appears highly desirable.
eratec, configurations of the molecule consisting of the two  The idea of attempting a direct numerical solution of the
atoms. The cooperative width of the resonancesyjis#atead hierarchy of integral equatiorf89) in any conceivable future
of the one-atom linewidthy. Incidentally, the subradiant is clearly stillborn. Instead, on several occasions we have
states that are invisible within our approximations corre-seen hints of an alternative. We noted in our treatment of two
spond to the molecular configurationg, and o4, which  atoms that in the limit of low light intensity the atoms act
appropriately do not have dipole coupling to the moleculardike classical charged harmonic oscillators. Moreover, even
ground state. though the derivation was in terms of commutator properties
Because our theory is linear in the external field, it shouldof various fields, both the shift and the damping of the atoms
not come as a surprise that exactly the same dipole-dipolassociated with the dipole-dipole interaction could be viewed
response ensues for two classical, isotropic, charged hasimply as manifestations of the classical radiation transmit-
monic oscillators. In such a calculation one may want to puted from one atom to the other. It is conceivable that a proper
the one-oscillator damping in by hand in order to dispense (stochastig spatial distribution of classical radiators could
with an explicit treatment of the divergent radiation reaction.share the correlation function hierarct89). The hierarchy
Nonetheless, the collective linewidth and dipole-dipole inter-might thus be solved by simulating a system of classical
actions are easily derived from the classical analysis of th@toms and classical electromagnetic fields numerically. How-
radiation that the oscillators exchange among themselves. Ggver, so far we have no mathematically rigorous prescription
the other hand, the molecular analogy also hints at som#or such a simulation, let alone a practical implementation.
aspects of physics that are missing from our formulation.
First, once more, at close enough distances two atoms may
no longer be regarded as point dipoles. Second, since we IV. CONCLUDING REMARKS
hgve .ignored all c.m. evolution, the possibility of quantizgd We have presented a fully quantum-mechanical, careful
vibrational states of the molecules and the ensuing °pt'caénalysis of the response of a gas, possibly degenerate, to
resonances have fallen by the wayside. _ _ electromagnetic fields. The main technical ingredients are
As the connection of our hierarchy to dipole-dipole inter- e fie|d-theory version of Born and Markov approximations,
actions has now come up explicitly, we should point out thatynq procedures to move atom fields and electromagnetic
there are numerous discussions of two- am@tom re-  fie|ds to a certairibasically normalorder. The outcome is a
sponses in the literature in whi¢in effec the dipole-dipole  pigrarchy of equations of motion for atomic correlation func-

interaction is derivedin effect by eliminating vacuum elec- jons, specifically developed in this paper for the limit of low
tromagnetic fields with the aid of Born and Markov approxi- light intensity.

mations; see, e.gL16]. As it comes to dense and/or degen- ~ nder our assumptions, notably low intensity, the hierar-
erate gases, it seems that dipole-dipole interactions are goingyy is in a sense obvious. In retrospect, it could have been
to occupy an increasingly prominent position In theory andytright guessed on the basis of classical electrodynamics.
eventually perhaps in experiments as well. “Nonlinear atompye note, though, that our methods would work in many
optics” [22-29, in which the self-interaction of the atom generalizations that go beyond classical physics. Given that
wave derives from dipole-dipole interactions, is a prominentayen the simplest low-intensity limit has not yet been solved
example. In fact, the analysis of Zhang and W4BS] in  gagisfactorily for the near-resonance response of a dense gas,
terms of Heisenberg picture field operators is in spirit quiteye o not address more complicated cases at any length.

close to our treatment, and it seems plausible that our corrgqonetheless, a few possible generalizations should be men-
lation function hierarchy could also be derived from thejgned.

Schralinger picture master equation as presented by Lenz, The price of an arbitrary intensity would be a more com-

Meystre, and Wright24]. plicated hierarchy containing atomic correlation functions
_ with more than one excited-state fiefgl. In the case of an
D. Prospects of exact solution arbitrary intensity, a two-level atom no longer behaves iden-

Dipole radiation presents mathematical difficulties both atically to a charged harmonic oscillator, so that scattered
short and long distances. One hag3l/and indeed a light may be nonclassical, and statistics of the atoms may
s-function divergence at short distances, which means thailay a nontrivial role. The hierarchy for an arbitrary intensity

the results are sensitive to short-range correlations betwedRoSt likely will not admit a classical simulation. Solutions
the atoms. Also, the dipole interaction falls off as af large for a finite number of atoms and density expansions might be

distances. Integrals involving the dipole interaction are no€Xtracted, but the full hierarchy would present a truly daunt-

absolutely convergent on the falloff of the interaction alone, N9 Problem.
and local approximations of the type While we have treated the c.m. degrees of freedom quan-

tum mechanically, and at all times properly retained the
3, , , 3, , quantum statistics of the atoms, for the most part we have
f dr'G(r—r")f(r )=f(f)f d>r'G(r—r’) ignored the c.m. Hamiltonian. We have effectively con-
signed the atoms to immobility. This is by nho means neces-
cannot be made. There may be a global coupling between treary. We could add the kinetic energy of the atoms, a con-



524 JANNE RUOSTEKOSKI AND JUHA JAVANAINEN 55

fining potential, and even molecular potential curves to the o 5
theory. Of course, this again entails complications: the entire I(p)= JO dtJ _ dsr (D;r,t). (A1)
physics of molecules made of a single atomic species, pho- r=p

ton recoil, cold collisions, etc., become special cases of OUfyere ther integral runs over a sphere of radipisGiven the

approach. e g ;

The ultimate objective of our formulation is to find the finite-width &-function (6), we have
expectation value of the polarizatiofR*). Out of (P*) one erf(r/a)
may deduce the expectation value of the scattered field, and [(p)=— 2 d°r VX (DX V)f
hence, the expectation value of the total electric figd ). TeoJr<p
The flaw here is that a typical detector of light does not 1 A erf(r/a)
measure(E*), but rather expectation values of quadratic =— 47_rEoL)dSnx DX Vf , (A2)

quantities such aéE"E™). One may approximate, say, the

measured intensity as where the integral now runs over the surf&ef the sphere.

Two obvious limiting cases emerge depending on the ra-
H(rt)=(E"(r)E™(rt))=(E"(r)E"(rt)), (59  dius of the sphere. Fas>« the error function inside the
integral may be regarded as a constant equal to 1, and the

but it is known in quantum optics that this type of an ap-integral gives
proximation broadly speaking misses the intensitynefas-
tically scattered light. Our hierarchy is tantamount to a col-
lection of classical linear harmonic oscillators interacting
with light, a system in which one expects elastic scattering
only. However, when one goes beyond the low-intensityln the contrary casp<a we may expand the error function
limit, even a single two-level atom scatters inelastically; andas a power series in This immediately yields
if the c.m. Hamiltonian is fully included, photon recoil gives
additional inelastic scattering. To include inelastic scattering lim 1(p)=0. (A4)
properly, one needs to develop a hierarchy starting from p—0
(P™(rt)P*(r't)), and proceed consistently at least in the
secondorder in the strength of the driving electric field.

Finally, to calculate the spectrum of scattered radiation
one employs the two-time correlation function of the electric
field (E"(rt)E*(rt’)), which is obtainable from the two-
time polarization correlation functiofP~(rt)P*(r't’)). To o
compute the latter, one needs not only the field-theory ver- |=f dt’f d3r/S(D,r—r' t—t") p(r't")e 12t
sion of Born and Markov approximations, but also further 0
considerations that essentially amount to the regression theo- (A5)
rem[26]. - .

The modifications of the spectrum of the scattered light in\f/vherg the chgractensﬂc spatial and temporal scales of the
the presence of the condensate discussed in[Réffare due unction ¢ satisty
to inelastic scattering associated with photon recoil. Ironi-
cally, to analyze even this seemingly simple case within our

present framework, we would have to generalize so that thgjoreover, we assume that the cutoff of electromagnetic fre-
c.m. motion is mclu_ded, arjd also d'evelop a quantum'regre:ﬁ-uencieS is much higher thah, ¢/ a> Q. With these condi-
sion theorem. Our linear hierarchy is no panacea; major géfons it is possible to choose a lenghsuch that simulta-
eralizations are needed in many relevant problems. Noneth?feously a<p<Ar and p<cQ '=\/27. We divide the

less, we hope that the eventual solutions of the hierarchy, b¥patial integral into two regions: a sphere of radiyand the

means of classical simulations or otherwise, will shed "ghtcomplement of the sphere. In the outer region the function

ggmtglisnear-resonance optical response of dense atomgi acts effectively as @ function, so we have

2
|(P):3—€OD, p>a. (A3)

We have, in effect, shown that there is something akin to a
S-function, albeit with a finite width~ «, in the immediate
proximity of the originr=0 in the expressioridtS.

Next consider an integral of the form

Ar>a, Atsalc, At>Q7L (AB)

I d3r’'VX(DxXV)

=p
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lr—r’|

:J d3r'K(D;r—r")g(r' t—|r—r'|/c), (A7)
APPENDIX: MATHEMATICAL DETAILS r=p

1. Dipole radiation with wave-number cutoff whereK is the standard dipole radiation formufk0). On the

We first consider the following integral involving the other hand, in analogy with the previous expres$id®), the
propagator that governs dipole radiation from matter fields:integral over the inner region gives
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2 1 1
I <,=5—D¢(rt). (A8) &, =— (46 &= & = (& —ijée
<3¢, D¢ e, ﬁ(el &), &=8&, & ﬁ(el &),
Summarizing, when the result is used in conjunction with (A10)
a smooth function of andt that also varies slowly in cOm-  Thease are orthonormal. in that
parison withe ', we may write '
&8 =0, D 88=1. (A11)
eikr o

o : 1
f dtS(D;r,t)e M=
0 4

Teo((DXV)XV)T

We also define a shorthand for the Clebsch-Gordan coeffi-
cients,

_ 1 8
= Zmeg K(’D,r)—i-?’Db‘(r) . (A9)

<JeM;1Jg|la'ng>E<M|ma'>E<m(r|M>. (A12)
In addition, this prescription comes with explicit directions The dipole operator is defined as

about how to handle integrals involving the dipole radiation.

Because of the 17 divergence of the dipole radiatioN, R

such integrals are generally not absolutely convergent, and d=D > |[JMNM|ma)(Igm|&+H.c, (AL3)
their values depend on how they are performed. It is clear mM

from our development that the proper way to carry out suc
integrals is to remove a sphere of a finite ragiusround the
divergence, calculate the integral, and therplet0. In prac-

k\‘/vhereD is the reduced dipole moment matrix element that
would pertain to a transition with unit Clebsch-Gordan coef-

. his is th torming the i i heri ficient. In this paper we have choséro be real. The reason
tice, this I1s the same as pertorming the integral In sphericay . complex conjugate in EGA13) is that we want a

coordinates with the origin at the divergence, and integratingl]ight field with the polarizatiorg, to drive transitions with

over the angles first. This is the prescription adopted in thq\/l —m=1. The dipole matrix elements are explicitly
present paper. '

One may wonder where precisely our rule for handling
the 1f2 singularity came from, and whether there are plau- dym=D>, (M|ma)e:,  dpm=dim- (Al4)
sible alternatives. Mathematically, our rule originates from 7
the assumption that the photon modes were truncated in Ia articular, it may be verified from the orthonormality of
manner that preserves the isotropy of photon phase shag 'epCIebsch’—Gordgn coefficients that these matrix eIe¥nents
We surmise, albeit without proof, that our prescription, in-___.
deed, is essentially unique if there is to be no intrinsicallys"’jlt'Sfy
favored directions for photons.

% de-der=D25MMr. (A15)

2. Vectors and matrix elements .
In the special casg;=0—J.=1, we have

Alongside with the Cartesian unit vectors, we introduce
the conventional circular unit vectors as (—1|0-1)=(0|00)=(+1|0+1)=1.  (Al6)
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