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Variational approach to the dilute Bose gas
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We study the weakly interacting Bose gas in both two and three dimensions using a variational approach. In
particular we construct the thermodynamic potential of the gas to within ladder approximation and find by
minimization an accurate mean-field description of the dilute Bose gas. Using spin-polarized atomic hydrogen
as a specific example, we obtain an improved description of the Bose-Einstein condensed phase in three
dimensions, and a signature of a phase transition in two dimensions. The latter cannot be found by a straight-
forward application of perturbation theory around the ideal Bose gas.@S1050-2947~97!03801-8#

PACS number~s!: 03.75.Fi, 64.10.1h, 67.65.1z, 67.40.2w
s
ay

r
la
s
ei
u
it
fo
re
, t
d

rit
na
nt
h

je
his

as
o-
e
th
ty

e
tin

tio
e
o
e
h
v
t

in-

u-
the
jump
ter-

aks
ve-
in
ur
nal
way
es,
o-

gas
en-
ed
son
this
an
e
lead
gas
lso
are
s of
fore
ess
id
di-
se

in
aser-
tive
ed

icu-
tein

op-
I. INTRODUCTION

The theoretical study of a three-dimensional dilute Bo
gas in the regime where quantum degeneracy effects pl
role has a long history@1#, and was first important for a
microscopic understanding of thel transition in liquid
4He, although quantitative predictions for this strongly inte
acting system cannot be obtained by these means. The
is, however, not true for magnetically trapped quantum ga
@2#, which explains why the phenomenon of Bose-Einst
condensation, accompanied by the occurrence of superfl
ity, is still an active field of research today. Moreover,
turns out that there is no completely satisfying theory
these systems@3,4#, since existing treatments, which a
based on a Bogoliubov kind of approach, fail, for instance
show the correct order of the phase transition and yiel
first-order transition to the condensed phase@5,6# instead of
the second-order transition expected from the theory of c
cal phenomena. In this paper we will develop a variatio
approach and show, for example, that a small but esse
change in the Bogoliubov theory can resolve this issue. T
is one of the strong points of the variational method.

The two-dimensional dilute Bose gas has become sub
of study only more recently when it was realized that t
system is in the same universality class as theXY model@7#
and should therefore exhibit a Kosterlitz-Thouless ph
transition@8#. Physically this implies that there is no macr
scopic occupation of one single quantum state, but ther
nevertheless a transition to a superfluid state through
mechanism of the binding of vortices with opposite vortici
This mechanism causes the superfluid densityns to show a
universal discontinuity such thatnsL

254 at the critical tem-
perature@9#, whereL5(2p\2/mkBT)

1/2 is the thermal de
Broglie wavelength andm is the mass of the particles in th
system. The study of the two-dimensional Bose gas star
from a microscopic Hamiltonian was initiated by Popov@10#.
In his approach, which corresponds to a one-loop calcula
and is based on the introduction of a so-called quasicond
sate, the superfluid density exhibits no jump, but instead g
to zero in a continuous fashion. In addition, it has be
shown@11,12# that the range of validity of Popov’s approac
is by no means attainable in the experimental setups en
aged at present. Therefore, we have recently extended
work using the ladder orT-matrix approximation which
551050-2947/97/55~1!/498~15!/$10.00
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should be sufficiently accurate at low densities since it
cludes all two-body processes@12#. In this manner we cor-
rectly found a jump in the superfluid density, but unfort
nately, due to infrared divergences, that the magnitude of
quasicondensate also had to be adjusted such that the
attained the universal value predicted by Nelson and Kos
litz using renormalization-group methods@9#. This latter as-
pect of our work shows that the ladder approximation bre
down close to the critical temperature, and needs impro
ment in the critical region. This problem will be addressed
a future publication. In this paper we will also apply o
variational approach developed for the three-dimensio
case to the two-dimensional Bose gas, because in this
we can in principle also resolve the infrared divergenc
making it an interesting approach for studying the tw
dimensional system.

The classical experimental realization of a dilute Bose
in which one can try to observe either Bose-Einstein cond
sation or the Kosterlitz-Thouless transition is spin-polariz
atomic hydrogen. Although there is no fundamental rea
for Bose-Einstein condensation not to be attainable in
system, the actual achievement of the critical condition is
extremely difficult task due to the inherent instability of th
atomic hydrogen gas against spin-flip processes, which
to particle loss and in general also cause heating of the
sample. The two-dimensional configuration of course a
suffers from these drawbacks, but the critical conditions
more favorable than for the three-dimensional case and, a
the mid 1980s, several experimental groups have there
been pursuing the observation of the Kosterlitz-Thoul
transition @13–16#. In these experiments one uses liqu
4He films to confine the hydrogen atoms in one spatial
rection, hence realizing an effectively two-dimensional Bo
gas.

Other experimental realizations of a dilute Bose gas
which one can observe quantum degeneracy effects are l
cooled alkali-metal atoms and excitons. Since evapora
cooling was recently shown to work for magnetically trapp
alkali-metal atoms like Rb and Na@17,18#, advances toward
the observation of Bose-Einstein condensation were part
larly fast, and recently actual observations of a Bose-Eins
condensate in ultracold atomic87Rb, 7Li, and 23Na gases
have been reported@19–21#. Recent developments in
molecular-beam-epitaxy technologies have also led to
498 © 1997 The American Physical Society
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55 499VARIATIONAL APPROACH TO THE DILUTE BOSE GAS
portunities to reach the critical conditions for the Kosterli
Thouless transition in a two-dimensional~dumbbell! exciton
gas confined by a double quantum-well structure@22#. The
three-dimensional exciton gas in, e.g., pu
Cu2O crystals has a somewhat longer history@23#. It has
even been claimed that the condensation transition was
ready observed in such a system@24#. However, mainly due
to the lack of a convincing interpretation of the obtain
experimental data, there is no decisive proof of this fact
yet.

As mentioned above, here we will first study the dilu
Bose gas in general by making use of a variational appro
and then take spin-polarized atomic hydrogen as a spe
example. A variational calculation is a conceptually simp
tool @25,26# that has been applied to such various subjects
for instance, the investigation of the triviality oflf4 field
theories in different spacetime dimensions@27#, investigation
of the phase diagram of theO(N) vector model@28#, and
construction of the ground state of the Sine-Gordon mo
@29#.

So the idea of a variational calculation is not new, bu
has, to the best of our knowledge, never been applied to
dilute Bose gas. Therefore, the outcome of such a calcula
is interesting in its own right. Moreover, it turns out that
gives new insight into a number of problems present in
conventional treatments of the dilute Bose gas, and into
way to resolve them. This will be explained in more det
below.

The basic idea is to make a Gaussian ansatz for
ground-state wave functional and its excitations, wh
amounts to making an ansatz for the dispersion of the q
siparticles in the system, and then to calculate the appr
mate thermodynamic potentialV5V tr1^H2Htr& tr . Here
Htr is a trial Hamiltonian that has trial wave functionals
eigenstates,V tr52kBT ln(Tr@e2b(Htr2mN)#) and ^ & tr is the
corresponding grand-canonical thermal average. One su
quently minimizes this thermodynamic potential with resp
to the variational parameters that are in the Gaussian w
functionals, and with respect to the expectation value of
field of interest.

In the case of the dilute Bose gas, the results obtaine
this manner have to be used in the equation of state, w
makes, for example, a determination of the critical tempe
ture possible. This procedure is a mean-field approach in
sense that no fluctuations in the expectation value of the fi
are taken into account. However, it is nonperturbative, a
clearly goes beyond the one-loop level. The main advant
of using a variational approach in two dimensions is that
notorious infrared divergences are automatically circu
vented because the dispersion relation of the particles wi
general display a gap. This gap is analogous to the~arbitrary!
infrared cutoffk0 that Popov introduced to define the qua
condensaten0(k0). Note, however, that in the variationa
procedure minimization of the thermodynamic potential w
fix the magnitude of the gap. Hence there will be no adju
able parameter left in the calculation, as was the case in
previous treatment of the two-dimensional dilute Bose g
where we had to use the universal jump relation to determ
the infrared cutoffk0 @12#. This convenient feature strongl
motivated us also to study the two-dimensional syst
within the framework of a variational calculation.
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Our Gaussian ansatz will also introduce a condensat
two dimensions. Of course, the existence of a true cond
sate in two dimensions is principally forbidden by th
Mermin-Wagner-Hohenberg theorem@30#. However, using
trial wave functionals with a broken symmetry in a vari
tional approach can still be useful, because even if the fo
of the trial wave functionals deviates considerably from t
exact wave functionals describing the phase below the c
cal temperature, the estimate of the total energy of the s
tem can be extremely good.

The organization of this paper is as follows. In Sec. II w
derive the desired expression for the thermodynamic po
tial V, and we show in particular that minimization wit
respect to the variational parameters automatically in
duces the many-bodyT matrix into the problem. However, i
turns out that the variational principle applied to the micr
scopic Hamiltonian does not yield a completely consist
picture. This problem is subsequently resolved by apply
the variational principle to an appropriate effective Ham
tonian. After this improvement we are ready to apply t
theory to atomic hydrogen. The results are presented in
III. In Sec. III A we consider the three-dimensional syste
and Sec. III B is devoted to the two-dimensional system. O
approach indicates the onset of a new phase in the latter
which cannot be found by an application of perturbati
theory around the ideal Bose gas. However, we are not
to describe the properties of this phase by our variatio
method, but argue that it corresponds to the superfl
bound-vortex state. In Sec. IV we draw some conclusio
from our work.

II. THERMODYNAMIC POTENTIAL

We study the dilute Bose gas using the functional integ
formulation of the grand-canonical partition function. Sta
ing with Zgr5Tr@e2b(H2mN)#, whereH is the microscopic
Hamiltonian of the gas that in the language of second qu
tization can be expressed in the creation and annihila
operatorsc†(x) andc(x), we can write

Zgr[e2bV5E d@c* #d@c#expH 2
1

\
S@c* ,c#J , ~1!

after using the closure relation of the eigenstates of the
nihilation operator at each imaginary timet @31#. The func-
tional integral is over c-number fields c* (x,t) and
c(x,t), periodic in imaginary time over\b5\/kBT. The
Euclidian action for the dilute Bose gas is given by

S@c* ,c#5E
0

\b

dtS E dx c* ~x,t!

3F\ ]

]t
2

\2¹2

2m
2mGc~x,t!

1
1

2E dxE dx8c* ~x,t!c* ~x8,t!

3V~x2x8!c~x8,t!c~x,t! D , ~2!
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500 55M. BIJLSMA AND H. T. C. STOOF
with m the chemical potential andV(x2x8) the effectively
repulsive interaction potential, meaning that the correspo
ing scattering lengtha is positive.

Expanding the fields in Fourier modes through

c~x,t!5
1

~\bV!1/2(k,n ak,ne
i ~k–x2vnt! ~3!

and the complex conjugate expression forc* (x,t), we can
write the action in momentum space as

S@a* ,a#5(
k,n

~2 i\vn1ek2m!ak,n* ak,n

1
1

2

1

\bV (
k,k8,q
n,n8,m

Vqak1q,n1m* ak82q,n82m
* ak8,n8ak,n .

~4!

In this equationek5\2k2/2m, andVq5*dx V(x)e2 iq–x is
the Fourier transform of the interaction potential. Since
will be interested in the temperature regime where the spa
extensionL of the hydrogen atoms is much larger than t
range of the interaction potential (a/L!1), there is essen
tially only s-wave scattering taking place in the gas, and
can neglect the momentum dependence of the interac
potential. Therefore we setVq5V0 . The momenta are re
stricted to either two or three dimensions, andV is the area
el
n

ion
o

d-

e
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e
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or volume of the corresponding system. The bosonic M
subara frequenciesvn52pn/\b reflect the periodicity of
the fields in~imaginary! time.

We now have the basic ingredients, and can start the
cedure of variationally calculating the thermodynamic pote
tial V. Breaking the symmetry by introducingc(x,t)
5An01c8(x,t) and expanding the resulting expression, t
action up to quadratic order in first instance becomes

S~2!@a,a* #52\bmn0V1 1
2\bn0

2V0V

1(
k,n

8 ~2 i\vn1ek2m12n0V0!ak,n* ak,n

1 1
2n0V0(

k,n
8 ~ak,n* a2k,2n* 1ak,na2k,2n!, ~5!

where the prime denotes thatk50 is excluded from the sum
From this we see that we have nontrivial so-called norm
and anomalous self-energies, and that in the lowest-o
approximation they are, respectively,\S11(k,vn)52n0V0
and \S12(k,vn)5n0V0 . This gives a strong indication o
the form of the variational wavefunctional that we have
take to describe the dilute Bose gas correctly, in principa
any temperature. As the choice of Gaussian wave functio
is formally identical to an ansatz for the quadratic tr
HamiltonianHtr which they are supposed to diagonalize, w
now write the full action as
S@a,a* #52\bmn0V1 1
2\bn0

2V0V1(
k,n

8
„2 i\vn1ek2m1\S11~k,vn!…ak,n* ak,n

1 1
2\S12~k,vn!(

k,n
8 ~ak,n* a2k,2n* 1ak,na2k,2n!1„2n0V02\S11~k,vn!…(

k,n
8 ak,n* ak,n

1 1
2 „n0V02\S12~k,vn!…(

k,n
8 ~ak,n* a2k,2n* 1ak,na2k,2n!1S n0

\bVD 1/2(
k8,q
n8,m

8 V0aq,m* ak82q,n82m
* ak8,n8

1S n0
\bVD 1/2(

k,q
n,m

8 V0ak1q,n1m* aq,mak,n1
1

2

1

\bV (
k,k8,q
n,n8,m

8 V0ak1q,n1m* ak82q,n82m
* ak8,n8ak,n , ~6!
elf-
nd
as
,
the
kly
the

of

ze
where we introduced nontrivial normal and anomalous s
energies in the first two quadratic terms on the right-ha
side of Eq.~6! by simply adding and subtracting

(
k,n

8
„\S11~k,vn!ak,n* ak,n1

1
2\S12~k,vn!

3~ak,n* a2k,2n* 1ak,na2k,2n!….

The quantities\S11(k,vn) and\S12(k,vn) are now consid-
ered as the variational parameters of the trial wave funct
als, and are determined from a minimization of the therm
f-
d

-
-

dynamic potential. As indicated by their arguments, the s
energies are in principle functions of momentum a
frequency. However, since we are dealing with a dilute g
in the limit where onlys-wave scattering is of importance
we will neglect these dependencies and henceforth omit
arguments. This is a usual step taken in treating the wea
interacting Bose gas. Note, furthermore, that we assume
self-energies to be real, hence\S125\S21, which amounts
to a choice of gauge that is related to our choice
^c&5An0 being real.

Performing the Bogoliubov transformation to diagonali
the trial action
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55 501VARIATIONAL APPROACH TO THE DILUTE BOSE GAS
S~ tr!@a* ,a#5(
k,n

8 ~2 i\vn1ek2m1\S11!ak,n* ak,n

1 1
2\S12(

k,n
8 ~ak,n* a2k,2n* 1ak,na2k,2n!,

~7!

we find that the dispersion relation for the Bogoliubov qu
siparticles is given by

\Vk5A~ek2m8!22~\S12!
2, ~8!

where we have introducedm85m2\S11. Moreover,
the usual coherence factors@32# for this transfor-

mation are given by uk5
1
2 @A(ek2m81\S12)/\Vk

1A\Vk /(ek2m81\S12)] and vk5
1
2

@A(ek2m81\S12)/\Vk2A\Vk /(ek2m81\S12)#, re-
spectively. The Hugenholtz-Pines theorem@33# states that
the exact normal and anomalous self-energies satisfy

m5\S11~0,0!2\S12~0,0!, ~9!

leading to a gapless dispersion. This condition is, howe
not imposed on our variational calculation since t
nd

-
ie

or
-

r,

Hugenholtz-Pines relation is only valid in a stationary po
of the action@12#, and the variational approach by definitio
also describes nonstationary points. As we will see bel
Eq. ~9! will nonetheless turn out to hold for the three
dimensional case if the temperatures are not too close
absolute zero. In two dimensions Eq.~9! will not be valid for
temperatures unequal to zero, since it would lead to infra
diverging integrals in the thermodynamic potential, and
therefore excluded from the solution space by the variatio
principle. As mentioned above, this was actually our m
motivation for also applying this approach to a tw
dimensional Bose gas.

The next step now is to calculate from the functional
tegral the thermodynamic potentialV, which equals

V52
1

b
lnZtr1

1

\b
^S~ int!& tr , ~10!

whereS(int) is the interaction termS2S(tr) found by a com-
bination of Eqs. ~6! and ~7!. Again using the above-
mentioned Bogoliubov transformation in combination wi
Wick’s theorem@32#, a straightforward calculation of this
quantity leads to
1

V
V~m8,\S12,n0 ;m,T!5

1

2
n0
2V02mn1

kBT

V (
k

8 ln~12e2b\Vk!1
1

2

1

V(
k

8 ~\Vk2ek1m8!1~2n0V01m8!~n2n0!

1~\S122n0V0!\S12a1V0~n2n0!
21

1

2

1

V
V0~\S12!

2a2, ~11!

where

n5n01
1

V(
k,n

8 ^ak,n* ak,n&5n01
1

V(
k

8 S ek2m8

\Vk
N~\Vk!1

ek2m82\Vk

2\Vk
D ~12!
is the equation for the density, and the dispersion\Vk is
given by Eq.~8!. Furthermore, we introduced the shortha
notation

a5
1

\S12

1

V(
k,n

8 ^ak,n* a2k,2n* &5
1

V(
k

8
112N~\Vk!

2\Vk
,

~13!

with N(x)51/(ebx21) the Bose-Einstein distribution func
tion, resulting from the sum over the Matsubara frequenc
vn . In particular, we have that2(ni /b(\vn2x)5N(x)
@32#.

Now, first of all, we have to minimize this expression f
fixed n0 , chemical potentialm, and temperatureT with re-
spect to the variational parameters\S12 and \S11, or,
equivalently, \S12 and m8. Putting (]V/]\S12)50 and
(]V/]m8)50 yields, respectively,
s

\S125n0
V0

11V0a
2

2nV01m82m

~11V0a!S a1\S12

]a

]\S12
D

]n

]\S12

~14!

and

~2nV01m82m!
]n

]m8
5@\S12~11V0a!2n0V0#\S12

]a

]m8
,

~15!

which are both solved by

\S125n0
V0

11V0a
~16!

and

m85m22nV0 . ~17!
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502 55M. BIJLSMA AND H. T. C. STOOF
Calculation of the second derivatives of the thermodyna
potential indeed shows that this solution corresponds
a minimum for anyV0.0. ForV0,0 the obtained solution
corresponds to a maximum in the thermodynamic poten
implying an unstable solution. This is physically reaso
able, since a negativeV0 implies an effective attraction be
tween the constituent particles and thus a negative scatte
length a. As a result, a magnetically trapped gas inde
turns out to be unstable against the formation of a de
~solid or liquid! phase in the~local density! limit, where the
temperatures are much larger than the splittings\v of the
one-particle eigenstates in the trap, and the correlation le
is smaller than the typical trap size@34#. Quantitatively this
means thatkBT/\v@ l /uau@1, wherel5A\/mv is the ex-
tent of the lowest-lying unperturbed harmonic-oscillator st
of the trap. However, in the opposite limit it has recen
been shown by a numerical solution of the nonlinear Sch¨-
dinger equation that a condensate may be metastable
a sufficiently small occupation number@35#. Although this
is a very interesting result in light of the fact that a numb
of alkali atoms, e.g., Cs and Li, have negative scatter
lengths @36,37#, we will not consider this inhomogeneou
a-
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case here, and therefore restrict ourselves toa.0.
Starting with the second equation we immediately co

clude that the solution for the normal self-energy
\S1152nV0 , meaning that the variational calculation fo
this particular variable yields only the one-loop~i.e., Hartree-
Fock! expression. The first equation shows however, that
anomalous self-energy\S12 is obtained in an approximation
that goes far beyond one loop. In fact, as we will now sho
it constitutes the many-bodyT-matrix approximation to the
self-energy\S12 @12#.

The many-bodyT matrix TMB(k,k8,K ;z), which is dia-
grammatically depicted in Fig. 1~a!, describes the collision
of two atoms having relative momentak8 andk before and
after the collision, and a total center-of-mass momentumK
and center-of-mass energyz in a medium containing the
same atoms. The equation for the many-bodyT matrix,
which by construction sums all the ladder diagrams, can e
ily be derived if one realizes that the free propagation of
atoms is determined by the trial Hamiltonian, that can
diagonalized by a Bogoliubov transformation. A somewh
lengthy but straightforward calculation gives, in the therm
dynamic limit,
TMB~k,k8,K ;z!5V~k2k8!1E dk9

~2p!d
V~k2k9!H F u1

2 u2
2

z2\V12\V2
2

v1
2 v2

2

z1\V11\V2
G~11N11N2!

1F u2
2 v1

2

z1\V12\V2
2

u1
2 v2

2

z2\V11\V2
G~N12N2!J TMB~k9,k8,K ;z!, ~18!
lute
um
eas-

u-
he

is
whereN1[N(\V1) andN2[N(\V2). The plus sign de-
notes the momentum argument (K /2)1k9, and similarly the
minus sign denotes the argument (K /2)2k9. This expression
for the many-bodyT matrix has a clear physical interpret
tion: Two incoming atoms with momenta (K /2)1k9 and
(K /2)2k9 can scatter out of their momentum states either
the creation of two quasiparticles, by the creation of t
quasiholes, and by the creation of one quasiparticle and
quasihole. The net rates for the first two processes are
portional to u1

2 u2
2 @(11N1)(11N2)2N1N2# and

v1
2 v2

2 @N1N22(11N1)(11N2)#, respectively, if we take
the usual Bose enhancement factors for the scattering
occupied states into account. For the last process the q
particle can have either momentum (K /2)1k9 or
(K /2)2k9. The net rates for these processes are proportio
to u2

2 v1
2 @(11N2)N12N2(11N1)# and u1

2 v2
2 @(1

1N1)N22N1(11N2)], respectively. Together with the
usual energy denominators, which are well known fro
second-order perturbation theory, this fully explains t
structure of the right-hand side of Eq.~18!.

Since we neglected all momentum dependencies of
self-energies\S11 and\S12 in the variational approach, w
will also do so in the above equation for theT matrix. When
we furthermore setuk51 andvk50 by making use of the
fact that the Bogoliubov spectrum\Vk deviates from
ek2m8 only for a very small momentum interval such th
ek&\S12,nV0 , we find that Eq.~18! reduces to
y

ne
o-

to
si-

al

e

e

TMB~0,0,0;z!5V01V0T
MB~0,0,0;z!

3E dk

~2p!d
112N~\Vk!

z22\Vk
, ~19!

with an error ofO(V0naL2), which is negligible except in
an extremely small interval of temperatures near abso
zero. By virtue of the fact that we neglected the moment
dependence of the scattering potential, this equation can
ily be solved to give

TMB~0,0,0;0!5
V0

11V0a
, ~20!

which finally establishes our claim that the variational calc
lation gives the anomalous self-energy to within t
T-matrix approximation, i.e.,\S125n0T

MB(0,0,0;0). Fur-
thermore, Eq.~20! implies thata @cf. Eq. ~13!# is equal to
1/TMB(0,0,0;0)21/V0 .

Note that in the calculation we are carrying out, th
T-matrix still depends on the variational parameters\S11
and\S12 because they enter into the dispersion\Vk @cf. Eq.
~8!#. Moreover, the many-bodyT matrix can be related to the
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55 503VARIATIONAL APPROACH TO THE DILUTE BOSE GAS
two-bodyT matrix, which describes the collision of two pa
ticles in a vacuum instead of a medium, through@12#

1

TMB~0,0,0;0!
5

1

T2B~0,0;22m8!
1
1

V(
k

N~\Vk!

\Vk
.

~21!

The low-energy limit (ek!\2/2ma2) of the two-bodyT ma-
trix has been studied extensively in the literature@38#. When
the configuration space is three dimensional, it is accura
represented by

T2B~0,0;ek!5
4pa\2

m
, ~22!

whereas

T2B~0,0;ek!5
4p\2/m

p i2 ln~k2a2/8!22g
, ~23!

when configuration space is two-dimensional. In these
pressionsa denotes the scattering length or effective ha
sphere radius of the interaction potential, andg.0.5772 is
Euler’s constant. These long-wavelength expressions will
able us in a later stage to formulate our final results solel
terms of the scattering length instead of the full~micro-
scopic! potentialV(x).

Comparing Eqs.~16! and~17!, we conclude that the varia
tional calculation as performed using the microscopic Ham
tonian of the Bose gas leads to an inconsistency: The no
self-energy is obtained to one-loop order only, whereas

FIG. 1. Diagrammatic representations.~a! Diagrammatic repre-
sentation of theT-matrix equation.~b! The normal and anomalou
self-energies as found in the variational approach together with
expressions for the exact Green’s functions. Note that iteratio
the equation forS12 generates the ladder diagrams. This is not
case forS11.
ly

x-
-

n-
in

l-
al
e

anomalous self-energy is obtained in theT-matrix approxi-
mation, which contains any number of loops. The incons
tency can be better understood by diagrammatically ana
ing the structure of Eqs.~16! and ~17!, making use of Eq.
~12! for the density and the definition ofa given in Eq.~13!.
The result is depicted in Fig. 1~b! together with the Dyson
equation for the normal and anomalous Green’s functions
is clear from these diagrammatic equations that iteration
generate the ladder series for the anomalous self-en
\S12, but not for the normal self-energy\S11. Moreover, it
shows that the set of diagrams which is being summed in
case of a complexucu4 theory gives at most theT matrix.
This is in contrast, for example, to the result obtained
Barnes and Ghandour@39#. They showed that a similar varia
tional calculation for a real scalarf4 theory yields self-
energies containing the ladder as well as the bubble
grams.

To obtain consistent results with the above variational
proach, we have to apply it to an effective Hamiltonian co
taining an effective interactionV0

eff . This procedure is often
followed in the literature withV0

eff equal to 4pa\2/m. It was
introduced by Huang and Yang in the 1950s@40#, and has
since been known as the pseudopotential method. Using
effective Hamiltonian implies that we can replaceV0 every-
where by the effective potentialV0

eff , except in the conden
sate contributionn0

2V0/2, for reasons that will become clea
shortly, but are also known from the work of Huang a
Yang. Again, performing the minimization procedure no
leads to \S125n0V0

eff/(11V0
effa) and m85m22nV0

eff ,
wherea51/TMB(0,0,0;0)21/V0

eff @cf. Eqs.~16! and~17!#. It
is readily seen that takingV0

eff equal to the many-bodyT
matrix evaluated at the minimum ofV that is located at the
point in them8-\S12 plane given by the above solution
indeed leads to the desired self-energies

\S125n0T
MB~0,0,0;0!, ~24!

\S1152nTMB~0,0,0;0! ~25!

in theT-matrix approximation. Thus we see that the effecti
Hamiltonian needed to obtain consistent results contains
many-bodyT matrix as the effective interparticle interactio
instead of the two-bodyT matrix that is used in the pseudo
potential method.

The thermodynamic potential at this minimum in the fir
instance equals

1

V
V~n0 ;m,T!5 1

2n0
2V02mn1

kBT

V (
k
ln~12e2b\Vk!

1
1

2

1

V(
k

8 ~\Vk2ek1m8!

1~2n0T
MB~0,0,0;0!1m8!~n2n0!

1TMB~0,0,0;0!~n2n0!
2, ~26!

from which we still have to eliminate theV0 dependence
occurring in the first term, as well as the ultraviolet dive
gence in the fourth term of the right-hand side. As is w

e
of
e
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known, these two matters are intimately connected, and
both be resolved by writing the sum of these two terms a

1
2n0

2V01
1

2

1

V(
k

8 S \Vk2ek1m81
~\S12!

2

2\Vk
D

2 1
2 ~\S12!

2
1

V(
k

8
1

2\Vk
.

By also adding and subtracting (\S12)
2(1/V)(kN(\Vk)/

2\Vk and realizing that\S125n0T
MB(0,0,0;0), we seethat
s
e
m

d
ith
u
an
e

n

c

th

g
th
f-
-

rm

st
anV0 is exactly renormalized to the many-bodyT matrix if one
of theTMB’s in (\S12)

2 is replaced byV0 , since then

1
2n0

2V02
1
2n0

2V0T
MB~0,0,0;0!

1

V(
k

8
112N~\Vk!

2\Vk

5 1
2n0

2TMB~0,0,0;0! ~27!

due to Eq.~19!. The final expression for the thermodynam
potential thus becomes
1

V
V~n0 ;m,T!5 1

2n0
2TMB~0,0,0;0!2mn1

kBT

V (
k
ln~12e2b\Vk!1

1

2

1

V(
k

8 S \Vk2ek1m81
~\S12!

2

2\Vk
D

1 1
2 ~\S12!

2
1

V(
k

8
N~\Vk!

\Vk
1~2n0T

MB~0,0,0;0!1m8!~n2n0!1TMB~0,0,0;0!~n2n0!
2, ~28!
be

ion

tem-
to be
ms
rs
re-

ove,
with \S12 given by Eq. ~24! and m85m
22nTMB(0,0,0;0). Note that this derivation by no mean
depends on the validity or violation of the Hugenholtz-Pin
relation, and that we now have obtained the thermodyna
potential containing only the many-bodyT matrix and not
the interaction parameterV0 . The fourth term on the right-
hand side can be shown to be at most ofO(Ana3) in three
dimensions, and ofO„1/ln(1/na2)… in two dimensions, and
will henceforth be neglected.

Equation ~28! is the central result of this section, an
requires only the use of Bogoliubov wave functionals w
momentum- and energy-independent self-energies. Altho
obtained by a variational ansatz for the wave functionals
an appropriate effective Hamiltonian, it has lead to a corr
expression for the thermodynamic potential in theT-matrix
approximation. As a proof of this fact we will now in a
independent way derive Eq.~28! directly from the original
actionS@a* ,a#, for which in Eq.~5! we have written down
the quadratic part, avoiding the use of a variational approa
For this purpose, we also treat the off-diagonal part ofS(2) as
a perturbation, and consider only the diagonal part as
unperturbed action. Thuŝak,n* ak,n&52\/( i\vn2ek1m8).
In the first instance we then immediately write

1

V
V5 1

2n0
2V02mn01

kBT

V (
k

8 ln~12e2b~ek2m8!!

2TMB~0,0,0;0!~n2n0!
2, ~29!

where the last term compensates for the double countin
the interactions. The first term can now be improved to
T-matrix level by performing perturbation theory in the of
diagonal parts of the actionS(2). The lowest-order term con
tributes 2(n0V0)

2(1/V)(k„112N(ek2m8)…/4(ek2m8) to
the thermodynamic potential, whereas the consecutive te
are ofO(n0a

3) or O„1/ln(1/n0a
2)… in three and two dimen-

sions, respectively, and negligible. Combining this lowe
order term withn0

2V0/2, the thermodynamic potential now
reads
s
ic

gh
d
ct

h.

e

of
e

s

-

1

V
V5 1

2n0
2TMB~0,0,0;0!2mn0

1
kBT

V (
k

8 ln~12e2b~ek2m8!!

2TMB~0,0,0;0!~n2n0!
2. ~30!

This result now has to be compared with Eq.~28!. First, we
have to show, lest they be equal, that

kBT

V (
k

8 ln~12e2b\Vk!1 1
2 ~\S12!

2
1

V(
k

8
N~\Vk!

\Vk

5
kBT

V (
k

8 ln~12e2b~ek2m8!!. ~31!

That this equality holds to a very good approximation can
demonstrated simply by performing an expansion of\Vk ,
which leads to

ln~12e2b\Vk!5 ln~12e2b~ek2m8!!

2b
~\S12!

2

2~ek2m8!
N~ek2m8!1h.o.t.

~32!

~h.o.t. stands for higher-order terms! where the ratio of the
higher-order terms and the first-order term in the expans
is either ofO(n0aL2) or of O@„n0L

2/ln(1/n0a
2)…# in the

regime where these parameters are small. Close to zero
perature these parameters become large, but what has
compared in that situation is the contribution of these ter
to thetotal thermodynamic potential. Due to the Bose facto
their contribution becomes negligible. Second, the two
spective terms (n2n0)

2 in Eqs.~28! and~30! also differ due
to the difference in dispersion. Again, expanding\Vk , one
can show that the error here is of the same order as ab
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FIG. 2. Lines of constant
chemical potential~4 and 5, the
first having the largest chemica
potential!, and solution curves
of the equation \S125n0T

MB

(0,0,0;0) in the m8-\S12 plane
for ~1! n0a

354.8310212,
~2! n0a

355.0310212, and
~3! n0a

355.2310212. Also
shown is the line on which the
Hugenholtz-Pines relation is satis
fied.
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and is negligible. Thus, as this independent calculat
shows, Eq.~28! obtained from the modified variational ca
culation is indeed the correct result for the thermodynam
potential.

The above argument shows that the results obtaine
Eqs.~24!, ~25!, and~28! can also be interpreted in a differe
manner. First we break the symmetry of the theory by ha
We subsequently calculate the normal and anomalous
energies\S11 and\S12 in theT-matrix approximation. This
straightforwardly gives Eqs.~24! and~25! ~see also Ref. 12!.
We then also calculate the thermodynamic potential in
T-matrix approximation, yielding, as we have seen, Eq.~28!.
Thus we again arrive without reference at a variational c
culation at the same set of equations and in particular at
same thermodynamic potential as a function of conden
density, chemical potential and temperature. The value of
variational calculation lies therein, in that it gives a cle
picture of the physics involved in the microscopic calcu
tion, and in particular shows what the correct, i.e., se
consistent, effective Hamiltonian of the gas is.

The final step we now have to take is to find the value
n0 which minimizes the thermodynamic potential at giv
m andT. Because this program has to be implemented
merically, we now restrict ourselves to the specific exam
of spin-polarized hydrogen atoms in both three-dimensio
~Sec. III A! and two-dimensional~Sec. III B! configurations.
In the case of the system being three dimensional, this le
to improvements on existing approaches to this problem,
we therefore particularly present results for the conden
fraction and thep-n21 diagram.

The equations which are relevant for a numerical imp
mentation are first of all \S125n0T

MB(0,0,0;0) and
m85m22nTMB(0,0,0;0) @cf. Eqs.~24! and~25!#, localizing
the minimum of the thermodynamic potential. To solve the
for various values ofn0 , we first locate the (\S12,m8) com-
binations for which the first equation is satisfied. Next,
locate (\S12,m8) combinations which yield the same chem
cal potentialm by means of the second equation. For ea
n
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value of n0 these two curves have a point of intersectio
which thus solves both equations. The value ofV as a func-
tion of n0 for fixedm andT is then obtained by means of Eq
~28!. Repeating the above procedure several times, we de
mine the value ofn0 , minimizing the thermodynamic poten
tial. After this the properties of the system are fully dete
mined, and it is possible to calculate, e.g., the conden
fraction and the superfluid density as a function of tempe
ture.

III. SPIN-POLARIZED ATOMIC HYDROGEN

In order to obtain Bose-Einstein condensation, one m
netically traps hydrogen atoms in the doubly polariz
ud&5u↑�& state of the upper hyperfine manifold, resulting
a well-known effectively repulsive triplet interaction be
tween the atoms with a value of the scattering length
1.34a0 @41#. Typical sample densities are 1013–1014 atoms
per cubic centimeter, with a corresponding critical tempe
ture on the order of tens of mK.

For the two-dimensional system one uses atoms in
doubly polarized ub&5u↓�& state of the lower hyperfine
manifold @2# adsorbed on a superfluid helium film. The e
fective interaction between the adsorbed atoms is in a v
good approximation given by the weighed average of
volume triplet potential, using the square of the bound-st
wave function pertaining to the motion perpendicular to t
surface, as a weighting factor@42#. This procedure leads to
two-dimensional scattering length with a value of 2.40a0
@38#. The densities one aims at in this experimental setup
typically some 1013 atoms per square centimeter, which co
responds to a critical temperature in the range of 50–
mK.

A. Three-dimensional case

In Fig. 2 we show, for three different values ofn0a
3, the

curves in the \S12-m8 plane on which the equality
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FIG. 3. Thermodynamic po-
tential vs condensate density fo
the same two values of the chem
cal potential as in Fig. 2 and at
temperature of 30mK. The dots
indicate the starting points on th
Hugenholtz-Pines line of the cor
responding curves in them8-
\S12 plane. The graph shows tha
at the minimum the Hugenholtz
Pines condition is indeed satisfied
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\S125n0T
MB(0,0,0;0) holds, as well as two curves o

which the chemical potentialm is constant, both at a tem
perature of 30mK. The straight linem852\S12 corre-
sponds to the conditions where the Hugenholtz-Pines th
rem is satisfied. The area\S12.um8u is of course not part of
the solution space since it would imply a complex~unstable!
dispersion relation. By calculating the thermodynamic pot
tial at the intersections of the lines, we infer the relati
betweenV and the condensate densityn0 for a given chemi-
cal potential.

This is shown in Fig. 3 for the same two values of t
chemical potential. From this plot we find that then0 mini-
mizing the thermodynamic potential for givenm indeed cor-
responds to the situation where the Hugenholtz-Pines th
rem is satisfied, i.e.,m852\S12. Note that this is a result o
the minimization procedure, and is not assumed beforeh
The Hugenholtz-Pines relation, however, turns out not
hold in every situation. For extreme conditions, very close
zero temperature, the position of the minimum is shift
slightly from the Hugenholtz-Pines line~see also Fig. 12 in
Sec. III B!. At T50 one can, starting from Eq.~28! with
general\S12 andm8, also prove analytically that this is th
case. We can, however, understand this shortcoming as
lows. The deviation from the Hugenholtz-Pines condition
due to an overestimate of the effective interaction betw
the atoms. Indeed, a smaller value of theT matrix, together
with a larger value of the condensate density to ensure
the chemical potentialm remains the same, shifts the min
mum toward the Hugenholtz-Pines line. This overestimate
the effective interaction is due to the neglect of the influen
of the coherence factors in the expression for the many-b
T matrix in Eq. ~19!, i.e., due to puttinguk51 andvk50.
Taking these coherence factors into account will cause a
crease of theT matrix, which presumably solves the proble
that the minimum of theV-n0 curve does not coincide with
the Hugenholtz-Pines criterion. The region where the neg
of the coherence factors becomes important correspond
the conditionnaL2*1, which is indeed in the extremel
o-
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o-

d.
o
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ol-
s
n

at

f
e
dy

e-

ct
to

low-temperature range where our numerical results sho
minimum in the thermodynamic potential that is slight
shifted from the Hugenholtz-Pines line. Since this tempe
ture range will be very difficult to obtain experimentally, w
will not consider it further here.

Outside this range, all the properties of the system
now be calculated accurately. In Fig. 4 we plot the cond
sate fraction as a function of temperature for a density
1014 cm23. The inset shows the behavior near the critic
temperature following from our calculation, as well as fro
a calculation in which we have replaced the many-bodyT
matrix by the two-bodyT matrix. The latter is essentially
what has been done in earlier approaches to the dilute B
gas@6#. Using the two-bodyT matrix, however, produces
double valuedness in this curve, leading inevitably to
conclusion that there is a first-order phase transition. T
double valuedness also shows up in the equation of s
depicted in Fig. 5. Again, the equation of state is single v
ued if the many-bodyT matrix is used. Our variational ap
proach has therefore succesfully resolved the long-stan
problem concerning the double valuedness in the equatio
state. It shows that it is essential to include the effect of
surrounding medium on the collision of two hydrogen atom
which leads effectively to a temperature-dependent scatte
amplitude and a softening of the dispersion near the crit
temperature. We calculated the effect of the medium on
effective scattering length explicitly for the above situati
wheren51014 cm23, and show in Fig. 6 the ratio of the
many-bodyT matrix to the two-bodyT matrix as a function
of temperature. The fact that the many-bodyT matrix, and
therefore the effective interaction of the atoms, goes to z
at the critical temperature, is correct when neglecting m
mentum and frequency dependencies, as can be shown
an exact renormalization-group equation for the four-po
vertex function@43#.

However, the many-bodyT matrix TMB(k,k8,K ;z) does
not go to zero for nonzero momenta and frequencies. T
explains the feature seen in the inset of Fig. 7, where we
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FIG. 4. The condensate fraction as a functi
of temperature for a total density of 1014 cm23.
The inset shows the behavior of the condens
fraction near the critical temperature revealin
the double valuedness~curve 1! if one uses the
two-bodyT matrix, which is resolved if one use
the many-bodyT matrix that includes the effec
of the medium on the collision~curve 2!.
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the p-n21 diagram resulting from our calculations. Near t
critical density the curve shows a van der Waals loop, wh
by means of a Maxwell construction, would still imply
first-order phase transition. This behavior is due to the f
that the thermodynamic potential Eq.~28!, and hence the
pressurep52V/V, always contains the many-bodyT ma-
trix evaluated at zero momenta and energies. Therefore
van der Waals loop shown in Fig. 7 is solely a conseque
of the behavior of the ratioTMB(0,0,0;0)/T2B(0,0;0) near
the critical temperature~see Fig. 6!. It would not have been
present had we used a more accurate expression for the
modynamic potential, which in principle contains integra
over the many-bodyT matrix evaluated at finite moment
and energies. Indeed, as was shown in a separate paper
different methods@44#, the term TMB(0,0,0;0)(n2n0)

2

should be replaced byT2B(0,0;0)(n2n0)
2, which removes
,

ct

he
e

er-

sing

the van der Waals loop from thep-n21 diagram. Hence the
first-order phase transition implied from Fig. 7 is an artifa
of our long-wavelength approximation, which breaks dow
near the critical temperature. We stress, however, that
softening of the dispersion discussed earlier, resolving
problems related to the double valuedness in the equatio
state near the critical temperature, in contrast, isnot an arti-
fact because the dispersion relationdoes contain
TMB(0,0,0;0) in the long-wavelength limit. This conclude
our discussion of the three-dimensional system, and we n
turn to the two-dimensional case.

B. Two-dimensional case

In Fig. 8 we show the solution curves of\S12
5n0T

MB(0,0,0;0) for three different values ofn0a
2 at a
ed
FIG. 5. The equation of state
for small m8 at the critical tem-
perature for a system with
n51014 cm23, showing the
double valuedness also discuss
in Fig. 4.
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FIG. 6. The ratio of the many-bodyT matrix
to the two-bodyT matrix at a density of 1014

cm23, showing thatTMB(0,0,0;0) goes to zero at
the critical temperature.
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temperature of 50 mK, as well as two curves on which
chemical potentialm is constant. In addition to the are
\S12.um8u, the Hugenholtz-Pines line itself is also not pa
of the solution space, since it would imply a gapless disp
sion and therefore infrared divergences. This is also
cause of the essential difference between Figs. 8 and 2
avoid infrared divergences in the first case, the solut
curves of\S125n0T

MB(0,0,0;0) are forced to start in the
origin of them82\S12 plane, in contrast to what happens
three dimensions~cf. Fig. 2!. This is a crucial point of dif-
ference, and results in the fact that the curves of the ther
dynamic potential versus chemical potential all start in o
and the same point, corresponding tom5\S125m850, as
shown in Fig. 9, wheren0 increases going from curve 1 t
curve 4.
e

t
r-
e
To
n

o-
e

From this graph the following is then immediately clea
Form,0 the value ofn0 yielding the lowest thermodynami
potential is zero, whereas form.0 the value ofn0 has to be
infinite to give the lowest value ofV. Thus form.0 we
cannot fix the number of particles in the system to a fin
value, and we conclude that the variational approach sig
the onset of an instability atm50, but cannot describe th
phase below the critical temperature. AboveTc it describes
the two-dimensional Bose gas in the ladder approximati
What wecan do is to deduce from the conditionm50 the
relation between the critical temperature and density a
follows from our variational approach. This is shown in Fi
10, where we plotnc versusTc . As expected, we find tha
the critical temperature is overestimated, andncLc

2 is smaller
than 4. This is consistent with the fact that the variation
e

p
y

FIG. 7. Pressure vs invers
density atT550 mK. The inset
shows a small van der Waals loo
present around the critical densit
~see text!.
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FIG. 8. Lines of constant chemical potenti
~4 and 5, the first having the largest chemic
potential!, and solution curves of the equatio
\S125n0T

MB(0,0,0;0) in them8-\S12 plane for
~1! n0a

251025, ~2! n0a
25531025, and ~3!

n0a
251024. Also indicated is the Hugenholtz

Pines line.
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approach is of a mean-field type, since no fluctuations in
background field have been taken into account. Fluctuati
and in particular phase fluctuations associated with vortic
should reduce the real critical temperature and result i
universal jump of the superfluid density. This is schema
cally shown in Fig. 11, where we plot the behavior of t
superfluid density versus temperature. Only for temperatu
larger thanTc

MF , which is itself larger thanTc
KT , at which the

Nelson-Kosterlitz criterionnsL
254 is satisfied, can we ap

ply our theory.
We would like to point out thatTc

MF cannot be found by a
straightforward application of perturbation theory around
ideal Bose gas. Indeed, calculating the free energyF and the
~normal! self-energy in the ladder approximation would r
sult in
e
s,
s,
a
i-

es

e

m85m2\S115m22nTMB~0,0,0;0!, ~33!

and in the equation of state

n5(
k
N~ek2m8!, ~34!

where the latter is now obtained by a minimization of t
free energy. At a fixed temperature, and density, we firs
all determinem8 from Eq.~34! and subsequentlym from Eq.
~33!. Clearly, this calculation can be performed at any te
perature, and we just obtain the ideal gas result wher
phase transition occurs only at zero temperature. Not
however, that for temperatures larger thanTc

MF the above
g

FIG. 9. Thermodynamic po-
tential vs chemical potential at a
temperature of 50 mK and~1!
n0a

250, ~2! n0a
251025, ~3!

n0a
251024, and ~4! n0a

255
31024. The dot indicates the
starting point of the correspondin
curves in the m8-\S12 plane,
which lies in the origin for all val-
ues ofn0a

2.
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FIG. 10. Critical density vs temperature foun
from the criterionm50, the point at which the
variational approach signals the occurrence of
instability.
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procedure of minimizing the free energyF leads, as ex-
pected, to exactly the same results as our minimization of
thermodynamic potential.

Finally, in Fig. 12 we show the thermodynamic potent
as a function of condensate density for a fixed chemical
tential in the case of zero temperature where a real con
sate can exist in the two-dimensional system. In this case
solution curves of\S125n0T

MB(0,0,0;0) do not start out in
the origin of them8-\S12 plane, but essentially behave a
depicted in Fig. 2, because without thermal fluctuations th
are no infrared divergences whenm852\S12. Again in this
extreme situation we find that the Hugenholtz-Pines rela
is not satisfied, which, as in three dimensions, is due to
neglect of the coherence factorsuk andvk in the equation for
the many-bodyT matrix by our variational approach.
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IV. CONCLUSIONS

We performed a variational calculation for a weakly i
teracting Bose gas, and applied this method to spin-polar
atomic hydrogen in both the three- and two-dimensio
cases. We showed that the variational approach does no
tomatically lead to a consistent description of the syst
under study, and that the number of diagrams that is be
summed can be rather restricted. In particular, the nor
self-energy is obtained in the one-loop approximation on
The anomalous self-energy contains the ladder diagrams
consequently improved all relevant expressions to theT ma-
trix level by using not the microscopic Hamiltonian, but a
effective Hamiltonian to describe the Bose gas.

In three dimensions, this approach resolves the prob
id
lts
ds

a
e
s
e

FIG. 11. Schematic behavior of superflu
density vs temperature. The solid line resu
from a renormalization-group analysis, that lea
to the exact critical temperatureTc

KT , obeying
nsLc

254. The dashed curve corresponds to
mean-field result with a critical temperatur
Tc
MF . Below Tc

MF the variational approach doe
not give information about the properties of th
system.



r

e

,

55 511VARIATIONAL APPROACH TO THE DILUTE BOSE GAS
FIG. 12. Thermodynamic po-
tential vs condensate density fo
fixed chemical potential at zero
temperature, showing that th
Hugenholtz-Pines condition, valid
only at the end point of the curve
is not satisfied in the minimum of
this curve.
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of double valuedness in the equation of state, that lead
the conclusion of a first-order phase transition, and is fou
in all previous approaches to the dilute Bose gas. The es
tial ingredient to resolve this problem is the use of the ma
body T matrix, which takes into account the fact that tw
particles collide in a medium, and not in a vacuum. To
best of our knowledge, this work comprises the first attem
for a dilute gas to include this effect of the medium. T
~small! van der Waals loop we still find in thep-n21 dia-
gram is a result of the neglect of the momentum and ene
dependence of theT matrix. The simplification in the coher
ence factorsuk andvk leads to an overestimate of the effe
tive interaction, and explains the fact that, in extreme con
tions, far below the critical temperature, the Hugenho
Pines relation is not satisfied. Using the full many-bodyT
matrix TMB(k,k8,K ;z) will, however, resolve these issue
We also calculated condensate fraction as a function of t
perature.

In two dimensions the variational approach, having
mean-field nature, signals only the onset of an instability
the theory, but unfortunately cannot describe the phase
low the critical temperature. This is connected to the fact t
within this variational approach it is not possible to find s
lutions where the dispersion relation of the quasipartic
displays a gap, playing the same role as the infrared cuto
the theory with a quasicondensate, and enabling us to
scribe the system also below the critical temperature.
D
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critical temperature we can infer from the occurence of
instability is an overestimate of the true critical temperatu
due to the neglect of the crucial phase fluctuations. In t
respect it is important to note that introducing a quasic
densaten0(k0), followed by a diagrammatic calculation o
the equation of state@12#, does give correct information
about the Kosterlitz-Thouless phase, and thus incorpor
the essential physics of the superfluid state. This in cont
to the mean-field variational approach presented here.

Finally we want to remark that solving the problem of th
dilute Bose gas in the regimenaL2@1 using the fullT
matrix Eq. ~18! is a highly nontrivial task due to infrared
difficulties even in three dimensions. A renormalizatio
group study should solve these difficulties and, more imp
tantly, should also accurately describe the critical region
study along these lines is underway.
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