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Variational approach to the dilute Bose gas
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We study the weakly interacting Bose gas in both two and three dimensions using a variational approach. In
particular we construct the thermodynamic potential of the gas to within ladder approximation and find by
minimization an accurate mean-field description of the dilute Bose gas. Using spin-polarized atomic hydrogen
as a specific example, we obtain an improved description of the Bose-Einstein condensed phase in three
dimensions, and a signature of a phase transition in two dimensions. The latter cannot be found by a straight-
forward application of perturbation theory around the ideal Bose [§d€950-294{@7)03801-9

PACS numbegs): 03.75.Fi, 64.10th, 67.65+2, 67.40—w

[. INTRODUCTION should be sufficiently accurate at low densities since it in-
cludes all two-body process¢$2]. In this manner we cor-
The theoretical study of a three-dimensional dilute Boseectly found a jump in the superfluid density, but unfortu-
gas in the regime where quantum degeneracy effects play mately, due to infrared divergences, that the magnitude of the
role has a long history1], and was first important for a quasicondensate also had to be adjusted such that the jump
microscopic understanding of the transition in liquid attained the universal value predicted by Nelson and Koster-
“He, although quantitative predictions for this strongly inter-litz using renormalization-group methof8]. This latter as-
acting system cannot be obtained by these means. The lattpect of our work shows that the ladder approximation breaks
is, however, not true for magnetically trapped quantum gasegown close to the critical temperature, and needs improve-
[2], which explains why the phenomenon of Bose-Einsteinment in the critical region. This problem will be addressed in
condensation, accompanied by the occurrence of superfluiég future publication. In this paper we will also apply our
ity, is still an active field of research today. Moreover, it variational approach developed for the three-dimensional
turns out that there is no completely satisfying theory forcase to the two-dimensional Bose gas, because in this way
these system$3,4], since existing treatments, which are we can in principle also resolve the infrared divergences,
based on a Bogoliubov kind of approach, fail, for instance, tanaking it an interesting approach for studying the two-
show the correct order of the phase transition and yield alimensional system.
first-order transition to the condensed phfs®] instead of The classical experimental realization of a dilute Bose gas
the second-order transition expected from the theory of critiin which one can try to observe either Bose-Einstein conden-
cal phenomena. In this paper we will develop a variationakation or the Kosterlitz-Thouless transition is spin-polarized
approach and show, for example, that a small but essentiatomic hydrogen. Although there is no fundamental reason
change in the Bogoliubov theory can resolve this issue. Thifor Bose-Einstein condensation not to be attainable in this
is one of the strong points of the variational method. system, the actual achievement of the critical condition is an
The two-dimensional dilute Bose gas has become subje@xtremely difficult task due to the inherent instability of the
of study only more recently when it was realized that thisatomic hydrogen gas against spin-flip processes, which lead
system is in the same universality class asXiemodel[7]  to particle loss and in general also cause heating of the gas
and should therefore exhibit a Kosterlitz-Thouless phasesample. The two-dimensional configuration of course also
transition[8]. Physically this implies that there is no macro- suffers from these drawbacks, but the critical conditions are
scopic occupation of one single quantum state, but there isore favorable than for the three-dimensional case and, as of
nevertheless a transition to a superfluid state through ththe mid 1980s, several experimental groups have therefore
mechanism of the binding of vortices with opposite vorticity. been pursuing the observation of the Kosterlitz-Thouless
This mechanism causes the superfluid densityo show a transition [13—16. In these experiments one uses liquid
universal discontinuity such thatA?=4 at the critical tem-  “He films to confine the hydrogen atoms in one spatial di-
perature[9], where A =(277%2/mksT)Y2 is the thermal de rection, hence realizing an effectively two-dimensional Bose
Broglie wavelength andh is the mass of the particles in the gas.
system. The study of the two-dimensional Bose gas starting Other experimental realizations of a dilute Bose gas in
from a microscopic Hamiltonian was initiated by Pog@®@].  which one can observe quantum degeneracy effects are laser-
In his approach, which corresponds to a one-loop calculatiosooled alkali-metal atoms and excitons. Since evaporative
and is based on the introduction of a so-called quasicondersooling was recently shown to work for magnetically trapped
sate, the superfluid density exhibits no jump, but instead goealkali-metal atoms like Rb and Nd.7,18, advances toward
to zero in a continuous fashion. In addition, it has beerthe observation of Bose-Einstein condensation were particu-
shown[11,12 that the range of validity of Popov’s approach larly fast, and recently actual observations of a Bose-Einstein
is by no means attainable in the experimental setups envisondensate in ultracold atomiRb, ’Li, and 2°Na gases
aged at present. Therefore, we have recently extended thimve been reported19-21. Recent developments in
work using the ladder off-matrix approximation which molecular-beam-epitaxy technologies have also led to op-
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portunities to reach the critical conditions for the Kosterlitz-  Our Gaussian ansatz will also introduce a condensate in
Thouless transition in a two-dimensior@dumbbel) exciton  two dimensions. Of course, the existence of a true conden-
gas confined by a double quantum-well structizg]. The sate in two dimensions is principally forbidden by the
three-dimensional exciton gas in, e.g. pureMermin-Wagner-Hohenberg theoref80]. However, using
Cu,O crystals has a somewhat longer hist$®B]. It has trial wave functionals with a broken symmetry in a varia-
even been claimed that the condensation transition was allonal approach can still be useful, because even if the form
ready observed in such a syst¢2d]. However, mainly due of the trial wave functionals deviates considerably from the
to the lack of a convincing interpretation of the obtained€Xact wave functionals describing the phase below the criti-
experimental data, there is no decisive proof of this fact a§al temperature, the estimate of the total energy of the sys-
yet. tem can be extremely good. '

As mentioned above, here we will first study the dilute ~ The organization of this paper is as follows. In Sec. Il we
Bose gas in general by making use of a variational approacilérive the desired expression for the thermodynamic poten-
and then take spin-polarized atomic hydrogen as a specifi¢d! {1, and we show in particular that minimization with
example. A variational calculation is a conceptually simplerSpect to the variational parameters automatically intro-
tool [25,26] that has been applied to such various subjects agluces the many-bod matrix into the problem. However, it
for instance, the investigation of the triviality af¢* field ~ turns out that the variational principle applied to the micro-
theories in different spacetime dimensig@g], investigation ~SCOpic Hamiltonian does not yield a completely consistent
of the phase diagram of th®(N) vector model[28], and ~ Picture. This problem is subsequently resolved by applying
construction of the ground state of the Sine-Gordon modei€ variational principle to an appropriate effective Hamil-
[29]. tonian. After tr_ns improvement we are ready to appl_y the

So the idea of a variational calculation is not new, but ittheory to atomic hydrogen. The results are presented in Sec.
has, to the best of our knowledge, never been applied to thél- In Sec. lll A we consider the three-dimensional system,
dilute Bose gas. Therefore, the outcome of such a calculatiofd Sec. Il B is devoted to the two-dimensional system. Our
is interesting in its own right. Moreover, it turns out that it @PProach indicates the onset of a new phase in the latter case
gives new insight into a number of problems present in thavhich cannot be found by an application of perturbation
conventional treatments of the dilute Bose gas, and into thi€ory around the ideal Bose gas. However, we are not able

way to resolve them. This will be explained in more detail 0 describe the properties of this phase by our variational
below. method, but argue that it corresponds to the superfluid

The basic idea is to make a Gaussian ansatz for thBound-vortex state. In Sec. IV we draw some conclusions

ground-state wave functional and its excitations, whichffom our work.
amounts to making an ansatz for the dispersion of the qua-
siparticles in the sy;tem, anq then to calculate the approxi- Il. THERMODYNAMIC POTENTIAL
mate thermodynamic potentidd=Q+(H—Hy),. Here
H, is a trial Hamiltonian that has trial wave functionals as We study the dilute Bose gas using the functional integral
eigenstates(), = — kg T In(Tr{ e AMu=#M7]) and( )y is the  formulation of the grand-canonical partition function. Start-
corresponding grand-canonical thermal average. One subség with Z,= Tr{e A7=#M] whereH is the microscopic
quently minimizes this thermodynamic potential with respectHamiltonian of the gas that in the language of second quan-
to the variational parameters that are in the Gaussian wavézation can be expressed in the creation and annihilation
functionals, and with respect to the expectation value of th@peratorsyT(x) and ¥(x), we can write
field of interest.

In the case of the dilute Bose gas, the results obtained in 1
this manner have to be used in the equation _o_f state, which Zgrzeffmzf dl&* 1d[ 4]exp — gS[W,z//]}, @
makes, for example, a determination of the critical tempera-
ture possible. This procedure is a mean-field approach in the
sense that no fluctuations in the expectation value of the fieldfter using the closure relation of the eigenstates of the an-
are taken into account. However, it is nonperturbative, anahihilation operator at each imaginary tireg 31]. The func-
clearly goes beyond the one-loop level. The main advantaggonal integral is over c-number fields ¢*(x,7) and
of using a variational approach in two dimensions is that thay(x,7), periodic in imaginary time ovefi 3=#/kgT. The
notorious infrared divergences are automatically circum-Euclidian action for the dilute Bose gas is given by
vented because the dispersion relation of the particles will in
general display a gap. This gap is analogous tddnigitrary)

infrared cutoffk, that Popov introduced to define the quasi- S y*, )= fﬁﬁd7< f dx ¢* (x,7)
condensateny(ky). Note, however, that in the variational 0

procedure minimization of the thermodynamic potential will 9 h2y2

fix the magnitude of the gap. Hence there will be no adjust- { — - — | (X, 7)
able parameter left in the calculation, as was the case in our gt 2m

previous treatment of the two-dimensional dilute Bose gas, 1

where we had to use the universal jump relation to determine + —f dxf dx’'* (X, 7) % (X', 7)

the infrared cutoffk, [12]. This convenient feature strongly 2

motivated us also to study the two-dimensional system

within the framework of a variational calculation. XV(X=X")Yh(X",7) (X, 7')), (2
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with u the chemical potential and(x—x") the effectively or volume of the corresponding system. The bosonic Mat-

repulsive interaction potential, meaning that the correspondsubara frequencies,=2mn/%A 3 reflect the periodicity of

ing scattering lengtla is positive. the fields in(imaginary time.

Expanding the fields in Fourier modes through We now have the basic ingredients, and can start the pro-
cedure of variationally calculating the thermodynamic poten-
1 Kx— o) tial Q. Breaking the symmetry by introducings(Xx, )
P(x,7)= (ﬁ'g—v)lliE Ay ne'" (® = /ng+¢'(x,7) and expanding the resulting expression, the

action up to quadratic order in first instance becomes

and the complex conjugate expression #6r(x,7), we can

write the action in momentum space as S?[a,a*]=—hBungV+ 1k BniVv
S[a*-a]:kE (—ihw,+ fk_//v)a’kc,nak,n +k§;1, (—ihw,+e—p+ Znovo)a;,nak,n
,n ’
1 1 1 4 * %
2 fL,BV 2 \ ak+q n+mak' -q, n'—m&k’,n’&k,n - +§n0v0k§:4] (ak,na—k,—n+ak,na—k,fn)a (5)
kk'.q ,
n, n’ ,m

(4) where the prime denotes that 0 is excluded from the sum.

_ From this we see that we have nontrivial so-called normal
In this equatione,=#2k?/2m, and Vo=Jdx V(x)e "9 is  and anomalous self-energies, and that in the lowest-order
the Fourier transform of the interaction potential. Since weapproximation they are, respectivelff2 1(k,w,)=2ngVq
will be interested in the temperature regime where the spatiadnd 72 ;,(k, w,) =ngVy. This gives a strong indication of
extensionA of the hydrogen atoms is much larger than thethe form of the variational wavefunctional that we have to
range of the interaction potentiahfA <1), there is essen- take to describe the dilute Bose gas correctly, in principal at
tially only s-wave scattering taking place in the gas, and weany temperature. As the choice of Gaussian wave functionals
can neglect the momentum dependence of the interactiois formally identical to an ansatz for the quadratic trial
potential. Therefore we séf,=V,. The momenta are re- Hamiltonian; which they are supposed to diagonalize, we
stricted to either two or three dimensions, ands the area now write the full action as

Sla,a*]=—#hBunV+ %ﬁﬁngvov+ ; ’ (—ifio,+e—pt ﬁzll(klwn))az,nak,n

+ %ﬁzlz(k’wn);1 I (az,natk,—n'i' ak,na—k,—n) + (ZnOVO_hEll(kvwn))% , ar:,nak,n

No 1/2
(nOVO ﬁzlz(k wn))z (ak na Kk, 7n+ak na—k 7n)+ ﬁﬂV 2 Van mak' —-q,n’— mak’ n’
k’ q
n’,m
1/2
Ng , 1 1
+ ( ﬁ,BV) % Voa;_'_an_*_maq,mak n 2 ﬁBV k% VOak+q n+ma.k, -q, n,_makr nra.k ns (6)
’ n,n’,m

where we introduced nontrivial normal and anomalous selfdynamic potential. As indicated by their arguments, the self-

energies in the first two quadratic terms on the right-hancenergies are in principle functions of momentum and

side of Eq.(6) by simply adding and subtracting frequency. However, since we are dealing with a dilute gas
in the limit where onlys-wave scattering is of importance,
we will neglect these dependencies and henceforth omit the

!
% (72 11(K, @) 8y nt+ 772 12K, 0p) arguments. This is a usual step taken in treating the weakly
’ interacting Bose gas. Note, furthermore, that we assume the
X (@ n@%y —ntaynd_k —n))- self-energies to be real, hent& ,,=%2,;, which amounts

to a choice of gauge that is related to our choice of
The quantitiesi 3 ;,(k, w,,) and#3 1k, @,) are now consid- ()= \ny being real.
ered as the variational parameters of the trial wave function- Performing the Bogoliubov transformation to diagonalize
als, and are determined from a minimization of the thermo+the trial action
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, _ Hugenholtz-Pines relation is only valid in a stationary point
S"a*,a]l=>" (—ihw,+e—p+hSi)al ax, of the action[12], and the variational approach by definition
.n also describes nonstationary points. As we will see below,
Eq. (9) will nonetheless turn out to hold for the three-
+3h3150 " (8F pa% _ntakndok,—n), dimensional case if the temperatures are not too close to
Kn absolute zero. In two dimensions E§) will not be valid for
(7)  temperatures unequal to zero, since it would lead to infrared
_ ) ) ) ) diverging integrals in the thermodynamic potential, and is
we find that the dispersion relation for the Bogoliubov qua-therefore excluded from the solution space by the variational

siparticles is given by principle. As mentioned above, this was actually our main
- motivation for also applying this approach to a two-
W= (e p')* = (h2 )", ®)  gimensional Bose gas.ppy ° PP

The next step now is to calculate from the functional in-

where we have introducedu’=u—7%3%4,. Moreover, . : ‘
tegral the thermodynamic potenti@l, which equals

the usual coherence factor$32] for this transfor-
mation are given by u=3[V(ex—u' +AZ1)/AO,
+ VR (6= ' +731))] and V=3 g=_1
[V(e—p' +121) 1O~ VEQ /(6= ' +h31))],  re- B
spectively. The Hugenholtz-Pines theoréB8] states that
the exact normal and anomalous self-energies satisfy

1 (int)
|nztr+ ﬁ<s >trv (10)

whereSt" is the interaction terns— S™ found by a com-
pn=1%1215(0,0)~%2150,0), (99  bination of Egs.(6) and (7). Again using the above-
mentioned Bogoliubov transformation in combination with
leading to a gapless dispersion. This condition is, howevelVick's theorem[32], a straightforward calculation of this
not imposed on our variational calculation since thequantity leads to

1 1 KeT s, 11,
VQ(M',ﬁzlzﬁo;M,T):Encz)vo_ﬂn+ %2 |n(1—e_ﬁmk)+§v2 (AQy— e+ p')+(2nVo+ 1) (N—ng)
K K

11
+ (A2 15~ NEV)AZ o0+ Vo(N—Ng) >+ > vVo(ﬁzlz)zaz, (11)
where
1&) 1o (& nm e—p' —hildy
_ - * — - - -
n=no+ Van (& nakny =No+ V; o N(A Q)+ T (12
|
is the equation for the density, and the dispersidn, is Vo 2nVo+u' —u an
given_ by Eq.(8). Furthermore, we introduced the shorthand h21p= ”01+V0a - da |\ oh3.
notation (1+Voa)| a+h3 5=
oh2q,
(14
1 1 1 1+2N(AQy)
_ i N * % _ Ny D e and
SO v;n (@ )= G2 260,
(13 ) an da
(2nVot ' = ) 375 =[AZ 1A 1+ Vo) = oVl S 1075
(15
with N(x)=1/(e’*—1) the Bose-Einstein distribution func-
tion, resulting from the sum over the Matsubara frequenciesvhich are both solved by
w,. In particular, we have that- =i/ B(A w,—X)=N(x)
[32]. 53 m Vo
Now, first of all, we have to minimize this expression for 12— n°1+V0a (16)

fixed ng, chemical potential, and temperatur@ with re-

spect to the variational parametets.,, and AX,;, or, and

equivalently, 4%,, and u'. Putting @Q/dh%,5)=0 and

(0Q1ou’)=0 yields, respectively, s =p—2nVy. (17)
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Calculation of the second derivatives of the thermodynamicase here, and therefore restrict ourselveatd.

potential indeed shows that this solution corresponds to Starting with the second equation we immediately con-
a minimum for anyVy>0. ForV,<O0 the obtained solution clude that the solution for the normal self-energy is
corresponds to a maximum in the thermodynamic potentialis,,=2nV,, meaning that the variational calculation for
implying an unstable solution. This is physically reason-this particular variable yields only the one-loGg., Hartree-
able, since a negativé, implies an effective attraction be- Fock) expression. The first equation shows however, that the
tween the constituent particles and thus a negative scatterirnomalous self-energy2. ;, is obtained in an approximation
length a. As a result, a magnetically trapped gas indeedhat goes far beyond one loop. In fact, as we will now show,
turns out to be unstable against the formation of a densi constitutes the many-body-matrix approximation to the
(solid or liquid phase in thelocal density limit, where the  self-energyi = 1, [12].

temperatures are much larger than the splittifigs of the The many-bodyT matrix TMB(k,k’,K;z), which is dia-
one-particle eigenstates in the trap, and the correlation lengtrammatically depicted in Fig.(&), describes the collision

is smaller than the typical trap si84]. Quantitatively this  of two atoms having relative momenka andk before and
means thakgT/Zw>1/|a|>1, wherel = Ji/mw is the ex-  after the collision, and a total center-of-mass momenkum
tent of the lowest-lying unperturbed harmonic-oscillator stateand center-of-mass energy in a medium containing the
of the trap. However, in the opposite limit it has recently same atoms. The equation for the many-botlymatrix,
been shown by a numerical solution of the nonlinear Schrowhich by construction sums all the ladder diagrams, can eas-
dinger equation that a condensate may be metastable fdy be derived if one realizes that the free propagation of the
a sufficiently small occupation numbgs5]. Although this atoms is determined by the trial Hamiltonian, that can be
is a very interesting result in light of the fact that a numberdiagonalized by a Bogoliubov transformation. A somewhat
of alkali atoms, e.g., Cs and Li, have negative scatterindengthy but straightforward calculation gives, in the thermo-
lengths[36,37], we will not consider this inhomogeneous dynamic limit,

MB(k,k',K; k—k’' f—ddk” V(k—K” iU vio® 1+N,+N
TRk KK 2)=Vk=KkO)+ | B VKK g —ha. ~ ha.+ha | (TTN+TN)
2.2 2.2
U7U+ _ U+U, _ MB /1 1,1 .
o, —ro.  z—na,+ra_ | (N N)}T (k".k",K32), (18)
|
whereN, =N(AQ,) andN_=N(#_). The plus sign de- T™B(0,0,0;2) =Vo+ VoTVE(0,0,0;2)
notes the momentum argument/Q)+k”, and similarly the
minus sign denotes the argumekt/2)—k”. This expression y dk  1+2N(%y) 19
for the many-bodyT matrix has a clear physical interpreta- 2mY z-2hQ, (19

tion: Two incoming atoms with momentaK(2)+k” and
(K/2)— k" can scatter out of their momentum states either by

the qreation of two quasipayticles, by the (_:reat_ion of tWoith an error ofO(VonaA?), which is negligible except in
quasiholes, and by the creation of one quasiparticle and ong, eyiremely small interval of temperatures near absolute

guasihole. The net rates for the first two processes are Pr%aro. By virtue of the fact that we neglected the momentum

: 2.2
portional to ULUZ[(1+N.)(I+N_)=N.N_]J ~and = gependence of the scattering potential, this equation can eas-
viUvE[NLN_—(1+N,)(1+N_)], respectively, if we take ily be solved to give

the usual Bose enhancement factors for the scattering into

occupied states into account. For the last process the quasi-

particle can have either momentumK/)+k” or

(K/2)—Kk". The net rates for these processes are proportional T™B(0,0,0;0)= ,

to  UZu2[(L+N_)N,—N_(1+N;)] and u2v2[(1 1+Voa

+N,)N_—N,(1+N_)], respectively. Together with the

usual energy denominators, which are well known from

second-order perturbation theory, this fully explains thewhich finally establishes our claim that the variational calcu-

structure of the right-hand side of E.8). lation gives the anomalous self-energy to within the
Since we neglected all momentum dependencies of th&-matrix approximation, i.e.fi%;,=neT"2(0,0,0;0). Fur-

self-energiesi 2. ,; and%2 1, in the variational approach, we thermore, Eq(20) implies thata [cf. Eq. (13)] is equal to

will also do so in the above equation for tliematrix. When — 1/TE(0,0,0;0)— 1/V,.

we furthermore seti,=1 andv,=0 by making use of the Note that in the calculation we are carrying out, this

fact that the Bogoliubov spectruni(), deviates from T-matrix still depends on the variational parametéis,;

e.— ' only for a very small momentum interval such that and#%3,,, because they enter into the dispersidn, [cf. Eq.

e=h21,<nVy, we find that Eq(18) reduces to (8)]. Moreover, the many-body matrix can be related to the

Vo

(20
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N anomalous self-energy is obtained in thamatrix approxi-
mation, which contains any number of loops. The inconsis-
T = >V\N“< + tency can be better understood by diagrammatically analyz-
T ing the structure of Eq916) and (17), making use of Eq.
(a) (12) for the density and the definition af given in Eq.(13).
The result is depicted in Fig.() together with the Dyson
equation for the normal and anomalous Green'’s functions. It

@ - \W * \W’/ is clear from these diagrammatic equations that iteration will
generate the ladder series for the anomalous self-energy
%315, but not for the normal self-enerdgy2. ;. Moreover, it
shows that the set of diagrams which is being summed in our

. case of a compleky|* theory gives at most th& matrix.
- - S o SN This is in contrast, for example, to the result obtained by
M ™ - ~ >MN© Barnes and Ghando{89]. They showed that a similar varia-
tional calculation for a real scalap* theory yields self-
energies containing the ladder as well as the bubble dia-
grams.

- . —— . +®=.z . _._@_:. To obtain consistent results with the above variational ap-
proach, we have to apply it to an effective Hamiltonian con-
taining an effective interactiowgﬁ. This procedure is often
followed in the literature with/g" equal to 4rafi?/m. It was

(’B)Z" . “@I . *@':“ introduced by Huang and Yang in the 195@€)], and has
since been known as the pseudopotential method. Using the

FIG. 1. Diagrammatic representatioria) Diagrammatic repre- ~ €ffective Hamiltonian implies that we can repla¢g every-
sentation of theT-matrix equation(b) The normal and anomalous where by the effective potentiMS™ except in the conden-
self-energies as found in the variational approach together with theate contributiomSVOIZ, for reasons that will become clear
expressions for the exact Green’s functions. Note that iteration oghortly, but are also known from the work of Huang and
the equation f0|§:12 generates the ladder diagrams. This is not theYang_ Again, performing the minimization procedure now
case fory;. leads to 3 1,=neVET(1+VETa) and w'=pu—2nVET,
wherea=1/TM8(0,0,0;0)— 1INV [cf. Eqs.(16) and(17)]. It
is readily seen that takin(s}'gff equal to the many-body
matrix evaluated at the minimum 61 that is located at the

1 1 1< N(HQY _point in the u' -7, pIa_ne given by t_he above solutions,
T™5(0,0,0.0)  T2(0,0,—21") +y TN indeed leads to the desired self-energies

two-bodyT matrix, which describes the collision of two par-
ticles in a vacuum instead of a medium, throdgg]

(22) %3 1,=ngT™8(0,0,0;0), (24)
The low-energy limit €,<%2/2ma?) of the two-bodyT ma-
trix has been studied extensively in the literat[88]. When 731,=2nT"8(0,0,0;0) (25
the configuration space is three dimensional, it is accurately
represented by in the T-matrix approximation. Thus we see that the effective
5 Hamiltonian needed to obtain consistent results contains the
T28(0,0: ¢,) = Admah 22) many-bodyT matrix as the effective interparticle interaction,
ok m '’ instead of the two-body matrix that is used in the pseudo-
potential method.
whereas The thermodynamic potential at this minimum in the first

instance equals
47h2Im

2B . _
TH0.060= T nikeais — 25

9 kgT
v (o, T)=3ngVo— un+ %Z In(1— e~ #"%)
when configuration space is two-dimensional. In these ex- K

pressionsa denotes the scattering length or effective hard- 11,

sphere radius of the interaction potential, ape0.5772 is + EV% (A Qy— e+ p')

Euler’s constant. These long-wavelength expressions will en-

able us in a later stage to formulate our final results solely in +(2nyT8(0,0,0;0) + 1’ )(N—nNg)
terms of the scattering length instead of the f(ricro-

scopig potentialV(x). +TY8(0,0,0;0)(n—n)?, (26)

Comparing Egs(16) and(17), we conclude that the varia-
tional calculation as performed using the microscopic Hamilfrom which we still have to eliminate th¥, dependence
tonian of the Bose gas leads to an inconsistency: The normalccurring in the first term, as well as the ultraviolet diver-
self-energy is obtained to one-loop order only, whereas thgence in the fourth term of the right-hand side. As is well
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known, these two matters are intimately connected, and cay, is exactly renormalized to the many-bo@iymatrix if one
both be resolved by writing the sum of these two terms as of the TV®'s in (%3 1,)? is replaced by/,, since then

L2Vt - 12‘,’ AQ— e+ p + (121" 1, 1+2N(AQ,)
2MoVo™ 5 v/ k™ €k ’ k
2 2 VK 2h.Q %ngvo—%néVOTMB(O,O,O;O)vzk: R0,
1 1
_1 22NV _ 12TMB .
2031252 g snsTV%(0,0,0;0) (27)

By also adding and subtractingi¥,,)2(1V)=N(%Q,)/  due to Eq.(19). The final expression for the thermodynamic
27.Q and realizing that 2, ;,=n,TM8(0,0,0;0), we sedhat  potential thus becomes

1o, , (1317
V; AQy— e+ u + oh 0

N| -

1 ke T
v (no; 1, T)=2n5T"8(0,0,0,0) — un+ %E In(1—e A1) +
k

1w, N(AQY
+%(ﬁ212)2v; thk

+(2ngTMB(0,0,0;0) + 1’ )(n—ng) + TMB(0,0,0;0)(n—np)2,  (28)

with A%, given by Eg. (24 and u'=p
—2nTMB(0,0,0;0). Note that this derivation by no means
depends on the validity or violation of the Hugenholtz-Pines

1
Vil $n3TM8(0,0,0;0) — wny

relation, and that we now have obtained the thermodynamic kT, P

potential containing only the many-body matrix and not + 7; In(1—e™ Al #)

the interaction parametaf,. The fourth term on the right-

hand side can be shown to be at mosQOgfyna®) in three —TMB(0,0,0;0)(n—ny)?. (30)
dimensions, and 0©(1/In(1ha?)) in two dimensions, and

will henceforth be neglected. This result now has to be compared with E28). First, we

Equation (28) is the central result of this section, and have to show, lest they be equal, that
requires only the use of Bogoliubov wave functionals with
momentum- and energy-independent self-energies. Although kBTE/ n(1—e-Fh%) 4 143 212, N(7€y)
obtained by a variational ansatz for the wave functionals and Vv n(i-e )+2(f21) v Ry
an appropriate effective Hamiltonian, it has lead to a correct
expression for the thermodynamic potential in thenatrix _ kgT
approximation. As a proof of this fact we will now in an VAR -
independent way derive E@28) directly from the original
action§[a*,a], for which in Eq.(5) we have written down That this equality holds to a very good approximation can be
the quadratic part, avoiding the use of a variational approactiemonstrated simply by performing an expansiort: 6¥, ,
For this purpose, we also treat the off-diagonal pa®@éfas  which leads to
a perturbation, and consider only the diagonal part as the
unperturbed action. Thu@g jaxn)=—#A/(ifo,—et+u'). In(1—e A%) =n(1—e Ale—n")
In the first instance we then immediately write

(h315)°

—ﬁmN(ek—ﬁL’)"rh.O.t.

" In(1—e Bla k), (31)

%Q= %nSVO—,u,no-f— kBVTE ' |n(1—e‘ﬁ(fk—u’))
“ (32
—T™B(0,0,0;0)(n—ng)?, (29) , ,

(h.o.t. stands for higher-order termahere the ratio of the
where the last term compensates for the double counting dfigher-order terms and the first-order term in the expansion
the interactions. The first term can now be improved to thes either of O(ngaA?) or of O[(ngA?/In(1/nga?))] in the
T-matrix level by performing perturbation theory in the off- regime where these parameters are small. Close to zero tem-
diagonal parts of the actioB?). The lowest-order term con- perature these parameters become large, but what has to be
tributes — (NgVo) (V)= (1+2N(e— u'))/4(ex— ') to  compared in that situation is the contribution of these terms
the thermodynamic potential, whereas the consecutive terms thetotal thermodynamic potential. Due to the Bose factors
are ofO(nga®) or O(1/In(Lhga?)) in three and two dimen- their contribution becomes negligible. Second, the two re-
sions, respectively, and negligible. Combining this lowest-spective termsr{—ng)? in Egs.(28) and(30) also differ due
order term withngvolz, the thermodynamic potential now to the difference in dispersion. Again, expanding,, one
reads can show that the error here is of the same order as above,
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FIG. 2. Lines of constant
chemical potential4 and 5, the
first having the largest chemical
potentia), and solution curves
soxiot | of the equation 3 ,,=nT"®
(0,0,0;0) in the u'-A%,, plane

-1.0x10° -

:m for (1) ng@’®=4.8x10 %2
I (20 nga®=5.0x10"'?  and
s0x10° L (3 ne®=5.2x10"2  Also
4 shown is the line on which the
Hugenholtz-Pines relation is satis-
fied.
40x10* | 5

50x 10"

and is negligible. Thus, as this independent calculationvalue of n, these two curves have a point of intersection,
shows, Eq(28) obtained from the modified variational cal- which thus solves both equations. The valuelofs a func-
culation is indeed the correct result for the thermodynamiaion of n, for fixed x andT is then obtained by means of Eq.
potential. (28). Repeating the above procedure several times, we deter-
The above argument shows that the results obtained if'hine the value OﬁOv m|n|m|z|ng the thermodynamic poten-
Egs.(24), (25), and(28) can also be interpreted in a different tja|. After this the properties of the system are fully deter-
manner. First we break the symmetry of the theory by handmined, and it is possible to calculate, e.g., the condensate

We subsequently calculate the normal and anomalous selfraction and the superfluid density as a function of tempera-
energiedi 3, ; andf X, in the T-matrix approximation. This  tyre.

straightforwardly gives Eq$24) and(25) (see also Ref. 12
We then also calculate the thermodynamic potential in the
T-matrix approximation, yielding, as we have seen, 28).
Thus we again arrive without reference at a variational cal- |n order to obtain Bose-Einstein condensation, one mag-
culation at the same set of equations and in particular at thgetically traps hydrogen atoms in the doubly polarized
same thermodynamic potential as a function of condensaqq>:|ﬁ> state of the upper hyperfine manifold, resulting in
density, chemical potential and temperature. The value of thg well-known effectively repulsive triplet interaction be-
variational calculation lies therein, in that it gives a cleartween the atoms with a value of the scattering length of
picture of the physics involved in the microscopic calcula-1 34a, [41]. Typical sample densities are #9010 atoms
tion, and in particular shows what the correct, i.e., self-per cubic centimeter, with a corresponding critical tempera-
consistent, effective Hamiltonian of the gas is. ture on the order of tens of mK.

The final step we now have to take is to find the value of For the two-dimensional system one uses atoms in the
Ny which minimizes the thermodynamic potential at givendoubly polarized|b)=||1) state of the lower hyperfine
w andT. Because this program has to be implemented numanifold [2] adsorbed on a superfluid helium film. The ef-
merically, we now restrict ourselves to the specific exampleective interaction between the adsorbed atoms is in a very
of spin—polarized hydrogen atoms in both three-dimensiona@ood approxima’[ion given by the We|ghed average of the
(Sec. 1l A) and two-dimensionalSec. Il B) configurations.  yolume triplet potential, using the square of the bound-state
In the case of the system being three dimensional, this leadgave function pertaining to the motion perpendicular to the
to improvements on existing approaches to this problem, angurface, as a weighting factp42]. This procedure leads to a
we therefore particularly present results for the condensatgyvo-dimensional scattering length with a value of 240
fraction and thep-n~" diagram. [38]. The densities one aims at in this experimental setup are

The equations which are relevant for a numerical |mp|81yp|ca||y some 163 atoms per square Centimeter, which cor-
mentation are first of all#i3;,=neT"?(0,0,00) and responds to a critical temperature in the range of 50—100
u'=u—2nTE(0,0,00) [cf. Egs.(24) and(25)], localizing  mK.
the minimum of the thermodynamic potential. To solve them
for various values of,, we first locate the#{3,,u4") com-
binations for which the first equation is satisfied. Next, we
locate ¢:31,,1') combinations which yield the same chemi-  In Fig. 2 we show, for three different values a3, the
cal potentialu by means of the second equation. For eachcurves in the 3 ,-u’ plane on which the equality

Ill. SPIN-POLARIZED ATOMIC HYDROGEN

A. Three-dimensional case
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FIG. 3. Thermodynamic po-
tential vs condensate density for
the same two values of the chemi-
cal potential as in Fig. 2 and at a
temperature of 3QuK. The dots
indicate the starting points on the
Hugenholtz-Pines line of the cor-
responding curves in theu’-
3,1, plane. The graph shows that
at the minimum the Hugenholtz-
Pines condition is indeed satisfied.

Q/VK,T (m’)

-1.4980x 10M
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#31,=noTVE(0,0,0;0) holds, as well as two curves on low-temperature range where our numerical results show a
which the chemical potentigk is constant, both at a tem- minimum in the thermodynamic potential that is slightly
perature of 30uK. The straight lineu’=—#3,, corre-  shifted from the Hugenholtz-Pines line. Since this tempera-
sponds to the conditions where the Hugenholtz-Pines thedtre range will be very difficult to obtain experimentally, we
rem is satisfied. The aréed ,>|u'| is of course not part of will not consider it further here.

the solution space since it would imply a complexstable Outside this range, all the properties of the system can
dispersion relation. By calculating the thermodynamic potennow be calculated accurately. In Fig. 4 we plot the conden-
tial at the intersections of the lines, we infer the relationsate fraction as a function of temperature for a density of
between() and the condensate densityfor a given chemi- 10 cm™~3. The inset shows the behavior near the critical

cal potential. temperature following from our calculation, as well as from
This is shown in Fig. 3 for the same two values of thea calculation in which we have replaced the many-bady
chemical potential. From this plot we find that thg mini-  matrix by the two-bodyT matrix. The latter is essentially

mizing the thermodynamic potential for givgnindeed cor-  what has been done in earlier approaches to the dilute Bose
responds to the situation where the Hugenholtz-Pines thegras[6]. Using the two-bodyT matrix, however, produces a
rem is satisfied, i.ey’= —#%2,. Note that this is a result of double valuedness in this curve, leading inevitably to the
the minimization procedure, and is not assumed beforehandonclusion that there is a first-order phase transition. This
The Hugenholtz-Pines relation, however, turns out not tadouble valuedness also shows up in the equation of state
hold in every situation. For extreme conditions, very close tadepicted in Fig. 5. Again, the equation of state is single val-
zero temperature, the position of the minimum is shiftedued if the many-bodyl matrix is used. Our variational ap-
slightly from the Hugenholtz-Pines lingee also Fig. 12 in  proach has therefore succesfully resolved the long-standing
Sec. Il B). At T=0 one can, starting from Ed28) with  problem concerning the double valuedness in the equation of
generali %, andu’, also prove analytically that this is the state. It shows that it is essential to include the effect of the
case. We can, however, understand this shortcoming as foburrounding medium on the collision of two hydrogen atoms,
lows. The deviation from the Hugenholtz-Pines condition iswhich leads effectively to a temperature-dependent scattering
due to an overestimate of the effective interaction betweemamplitude and a softening of the dispersion near the critical
the atoms. Indeed, a smaller value of thenatrix, together temperature. We calculated the effect of the medium on the
with a larger value of the condensate density to ensure thaffective scattering length explicitly for the above situation
the chemical potentigk remains the same, shifts the mini- wheren=10"* cm~3, and show in Fig. 6 the ratio of the
mum toward the Hugenholtz-Pines line. This overestimate ofmany-bodyT matrix to the two-bodyT matrix as a function

the effective interaction is due to the neglect of the influenceof temperature. The fact that the many-boBymatrix, and

of the coherence factors in the expression for the many-bodgherefore the effective interaction of the atoms, goes to zero
T matrix in Eq.(19), i.e., due to puttings,=1 andv,=0. at the critical temperature, is correct when neglecting mo-
Taking these coherence factors into account will cause a denentum and frequency dependencies, as can be shown from
crease of thd matrix, which presumably solves the problem an exact renormalization-group equation for the four-point
that the minimum of the)-n, curve does not coincide with vertex function[43].

the Hugenholtz-Pines criterion. The region where the neglect However, the many-bod¥ matrix TM8(k,k’,K;z) does

of the coherence factors becomes important corresponds tmt go to zero for nonzero momenta and frequencies. This
the conditionnaA?=1, which is indeed in the extremely explains the feature seen in the inset of Fig. 7, where we plot
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0009 FIG. 4. The condensate fraction as a function
06 I T@K) ' of temperature for a total density of *ocm ™3,
The inset shows the behavior of the condensate
fraction near the critical temperature revealing
the double valuedneggurve ) if one uses the

04 two-body T matrix, which is resolved if one uses
the many-bodyT matrix that includes the effect

of the medium on the collisiofcurve 2.
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the p-n~! diagram resulting from our calculations. Near thethe van der Waals loop from then~! diagram. Hence the
critical density the curve shows a van der Waals loop, whichfirst-order phase transition implied from Fig. 7 is an artifact
by means of a Maxwell construction, would still imply a of our long-wavelength approximation, which breaks down
first-order phase transition. This behavior is due to the fachear the critical temperature. We stress, however, that the
that the thermodynamic potential E8), and hence the softening of the dispersion discussed earlier, resolving the
pressurep=—()/V, always contains the many-bodyma-  problems related to the double valuedness in the equation of
trix evaluated at zero momenta and energies. Therefore, th@ate near the critical temperature, in contrashdsan arti-

van der Waals loop shown in Fig. 7 is solely a consequencgyct pecause the dispersion relatiodoes contain

of the behavior of the ratid'“f'B(O,O,O;O)/TZB(O,O;O) near  tMB(g 0,0;0) in the long-wavelength limit. This concludes
the critical temperaturésee Fig. 6. It would not _have been our discussion of the three-dimensional system, and we now
present had we used a more accurate expression for the th(ﬁrj-m to the two-dimensional case.
modynamic potential, which in principle contains integrals
over the many-bodyl matrix evaluated at finite momenta
and energies. Indeed, as was shown in a separate paper using
different methods[44], the term TVE(0,0,0;0)(n—ng)? In Fig. 8 we show the solution curves of3,
should be replaced by?8(0,0;0)(n—ng)?, which removes =n,T"(0,0,0;0) for three different values ofya® at a

B. Two-dimensional case

14

1.0010x 10
1.0005 x 10
FIG. 5. The equation of state
o for small x’ at the critical tem-
5 perature for a system with
= n=10"* cm3, showing the
double valuedness also discussed
1.0000 x 10" in Fig. 4.
0.9995 x 10"

1x10° 2x10°
—wk,T
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FIG. 6. The ratio of the many-bod} matrix
to the two-bodyT matrix at a density of 1
cm™3, showing thafT™B(0,0,0;0) goes to zero at
the critical temperature.
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temperature of 50 mK, as well as two curves on which the From this graph the following is then immediately clear:
chemical potentialu is constant. In addition to the area For u<0 the value ohy yielding the lowest thermodynamic
#315>|u'|, the Hugenholtz-Pines line itself is also not part potential is zero, whereas far>0 the value o, has to be

of the solution space, since it would imply a gapless disperinfinite to give the lowest value of). Thus for u>0 we
sion and therefore infrared divergences. This is also the€annot fix the number of particles in the system to a finite
cause of the essential difference between Figs. 8 and 2. Tealue, and we conclude that the variational approach signals
avoid infrared divergences in the first case, the solutiothe onset of an instability gt =0, but cannot describe the
curves of#2,,=n,TMB(0,0,0;0) are forced to start in the phase below the critical temperature. Abolgit describes
origin of theu’' —#3, 1, plane, in contrast to what happens in the two-dimensional Bose gas in the ladder approximation.
three dimensionscf. Fig. 2). This is a crucial point of dif- What wecando is to deduce from the condition=0 the
ference, and results in the fact that the curves of the thermagelation between the critical temperature and density as it
dynamic potential versus chemical potential all start in onefollows from our variational approach. This is shown in Fig.
and the same point, correspondinguae=%3,,=u’'=0, as 10, where we plonh. versusT.. As expected, we find that
shown in Fig. 9, wheren, increases going from curve 1 to the critical temperature is overestimated, a@dg is smaller

curve 4. than 4. This is consistent with the fact that the variational
120x 10°
624x10° £
£
Z
80x10° | P e2x10° |
— FIG. 7. Pressure vs inverse
g density atT=50 uK. The inset
% shows a small van der Waals loop
present around the critical density
40x10° | (see text

. s
0 20x10™ P 40x 10" 60x10™
n (cm’)



55 VARIATIONAL APPROACH TO THE DILUTE BOSE GAS 509

h ZIZ/kBT

0.0 0.1 0.2
0.0 T T

FIG. 8. Lines of constant chemical potential
(4 and 5, the first having the largest chemical
potentia), and solution curves of the equation
£31,=nyoT"B(0,0,0;0) in theu'-%3 1, plane for
(1) ne@®=1075 (2) ng@?=5x10"°%, and (3)
nea®=10"*. Also indicated is the Hugenholtz-
Pines line.

approach is of a mean-field type, since no fluctuations in the w'=u—h=p—2nT"E(0,0,0;0), (33

background field have been taken into account. Fluctuations,

and in particular phase fluquations associated with vortipesdnd in the equation of state

should reduce the real critical temperature and result in a

universal jump of the superfluid density. This is schemati-

cally shown in Fig. 11, where we plot the behavior of the n=> N(e—u'), (34)

superfluid density versus temperature. Only for temperatures K

larger thanT¥", which is itself larger thaTK" , at which the

Nelson-Kosterlitz criteriomsA?=4 is satisfied, can we ap- where the latter is now obtained by a minimization of the

ply our theory. free energy. At a fixed temperature, and density, we first of
We would like to point out thaTﬁ"F cannot be found by a all determineu’ from Eq.(34) and subsequently from Eq.

straightforward application of perturbation theory around the(33). Clearly, this calculation can be performed at any tem-

ideal Bose gas. Indeed, calculating the free enérgynd the  perature, and we just obtain the ideal gas result where a

(norma) self-energy in the ladder approximation would re- phase transition occurs only at zero temperature. Notice,

sult in however, that for temperatures larger th1§i’iF the above

1.0x10°

FIG. 9. Thermodynamic po-
tential vs chemical potential at a
temperature of 50 mK andl)

k) nea’=0, (2) ng@%=10"% (3)

% 0 n@?=10"% and (4 nga?=5

> X104 The dot indicates the

G starting point of the corresponding
curves in the u'-A3%;, plane,
which lies in the origin for all val-
ues ofngaZ.

-I'OXIOJ-(S.O 40 20 0.0 20
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FIG. 10. Critical density vs temperature found

Et1ox10” | from the criterionuw=0, the point at which the
= variational approach signals the occurrence of an
instability.
0 ‘ ‘ ) .
0 10 20 30 40 50
T(mK)
procedure of minimizing the free enerdy leads, as ex- IV. CONCLUSIONS

pected, to exactly the same results as our minimization of the

thermodynamic potential. We performed a variational calculation for a weakly in-

Finally, in Fig. 12 we show the thermodynamic potential teracting Bose gas, and applied this method to spin-polarized

as a function of condensate density for a fixed chemical potomic hydrogen in both the three- and two-dimensional
tential in the case of zero temperature where a real conde/s2S€S. We showed that the variational approach does not au-

sate can exist in the two-dimensional system. In this case tH@matically lead to a consistent description of the system
solution curves of3,1,=nyTVB(0,0,0;0) do not start outin under study, and that the number of diagrams that is being
the origin of theu’-A3 1, plane, but essentially behave as SuUmmed can be rather restricted. In particular, the normal
depicted in Fig. 2, because without thermal fluctuations ther&€lf-energy is obtained in the one-loop approximation only.
are no infrared divergences whari=—#3,,. Again in this  The anomalous self-energy contains the ladder diagrams. We
extreme situation we find that the Hugenholtz-Pines relatiortonsequently improved all relevant expressions toltmea-

is not satisfied, which, as in three dimensions, is due to thérix level by using not the microscopic Hamiltonian, but an
neglect of the coherence factarsandv, in the equation for  effective Hamiltonian to describe the Bose gas.

the many-bodyl' matrix by our variational approach. In three dimensions, this approach resolves the problem

FIG. 11. Schematic behavior of superfluid
density vs temperature. The solid line results
} from a renormalization-group analysis, that leads
| to the exact critical temperatur€s', obeying
| nsA2=4. The dashed curve corresponds to a
: mean-field result with a critical temperature
| TV, Below TYF the variational approach does
: not give information about the properties of the
|
|
|
|
|
[
|

system.

KT MF
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FIG. 12. Thermodynamic po-
‘*;: tential vs condensate density for
— . fixed chemical potential at zero
g 23x100 - temperature, showing that the
Ni Hugenholtz-Pines condition, valid
S only at the end point of the curve,
a is not satisfied in the minimum of
, this curve.
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of double valuedness in the equation of state, that leads toritical temperature we can infer from the occurence of the
the conclusion of a first-order phase transition, and is foundnstability is an overestimate of the true critical temperature
in all previous approaches to the dilute Bose gas. The essedue to the neglect of the crucial phase fluctuations. In this
tial ingredient to resolve this problem is the use of the many+espect it is important to note that introducing a quasicon-
body T matrix, which takes into account the fact that two densateny(ky), followed by a diagrammatic calculation of
particles collide in a medium, and not in a vacuum. To thethe equation of stat§12], does give correct information
best of our knowledge, this work comprises the first attemptbout the Kosterlitz-Thouless phase, and thus incorporates
for a dilute gas to include this effect of the medium. Thethe essential physics of the superfluid state. This in contrast
(smal) van der Waals loop we still find in thp-n~! dia-  to the mean-field variational approach presented here.
gram is a result of the neglect of the momentum and energy Finally we want to remark that solving the problem of the
dependence of th€& matrix. The simplification in the coher- dilute Bose gas in the regimeaA?>1 using the full T
ence factorsl, andv, leads to an overestimate of the effec- matrix Eq. (18) is a highly nontrivial task due to infrared
tive interaction, and explains the fact that, in extreme condidifficulties even in three dimensions. A renormalization-
tions, far below the critical temperature, the Hugenholtz-group study should solve these difficulties and, more impor-
Pines relation is not satisfied. Using the full many-body tantly, should also accurately describe the critical region. A
matrix TMB(k,k’,K;z) will, however, resolve these issues. study along these lines is underway.
We also calculated condensate fraction as a function of tem-
perature. . - _ ACKNOWLEDGMENTS
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