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Centrifugal effects in a Bose-Einstein condensate in the time-orbiting-potential magnetic trap
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Single-particle states in the atomic trap employing the rotating magnetic field are found using the full
time-dependent instantaneous trapping potential. These states are compared with those of the effective time-
averaged potential. We show that the trapping is possible when the frequency of the rotations exceeds some
threshold. Slightly above this threshold the weakly interacting gas of the trapped atoms acquires the properties
of a quasi-one-dimensional system in the frame rotating together with the field. The role of the atom-atom
interaction in changing the ideal gas solution is discussed. We show that in the limit of large numbers of
particles the rotating field whose frequency is appropriately modulated can be utilized as a driving force
principally for the center-of-mass motion as well as for the angular momentumL52 normal modes of the
Bose condensate. A mechanism of quantum evaporation forced by the rotating field is analyzed.
@S1050-2947~97!03001-1#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.90.1z
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I. INTRODUCTION

The recently developed methods@1–4# for storing atoms
at very low densities and temperatures open up opportun
for studying the role of the atom-atom interaction in mac
scopic quantum phenomena@5#. The problems of Bose
Einstein condensate formation@6–8#, the dynamical respons
of the condensate in the trap@9#, and the interaction of the
condensate with light@10# now can be investigated exper
mentally.

The zero-dimensional geometry and the small size of
atomic traps restrict the direct observation of the most sp
tacular effects known from the history of superfluidity
4He ~see, e.g., in,@11#!. Therefore, devising alternative pra
tical methods for probing the condensate in the atomic tr
becomes of crucial importance. In this regard the recent s
gestion @12# to analyze the rotational properties of th
trapped atomic cloud appears to be very promising. As it w
pointed out in Ref.@13#, an analysis of quantum evaporatio
from the condensate can yield valuable information about
interatomic interaction. Therefore, adopting this analysis
the trapped gases is highly desirable. The very recent th
retical @14# and experimental@15# analyses of a Bose
Einstein condensate undergoing variations of the trapp
potential address the long-standing question regarding
coherent versus dissipative behavior of a many-body sys

The trap@16# where the Bose-Einstein condensation of
atoms was initially achieved@1# utilizes a rapidly rotating
magnetic field~RMF!. This field, if averaged over the rota
tional period, creates an effective static oscillator poten
@which is called the time-orbiting potential~TOP! @16## and
reduces the escape of atoms from the trap due to spin
effects @16#. Other traps@2–4# do not rely on the RMF. A
main assumption made about the RMF is that as long as
frequency of rotationsv is much larger than the frequenc
v0 of oscillations in the TOP, the trapped atoms are
disturbed by the time variations of the instantaneous po
tial. Accordingly, the results@17,18# obtained for the Bose
551050-2947/97/55~1!/488~10!/$10.00
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Einstein condensation in a static parabolic potential can
applied to this case as well.

Generally speaking, the RMF should transfer energy a
angular momentum to the condensate. Therefore, the R
can be viewed as a possible tool for studying the dynam
response of the condensate. In this sense, addressing
problem of the exact description of the quantum atom
states in the trap employing the RMF, rather than relying
the time-averaging procedure@16#, appears to be quite im
portant.

In this paper we study various aspects of the RMF:
find the exact single-particle states in the trap@16# without
relying on the time-averaging procedure; it is shown that
RMF, if properly modulated, should excite selectively som
modes of the condensate; we derive the Ginzburg-Gro
Pitaevskii~GGP! equation taking into account the effects
the quantum evaporation induced by the RMF. As an ap
cation, the decay rate of the condensate due to the RM
calculated in the case of steady rapid rotations of the RM

The outline of the paper is as follows. In Sec. II we fin
the exact eigenenergies and eigenstates for a single pa
in the trap@16#. This solution is obtained in the frame rota
ing together with the RMF. The properties of the solution
a function ofv are analyzed. In Sec. III we consider the lim
of large numbers of particles in the condensate and ana
the nondissipative interaction between the RMF and the n
mal modes of the condensate. In Sec. IV the GGP equa
with dissipation due to the RMF is derived under certa
approximations. The quasistatic solution for the rate of
centrifugal evaporation of the condensate is derived in
limit of high v.

II. SINGLE-PARTICLE STATES
IN THE ROTATING FRAME

In our analysis of the behavior of a single atom trapped
the magnetic fieldB we follow the approximation that the
atomic spin orientation is parallel toB @16#. Then the effec-
tive potential energy of the atom seeking the low field
488 © 1997 The American Physical Society
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55 489CENTRIFUGAL EFFECTS IN A BOSE-EINSTEIN . . .
essentially the Zeeman energyU5umBBu, wheremB stands
for the Bohr magneton~we ignore the nuclear magnetic mo
ment!. The magnetic field of the trap@16# consists of the
static quadrupolar partBq having axial symmetry with re-
spect to thez axis and the RMFBb rotating in the (x,y)
plane. Representing these explicitly, one finds the com
nents

Bqx5Bq8x, Bqy5Bq8y, Bqz522Bq8z,

Bbx52Bbcos~vt !, Bby52Bbsin~vt !, Bbz50, ~1!

whereBq8,Bb stand for the constant gradient of the quad
polar field and the constant amplitude of the RMF, resp
tively. Given Eq.~1!, the potential energy

U5umB~Bq1Bb!u ~2!

depends on time. As suggested in Ref.@16#, for high v the
time dependence can be effectively averaged over, wh
results in the TOP potential@16#. In general, the time depen
dence inU should result also in the nonadiabatic exchan
of energy between the external field and the atoms in
trap. However, as it will become clear from the followin
for a time-independentv and noninteracting atoms, no suc
exchange occurs between the RMF and the atoms in the
In fact, in the frame rotating together with the RMF, th
single-particle Hamiltonian becomes time independent,
suring that the atom once prepared in the pure state~in the
rotating frame! will exist forever in such a state. Going to th
rotating frame implies the coordinate transformation

x95cos@u~ t !#x1sin@u~ t !#y,

y852sin@u~ t !#x1cos@u~ t !#y, ~3!

whereu(t) stands for the angle betweenBb and thex direc-
tion. In the case of steady rotations,u(t)5vt. The transfor-
mation ~3! results in ~2! rewritten in the time-independen
form as

U5umBBq8uA~x92x0!
21y8214z2, x05

Bb

Bq8
. ~4!

Since the effective size of the atomic cloud is much le
thanx0 @16#, one can expand~4! in terms of 1/x0. This gives,
for the first two terms~linear and quadratic!,

U5
v0y
2 y82

2
1

v0z
2 z2

2
2x9, ~5!

where we have omitted the unimportant constantux0u; the
notationsv0y

2 51/ux0u andv0z
2 54/ux0u are introduced and the

units of energy and length are employed as

«05
\2

Ml 0
2 , l 05

\2/3

~M umBBq8u!
1/3, ~6!

respectively. In~6!, M stands for the atomic mass. Note th
in the rotating frame the stiffness of the potential along
x9 coordinate is zero. This would imply that no states loc
o-

-
-

h

e
e
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ized around the origin exist. However, as we will see belo
the finite kinetic energy of the particle changes this conc
sion for sufficiently largev.

In the rotating frame the kinetic energy acquires the C
riolis term2vL, whereL is thez component of the angula
momentum operator andv5 u̇. This can be seen directly b
means of implementing the coordinate transformation~3! in
the Schro¨dinger equation written in the laboratory fram
Consequently, taking into account~5!, one finds the single-
particle Schro¨dinger equation (\51) in the rotating frame

i ] tc5Hvc,

Hv52 1
2 D1 iv~x9]y82y8]x9!1U. ~7!

We consider first the casev5const. Note that Eqs.~5!
and ~7! represent a quadratic form that can be diagonali
explicitly ~see Appendix A!. Prior to solving it let us elimi-
nate the linear term2x9 from ~5!. This can be accomplishe
by the transformation

c⇒expS 2 i
y8

v Dc~x8,y8,z!, x85x91
1

v2, ~8!

which results in Eq.~7! being rewritten as

i ] tc5Hv8 c,

Hv8 52
1

2
D1 iv~x8]y82y8]x8!1

v0y
2 y82

2
1

v0z
2 z28

2
. ~9!

For the caseuvu,v0y , no discrete states localized ne
the originx85y85z850 exist in the trap. Accordingly, we
will not analyze this case any more. Foruvu.v0y such states
do exist. Their eigenenergies are~see Appendix A!

«mnl5v1m2v2n1v0zl ,

v65vA11h2/26hA21h2/4, h5v0y /v, ~10!

wherem,n,l are integer non-negative quantum numbers a
the energy of the state withm5n5 l50 is set equal to zero
The normalized eigenfunctions are~see Appendix A!

cmnl~x8,y8,z!5
~v0zv1v2!

1/4

p3/4A2m1n1 lm!n! l !

3e2J0F ]m1n1 l

]t1
m]t2

n]t3
l e

JG
t15t25t350

,

~11!

where we have introduced
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J05
v1x8

2

2
1

v2y82

2
1

v0zz
2

2
2 ig0x8y8,

J5
a22a22

2
~ t1
22t2

2!2t3
222nt1t212Av0zt3z

1A2@a21Av1x82 inaAv2y8#t1

1A2@naAv1x81 ia21Av2y8#t2. ~12!

In Eq. ~12! the parameters are

g05v
v22v1

v21v1
, v25A12h2v1 ,

h5
v0y

v
, n5sgn~v!,

v15A828A12h224h22h4h22v,

a5

S 12
h2

4
2

h

4
A81h2D 1/2

S 11
h2

2
2

h

2
A81h2D 1/4~12h2!1/8

. ~13!

Note that the parametera as a function ofv ~or h) has
the propertya(2h)a(h)51. In the limit h→0 (v→`)
one obtainsa51, and the eigenfunctions~11! and ~12! as
well as the eigenenergies~10! become exactly those chara
terizing the TOP@16# as seen from the rotating frame. I
particular, the spectrum acquires the form

«mnl8 5«mnl
~ lab!2vL,

«mnl
~ lab!5v0~m1n!1v0zl , L5n2m, ~14!

where«mnl
(lab) are the eigenenergies of the TOP oscillator p

tential @16# viewed from the laboratory frame, with
v05v0y /A2 being the frequency of the oscillations in th
(x,y) plane;L stands for the axial component of the angu
momentum.

For largev, Eq. ~14! is an approximation of the exac
expression~10!. The corrections due to the finiteness
v0 /v turn out to be of the order of (v0 /v)

3, so that one can
effectively ignore these even ifv is only a few times larger
thanv0. Consequently, for suchv we will employ Eq.~14!
instead of the exact form~10!.

In the limit uhu→1 from below ~that is v→v0y from
above!, the solution~10!–~13! acquires features characteri
tic of a quasi-one-dimensional system. Indeed, taking
limit in Eqs. ~10!–~13!, one finds

v15v15A3v0y , v25
1

3
v2'A2

3
~12uhu!v0y .

~15!

This expression, together with Eqs.~11! and~12!, implies
that the typical extension in they8 direction diverges as
(12uhu)21/4→`. Accordingly, the excitation spectrum~10!
becomes characterized by the soft mode whose energyv2

goes to zero. This implies that in this region ofv the low-
-

r

is

energy dynamical response of the system of atoms sh
exhibit the one-dimensional~1D! behavior. In this paper we
will not focus on the properties of such a 1D atomic gas.

Note that the spectrum~10! and its limiting form ~14!
have no lower bound. For the model Hamiltonian whose
tential is the axially symmetric TOP@16#, this is a pure con-
sequence of the coordinate transformation~3! because this
Hamiltonian conserves angular momentum. Accordingly,
instability with respect to a spontaneous growth of angu
momentumL5\(n2m) ~in physical units! in ~14! is ex-
pected to occur. In contrast, the Hamiltonian~9! does not
conserve angular momentum. This implies that under cer
conditions such an instability could be realized.

Another interesting feature of the solution~11! and~12! is
the common phase factor exp(ig0x8y8). Its magnitude is con-
trolled by the asymmetry of the eigenfunctions in the~x,y!
plane~in addition to the squeezing in thez direction!. Also,
this factor implies a very specific pattern for the veloc
v5¹ Im@ ln(c00l)# at the levels withm5n50. Employing
~11! and ~12! for m5n50 one finds

v r5g0r sin~2u!, vu5g0r cos~2u! ~16!

for the radial and polar components ofv, respectively@in the
polar coordinatesx85r cos(u),y85r sin(u)#. This expression
exhibits quadrupolar symmetry. As long as particles are c
densing into the state withm5n5 l50 they will form the
current pattern characterized by~16!. This pattern can be
thought of as two pairs of vortices of opposite vortici
coupled together.

Above we have shown that no nonadiabatic energy
change occurs between the RMF and the ideal gas in
trap. In Sec. IV we will show that the interaction betwe
particles changes this situation.

III. CONDENSATE CONTAINING LARGE NUMBERS
OF PARTICLES IN THE ROTATING FRAME

In this section we will analyze the case of the condens
containing large numbers of particles in the presence of
RMF. The condensate wave functionF obeys the GGP
equation@19#. For the single-particle Hamiltonian~7! in the
rotating frame, this equation is

i ] tF5~Hv2m!F1u0uFu2F, ~17!

whereu0.0 is the interaction constant andm stands for the
chemical potential. Following the approach@9#, we will de-
rive approximate hydrodynamical equations for the cond
sate in the presence of the RMF. We denote

F5Areif, E dx r5Nc , ~18!

wherer, f, andNc are the density, the phase, and the to
number of particles in the condensate, respectively. Sub
tuting ~18! into ~17!, one arrives at the expressions

ṙ2v~x9]y8r2y8]x9r!1¹~r¹f!50, ~19a!
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ḟ2v~x8]y8f2y8]x9f!5
D~Ar!

2Ar
2
1

2
~¹f!21m2U2u0r.

~19b!

in the rotating frame. The main approximation made in
limit of large Nc is that the term proportional toD(Ar) in
Eq. ~19b! can be neglected@18,9#.

In the limitv→`, one expects to obtain a solution of~19!
that is close to that characterizing the TOP@18,9#. In order to
see it, one should separate a rotationally invariant part fr
the total potential~5!. Specifically,

U5UTOP1dU,UTOP5
v0
2

2
~x921y82!1

v0z
2

2
z2,

dU52
v0
2

2
~x922y82!2x9. ~20!

For the sake of convenience we will omit all prime
(x9→x,y8→y) from the coordinates, implying that we ar
working in the frame connected with the RMF unless oth
wise stated. Note thatUTOP is the time-averaged potentia
~TOP! derived in Ref.@16#. The termdU describes the de
viations of the instantaneous potential~5! from UTOP. It is
not strictly obvious thatdU can be treated as a small corre
tion toUTOP. However, the exact results obtained above
the single-particle Hamiltonian show that this is true in t
limit of large v at least. Below we will show that if
v@v0, corrections caused bydU remain small for large
Nc as well.

To zeroth order with respect todU, one obtains from Eq
~19! the solution

f~0!50, r~0!5
1

u0
~m2UTOP!, ~21!

which is valid inside the droplet whose radius is determin
by the conditionr (0)50 @18,9#. We representr5r (0)1dr
@9#, wheredr is a small correction due todU. Correspond-
ingly, we ignore the term¹(dr¹f) in Eq. ~19a!. Linearizing
Eqs.~19! in dr,f @9#, one obtains

dṙ2v~x]ydr2y]xdr!1¹~r~0!¹f!50, ~22a!

ḟ2v~x]yf2y]xf!52u0dr2dU. ~22b!

Note that these equations are close analogs to those
tained in@9# for a trapping oscillator potential that is axiall
symmetric. The additional feature of Eqs.~22! is the term
dU, which plays the role of an external force. Later we w
see that this term, under certain conditions, can resona
excite the condensate normal modes with the angular
mentaL51,2.

A particular solution corresponding to the symmetry
the driving termdU ~20! can be taken in the form

dr5r28~x
22y2!12r29xy1r18x1r19y,

f5f28~x
22y2!12f29xy1f18x1f19y, ~23!
e

m

-

r

d

b-

tly
o-

f

wherer l8 ,r l9 ,f l8 ,f l9 , l51,2 are the time-dependent amp
tudes of the dipole (l51) and the quadrupole (l52) har-
monics. Substitution of~21! and ~23! into ~22! yields

ḟ l1 i lvf l1u0r l5S v0
2

2 D l21

,

ṙ l1 i lvr l2 l
v0
2

u0
f l50 ~24!

for the complex amplitudes

r l5~r l81 ir l9!eilvt, f l5~f l81 if l9!eilvt. ~25!

Note that the dipole amplitudesl51 describe essentially th
center-of-mass motion of the whole atomic cloud in the tr
@9#.

If the RMF frequencyv does not change in time, on
obtains the steady solutions (ṙ5ḟ50)

f1850, f195
v

v0
22v2 , r185

v0
2

u0~v0
22v2!

, r1950

~26!

and

f2850, f2952
v0
2

4vS 12
v0
2

2v2D ,

r285
v0
2

2u0~2v22v0
2!
, r2950. ~27!

This implies that in the limitv@v0 the corrections due to
the RMF to the zeroth-order solution~21! @9,18# are small.

Note that Eqs.~27! and~23! indicate that the phase facto
exp(ig0xy), discussed in Sec. II for the ideal gas situation
not affected much by the interaction as long asv@v0. In-
deed, comparing Eqs.~11!–~13! with Eqs.~23! and~27!, one
finds that the parameterg0 in Eqs.~12!, ~13!, and~16! must
be replaced by 2f295g010„(v0 /v)

3
…. Whenv→v0 , the

solutions~26! and ~27! based on the conditionr (0)@dr be-
come no longer valid.

We now consider the case whenv depends on time. Fo
concreteness, we assume that the frequencyv of the RMF is
modulated as

v5v̄1l sin~v8t !, ~28!

whereuv̄u@ulu andv8 are constants. Accordingly, one find
that the angle between the RMF and thex axis in the labo-
ratory frame is

u~ t !5v̄t1
l

v8
@12cos~v8t !#. ~29!

Employing the ansatz

f l5e2 i l u~ t !f̃ l , r l5e2 i l u~ t !r̃ l , ~30!

one obtains from Eqs.~24!



ha

u-

ru

is
u
sa
e
t

qu

ua
e
cr
th
at
ai
G

s

e-

e
hi
e

m

the
be

bil-
e
es-
sel
ro-
es-

ian
o
cur
the

e

ing
at
up

ted

ar
r-
can
pora-
r-
the
pair
rifu-
s of
e.
reso-
the
in-
he
s in
nce,
zed
on-

ent
ate.

ing
nge

he

ed
on-
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f̃ l5
u0
lv0

2ṙ̃ l , ~31a!

r̈̃ l1 lv0
2r̃ l5

v0
2l

u0
eil u~ t !. ~31b!

These equations indicate that the resonance condition
v8 in ~28! is different for the dipole (l51) and quadrupole
( l52) harmonics. Indeed, given~29! and expanding the
right-hand side of Eq. ~31b! in the small quantity
ul/v8u!1, we get

eil u~ t !'eil v̄tS 11
i l l

v8
~12cosv8t ! D . ~32!

Then one obtains that the resonance with the dipole
monic occurs when the modulating frequencyv8 obeys the
condition

v85v185v̄6v0 . ~33!

Equation~31! yield the resonance condition for the quadr
polar harmonic

v85v2852v̄6A2v0 , ~34!

whereA2v0 stands for the frequency of the lowest quad
polar harmonic of the trapped condensate with largeNc @9#.
Note thatv282v18'v̄@v0 .

In the following, we will show that the preceding analys
based on the GGP equation does not take into account q
tum processes of the creation of pairs out of the conden
by the RMF. These lead to forced evaporation of the cond
sate even for zero temperature and steady rotations of
magnetic field. As a consequence, the hydrodynamical e
tions ~22! will acquire a dissipative contribution.

IV. CENTRIFUGAL INSTABILITY
IN THE MANY-BODY APPROACH

In our previous analysis, we neglected quantum fluct
tions of the condensate. These fluctuations in the conv
tional stable condensate can be thought of as the virtual
ation and absorption of pairs. In this regard we note that
spectrum~10! has no lower bound, so that the condens
could be unstable with respect to the real creation of p
even though the RMF is steady. Correspondingly, the G
equation~17! can acquire a dissipative part.

Consider first the casev→`. The term proportional to
v in Eq. ~14! is a direct consequence of the Galiliean tran
formation into the rotating frame. Indeed, the limitv→` in
Eqs.~10!–~13! ensures that the term (n2m) is the projection
of the angular momentumL on the z axis, so that the
v-dependent part in~14! is exactly the Coriolis contribution
2vL. This implies that no instability should develop b
cause the absence of the lower bound for the spectrum
purely a frame of reference effect. Nevertheless, the cond
sate can be considered as being potentially able to gain
values ofL. In this regard we can employ the rotating fram
reasoning@19# ~see also@11#, Chap. 6! for the vortex creation
in the rotating vessel containing a superfluid. In the fra
on
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connected to the vessel rotating with the frequencyv around
its axis, the vortex energy isEv2vLv , whereEv and Lv
stand for the vortex energy in the laboratory frame and
vortex angular momentum, respectively. The vortex can
created spontaneously if the Coriolis energy exceedsEv .
However, this argument does not indicate what the proba
ity for developing this centrifugal instability is. In fact, in th
case of the perfectly symmetric vessel this probability is
sentially zero. To make the vortex creation real, the ves
must have some irregularities on the walls breaking the
tational symmetry so that the angular momentum of the v
sel could be transferred to the vortex~or vortices!.

Returning to our case, we can see that in the casev→`
the eigenfunctions~11! and ~12! of the trap @16# are ap-
proaching those of the effective time-averaged Hamilton
~the TOP@16#!, which is axially symmetric. Therefore, n
centrifugal instability of the condensate is expected to oc
in this limit. In other words, no energy exchange between
RMF and the condensate happens in the limitv5`.

For finite v, the functions~11! and ~12! are not eigen-
functions of the operatorL. Consequently, the differenc
n2m can no longer be interpreted as the eigenvalue ofL.
Accordingly, the effective vessel can be thought of as hav
a symmetry-breaking deformation, which in turn implies th
the energy and the angular momentum can now be given
to the pairs leaving the condensate into the highly exci
states whose energies are\v@\v0 ~in physical units!. In
this regard one should distinguish two cases:~1! \v@m and
~2! \v<m. In case~1! the pair escapes into states lying f
from those effectively involved in the formation of the inte
acting condensate. Accordingly, the pair escape process
be treated as an incoherent step in the condensate eva
tion. In contrast, in case~2! the escape states with the ene
gies '\v are to be renormalized strongly because of
presence of the condensate. This implies that the multi
processes become significant. Correspondingly, the cent
gal instability should be interpreted as a coherent proces
vortex formation. In this paper we will not analyze this cas

The process of the escape of pairs represents the non
nant quantum evaporation of the condensate induced by
RMF. We emphasize the crucial role of the interatomic
teraction for realization of this centrifugal evaporation. T
rotating observer sees this process as follows: two atom
the condensate interact with each other. As a conseque
they jump to a new pair of single-particle states characteri
by large quantum numbers, so that their total energy is c
served~the large«mnl

(lab) is compensated by the Coriolis term!.
Correspondingly, the rotating observer interprets this ev
as a nearly elastic escape of the pair from the condens
Note that if the eigenfunctions~11! were eigenfunctions of
angular momentum, there would be a selection rule requir
that the angular momentum of the interacting pair not cha
in the transition. Correspondingly, referring to Eq.~14!, one
sees that no instability would occur. In fact, this is not t
case for finitev and instability could occur.

To describe the centrifugal instability effect, we proce
to derive a damping term in the GGP equation for the c
densate wave functionF. The many-body Hamiltonian in
the rotating frame is



o
he

b
a
la
n
c
a
w

e

o
ra
l-

ve
-

e
tr
ird

e
nt
u-

ich

ics

a-

be

.
il-
le-

te
cur-

sity
e
g the
se-
il.
ming
as
f
ll

55 493CENTRIFUGAL EFFECTS IN A BOSE-EINSTEIN . . .
H5E dxFC†~Hv2m!C1
u0
2

C†C†CC G , ~35!

where primes are omitted from the coordinates and the B
operatorsC†,C obey the usual Bose commutation rule. T
Heisenberg equation is

i ] tC5~Hv2m!C1u0C
†CC. ~36!

Taking into account the explicit form~7! for Hv , one
finds from ~36! the current conservation condition

] t~C†C!1¹•J50, ~37!

where the current operatorJ in the rotating frame is defined
as

J5
1

2i
@C†~¹2A!C#,

Ax52 ivy, Ay5 ivx, Az50. ~38!

As usual, the condensate wave function is defined
F5^C&. In what follows we assume that the noncondens
partC85C2F obeys the standard Bose commutation re
tion, which, strictly speaking, implies that the excited eige
states are not orthogonal to the condensate. However, it
be shown that for our purpose of deriving the dissipative p
of the GGP this approximation gives the same result as if
employed the modified commutation relation@20#. From Eq.
~36!, one finds@21,20,22#

] tF5~Hv2m!F1u0uFu2F

1u0@F* ^C8C8&12F^C8†C8&1^C8†C8C8&#

~39!

and

i ] tC85~Hv2m!C81u0@F* ~C8C82^C8C8&!

12F~C8†C82^C8†C8&!12F*FC8

1F2C8†1C8†C8C82^C8†C8C8&#. ~40!

The condensate wave functionF is normally viewed as
an external classical field in Eq.~40! for the noncondensat
part. Employing the Keldysh technique@23#, the system~39!
and ~40! can be expressed in terms of the joint dynamics
F and the population numbers of the excitations. In gene
this procedure is very complicated@8# ~see also the genera
ized density-functional approach@24,22#!. However, under
certain conditions it becomes possible to eliminate the a
ages from Eq.~39!. Specifically, we will make several as
sumptions and approximations:~a! the population numbers
of the excited states are zero;~b! the pairs escaping from th
condensate due to the centrifugal effect escape from the
as well;~c! the terms leading to powers higher than the th
in F andF* in the effective GGP equation are omitted;~d!
in Eq. ~40! only the terms linear inC8 andC8† are retained
in accordance with the Bogolubov approximation@19,20#.
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Assumption~a! excludes the normal component from th
analysis. Assumption~b! ensures that no normal compone
is building up in the highly excited levels due to the centrif
gal escape of the pairs. Note that~b! is reasonable for high
v and in the presence of the radio-frequency scalpel, wh
provides the evaporative cooling~see, e.g., in@25,5#!. Given
~a! and ~b!, we avoid the necessity to analyze the dynam
of the normal component. Finally, from Eqs.~39! and ~40!
under~a!–~d! we obtain the GGP equation with the dissip
tion term included~see Appendix B!

i ] tF5~Hv2m!F1u0uFu2F2 iu0
2F* E dt8

3E dx8G~r !2~xt,x8t8!F2~x8t8!, ~41!

whereG(r )(xt,x8t8) is defined in~B7!. Note that if the total
number of atoms in the trap were conserved, it would not
possible to obtain the dissipation term in~41! in closed form
@6#. Below it will be shown explicitly that the last term in Eq
~41! would have been zero if either the single-particle Ham
tonian Hv conserved angular momentum or if the sing
particle excitation spectrum were positively defined.

Multiplying ~41! by F and adding the complex conjuga
of the resulting expression, one obtains the generalized
rent conservation condition

ṙ1divJ52S,

S5u0
2E dt8E dx8G~r !2~xt,x8t8!r~xt !r~x8t8!

3exp$22i @f~xt !2f~x8t8!#%1c.c., ~42!

where the representation~18! is employed. This equation
corresponds to Eq.~22a! modified to include the dissipation
caused by the centrifugal evaporation.

Integration of Eq.~42! over the whole space yields

Ṅc522u0
2E dt8dxd x8Re@G~r !2~xt,x8t8!#r~xt !r~x8t8!

3exp$22i @f~xt !2f~x8t8!#%, ~43!

where we have used the second relation in Eq.~18!. Note,
that in this equation the integral depends on both the den
r as well as the phasef of the condensate. Accordingly, th
coherence of the condensate could be tested by analyzin
rate of the quantum vaporization induced by the RMF. El
where, we will consider this possibility in greater deta
Presently, let us calculate the quasistatic decay rate assu
that Nc is not large so that one can employ the ideal g
ansatzF5ANcc000. Note, however, that the applicability o
Eqs. ~41!–~43! is not limited by the requirement of sma
Nc (aAv0Nc<1 @18#, where a stands for the scattering
length!. Later we will derive a condition@see~B5!# allowing
one to employ the variational approach@18# for calculating
F, with G(r ) taken unrenormalized, in Eq.~43!.

Making use of Eqs.~11! and ~12!, we find
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Ṅc~ t !522u0
2E dt8K~ t2t8!Nc~ t !Nc~ t8!, ~44!

where

K~ t2t8!5 ũ~ t2t8!(
1,2

uM12u2Ree2 i ~«11«2!~ t2t8!,

M125E dxc1c2c000*
2, ~45!

and the summation is performed over the final states of
escaping pair.

As will be seen below, in the limitv→` the escape rate
is much smaller than the typical time scale in the trap co
sponding tov0. Consequently, one can employ the qua
static approximation that the time dependence ofNc is slow.
We setNc(t8)5Nc(t) in ~44! and after the time integration
rewrite it as

Ṅc52xNc
2 , ~46!

where

x52pu0
2 (
[1],[2]

uM12u2d~E12!, ~47!

and the quantityt51/xNc can be considered as an effecti
lifetime of the condensate. In Eq.~47!, the notation
E125«11«2 for the escaping pair energy is introduced a
d(j) stands for the delta function. This expression accou
quantitatively for the centrifugal effect discussed above. O
can see that the conditionsM12Þ0 andE1250, where ex-
plicitly

E125v0~m11m21n11n2!1v0z~ l 11 l 2!

2v~n11n22m12m2!

50, ~48!

can be satisfied simultaneously because the eigenfunc
~11! and~12! utilized in ~45! and~47! are not the eigenfunc
tions of the angular momentum operator. In what follows,
will show that in the limit of largev, the dominant contri-
bution in ~47! comes from the states with the quantum nu
bers

m1'm2' l 1' l 2'n1'n2'
v

v0
@1 ~49!

corresponding to a pair leaving the condensate into the s
characterized by large quantum displacements. Returnin
the laboratory frame, this simply means that two atoms
sorb the energy 2\v ~in physical units! from the RMF so
that this energy is approximately equally distributed betwe
them. As a result, the pair is transferred to highly exci
states. The radio-frequency scalpel@5,25# is assumed to
eventually remove this pair ensuring condition~a! of zero
population of the excited states.

In order to calculateM12 explicitly, we employ the repre-
sentation~compare with@20#, Chap. 15!
e
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-
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to
-

n
d

cm1n1l1
~x1!cm2n2l2

~x2!

5 (
p,k,q

gp
m1m2gk

n1n2gq
l1l2cpkq~R!cp8k8q8~r !,

~50!

where the notationsp85m2p, k85n2k, q85 l2q, and

gp
ab5(

p8
~21!p1p8

3
Aa!b!p! ~a1b2p!!

2~a1b!/2p8! ~a2p8!! ~p2p8!! ~b2p1p8!!
,

R5
x11x2
A2

, r5
x12x2
A2

,

m5m11m2 , n5n11n2 , l5 l 11 l 2 ~51!

are employed. The summations in Eqs.~50! and ~51! run
over all integer non-negative numbers obeying the condit
that all the numbers under the signs of the factorial are n
negative as well. The relations~50! and ~51! were derived
from the explicit representation~11! and ~12! for the eigen-
functions. Employing Eqs.~50! and ~51! in Eqs. ~45! and
~47!, we obtain for Eq.~47!

x5
pu0

2

4 (
m,n,l

ucmnl~0!u2uc000~0!u2

3d„v0~m1n!1v0zl2v~n2m!…. ~52!

Note that x is exactly zero for the casea51 ~or
v→`) in Eqs.~11!–~13!. As mentioned above, no escape
the pairs occurs in the case when the RMF is so rap
rotating that the effective trapping~TOP! potential becomes
axially symmetric. In the limit of large but still finitev one
finds from Eq.~13!

a22a2252S v0

v D 31oS v0

v D 5, ~53!

which implies that the first term only should be kept in~53!
and that the exponenteJ in Eq. ~11! can be expanded in
terms of the smallness ofv0 /v. This expansion represent
the eigenfunction~11! in terms of the harmonics of the an
gular momentum operator. Thus one finds that each eig
function can be effectively characterized by the followin
terms: ~i! the harmonic of the angular momentum opera
with the angular momentum (n2m), ~ii ! two functions with
the momenta (n2m)62 whose weight is proportional to
(v0 /v)

3!1, and~iii ! the other angular harmonics with th
relative weight containing powers ofv0 /v higher than the
third. This implies that in Eq.~47! it is enough to consider
the contribution due to the lowest term. Physically, this te
corresponds to an absorption of the energy 2\v and the
angular momentum 2 by a pair of atoms escaping from
condensate. Finally, one finds
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x5
1

4
a2v0

2v0zS v0

v D 6(
m,l

~2l !! ~m11!~m12!

22l~ l ! !2

3d~2v0m12v0zl22v!. ~54!

A simple analysis shows that most of the contribution to
sum~54! comes from the region of highm,l @see~49!#. Ac-
cordingly, we replace the summation in~54! by integration.
Finally, in the chosen limit and chosen units~6! we find

x5ea2v0
2S v0

v D 7/2, e5
27/4

15Ap
'0.13. ~55!

This expression indicates that the centrifugal escape
is extremely sensitive to the RMF frequencyv. For the pa-
rameters employed experimentally in Ref.@1#, the estimate
of ~55! gives a very small number~the corresponding life-
time is aboutt'106 s forNc51000), implying that the cen
trifugal vaporization can be effectively ignored as a cause
the condensate escape from the trap. However, with decr
of the ratiov/v0, the vaporization rate increases strongly.
the casev→A2v0 from above, the approximation~53! we
employed is no longer valid. Accordingly, the exact expr
sions~11!–~13! for the eigenfunctions should be utilized
~52!. This means that the escaping pairs acquire hig
~even! angular momenta. As a result, the lifetime of the co
densate can become very short.

Equations~39! and~40! can be analyzed for the case of
nonsteady RMF. Especially interesting appears to be the
when the frequency modulated RMF excites resonantly
quadrupolar harmonic of the condensate@see the condition
~34!#. Generally, it is natural to expect that this resonan
would result in the increase of the vaporization rate a
function of the modulating frequencyv8. In the future, we
will consider this case in greater detail.

In this paper we do not consider other collisional mec
nisms of losses~see, e.g.,@26#! from the magnetic traps be
cause these mechanisms are not expected to be very sen
to the RMF frequencyv. Correspondingly, one can make th
centrifugal decay dominant by means of varyingv.

Note, however, that the single-spin~noncollisional! rever-
sals due to the energy transfer from the RMF to the ato
spins turn out to be very sensitive tov. As mentioned in@1#,
these processes should be suppressed whenv is smaller than
the Larmor frequencyvL5umBBbu/\. Such a spin flip even
is followed by the escape of the atom from the trap.
analysis of this process can be carried out in the rota
frame as well. The full Hamiltonian including the spin d
grees of freedom becomes time independent forv5const
and acquires the additional Coriolis term2vSz , whereSz
stands for thez component of the spin matrix. Accordingly
the runaway states should also be classified in the rota
frame. It can be shown that a dominant channel for the s
flip and the following escape corresponds to a transiti
with the orbital angular momentum of the escaping parti
changed by one. The energy carried away by the atom
approximatelyD5\(vL2v) for v<vL . In this regard we
comment that the probability of this escape process is
nificantly suppressed because of the smallness of the m
element taken between states localized in the trap and
runaway states. Simple estimates show that this matrix
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ment has a structure;exp(2D/\v0) for D/\v0@1. Taking
into account thatvL.107 Hz, v0'1022103 Hz, and
v'100v0 @1,16#, one can see that the nonadiabatic spin fl
can be ignored, if compared with the centrifugal losses.

V. CONCLUSION

The atomic trap@16,1# bears features absent in the sta
traps@2–4#. These features can be accounted for in the fra
rotating together with the RMF. For large frequencies of
tation of the RMF, the exact eigenenergies and eigenfu
tions of the trap@16,1# approach those characterizing th
time-averaged potential TOP@16# having axial symmetry.
For frequencies close to the threshold below which the tr
ping is impossible, the eigenstates lose their axial symm
and become elongated in the direction perpendicular to
RMF ~in its frame of reference!. Very close to the threshold
a gas of trapped atoms acquires properties of an essen
1D system.

Due to the asymmetry introduced by the RMF, the ato
atom interaction results in the induced evaporation of
Bose-Einstein condensate. The time scale for this evap
tion is very sensitive to the RMF frequency of rotation. F
high frequencies, the lifetime of the condensate increase
a large power ofv. Close to the trapping threshold the life
time shortens considerably, implying that the 1D gas form
in the trap@1,16# in this situation is a strongly interactin
system.

The frequency-modulated RMF can be utilized as a dr
ing force selectively exciting the condensate normal mod
In the limit of large numbers of atoms, when Stringari’s h
drodynamical approximation is valid, two modes can be
cited by the RMF whose frequency of rotation is approp
ately modulated. The first is a dipole mode accounting
the center-of-mass motion. The second mode that can
excited by the RMF is the lowest quadrupolar harmonic. T
resonance conditions for the RMF modulation period dep
on the averaged RMF frequency, in addition to the eigen
quencies of the harmonics. The effect of the quantum eva
ration induced by the RMF opens up a channel for dissi
tion of the condensate normal modes.
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APPENDIX A: SOLVING THE EIGENPROBLEM
IN THE ROTATING FRAME

The Hamiltonian ~9! for the function
c8(x8,y8,z)5exp(ivx9y8)c can be written as

Hv8 5Hxy1Hz , Hz52
1

2
]z
21

v0z
2

2
z2,

Hxy52
1

2
~]x

21]y
2!1

v0y
2 2v2

2
y21

3

2
v2x212ivx]y,

~A1!
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where the unimportant constant 1/2v2 and the primes from
the coordinates are omitted. The eigenfunctionsw l(z) of
Hz are the well-known oscillator states. These are rep
sented in~11! and ~12! by the generating function of th
Hermite polynomials@see the auxiliary variablet3 in ~11!
and~12!# so that thec8(x,y,z)5w l(z)cmn8 (x,y). Performing
the Fourier transform

c̃~x,p!5E dỹe2 ip ỹc8~x,ỹ!, ỹ5Auv22v0y
2 uy, ~A2!

one finds for~A1!

Hxy52
1

2
]x
21

s

2
]p
21

v22v0y
2

2
p21

3

2
v2x2

22vAuv22v0y
2 uxp, ~A3!

wheres5sgn(v22v0y
2 ).

In the caseuvu,v0y the Hamiltonian~A3! can be diago-
nalized by implementation of a real rotation in the (x,p)
plane. However, no discrete states exist in this case bec
the effective potential of~A3! turns out to have a saddlelik
shape, with the kinetic part being positively defined. In t
opposite limit (s51) the discrete states do exist. The diag
nalization can be achieved by means of the Lorentz trans
mation

x5cosh~q!j1sinh~q!p8,

p5sinh~q!j1cosh~q!p8, ~A4!

leaving the kinetic part2 1
2 (]x

22]p
2) invariant. In terms of

the new variables (j,p8), ~A3! acquires the form

Hxy52
1

2
]j
21

v1
2

2
j22F2

1

2
]p8
2

1
v2
2

2
p82G , ~A5!

wherev6 are given in Eq.~10! and the angleq satisfies the
equation

tanh~2q!5
4nA12h2

42h2 , ~A6!

with n,h defined in Eq.~13!. The resulting spectrum of th
total Hamiltonian is given by Eq.~10!. The eigenfunctions of
~A5!, expressed in terms of thej,p8 variables, can be con
verted into thex,p coordinates by means of the relatio
~A4!. Finally, performing the inverse of the Fourier as w
as the scaling transforms~A2!, one finds the normalized
eigenfunctions~11!–~13!.

APPENDIX B: DERIVATION OF THE GGP EQUATION
WITH THE DISSIPATION DUE TO THE RMF

Under assumptions~a!–~d!, Eqs. ~39! and ~40! simplify
considerably. We need to find the lowest-order term t
contributes to the imaginary part of Eq.~39!. In Eq. ~39!, the
second term in the square brackets does not contribute to
imaginary part, so we omit it. The last term in the squa
-

se

-
r-

t

he
e

brackets of Eq.~39! produces the imaginary part. Howeve
it can be shown that it is proportional to the population nu
bers of the excited states. Consequently, we omit this t
also and rewrite~39! as

i ] tF5~Hv2m!F1u0uFu2F1u0F*G~xt,xt !, ~B1!

where the equal-time anomalous Green’s function@21,20# is
defined asG(xt,x8t)5^C8(xt)C8(x8t)& ~the overall factor
i is omitted here and below in the Green’s-functions defi
tions @21,20#!. Note that because the interaction potent
in~35! is chosen in thed(x) form, Eq.~B1! containsG with
x5x8. The equation forG can be obtained from Eq.~40!. In
order to accomplish this, we will employ the Bogolubov a
proximation ~d!. Accordingly, multiplying ~40! by C8 and
taking the average, one finds

i ] tG~xt,x8t !

5~Hv2m!xG~xt,x8t !1~Hv2m!x8G~xt,x8t !

1u0$2@F* ~xt !F~xt !1F* ~x8t !F~x8t !#G~xt,x8t !

1@F2~x8t !1F2~xt !#@r~xt,x8t !1 1
2d~x2x8!#%, ~B2!

where

r~xt,x8t !5^C8†~xt !C8~x8t !& ~B3!

stands for the density matrix of the excitations. In Eq.~B2!
the notation ( )x means that the single-particle Hamiltonia
Hv acts on the coordinatex. These equations should b
supplemented by ones for the normal Green’s functio
However, conditions~a! and ~b! of zero population of the
excited states imply that one can setr50 in Eq. ~B2!. Fur-
thermore, as long as one is interested only in deriving
imaginary contribution to~B1! to lowest order with respec
to u0, significant simplification can be achieved. Indeed,
v@v0, only the high-energy part of the spectrum of th
normal excitations contributes to the imaginary part ofG in
Eq. ~B1!. Correspondingly, one can neglect the effect of t
condensate on this part of the spectrum@see case~1! dis-
cussed above#. The condition when this assumption is val
can be formulated in terms of the smallness of the first te
in the curly brackets of Eq.~B2! if compared withvG. In
other words,

\uvu@u0uFu2 ~B4!

in physical units. Employing the variational approach@18#,
one can estimateuFu2 and obtain from~B4!

aAv0Nc<0.034S v

v0
D 5/2, ~B5!

where we have employed the representationu054pa for the
interaction constantu0 in terms of the scattering lengtha in
the units~6!. Actually, for the parameters of the trap@1# the
estimate forNc givesNc<106. If this condition holds, the
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anomalous Green’s functionG can be found by iteration
with respect tou0, with the zeroth-order approximation be
ing zero. Assuming that~B4! @or ~B5!# is valid, we finally
find

G~xt,xt !52 iu0E dt8E dx8G~r !2~xt,x8t8!F2~x8t8!,

~B6!
an

ys

n,

n,

-

. B
v

tt.

y

d

where the retarded Green’s function@20#

G~r !~xt,x8t8!5 ũ~ t2t8!(
1

e2 i«1~ t2t8!c1~x!c1* ~x8! ~B7!

is expressed explicitly in terms of the single-particle eige
functions ~11! and ~12! and the eigenvalues~10!, with the-
summation performed over all the single-particle quant
numbers indicated as 1. In~B7!, ũ(t) denotes the step func
tion. Finally, substitution of Eqs.~B6! and~B7! into Eq.~B1!
yields Eq.~41!.
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