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Centrifugal effects in a Bose-Einstein condensate in the time-orbiting-potential magnetic trap
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Single-particle states in the atomic trap employing the rotating magnetic field are found using the full
time-dependent instantaneous trapping potential. These states are compared with those of the effective time-
averaged potential. We show that the trapping is possible when the frequency of the rotations exceeds some
threshold. Slightly above this threshold the weakly interacting gas of the trapped atoms acquires the properties
of a quasi-one-dimensional system in the frame rotating together with the field. The role of the atom-atom
interaction in changing the ideal gas solution is discussed. We show that in the limit of large numbers of
particles the rotating field whose frequency is appropriately modulated can be utilized as a driving force
principally for the center-of-mass motion as well as for the angular momehtsr® normal modes of the
Bose condensate. A mechanism of quantum evaporation forced by the rotating field is analyzed.
[S1050-294{@7)03001-1
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I. INTRODUCTION Einstein condensation in a static parabolic potential can be
applied to this case as well.
The recently developed methofls—4] for storing atoms Generally speaking, the RMF should transfer energy and

at very low densities and temperatures open up opportunitiegngular momentum to the condensate. Therefore, the RMF
for studying the role of the atom-atom interaction in macro-can be viewed as a possible tool for studying the dynamical
scopic quantum phenomeris]. The problems of Bose- response of the condensate. In this sense, addressing the
Einstein condensate formati¢—8], the dynamical response Problem of the exact description of the quantum atomic
of the condensate in the trdf], and the interaction of the States in the trap employing the RMF, rather than relying on
condensate with lighf10] now can be investigated experi- thettm:e-averagmg procedufa6], appears to be quite im-
mentally. portant. . .

The zero-dimensional geometry and the small size of th(ﬁncllntrt]hIS E:pterixvel Stl;drz \Ilag(t)uts Sa‘ic’rf’et"ﬁts t({)f t?svitRhMEt. we
atomic traps restrict the direct observation of the most spec- € exact single-partice state e tdp 0

. L relying on the time-averaging procedure; it is shown that the
t4al_c|:ular effects _knloi/vn _:Lom fthe rgstqry of ﬁuper:lwdny of RMF, if properly modulated, should excite selectively some
e(see, e.g., in/11]). Therefore, devising alternative prac- modes of the condensate; we derive the Ginzburg-Gross-

tical methods for probing the condensate in the atomic rappiaeyskii(GGP equation taking into account the effects of
beco_mes of crucial importance. In t_hls regard the_ recent sugpe quantum evaporation induced by the RMF. As an appli-
gestion [12] to analyze the rotational properties of the cation the decay rate of the condensate due to the RMF is
trapped atomic cloud appears to be very promising. As it wagg|culated in the case of steady rapid rotations of the RMF.
pointed out in Ref[13], an analysis of quantum evaporation  The outline of the paper is as follows. In Sec. Il we find
from the condensate can yield valuable information about theghe exact eigenenergies and eigenstates for a single particle
interatomic interaction. Therefore, adopting this analysis tdn the trap[16]. This solution is obtained in the frame rotat-
the trapped gases is highly desirable. The very recent thedng together with the RMF. The properties of the solution as
retical [14] and experimental[15] analyses of a Bose- a function ofw are analyzed. In Sec. lll we consider the limit
Einstein condensate undergoing variations of the trappingf large numbers of particles in the condensate and analyze
potential address the long-standing question regarding théhe nondissipative interaction between the RMF and the nor-
coherent versus dissipative behavior of a many-body systenmal modes of the condensate. In Sec. IV the GGP equation
The trap[16] where the Bose-Einstein condensation of Rbwith dissipation due to the RMF is derived under certain
atoms was initially achievefll] utilizes a rapidly rotating approximations. The quasistatic solution for the rate of the
magnetic field RMF). This field, if averaged over the rota- centrifugal evaporation of the condensate is derived in the
tional period, creates an effective static oscillator potentialimit of high .
[which is called the time-orbiting potenti@rOP) [16]] and
reduces the escape of atoms from the trap due to spin-flip
effects[16]. Other trapg2-4] do not rely on the RMF. A
main assumption made about the RMF is that as long as the
frequency of rotationss is much larger than the frequency  In our analysis of the behavior of a single atom trapped by
wo of oscillations in the TOP, the trapped atoms are nothe magnetic fieldB we follow the approximation that the
disturbed by the time variations of the instantaneous poteratomic spin orientation is parallel 8 [16]. Then the effec-
tial. Accordingly, the result$17,18 obtained for the Bose- tive potential energy of the atom seeking the low field is

Il. SINGLE-PARTICLE STATES
IN THE ROTATING FRAME
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essentially the Zeeman enery=|ugB|, whereug stands ized around the origin exist. However, as we will see below,
for the Bohr magnetofwe ignore the nuclear magnetic mo- the finite kinetic energy of the particle changes this conclu-
mend. The magnetic field of the trafil6] consists of the sion for sufficiently largew.
static quadrupolar pamB, having axial symmetry with re- In the rotating frame the kinetic energy acquires the Co-
spect to thez axis and the RMFBy, rotating in the K,y) riolis term — wL, whereL is thez component of the angular
plane. Representing these explicitly, one finds the compomomentum operator ané= 6. This can be seen directly by
nents means of implementing the coordinate transformat@®nin
the Schrdinger equation written in the laboratory frame.
Bgx=BgX, Bgy=Bgy, Bg,=—2Bgz, Consequently, taking into accout), one finds the single-
Box=—Bpcogwt), Byy=—Bsin(wt), By,=0, (1) particle Schrdinger equation#=1) in the rotating frame

where B,;,Bb stand for the constant gradient of the quadru- io=H i
polar field and the constant amplitude of the RMF, respec- ! e
tively. Given Eq.(1), the potential energy H,=— %A+iw(x”¢9y,—y’axﬁ)+ u. @

U=|us(By+By)| 2 o
We consider first the cas@=const. Note that Eqg5)

depends on time. As suggested in Ré®6], for high w the  and(7) represent a quadratic form that can be diagonalized
time dependence can be effectively averaged over, whickxplicitly (see Appendix A Prior to solving it let us elimi-
results in the TOP potenti@l6]. In general, the time depen- nate the linear term-x" from (5). This can be accomplished
dence inU should result also in the nonadiabatic exchangeby the transformation
of energy between the external field and the atoms in the
trap. However, as it will become clear from the following, ,
for a time-independent and noninteracting atoms, no such l{_- y_) "y g i

! y=exp —i s(x'y'z2), X'=xX"+—, (8)
exchange occurs between the RMF and the atoms in the trap. ® @
In fact, in the frame rotating together with the RMF, the
single-particle Hamiltonian becomes time independent, e
suring that the atom once prepared in the pure diat¢he
rotating frame will exist forever in such a state. Going to the

Mwhich results in Eq(7) being rewritten as

rotating frame implies the coordinate transformation idup=H_.y,
X" =cog O(t) ]x+sin 6(t)] 1 wgy'? w52
y Ho= = SA+ (X dy =Y dy) +—5—+—2—. (9)
y'=—sin 6(t) ]x+cod (1) ]y, )
whered(t) stands for the angle betwe@g and thex direc- For the casdw|<wq,, no discrete states localized near

tion. In the case of steady rotatior#(t) = wt. The transfor- the originx’=y’=z"=0 exist in the trap. Accordingly, we
mation (3) results in(2) rewritten in the time-independent Will not analyze this case any more. Aai{> wo, such states

form as do exist. Their eigenenergies aisee Appendix A
2 2 2 By = — |
U:|IU“BB¢;|\/(X"_X0) +y'2+4z22 XOZE' 4) Emn=wiM—w_N+ wg,l,
q
Since the effective size of the atomic cloud is much less w.=oV1+ 922+ n 5+ 74, n=wolw, (10

thanx, [16], one can expan@) in terms of 1%,. This gives,

for the first two termglinear and quadratjc _ _
wherem,n,| are integer non-negative quantum numbers and

the energy of the state with=n=1=0 is set equal to zero.

wdy'? 0,7 The normalized eigenfunctions afgee Appendix A
y 0z "
U= + 2y, (5)
2 2
where we have omitted the unimportant constpaqt; the (@gy01w,) Y4
. 2 2 . ' 0zWiw2
notationswg, = 1//xo| andwg,= 4/|x.| are introduced and the Ponl(X' Y 2) = e —
units of energy and length are employed as T2 mint|!
) o3 &m+n+l
f f Xe_EO eE
E0=7712> |0:_ IN1/3 (6) atTatg(yt3 '
Ml (M|MBBq|) 11=1=13=0

respectively. In6), M stands for the atomic mass. Note that (1)

in the rotating frame the stiffness of the potential along the
x" coordinate is zero. This would imply that no states local-where we have introduced
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_ 0X'? wy'? weZ? energy dynamical response of the system of atoms should
o= T+t ~ivnxXy, exhibit the one-dimensionlD) behavior. In this paper we
will not focus on the properties of such a 1D atomic gas.
_ e ? s Note that the spectrunilO) and its Iimi_ting.form (14
= T(tl—tz)—t3—2vt1t2+2\/w_ozt3z have no lower bound. For the model Hamiltonian whose po-
tential is the axially symmetric TOPL6], this is a pure con-
+ \/E[a,fl\/w_lxr_iya\/w_zyr]tl sequence of the coordinate transformati@h because this
Hamiltonian conserves angular momentum. Accordingly, no
+\2[vavo X' +ia  Nwy It (12)  instability with respect to a spontaneous growth of angular
momentumL =%(n—m) (in physical unit} in (14) is ex-
In Eq. (12) the parameters are pected to occur. In contrast, the Hamiltonié® does not
conserve angular momentum. This implies that under certain
_ W2 N ) conditions such an instability could be realized.
YOO oty Y2 1= oy, Another interesting feature of the solutiGhl) and(12) is
the common phase factor expgx’'y’). Its magnitude is con-
Woy trolled by the asymmetry of the eigenfunctions in they)
n=-—" v=sgno), plane(in addition to the squeezing in theedirection. Also,
this factor implies a very specific pattern for the velocity
—Ja_ e A _2 .2 4 -2 v=VIm[In(¢gq)] at the levels withm=n=0. Employing
“1 \/8 BNI=n"—4n"=n'n "o, (11) and(12) for m=n=0 one finds
7]2 ” 1/2
(1—T—ng+77 U =10l SIN(26), v ,=7or COKL26) (16)
a= 2 174 : (13
( 1+ %— g\/sju 7| (1—-n?)Y8 for the radial and polar components\gfrespectivel\fin the

polar coordinatex’ =r cos(@),y’=r sin(d)]. This expression
exhibits quadrupolar symmetry. As long as patrticles are con-
densing into the state witm=n=1=0 they will form the
current pattern characterized 1§46). This pattern can be
thought of as two pairs of vortices of opposite vorticity
coupled together.

Above we have shown that no nonadiabatic energy ex-
change occurs between the RMF and the ideal gas in the
gl ) trap. In Sec. IV we will show that the interaction between

Note that the parameter as a function ofw (or %) has
the propertya(— n)a(n)=1. In the limit —0 (w—®)
one obtainse=1, and the eigenfunctiond 1) and (12) as
well as the eigenenergi€40) become exactly those charac-
terizing the TOP[16] as seen from the rotating frame. In
particular, the spectrum acquires the form

& =& . . . .
mal Zmnl particles changes this situation.
s =wo(M+N)+wgl, L=n-m, (14
wheres () are the eigenenergies of the TOP oscillator po- !l CONDENSATE CONTAINING LARGE NUMBERS

tential [16] viewed from the laboratory frame, with OF PARTICLES IN THE ROTATING FRAME

wo=woy/\/2 being the frequency of the oscillations in the  |n this section we will analyze the case of the condensate

(x,y) plane;L stands for the axial component of the angularcontaining large numbers of particles in the presence of the

momentum. . o RMF. The condensate wave functich obeys the GGP
For largew, Eq. (14) is an approximation of the exact equation[19]. For the single-particle Hamiltoniaf?) in the

expression(10). The corrections due to the finiteness of rotating frame, this equation is

wo /o turn out to be of the order ofu{y/ w)3, so that one can

effectively ignore these even & is only. a few times larger 19,0 =(H,— u)®+ug|®|2D, (17)

than wq. Consequently, for suck we will employ Eq.(14)

instead of the exact forr(iL0). . . .
In the limit |7|—1 from below (that is &— g, from whereuy>0 is the interaction constant anpdstands for the

above, the solution(10)—(13) acquires features characteris- c_hemical p(_)tential. Following 'Fhe approam], we will de-
tic of a quasi-one-dimensional system. Indeed, taking thig!V€ @PProximate hydrodynamical equations for the conden-
limit in Egs. (10)~(13), one finds ' sate in the presence of the RMF. We denote

1 /2 .
w+=w1=\/§woy, w-T3 02~ 5(1_|7l|)w0y- q):\/;el¢: deP:NCy (18

(15

wherep, ¢, andN, are the density, the phase, and the total
number of particles in the condensate, respectively. Substi-
tuting (18) into (17), one arrives at the expressions

This expression, together with Eq4.1) and(12), implies
that the typical extension in thg’ direction diverges as
(1—|7|)~Y4—. Accordingly, the excitation spectrufd0)
becomes characterized by the soft mode whose energy .
goes to zero. This implies that in this region @fthe low- p—w(X"dyp—y'dywp)+V(pV¢)=0, (193
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. AGWp) 1 wherep| ,p/,®| ,¢,, 1=1,2 are the time-dependent ampli-
¢—w(x’(9§¢—y’ax//¢)= - E(V(f))z"‘M_U_UoP- tudes of the dipolel=1) and the quadrupold £2) har-
2\/; (19 monics. Substitution of21) and(23) into (22) yields
i w(Z, -1

in the rotating frame. The main approximation made in the ¢ il w¢|+uop,=(—) ,
limit of large N, is that the term proportional tA(\/p) in 2
Eq. (19b) can be neglectefl8,d. . w3

In the limit w— o, one expects to obtain a solution(G) pitilop—I u_0¢' =0 (24)

that is close to that characterizing the T{IB,9]. In order to
see it, one should separate a rotationally invariant part fronfor the complex amplitudes
the total potential5). Specifically, ‘ .
: . p=(pi +ipe",  di=({ +ig))e"". (25

(1)0 " ! wo . . . .
U=Uropt 8U,Urop=—5 (X 2+y’?) +7222, Note that the dipole amplitudés-1 describe essentially the
center-of-mass motion of the whole atomic cloud in the trap
2 [9].
SU = ﬂ(xnz_y,z)_x,,_ (20) If the RMF frequencyw does not change in time, one

2 obtains the steady solutionp# ¢=0)

For the sake of convenience we will omit all primes ® w2
(X"—x,y’—Yy) from the coordinates, implying that we are ~ ¢1=0, ¢1=—5—>, p;=
working in the frame connected with the RMF unless other- @o— @
wise stated. Note thdlop is the time-averaged potential
(TOP) derived in Ref[16]. The termdU describes the de- gpqg
viations of the instantaneous potenti{&) from Ugp. It is
not strictly obvious thaU can be treated as a small correc- wg
tion to Utgp. However, the exact results obtained above for ¢>=0, 2T T T T G2
the single-particle Hamiltonian show that this is true in the 4w( 1— _)
limit of large w at least. Below we will show that if
w>w,, corrections caused byU remain small for large
N, as well. P @o "0 27)
To zeroth order with respect U, one obtains from Eq. P2 oug(207—wd)" P27
(19) the solution
This implies that in the limitw> w, the corrections due to
©)_ 0 _ 1 the RMF to the zeroth-order solutig@1) [9,18] are small.
¢=0, p _u_o(:“_ Urop), (21) Note that Eqs(27) and(23) indicate that the phase factor
exp(i yoXy), discussed in Sec. Il for the ideal gas situation, is
which is valid inside the droplet whose radius is determinediot affected much by the interaction as longa® w,. In-
by the conditionp(®=0 [18,9). We represenp=p®+ 5p Qeed, comparing Eq$11)—§13) with Egs.(23) and(27), one
[9], wheredp is a small correction due t6U. Correspond-  finds that the parameter, in Egs.(12), (13), and(16) must
ingly, we ignore the termV(5pV¢) in Eq.(199. Linearizing  be replaced by 5= y,+0((wo/)%). Whenw—wy, the

Egs.(19) in 8p,¢ [9], one obtains solutions(26) and (27) based on the conditiop®> 5p be-
come no longer valid.
5b—w(xﬁyép—yaxép)JrV(p(O)Vcé)=0 (229 We now consider the case whendepends on time. For

concreteness, we assume that the frequency the RMF is
. modulated as
b — 0(Xdyp—Yydyp)=—Ugdp— 6U. (22b)
w=w+Asin(w't), (28
Note that these equations are close analogs to those ob-
tained in[9] for a trapping oscillator potential that is axially where|w[>|\| andw’ are constants. Accordingly, one finds
symmetric. The additional feature of EqR2) is the term that the angle between the RMF and thaxis in the labo-
S8U, which plays the role of an external force. Later we will ratory frame is
see that this term, under certain conditions, can resonantly

excite the condensate normal modes with the angular mo- [ ,
mentaL = 1,2. 0(t)=wt+ o [1-codw't)]. (29
A particular solution corresponding to the symmetry of
the driving termsU (20) can be taken in the form Employing the ansatz
Sp=pH(X2—y?)+2p5xy+ pix+ply, p=e 1V, p=e"p, (30)

b= py(X2—y?) +2p5xy+ PiX+ BTy, (23)  one obtains from Eqg24)
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~ Ug~ connected to the vessel rotating with the frequetacground
b= 2P (318 ts axis, the vortex energy i§,—wl,, whereE, and L,
0 stand for the vortex energy in the laboratory frame and the
§ w2 vortex angular momentum, respectively. The vortex can be
'5|+Iw025,=u—e"”“>. (31b  created spontaneously if the Coriolis energy exceggls
0

However, this argument does not indicate what the probabil-
These equations indicate that the resonance condition dly for developing this centrifugal instability is. In fac_t! in.the
' in (28 is different for the dipole (= 1) and quadrupole CS€ of the perfectly symmetric vessel th'IS probability is es-
(1=2) harmonics. Indeed, givef29) and expanding the sentially zero. To'make thg vortex creation real, .the vessel
right-hand side of Eq.(31b in the small quantity Must have some irregularities on the walls breaking the ro-
IMw'|<1, we get tational symmetry so that the angular momentum of the ves-
sel could be transferred to the vortéor vortices.

Returning to our case, we can see that in the casex
the eigenfunctiong11) and (12) of the trap[16] are ap-
proaching those of the effective time-averaged Hamiltonian
Then one obtains that the resonance with the dipole harthe TOP[16]), which is axially symmetric. Therefore, no
monic occurs when the modulating frequenay obeys the centrifugal instability of the condensate is expected to occur
condition in this limit. In other words, no energy exchange between the
RMF and the condensate happens in the liawt oo,

For finite w, the functions(11) and (12) are not eigen-
functions of the operatoL.. Consequently, the difference
n—m can no longer be interpreted as the eigenvalué .of
Accordingly, the effective vessel can be thought of as having

o' =w)=20* \/Ewo, (34) a symmetry-breaking deformation, which in turn implies that
the energy and the angular momentum can now be given up
where \/iwo stands for the frequency of the lowest quadru-to the pairs leaving the condensate into the highly excited
polar harmonic of the trapped condensate with ldxigd9].  states whose energies ai@>%wg (in physical unity. In
Note thatw,— w1~ 0> wg. this regard one should distinguish two cagé$# o> u and

In the following, we will show that the preceding analysis (2) o< pu. In case(1) the pair escapes into states lying far
based on the GGP equation does not take into account quaftom those effectively involved in the formation of the inter-
tum processes of the creation of pairs out of the condensatcting condensate. Accordingly, the pair escape process can
by the RMF. These lead to forced evaporation of the condernbe treated as an incoherent step in the condensate evapora-
sate even for zero temperature and steady rotations of th#n. In contrast, in cas€) the escape states with the ener-
magnetic field. As a consequence, the hydrodynamical equgies ~%w are to be renormalized strongly because of the

. L i\
elfW~glot 14 7(1—00&)“{) . (32

o' =w=0*wg. (33

Equation(31) yield the resonance condition for the quadru-
polar harmonic

tions (22) will acquire a dissipative contribution. presence of the condensate. This implies that the multipair
processes become significant. Correspondingly, the centrifu-
IV. CENTRIFUGAL INSTABILITY gal instability should be interpreted as a coherent process of

IN THE MANY-BODY APPROACH vortex formation. In this paper we will not analyze this case.

In our previous analysis, we neglected quantum fluctua- The process of the escape of pairs represer_lts the nonreso-
tions of the condensate. These fluctuations in the converfi2Nt quantum evaporation of the condensate induced by the

tional stable condensate can be thought of as the virtual creXMF- We emphasize the crucial role of the interatomic in-
ation and absorption of pairs. In this regard we note that théerac.tlon for realization of this centrifugal evaporation. The_
spectrum(10) has no lower bound, so that the condensatd©tating observer sees th|§ process as follows: two atoms in
could be unstable with respect to the real creation of pairéhe condensate interact with each other. As a consequence,
even though the RMF is steady. Correspondingly, the GGphey jump to a new pair of single-particle states characterized
equation(17) can acquire a dissipative part. by large quantum numbers, so that their total energy is con-
Consider first the case—c. The term proportional to servedi(the larges {2 is compensated by the Coriolis term
w in Eq. (14) is a direct consequence of the Galiliean trans-Correspondingly, the rotating observer interprets this event
formation into the rotating frame. Indeed, the limit-% in  as a nearly elastic escape of the pair from the condensate.
Eqgs.(10)—(13) ensures that the ternm - m) is the projection  Note that if the eigenfunction&l1) were eigenfunctions of
of the angular momentuni. on the z axis, so that the angular momentum, there would be a selection rule requiring
w-dependent part il4) is exactly the Coriolis contribution that the angular momentum of the interacting pair not change
—wL. This implies that no instability should develop be- in the transition. Correspondingly, referring to Ef4), one
cause the absence of the lower bound for the spectrum Bees that no instability would occur. In fact, this is not the
purely a frame of reference effect. Nevertheless, the condertase for finitew and instability could occur.
sate can be considered as being potentially able to gain high To describe the centrifugal instability effect, we proceed
values ofL. In this regard we can employ the rotating frameto derive a damping term in the GGP equation for the con-
reasoning19] (see alsd11], Chap. 6 for the vortex creation densate wave functio®. The many-body Hamiltonian in
in the rotating vessel containing a superfluid. In the framethe rotating frame is
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Uo Assumption(a) excludes the normal component from the
H ZJ dx| WT(H,—u)¥+ 7‘1’“1’“1”1’ , (39  analysis. Assumptiofb) ensures that no normal component
is building up in the highly excited levels due to the centrifu-
where primes are omitted from the coordinates and the Bos@al escape of the pairs. Note tHab is reasonable for high
operators¥ T, ¥ obey the usual Bose commutation rule. The @ and in the presence of the radio-frequency scalpel, which

Heisenberg equation is provides the evaporative coolirigee, e.g., i125,5]). Given
(a) and(b), we avoid the necessity to analyze the dynamics
i0,¥=(H,—u)¥+u, ¥ ow, (36 of the normal component. Finally, from Eg&89) and (40)

under(a)—(d) we obtain the GGP equation with the dissipa-
Taking into account the explicit forni7) for H,,, one  tion term includedsee Appendix B
finds from (36) the current conservation condition

A (¥TW)+V.J=0, (37)
_ _ o iatq>=(Hw—M)c1>+u0|c1>|2<1>—iugc1>*fdt'
where the current operatdrin the rotating frame is defined
as
XJ' dx’ GM2(xt,x"t")D3(x't"), (41)
1 . ' . .
Jzz[\IfT(V—A)\P], whereG((xt,x't’) is defined in(B7). Note that if the total

number of atoms in the trap were conserved, it would not be
possible to obtain the dissipation term(#1) in closed form
[6]. Below it will be shown explicitly that the last term in Eq.

As usual, the condensate wave function is defined b{'l) would have been zero if either the single-particle Hamil-

& =(¥). In what follows we assume that the noncondensat oniz_in H, c_on_served angular momentum or if_ the single-
particle excitation spectrum were positively defined.

part¥V’' =V —® obeys the standard Bose commutation rela- e . .
tion, which, strictly speaking, implies that the excited eigen- Multiplying (41) by ® and adding the complex conjugate

states are not orthogonal to the condensate. However, it Caqir:?eoresgItln?Oexg(r)?]sds_:%n, one obtains the generalized cur-
be shown that for our purpose of deriving the dissipative par{ conservation on
of the GGP this approximation gives the same result as if we

A=—iwy, Aj=iox, A,=0. (38)

employed the modified commutation relatig@0]. From Eq. p+divi=—S,
(36), one findg[21,20,23
P =(H,— )P+ uo|d|?d S= USJ dt’f dx’ G2 (xt,x't") p(xt) p(x't")
UL DX (W' W)+ 20 (W T )+ (W T W) ] X exp — 2i[ d(xt)— p(x't') [} +c.C., (42)
(39

where the representatiofl8) is employed. This equation
and corresponds to Eq22a modified to include the dissipation
caused by the centrifugal evaporation.

Integration of Eq.(42) over the whole space yields

oW =(H,—w)¥' +ug[®* (VW' —(V'¥'))

+20 (VY — (VT )) + 20* pP N.= —2u§f dt’dxd x’ R GM2(xt,x"t")]p(xt)p(x't")

2 T A\ TYA r_ IAES T ’
+ W T+ T — (P T Y] (40) X exp{— 2i[ d(xt)— (Xt ]}, 3
The condensate wave functieh is normally viewed as

an external classical field in E¢40) for the noncondensate Where we have used the second relation in @6). Note,
part. Employing the Keldysh techniq{i23], the systen{39)  that in this equation the integral depends on both the density
and (40) can be expressed in terms of the joint dynamics ofe as well as the phasg of the condensate. Accordingly, the
® and the population numbers of the excitations. In generalgoherence of the condensate could be tested by analyzing the
this procedure is very complicaté¢fl] (see also the general- rate of the quantum vaporization induced by the RMF. Else-
ized density-functional approadt24,22). However, under where, we will consider this possibility in greater detail.
certain conditions it becomes possible to eliminate the averPresently, let us calculate the quasistatic decay rate assuming
ages from Eq(39). Specifically, we will make several as- that N. is not large so that one can employ the ideal gas
sumptions and approximation&) the population numbers ansatzI):\/N—cz,//ooo. Note, however, that the applicability of
of the excited states are zelb) the pairs escaping from the Egs. (41)—(43) is not limited by the requirement of small
condensate due to the centrifugal effect escape from the trag. (awoN.<1 [18], where a stands for the scattering
as well;(c) the terms leading to powers higher than the thirdlength. Later we will derive a conditiofisee(B5)] allowing
in ® and®* in the effective GGP equation are omittéd)  one to employ the variational approafts] for calculating
in Eq. (40) only the terms linear int’ and¥'" are retained @, with G taken unrenormalized, in E¢3).
in accordance with the Bogolubov approximatidr®,20. Making use of Eqs(11) and(12), we find
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Nc(t)=—2u§J dUK(t—t" )N(N(t'),  (44) Yyl (X0) Yngnl(X2)

where = 2 9G0Pk R g (1),
~ 50
K(t—t')=6(t—t")>, |[M?Ree i(eatea(t=t)) 0
L2 where the notationp’=m-p, k'=n-k, q'=1-q, and
M12:f dX 1421560 (45) ggbzz (—1)P+P’
o
and the summation is performed over the final states of the TPy |
escaping pair. y Jalblp!(a+b—p)!
As will be seen below, in the limis— o the escape rate 2@ D2p 1 a—p/ )l (p—p ) (b—p+p)!’
is much smaller than the typical time scale in the trap corre-
sponding towgy. Consequently, one can employ the quasi- X1+ %o X1— %o
static approximation that the time dependencélgis slow. = , I= ,
We setN¢(t')=N,(t) in (44) and after the time integration V2 V2
rewrite it as
_ m=m;+m,, n=n;+n,, |=Il;+l, (51
Ne=—xNZ, (46)
are employed. The summations in Eq4S0) and (51) run
where over all integer non-negative numbers obeying the condition
that all the numbers under the signs of the factorial are non-
_ 2 2 negative as well. The relation®0) and (51) were derived
X 27Tu0[1%2] M12"0(Es0), “9 from the explicit representatiofil) and(12) for the eigen-

functions. Employing Egs(50) and (51) in Eqgs. (45) and
and the quantity-=1/yN. can be considered as an effective (47), we obtain for Eq(47)
lifetime of the condensate. In Eq47), the notation

E.,=¢,+ ¢, for the escaping pair energy is introduced and wué

5(€) stands for the delta function. This expression accounts X= TZ | ¥mni(0)]?|¥00d 0) |2

guantitatively for the centrifugal effect discussed above. One m,n.|

c?n' Isee that the conditiod ,#0 andE;,=0, where ex- X 8(wo(M+N) + wo,l — w(n—m)). (52)
plicitly

Note that y is exactly zero for the case=1 (or
w—) in Egs.(11)—(13). As mentioned above, no escape of
—w(N+n,—m;—my,) the pairs occurs in the case when the RMF is so rapidly
rotating that the effective trappin@OP) potential becomes
=0, (48)  axially symmetric. In the limit of large but still finiter one

finds from Eq.(13
can be satisfied simultaneously because the eigenfunctions a.(13

E12: wo(m1+ m2+n1+n2)+ w02(|l+|2)

(11) and(12) utilized in (45) and(47) are not the eigenfunc- o3 wn| 5
tions of the angular momentum operator. In what follows, we e 2=— <_°) (_0) , (53)
will show that in the limit of largew, the dominant contri- w

bution in (47) comes from the states with the quantum num-
bers which implies that the first term only should be kept(58)

and that the exponerg® in Eq. (11) can be expanded in
o) terms of the smallness af,/w. This expansion represents
my~mp=l;~l~ny~n;~ w_0>1 (49 the eigenfunctior(11) in terms of the harmonics of the an-
gular momentum operator. Thus one finds that each eigen-
corresponding to a pair leaving the condensate into the statégnction can be effectively characterized by the following
characterized by large quantum displacements. Returning t@rms: (i) the harmonic of the angular momentum operator
the laboratory frame, this simply means that two atoms abwith the angular momenturm¢m), (ii) two functions with
sorb the energy 2w (in physical unity from the RMF so the momenta f—m) =2 whose weight is proportional to
that this energy is approximately equally distributed betweer{wy/w)3<1, and(iii) the other angular harmonics with the
them. As a result, the pair is transferred to highly excitedrelative weight containing powers @,/w higher than the
states. The radio-frequency scalgd,25] is assumed to third. This implies that in Eq(47) it is enough to consider
eventually remove this pair ensuring conditié® of zero  the contribution due to the lowest term. Physically, this term
population of the excited states. corresponds to an absorption of the energyw2and the
In order to calculatéV ;, explicitly, we employ the repre- angular momentum 2 by a pair of atoms escaping from the
sentation(compare with20], Chap. 1% condensate. Finally, one finds



55 CENTRIFUGAL EFFECTS IN A BOSE-EINSTH . . . 495

1., wo\ % (2D (M+1)(m+2) ment has a structure exp(—A/fiwg) for A/hwy>1. Taking

X= 2@ @o®oz| "~ %‘T 27(11)2 into account thatw, >10" Hz, wy~10—10° Hz, and
' w=~100wq [1,16], one can see that the nonadiabatic spin flips

X 8(2wgMm+ 2wg,l —2w). (54) can be ignored, if compared with the centrifugal losses.

A simple analysis shows that most of the contribution to the
sum(54) comes from the region of higi,| [see(49)]. Ac- V. CONCLUSION
cordingly, we replace the summation (B4) by integration.

; ) e ) The atomic trag 16,1] bears features absent in the static
Finally, in the chosen limit and chosen un{® we find ;! !

traps[2—4]. These features can be accounted for in the frame

72 o714 rotating together with the RMF. For large frequencies of ro-
x= €alw? ﬂ) . e= ~0.13. (55  tation of the RMF, the exact eigenenergies and eigenfunc-
157 tions of the trap[16,1] approach those characterizing the

time-averaged potential TOPL6] having axial symmetry.
This expression indicates that the centrifugal escape rateor frequencies close to the threshold below which the trap-
is extremely sensitive to the RMF frequeney For the pa-  ping is impossible, the eigenstates lose their axial symmetry
rameters employed experimentally in REf], the estimate and become elongated in the direction perpendicular to the
of (55 gives a very small numbethe corresponding life- RMF (in its frame of referendge Very close to the threshold
time is aboutr~10° s for N,= 1000), implying that the cen- 5 gas of trapped atoms acquires properties of an essentially
trifugal vaporization can be effectively ignored as a cause fonp system.
the condensate escape from the trap. However, with decrease pue to the asymmetry introduced by the RMF, the atom-
of the ratiow/ wy, the vaporization rate increases strongly. Inatom interaction results in the induced evaporation of the
the casew— 2w, from above, the approximatiofs3 we  Bose-Einstein condensate. The time scale for this evapora-
employed is no longer valid. Accordingly, the exact expres-ion is very sensitive to the RMF frequency of rotation. For
sions(11)—(13) for the eigenfunctions should be utilized in high frequencies, the lifetime of the condensate increases as
(52). This means that the escaping pairs acquire highes large power ofw. Close to the trapping threshold the life-
(even angular momenta. As a result, the lifetime of the con-time shortens considerably, implying that the 1D gas formed
densate can become very short. in the trap[1,16] in this situation is a strongly interacting
Equations(39) and(40) can be analyzed for the case of a system.
nonsteady RMF. Especially interesting appears to be the case The frequency-modulated RMF can be utilized as a driv-
when the frequency modulated RMF excites resonantly théng force selectively exciting the condensate normal modes.
quadrupolar harmonic of the condens@gee the condition In the limit of large numbers of atoms, when Stringari’s hy-
(34)]. Generally, it is natural to expect that this resonancedrodynamical approximation is valid, two modes can be ex-
would result in the increase of the vaporization rate as &ited by the RMF whose frequency of rotation is appropri-
function of the modulating frequenay’. In the future, we ately modulated. The first is a dipole mode accounting for
will consider this case in greater detail. the center-of-mass motion. The second mode that can be
In this paper we do not consider other collisional mechaexcited by the RMF is the lowest quadrupolar harmonic. The
nisms of lossegsee, e.g.[26]) from the magnetic traps be- resonance conditions for the RMF modulation period depend
cause these mechanisms are not expected to be very sensitiwe the averaged RMF frequency, in addition to the eigenfre-
to the RMF frequency. Correspondingly, one can make the quencies of the harmonics. The effect of the quantum evapo-
centrifugal decay dominant by means of varyiang ration induced by the RMF opens up a channel for dissipa-
Note, however, that the single-sgimoncollisional rever-  tion of the condensate normal modes.
sals due to the energy transfer from the RMF to the atomic
spins turn out to be very sensitive &0 As mentioned if1],
these processes should be suppressed whisrsmaller than

the Larmor frequency = |ugBy|/%. Such a spin flip event  This research was supported by grants from The City Uni-

is followed by the escape of the atom from the trap. Anyersity of New York PSC-CUNY Research Award Program.
analysis of this process can be carried out in the rotating

frame as well. The full Hamiltonian including the spin de-

grees of freedom becomes time independentderconst APPENDIX A: SOLVING THE EIGENPROBLEM
and acquires the additional Coriolis termwS,, whereS, IN THE ROTATING FRAME

stands for the component of the spin matrix. Accordingly, 11,4
the runaway states should also be classified in the rotatin
frame. It can be shown that a dominant channel for the spi
flip and the following escape corresponds to a transition, )
with the orbital angular momentum of the escaping particle 1 Woz _,
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Hamiltonian  (9) for the function
"(x",y',2)=exp(wXx"y") ¢ can be written as

r_ —_ g2, 77
changed by one. The energy carried away by the atom is Ho=HytH,, H= 2'ysz 2 z
approximatelyA =#(w, — o) for o<, . In this regard we
comment that the probability of this escape process is sig- 1 ) ) 3
nificantly suppressed because of the smallness of the matrix _ 2, 2y, Yoy 5 2,2 4 o
. . =——(9;+09)+——=——Vy+ = +
element taken between states localized in the trap and the Hay 2((9X %) 2 Y TeX 2l wxdy,

runaway states. Simple estimates show that this matrix ele- (A1)
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where the unimportant constant /2 and the primes from brackets of Eq(39) produces the imaginary part. However,
the coordinates are omitted. The eigenfunctian$z) of it can be shown that it is proportional to the population num-
H, are the well-known oscillator states. These are reprebers of the excited states. Consequently, we omit this term
sented in(11) and (12) by the generating function of the also and rewritg39) as

Hermite polynomialgsee the auxiliary variablé; in (11)

and(12)] so that they' (x,y,2) = ¢,(2) ¥m(X,y) . Performing P9, ®=(H,— u)®+Uo|®|?D +usd* G(xt,xt), (B1)

the Fourier transform i )
where the equal-time anomalous Green'’s funcfi®h,2( is

~ - o defined asG(xt,x't)=(W¥'(xt)¥'(x't)) (the overall factor
lﬂ(X,p):f dye Yy’ (x.y), V=Vleo?—wgly,  (A2) | is omitted here and<below in the Gr>een’s—functions defini-
tions [21,20)). Note that because the interaction potential
one finds for(Al) in(35) is chosen in theS(x) form, Eqg.(B1) containsG with
x=x'. The equation foG can be obtained from E@40). In
1 S wz_wg 3 order to accomplish this, we will employ the Bogolubov ap-
Hyy=— §&§+§&§+ Tyszr szxz proximation (d). Accordingly, multiplying (40) by ¥’ and
taking the average, one finds

—Zw\/|a)2—w02y|xp, (A3)

wheres=sgn(w?— wg,). i9,G(xt,x't)
In the casdw|<wg, the Hamiltonian(A3) can be diago-
nalized by implementation of a real rotation in the, ) =(H,=m)xG(Xt,X"t) + (H,— p)x G(xt,x"t)

plane. However, no discrete states exist in this case because * i , ,
the effective potential ofA3) turns out to have a saddlelike FU{Z[ ™ (X) D (xt) + O (X' P(X'D]G(xXt.X")
shape, with the kinetic part being positively defined. In the H[DA(X't)+ D3(xt) [ p(xt,x't)+ 2 8(x—x)]}, (B2)
opposite limit §=1) the discrete states do exist. The diago-
nalization can be achieved by means of the Lorentz transfoM/here
mation
e\ rt ' ’
X=CosH 8-+ sinh( §)p’ . p(xt,x't)=(¥'(xt)¥'(x't)) (B3)
stands for the density matrix of the excitations. In ER)
p=sinh(§) &+ cosh9)p’, (A4) the notation () means that the single-particle Hamiltonian
H, acts on the coordinat®. These equations should be
supplemented by ones for the normal Green’s functions.
However, conditionda) and (b) of zero population of the
excited states imply that one can et0 in Eq.(B2). Fur-
thermore, as long as one is interested only in deriving the
(A5) imaginary contribution tdB1) to lowest order with respect
' to ug, significant simplification can be achieved. Indeed, for
w>wq, only the high-energy part of the spectrum of the
wherew .. are given in Eq(10) and the angle} satisfies the  normal excitations contributes to the imaginary parGofn

leaving the kinetic part-3 (95— 4?) invariant. In terms of
the new variables§,p’), (A3) acquires the form

2

1 > 1 w’
_ 2y “he2 | _Z 2 T
ﬁ§+ 2§ Zap,+ 5 p

— 12
Xy 2

H

equation Eg. (B1). Correspondingly, one can neglect the effect of the
condensate on this part of the spectrisee casd€l) dis-
4y \1—9? cussed above The condition when this assumption is valid
tanh(29) = a7 (A6)  can be formulated in terms of the smallness of the first term

in the curly brackets of EqB2) if compared withwG. In

with », 7 defined in Eq(13). The resulting spectrum of the Other words,
total Hamiltonian is given by Eq10). The eigenfunctions of

(A5), expressed in terms of thiep’ variables, can be con-

verted into thex,p coordinates by means of the relations

(A4). Finally, performing the inverse of the Fourier as well ) ) ) o
as the scaling transformgA2), one finds the normalized in Physical units. Employing the variational approgdig],
eigenfunctiong11)—(13). one can estimatgb|? and obtain from(B4)

fil w|>uo| @ (B4)

APPENDIX B: DERIVATION OF THE GGP EQUATION w 572
WITH THE DISSIPATION DUE TO THE RMF a\/w—oNC<0.034< —) , (BS)
o

Under assumptionga)—(d), Egs. (39) and (40) simplify
considerably. We need to find the lowest-order term thatvhere we have employed the representatigs 4ra for the
contributes to the imaginary part of E@9). In Eq.(39), the interaction constantg in terms of the scattering leng#nin
second term in the square brackets does not contribute to thiee units(6). Actually, for the parameters of the trgp| the
imaginary part, so we omit it. The last term in the squareestimate forN, gives N.<1CP. If this condition holds, the
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anomalous Green’s functio® can be found by iteration where the retarded Green'’s functif20]

wlth respect tau, with the zeroth-orde_zr approximation be- GI(xt,x't")=B(t—t') D e—isl(t—t’)wl(x)‘ﬁlc(xr) (B7)

ing zero. Assuming thatB4) [or (B5)] is valid, we finally T

find is expressed explicitly in terms of the single-particle eigen-
functions (11) and (12) and the eigenvalued0), with the-

G(xt,xt)=—iu0J dt’f dx’ G2(xt,x"t")D3(x't"), summation performed over all the single-particle guantum
numbers indicated as 1. [B7), 6(7) denotes the step func-
tion. Finally, substitution of Eq¥B6) and(B7) into Eq.(B1)
(B6) vyields Eq.(41).
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