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Atomic resonances of hydrogen near aluminum surfaces:
Adiabatic evolution of the ground state
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Department of Physics, University of Tennessee, Knoxville, Tennessee 37996

and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
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Complex adiabatic potential curves are an essential input to atomic surface scattering calculations employing
the coupled-states method. We present calculations for the ground state of hydrogen near a jellium surface with
the density of aluminum. Two complementary techniques have been implemented: the complex rotation
method and the stabilization method. We employ large-scale matrix diagonalization and realistic effective
single-particle potentials. The influence of the surface potential on the adiabatic evolution of the wave function
and the resonance parameters as a function of the distanced from the surface have been investigated. Appli-
cation to the ground state H(1s) yields significant differences for the position and width of the resonance
compared to previously available data. The applicability of semiclassical theory for resonance parameters is
tested and the role of over-barrier transitions is highlighted.@S1050-2947~97!08201-2#

PACS number~s!: 79.20.Rf, 34.50.Fa
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I. INTRODUCTION

Resonant charge exchange between metal surfaces
ions plays an important role in many surface-diagnos
methods such as Auger electron spectroscopy, ion neutra
tion spectroscopy, and secondary-ion-mass spectrometr
well as for emerging technological applications~e.g., surface
catalysis, thin-film growth, and molecular-beam epitaxy!. On
a more fundamental level, the recent availability of electr
cyclotron resonance and electron-beam ion sources del
ing high intensities of low-energy multiply charged ion
~MCI’s! has stimulated an intense interest in the interacti
of MCI’s with surfaces@1#. Neutralization and relaxation o
MCI’s at surfaces represent an intriguing many-body pr
lem which involves transitions of a large number of ‘‘a
tive’’ electrons, and leads to the dissipation of large amou
of potential energy~typically ;keV!.

A theoretical description of dynamical ion-surface inte
actions requires a nonperturbative treatment, since a l
number of channels~i.e., atomic states! contribute, and the
perturbation is strong. Appropriate approaches are there
the time-dependent coupled-channel calculations wid
used in ion-atom collisions@2#. Application of this technique
to slow ion-surface scattering involves the expansion of
time-dependent electronic wave function in terms of ad
batic states with time-dependent coefficients. The adiab
atomic orbitals near the surface here play the analogous
of quasi-molecular orbits in slow ion-atom collisions. How
ever, they should contain many-body effects from the out
Most importantly, atomic states become resonances,
they acquire a nonzero width because of the electron tran
to the band structure of the solid, taken to be a metal in
following. Moreover, atomic levels are shifted and strong
perturbed due to the collective response of the surface e
trons.

The aim of the present contribution is the calculation a
analysis of the perturbed atomic resonances correspondin
the adiabatic states at a fixed distanced from the surface. We
therefore calculate the position of the resonance, i.e.,
shifted energy level, its width, and its wave function, all
551050-2947/97/55~1!/466~13!/$10.00
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which are required in a coupled-channel calculation. Due
the finite velocity of the ion approaching and leaving t
surface, the dynamical charge transfer process will be de
mined by nonadiabatic coupling between these resonance
well as with electronic states of the surface band structu
which will be considered in a subsequent paper.

At large atom-surface separations, the properties
atomic resonances can be studied by means of perturba
theory @3#, and the effective atom-surface interaction pote
tials entering a calculation can be approximated by the
ymptotic image potentials@4#. At smaller distances relevan
to the charge-exchange process, perturbation theory br
down. Nonperturbative calculations employing a Wigne
Weiskopf approximation@5,6#, complex coordinate scaling
~CCS! @7# and the coupled angular modes methods@8#, re-
spectively, have been reported. Irrespective of the diff
ences in detail, previous calculations agree in the qualita
behavior: the level shift follows closely the behavior of th
image potential, which suggests a promotion of the level i
the continuum~E50! at small distances. This shift is accom
panied by a monotonic, nearly exponential, broadening
the level.

From the study of the chemisorption of hydrogen a
alkali-metal atoms at metal surfaces, the static limit
atomic resonances at surfaces, i.e., in the limit of small d
tances~d→0! is well understood. Detailed calculations em
ploying density-functional theory@9–14# indicate the exist-
ence of low-lying resonances embedded in the conduc
band as well as of bound states below the conduction ba
The connection between thisd→2` limit and the d→`
limit of perturbed atomic states in the image field is impo
tant, as it provides insights into the region of intermedia
distances~d.3–5 a.u.! which are most relevant to th
charge-transfer dynamics. We investigate the dependenc
the resonance parameters in this intermediate region on
approximate interaction potentials, and show that an app
priate choice for the single-particle potentials is the key
establishing a smooth transition between thed→2` and
d→` limits.
466 © 1997 The American Physical Society
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55 467ATOMIC RESONANCES OF HYDROGEN NEAR ALUMINUM . . .
In this paper we employ an alternative, recently dev
oped method for the calculation of atomic resonances wh
involves the stabilization technique@15,16#. One of its ad-
vantages is the direct determination of the resonant w
function, and the local density of states. The latter is requ
for an evaluation of coupling matrix elements for couple
channel calculations. As a complementary method we
CCS @17–20#, which provides an efficient tool for calcula
ing complex eigenenergies~positions and widths! of atomic
resonances. The comparative study permits us to gauge
accuracy and efficiency of different methods. Furthermo
since the stabilization method~SM! proceeds entirely on the
real axis, larger bases can be used and the convergence
function of basis size can be tested.

As a third method, we employ semiclassical mechanic
calculate the resonance width. Interest in the semiclass
treatment is derived from recent advances in the descrip
of multiply charged ion-surface scattering employing t
classical over-barrier model. Semiclassical methods prov
a link between the classical and the full quantum desc
tions, and can provide physical insight into the properties
perturbed atomic states near the surface.

In the present paper, we discuss the methods employe
well as accurate results for the adiabatic evolution of
H(1s) resonance in front of an aluminum surface serving
a fundamental prototype system. We find well-defined ov
barrier resonances, and illustrate the influence of overba
transitions for the position and width of the resonances. P
liminary results forn51 and 2 states have been report
previously@21#. Applications to excited statesn>2 systems
are in progress.

II. THEORY

A. Adiabatic atomic states

Within the framework of the independent-particle mod
for the ‘‘active’’ electron, the electronic wave function in th
time-dependent Schro¨dinger equation

i
d

dt
c~r ,t !5H„r ,R~ t !…c~r ,t ! ~1!

can be expanded in terms of adiabatic atomic orbitals

c~r ,t !5(
j
aj~ t !f j„r ,R~ t !… ~2!

with time-dependent expansion coefficientsaj (t). The time
dependence of thefj results from the parametric dependen
on the classical trajectoryR(t) of the incident ion. At finite
distances from the surfaced5Rz(t), the orbitals are no
longer purely atomic, but contain admixtures from the ba
structure~‘‘hybridization’’ !. Thez axis is oriented along the
surface normal. The orbitalsfj incorporate many-body ef
fects on the mean-field level. Electron-electron correlat
effects are presently neglected, but could be incorpora
into an expansion of the trial function in terms of Slat
determinants. In the following we consider the adiaba
limit of Eq. ~1!,

H~r ,p,d!f j~r ,d!5Ej~d!f j~r ,d!. ~3!
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The metal will be described by a semi-infinite jellium bloc
with a Wigner-Seitz radius ofr s52.07 a.u., corresponding t
the electron density of aluminum. In this model the surfa
coincides with the position of the jellium edge, which
defined as the plane half a lattice spacing in front of
topmost atomic layer. The origin of coordinates,r5~0,0,0! is
placed in the surface and the atom core is located in fron
the surface atR5~0,0,d!. It is useful also to introduce a
second coordinate system centered in the atom core, so
r̃5r2R. Because of translation invariance in the plane
the jellium surface, the parametric dependence in Eq.~3!
refers only to the distance from the surface,d. The Hamil-
tonianH reads

H52 1
2D1Vtot~r ,d!, ~4!

whereD denotes the Laplace operator andr5(x,y,z)5~u,z!
the electronic coordinates. Atomic units are used through
~\5me51! unless otherwise stated. The total electronic p
tential

Vtot~r ,d!5Vcore~ r̃ !1Vsurf~r ,d! ~5!

consists of the atomic core potentialVcore~r̃ ! and of the sur-
face potentialVsurf~r ,d!. Figure 1 sketches the geometry
the system under consideration, and the various contribut
to the total potential. The core potential for hydrogenic
oms with atomic numberZ is a Coulomb potential2Z/ r̃ .
Corresponding single-particle potentials for other atoms
available in the literature@22,23#. The surface potential for
the jellium can be written as

Vsurf~r ,d!5Vp~d!1Ve~r !1Vpe~r ,d!, ~6!

where the first term describes the effective interaction of
ionic core~the projectile! with the surface. At large distance
from the surface, this interaction converges to the class
~self!-image potential of the projectile, i.e.,

lim
d→`

Vp~d!52
Z2

4d
. ~7!

It plays a crucial role for the image acceleration of the p
jectile and, hence, for the scattering dynamics@24–26#, and
also has to be taken into account for total-energy calcu
tions. In the adiabatic limit, the energy positions and wid
do not depend on this interaction since it is a function of o

FIG. 1. Sketch of the geometry and the contributions to
potentialVtot as outlined in the text. The surface coincides with t
jellium edge.
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468 55DEUTSCHER, YANG, AND BURGDÖRFER
the nuclear coordinate. HenceVp does not enter the calcula
tion of the resonance energies. The remaining two term
Eq. ~6! describe the electronic interaction potential with t
surface,Ve~r !, which at large distances also converges to
image limit

lim
z→`

Ve~r !52
1

4z
, ~8!

and the indirect interactionVpe between the electron and th
projectile through the charge-density fluctuation in the s
face induced by the projectile. The asymptotic limit of t
latter is given by

lim
d,z→`

Vpe~r ,d!5
Z

A~ uzu1d!21u2
, ~9!

where ~u,z! are the cylindrical coordinates of the electro
Equation~9! describes the interaction of the electron with t
image charge induced by the projectile.

The description of the interactionVe andVpe in terms of a
local single-particle potential at intermediate interaction d
tances is a nontrivial problem. The choices underlying
calculations will be discussed below in more detail.

B. Calculation of resonances

For a given choice of potentials, the calculation proce
through a large-scale basis expansion converting Eq.~3! into
an N-dimensional matrix eigenvalue equation with ener
eigenvalues$Ek% 1

N. Atomic ~hydrogenic! basis functions are
not well suited, as their positive energy subspace is
square integrable. To circumvent this problem we choose
expansion in terms of Sturmian functions@27# in the ion-
centered coordinate system,

Fnr lm
~s! ~ r̃ ,u,f!5

1

r̃
Snr l

~s!~ r̃ !Yl
m~u,f!. ~10!

Herenr , l , andm denote the radial, angular, and magne
quantum numbers,Y l

m the spherical harmonics, andSnr l
(s) the

Coulomb-Sturmian functions, given in coordinate repres
tation by

Snr l
~s!~ r̃ !5hnr le

2s r̃ ~2s r̃ ! l11Lnr
~2l11!~2s r̃ !, ~11!

with

hnr l5S nr !

~nr12l11!! D
1/2

~nr5n2 l21!. ~12!

Lm
~a! in Eq. ~11! are the associated Laguerre polynomials. T

Coulomb-Sturmian functions contain the Sturmian param
s5Z/n0 , which allows for variational optimization of the
basis according to the principal quantum numbern of the
atomic level under investigation.@For integern0, Eq. ~10!
exactly reproduces the hydrogenic wave function with
principal quantum numbern0.# The Coulomb-Sturmian basi
is square integrable and~apart from the inevitable truncation!
complete. Furthermore, the proximity to atomic wave fun
tions indicates that for weakly perturbed states the expan
in
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should rapidly converge. The price to pay for this advanta
is that the basis states@Eq. ~10!# form a nonorthogonal basi
set which results in a generalized eigenvalue problem.

In what follows we discuss two complementary metho
for determining resonance parameters from the general
eigenvalue matrix equation

H= fI j
~s!5EjN= sI j

~s! , ~13!

whereH= andN= are the Hamiltonian and the nonorthogona
ity ~overlap! matrix for the basis of Eq.~10!. The matrix
elements can be expressed analytically with the exceptio
^i uVsurfuj &, which must be computed numerically.

Equation~13!, as it stands, gives only discrete real eige
values$Ej% of bound states. One standard method for
calculation of resonances is complex coordinate scal
which corresponds to a canonical transformation in the co
plex plane

r̃→ r̃eiQ, ~14a!

p→pe2 iQ. ~14b!

This converts resonant~continuum! wave functions into
square-integrable functions by effectively projecting out t
P space~continuum space! portion of the wave function.
Consequently, the Hamiltonian becomes dependent on
complex rotation angleQ,

H~ r̃ ,p!→H~ r̃ ,p,Q!52 1
2e

22iQD1Vtot~ r̃eiQ!. ~15!

H~r̃ ,p,Q! is no longer Hermitian, and Eq.~13! yields com-
plex eigenvalues. Thresholds~in our case corresponding t
the continua at the bottom of the conduction band,V0,0,
and at the ionization thresholdE50! are rotated into the
complex plane by an angle of 2Q, thus exposing the reso
nances, while bound states remain on the real axis. C
verged resonances are characterized by the stability of
complex eigenvalueE5Er2 iG/2 with respect to the rota
tion angleQ, the Sturmian parameters, and the basis sizeN.
The analytic continuation of the potentialVtot~r̃eiQ! into the
complex plane is explicitly known only in simple case
While the mathematical foundation of the method, t
Aguilar-Baslev-Combes theorem@17#, strictly holds only for
dilatation-analytic potentials, ample evidence exists that
method is applicable to a much wider range of potentials.
realistic surface potentials we adopt the ‘‘passive’’ rath
than the ‘‘active’’ complex rotation, rotating the wave fun
tionFnr lm

( r̃e2 iQ) instead of the Hamiltonian. However, on
conceptual difficulty of the passive complex rotation is th
the physical interpretation of the resonant wave function
less obvious.

A recently developed attractive alternative meth
@15,16# uses the fact that stabilization diagrams, well know
as a tool for the determination of the positions of resonanc
can also reveal information on their widths. One advantag
that the calculation proceeds on the real axis, and the de
mination of the resonant wave function is straightforwa
This method comes with the added benefit that the calc
tion on the real axis permits the use of comparatively lar
basis sizes.
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55 469ATOMIC RESONANCES OF HYDROGEN NEAR ALUMINUM . . .
The spectral density of resonances~the FeshbachQ space
complement@28#! is given by

DQ~E!52
1

p
ImS (

k

1

~E2Ek!1 iGk/2
D , ~16!

with Ek2 iGk/2 the complex poles of the Green’s functio
DQ(E) can be calculated by repeated diagonalization of
~13! on the real axis~i.e., Q50! for a range ofs values
sP@smin ,smax#, yielding s-dependent sets of eigenvalu
$Ek(s)% 1

N. The spectral density follows from

DQ~E!52
1

smax2smin
E

smin

smax
ds Ds~E!, ~17!

where

Ds~E!5(
j

d„Ej~s!2E…. ~18!

Equation~17! is readily evaluated in terms of theseEj ~s!
as

DQ~E!52
1

smax2smin
(
j

UdEj~s!

ds U
Ej ~s!5E

21

. ~19!

DQ(E) can also be obtained by binning all energiesEj ~s! for
smin<s<smax into a histogram and then fitting a smoo
function. Figure 2~a! displays a typical stabilization diagram
for hydrogen in front of an aluminum surface. The resulti
histogram from which the spectral densityDQ(E) can be
determined is shown in Fig. 2~b!. Equation~19! can be visu-
alized as a projection of the line density of the stabilizat
diagram onto the energy axis. From the fit of the ‘‘raw
spectrum of Eq.~19! to a sum over Lorentzian lines~includ-
ing a linear background!, both positionsEk and widthsGk
can be extracted with high accuracy. Moreover, unlike in
CCS, the resonant wave functions can be directly de
mined. The local spectral density of the corresponding re
nance wave functionuf k

Q~r̃ ;Ek!u
2 at the energyEk , is analo-

gous to Eq.~19! given by

ufk
Q~ r̃ ;Ek!u25

1

smax2smin
(
j

uf j~ r̃ ,s!u2UdEj~s!

ds U
Ej ~s!5Ek

21

.

~20!

The evaluation of the sum Eq.~20! over all j wave functions
fj each containing up to.103 terms of the Sturmian expan
sion @see Eq.~10!# is extremely time consuming. In practic
only a few statesfj in the immediate vicinity ofEk , i.e.,
with the largest slopeudEj (s)/dsu21, can be taken into ac
count. Knowledge of the local spectral density and of
resonant wave function is valuable for the physical interp
tation of resonances.

III. SURFACE POTENTIALS

An important input for the calculation are the potentia
Ve and Vpe. Differences among different calculation
@7,8,21# are in part due to different choices for these pote
tials. The present approximations are motivated by the aim
.

e
r-
o-

e
-

-
to

employ functional forms that smoothly interpolate betwe
the image potential limits at large distances~d→`! and the
effective potential of a hydrogen atom embedded in jelliu
as determined by density-functional theory@11,13,29#. In
this section, we use again the coordinate system centere
the surface plane, i.e.,z50 coincides with the jellium edge

A. Electronic surface potential

For the electron-jellium surface interactionVe we use the
model potential proposed by Jennings, Jones, and We
@30#:

Ve~z!52
1

2 5
12exp@2l~z2z0

e!#

2~z2z0
e!

if z.z0
e

2V0

A exp@B~z2z0
e!#11

otherwise,

~21!

whereA524V0/l21 andB522V0/A are constants deter
mined by matching the potential and its derivative atz5z0

e.
In the limit z→`, Eq. ~21! converges to the proper sel

image limit, correct to orderO(z22),

FIG. 2. ~a! Typical stabilization diagram for a hydrogen~Z51!
atom atd511 a.u. in front of an aluminum surface: energyE as a
function of the inverse Sturmian parameter, 1/s. Stabilized horizon-
tal ‘‘lines’’ correspond to resonances, e.g., nearE520.1 a.u. for
n52. Resonances up ton58 can be clearly distinguished.~b! Den-
sity of states~DOS! extracted from the data shown in~a!.
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470 55DEUTSCHER, YANG, AND BURGDÖRFER
lim
z→`

Ve~z!52
1

4~z2z0
e!
. ~22!

The coordinatez0
e defines the position of the image plane.

numerical value of a jellium with a Wigner-Seitz radius
r s52.07 isz0

e50.7. The constantsV0 ~energy at the bottom
of the conduction band! andl are chosen such as to repr
duce for smallz the self-consistent local-density approxim
tion ~LDA ! of Kohn and Lang@11# near and inside the sur
face ~apart from the Friedel oscillations!. It should be noted
that, within the fit to Eq.~21!, z0

e is influenced by the behav
ior of the potential at intermediate distances. Somew
larger values have been found in calculations extractingz0

e

from the asymptotic behavior of thez22 term @31–34#. Fig-
ure 3 displaysVe together with the corresponding potentia
chosen in previous calculations@7,8#. Overall, the potential
functions are very similar. The deviations stem mainly fro
the slightly larger value forz0

e.0.85 and from a differentr s
value, r s52.0, which lowers V0 from V0520.574 to
V0520.604. None of these differences, however, hav
profound influence on the resonance parameters.

B. Ionic surface potential

Much more pronounced differences originate from t
projectile-induced surface potentialVpe~r ,d!. It consists of an
electrostatic~el! term and an exchange-correlation~xc! term
@11#,

Vpe~r ,d!5Vel1Vxc . ~23!

Both terms are determined by the density fluctuat
%ind~r ,d! at the jellium surface induced by a proton located
a distanced from the surface. The electrostatic term read

Vel5E d3r 8
% ind~r 8,d!

ur2r 8u
. ~24!

The exchange and correlation termVxc , which contributes
only at small distances from the surface, is given by
change of the chemical potentialmxc due to the presence o
the charge density%ind induced in the surface by the extern
chargeZ,

FIG. 3. Electronic self-image potential near an Al surface~d54
a.u.!, — this work, --- Nordlander and Tully@7#, ••• Borisov,
Teillet-Billy, and Gauyacq@8#.
at

a

n
t

e

Vxc5mxc@%#2mxc@%0#, ~25!

where%5%01%ind and%0 is the electron density of the un
perturbed electron gas taken from calculations in the LD
@11#. Keeping only the term linear in%ind of the Taylor series
expansion formxc@%#, we obtain

Vxc5S d

d%
mxcD

%0

% ind~r ,d!. ~26!

The chemical potentialmxc can be expressed as

mxc5
d

d%
~%«xc@%# !. ~27!

For the exchange-correlation energy«xc we used the expres
sion from @9,10,35# in terms ofr s~%!5„3/~4p%!…1/3,

«xc~r s@%# !52
0.458 16

r s
2

0.442

r s17.8
. ~28a!

For comparison we also tested

exc~r s@%# !52
0.458 16

r s
10.0311 lnr s20.048,

~28b!

as given in@36#. The resulting expressions formxc are

mxc~r s@%# !52
4

3

0.458 16

r s
2

0.442

r s17.8 S 11
r s

3~r s17.8! D
~29a!

and

mxc~r s@%# !52
4

3

0.458 16

r s
10.0311 lnr s20.058 35,

~29b!

respectively, which differ from each other for the bulk de
sity of Al by less than 4%.

Our approximation of%ind exploits the fact that the den
sity profile along the surface normal,g(z,d) ~integrated over
the coordinateu in the surface plane! is for uZu51 accurately
known from density-functional~DF! calculations @33,34#.
The induced charge density entering Eq.~23! which
smoothly interpolates between the bulk limit~d→2`!, and
the asymptotic image limit~d→`! is written as a superposi
tion

% ind~r ,d!5c1%
B~r ,d!1c2%

I~r ,d!. ~30!

Here %B converges to the induced density in the bu
~d→2`!, while %I is the induced density in the imag
limit ~d→`!. Accordingly, we choose the coefficientsc1
5e2d/k and c2512c1 , where k51.5aTF and
aTF5~p/12!2/3r s50.8471 a.u. denotes the Thomas-Fer
screening length@37#. For %B we use the functional form

%B~u,z;d!5c exp„2Aa2u21b2~z2zB!2… ~31!

wherea, b, andzB are distance-dependent parameters, wh
c5a2b/~8p! is a normalization factor.a andb are related to
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55 471ATOMIC RESONANCES OF HYDROGEN NEAR ALUMINUM . . .
the inverse screening length of aluminium in lateral and p
pendicular directions. In the bulk limit the screening is is
tropic, i.e.,a5b. We obtaina, b, andzB atd50 andd51.89
from fits to the averaged charge densityg(z,d) determined
by DF theory@31,33,34#. Extrapolation ofa(d), b(d), and
zB(d) to larger distancesd is performed by using the scalin
relation of the Thomas-Fermi screening length with the~un-
perturbed! distance dependent local electron dens
aTF}n

21/6.
In order to reproduce the correct asymptotic image lim

we write the density fluctuation for proton positions outsi
the surface~d.0! in separable form,
-

po

ce

-

e
in

.
th

rg

n
ge

a

r-
-

,

,

% I~r ,d!5 f ~u,d!g~z,d!, ~32!

wheref describes the lateral charge-density fluctuation in
surface plane, which we calculate within the framework
the linear dynamical response formulation of Abajo a
Echenique@38#. Writing r5~u,z! for the position of the elec-
tron andk5~Q,kz! for the wave vector, whereu andQ de-
note the components ofr and k parallel to the surface, the
dynamical screening potential of an ion of chargeZ located
at a distanced outside the solid is given in the zero-veloci
~adiabatic! limit by
Vpe
I ~r ,d!5

Z

2p E d2Q
eiQ•u

Q H eS~Q,0!21

eS~Q,0!11
e2Q~z1d!1e2Quz2du if z.0 ~vacuum!

2eS~Q,z,0!

eS~Q,0!11
e2Qd if z,0~solid!,

~33!
e
by
t

nen-
of

ng

e
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ted
whereeS(Q,v)5eS(Q,z50,v) is the surface dielectric re
sponse function@39,40# related to the bulk dielectric function
eB by

eS~Q,z,v!5
Q

p E
2`

` dkze
ikzz

~kz
21Q2!eB~k,v!

. ~34!

For our calculations we have used the surface-plasmon-
approximation with dispersion@40#

eS~Q,v!511
vp
2

aQ1bQ21Q4/42~v1 ig!v
, ~35!

wherevs5vp/& is the surface-plasmon frequency, andg
describes phenomenologically the width of the surfa
plasmon resonance@41,42#. In the static case~v50! consid-
ered here,eS is independent ofg. The surface-plasmon dis
persion for smallQ is governed by the parametersa andb.
The standard values area5A3/10vFvp ~a50.269 a.u. for
Al !, with b chosen such that the resulting dispersion curv
consistent with the bulk dispersion curve at its point of
tersection with the single-particle continuum@40#. The value
of a determines the linear slope of the dispersion curve
more realistic value extracted from experimental data for
surface plasmon dispersion of Al@43# is 0.1<a&0.18.

From Poisson’s equation now follows the induced cha
density corresponding to Eq.~33!. Neglecting thez depen-
dence ineS by settingz50 in Eq. ~34!, we obtain

n~r ,d!5d~z!F Z

4p2 E d2QeiQ•u
12eS~Q,0!

11eS~Q,0!
e2QdG .

~36!

The fact that the density along the surface is localized i
d-shaped charge-density sheet centered at the jellium ed
a consequence of thez independence ofeS(Q,v). This ad-
ditional approximation has the advantage that it yields
explicit expression for the lateral distributionf ~u,d! @Eq.
le

-

is
-

A
e

e

a
is

n

~3!#. Without directly affecting our calculation since th
sheet of zero thickness will be replaced in our treatment
the density profileg(z,d) @Eq. ~32!#. It should be noted tha
without the simplifying assumptionz50 in eS(Q,z,v), the
specular reflection method~SRM! yields, instead of the
d-shaped charge sheet centered on the surface, an expo
tially decreasing polarization charge density as a function
distancez into the metal@38#, while it cannot account for the
spilling out of charge density into the vacuum. The resulti
lateral charge density~averaged overz! differs only margin-
ally from the one obtained from

f ~u,d!5
Z

4p2 E d2QeiQ•u
12eS~Q,0!

11eS~Q,0!
e2Q~d2zq~d!….

~37!

In Eq. ~37! we have explicitly taken into account that th
induced charge density ‘‘spills out’’ of the jellium edge b
measuring the distance from the ion relative to the centr
of the charge distribution along the surface normal@see Eq.
~40! below# rather than to the jellium edge.

The realistic density fluctuation profile along the surfa
normalz enters Eq.~32! throughg(z,d), which we param-
etrize in terms of a skewed Lorentzian

g~z,d!5a1
11a2~z2a4!

„11a3~z2a4!
2
…

3 . ~38!

Thed-dependent parametersai in Eq. ~38! are subject to the
constraint of normalization,

E dz g~z,d!51, ~39!

and to the constraint of reproducing the correct positionzq of
the centroid of the charge density fluctuation, closely rela
to but not identical with the image plane position,

E dz g~z,d!z5zq~d!. ~40!
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For test purposes we also utilized a parametrization in te
of a Gaussian function instead of Eq.~38!, which leads to
only minor differences. It should be noted that unlike f
small distances, where we use%B @Eq. ~31!#, the separable
approximation@Eq. ~32!# to the density fluctuation should b
valid at large distances. Inserting Eq.~30! into Eq.~23! leads
to the total potentialVpe entering the calculation.

The present approximation incorporates several impor
features of a realistic electron surface response:Vpe remains
finite asr→0 andd→0. It therefore avoids the well-known
difficulties with the singular behavior of the classical ima
potential. The residual effect of this singularity makes its
felt even at intermediate distances from the surface, wh
charge transfer in ion-surface scattering takes place~the criti-
cal distance for overbarrier transitions or ‘‘freezing’’ di
tance@26,44#!. In the limit of small distances it reproduce
the charge-density fluctuation of the LDA. At the same tim
it reproduces the correct asymptotic limit at large distan
to orderd22, i.e., it contains the image interaction with th
approximate position of the image plane outside the jelli
edge. Expansion of Eq.~23! to orderd22 leads to a position
of the image plane

z0
i 5zq~d→`!2

a

2vs
2 . ~41!

For smalla ~.0.1! the values ofzq(d→`) andz0
i approxi-

mately agree, and by an appropriate choice ofzq(d→`) the
ionic and electronic image planes can be made to coincid
large distances,z0

ı ,z0
e→z0 . Note, however, that due to th

different nature of these two contributions to the induc
charge density, the two image planes need not necess
coincide at small distances. Furthermore, theu dependence
of the lateral density fluctuations representing virtu
surface-plasmon excitations is consistent with the exp
mental data for the on-shell surface-plasmon description

We note that the second term in Eq.~41!, 2a/2v s
2, cor-

responds to the effective image plane position of just
SRM model for the electrostatic potential@Eq. ~33!#. Using
only this term, the correct image plane position could also
reproduced by Eq.~33! provided one chooses a large neg
tive a ~a520.6 for Al!, as was pointed out by Annett an
Echenique@45#. Such a choice is, however, inconsistent w
the experimental data on surface-plasmon dispersion fo

FIG. 4. Electron-ion image potential for H1 near an Al surface
~d54 a.u.! ~—, Vpe! and its two contributions~---, Vel ; -•-•- Vxc!.
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@41,43#, and is unsatisfactory since positive values ofz0
i are

primarily due to the spilling out of the screening charge@Eqs.
~30! and~38!# rather than due to an anomalous plasmon d
persion in the surface plane.

Figure 4 displays the resulting potentialVpe and its elec-
trostatic ~el! and exchange~ex! contribution at a distance
d54. The electrostatic potential strongly dominates the
change contribution. The latter becomes only significant
d&2, where a more accurate determination would requir
self-consistent treatment. A comparison~Fig. 5! between the
potentialVpe used in our calculations and choices in previo
calculations indicates that the potential used in Ref.@8#
closely mimics the singular behavior of the classical hyd
gen potential near the image plane. Our potential agrees
siderably better with Ref.@7#, showing a broad maximum
nearz50. The shape is, however, different primarily due
the fact that the density fluctuation in Ref.@7# was deter-
mined by the classical charge density rather than by line
response theory.

The d dependence of the resulting total potentialVtot in-
cluding all surface potential terms as well as the b

FIG. 5. Electron-ion image potentialVpe for H
1 near an Al

surface~d54 a.u.!: —, present work; ---, from@7#, ••• , image po-
tential as used in@8#.

FIG. 6. Total surface potentialVtot(z,u;d) for H near an Al
surface at cut alongu50 for d57, 5, and 0 a.u.~—!. For compari-
son, also shown are the bare core potentialVcore ~-•-•-! and ford50
the total potential within the LDAVtot from @13# ~---!, which nearly
coincides with our data.
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projectile-electron term is illustrated in Fig. 6 for cuts~u50!
through the potential surface, and for distancesd57, 4, and
0. The last frame is of particular interest as self-consist
calculations forVtot in the LDA are available for smalld
@13#. ~Note that the LDA fails at largerd because of the lack
of induced long-range potential contributions!. The agree-
ment between our~though not self-consistent! potential with
the LDA result even at very smalld.0 is unexpectedly
good. This provides a clear indication that the potential fu
tion should be sufficiently accurate at intermediate distan
d*3, which are most significant for dynamical charge tra
fer.

With decreasing distance from the surface, the bar
separating the atomic well from the jellium is rapidly r
duced in height. We therefore anticipate that hydroge
resonances become over-barrier resonances near the su
Contrary to conventional wisdom, tunneling plays a role o
at distances large compared to typical freezing distances;
statement applies even more so to higher excited states@46#.

IV. QUANTUM-MECHANICAL RESULTS

Our resonance calculations have been performed for
values of the rotation angle ranging fromQ50.05...0.60 rad,
and for about 1500 values of the stabilization parameters21

in the interval 1.0<s21<6.0 in the case of the stabilizatio
method. Detailed convergence tests were made with res
to the basis sizeNP@8,Nmax# and the choice of the Sturmia
parameters21P@0.2, 10.0#. We used up toNmax51891 basis
states for the complex rotation, and up toNmax54096 for the
stabilization method. At small distances the resonance
rameters are most sensitive to the basis size and the Stur
parameter when the resonance has become an over-b
resonance. An example for the convergence behavio
given in Fig. 7 ford52. While at this small distance th
potential cannot be considered reliable, this example ill
trates the characteristic sensitivity of over-barrier resonan
The ground state was found to be more sensitive to
proper choice ofs than were excited states which, in tur
were more sensitive to the basis size than the ground s
The level position for the 1s state converged faster than th
width, which, ford52 a.u., already required 496 basis sta
for sufficient accuracy~Fig. 7!. In order to achieve conver
gence for the ground state for alld.2 to three significant
digits, a basis size of aboutNmax5500 with an optimized
Sturmian parameter was required. We note that this num
is significantly larger than in previous calculations@7#.
Higher excited states require even larger basis sets to allo
proper representation of the resonant portion of the elec
wave function.

We find the CCS and SM to be of comparable accur
for the present problem. Typically, resonance parameters
converged to a relative error of.1023. It should be stressed
that the uncertainties due to the choice of the potential fu
tions are much larger. We find the CCS more efficient for
simultaneous calculation of both the position~ReEj ! and the
half-width ~2Im Ej !. On the other hand, the SM is fast
when only the level position is required. It also permits mo
comprehensive convergence tests with respect to larger b
sizes.
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A. Level position

The real partEr of the complex eigenenergy of the res
nance, i.e., the position of the 1s level ~Fig. 8!, approaches
for large d the simple ‘‘image limit,’’ E1s(d)
5E1s(`)11/„4~d2z0!…, predicted by first-order perturbatio
theory. For small and intermediate distances our results
viate significantly—even on a qualitative level—from pertu

FIG. 7. Convergence of the ground-state resonance en
~solid line! and width~dashed line! at d52 a.u. as a function of the
inverse Sturmian parameter 1/s and the basis sizeN: ~a! Relative
deviation with respect to the values fors51 vs inverse Sturmian
parameter 1/s for N5231.~b! Relative deviation with respect to th
values forNmax vs basis sizeN for s51.

FIG. 8. Position of the H(1s) resonance@Er5Re(E)# near an Al
as function ofd: —, present results;n, Ref. @7#; L, Ref. @8#; -•-•-,
image shift formulaE1s(`)1[1/4(d2z0)]. Also shown is the en-
ergy of the top of the barrier as a function ofd ~•••!.
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474 55DEUTSCHER, YANG, AND BURGDÖRFER
bation theory as well as from previous nonperturbative c
culations. The 1s energy level is not promoted toward th
continuum, but displays a local maximum at an intermedi
distance. This maximum occurs near the critical dista
dc53.6 a.u., where the shifted level crosses the top of
barrier ~denoted by the dotted line!. As the 1s resonance
becomes an over-barrier resonance, its position begin
bend down towards the bottom of the conduction band. T
qualitative behavior of the resonance position was found
be stable against the variation of the parameters in the
tential @e.g.,a, l, andzq(d)#. We extended the calculation
to small distances where the validity of the surface poten
is questionable because of the lack of self-consistency~indi-
cated by a dashed line!, and were able to trace the resonan
down to distancesd.1 a.u.

For the purpose of comparison are also plotted the d
available from other calculations@7,8#, which show a rapid
upward promotion of the level. The difference between
present results and the result of Borisov, Teillet-Billy, a
Gauyacqet al. @8# can be directly traced to the imagelik
behavior of the potential at small distances. In fact, the le
position of Ref.@8# closely follows the classical image shi
;1/„4(d2z0)… down tod.3 a.u. The promotion toward th
continuum results from the narrowing of the potential w
between the proton and the singular repulsive potential az0,
thereby ‘‘squeezing out’’ bound states to the point whe
they can no longer exist. By contrast, as the barrier heigh
diminished in the present calculation~Fig. 6! the atomic or-
bital mixes freely with the jellium resulting in a downwar
trend in the resonance position. The reason for the differe
between our result and the data of Ref.@7# is not equally
obvious as the input potentials are more similar. One p
sible source of the discrepancy could be an inappropr
choice of the Sturmian parameter in the basis functio
which in Ref. @7# was chosen to represent then52 state
correctly in combination with rather small basis sizes~49–64
states!. Another source could be the difficulty of identifyin
the resonance trajectory in the complexEr2Ei plane. It is
easily possible to pick up spurious resonances. This h
pened, in fact, in an early stage of our calculation, and w
recognized only after the resonant wave functions were a
lyzed. A very dense mesh ind is required in the over-barrie
region in order to permit proper identification of the res
nance.

The present result for the resonance position provide
smooth connection between the value in front of the surf
and inside the bulk. Various calculations for the energy
the ground state of hydrogen in jellium with an electron de
sity of aluminum predict a very weakly bound doubly occ
pied state asH2 or a low-lying near-threshold resonanc
@13,14,47#. Irrespective of the inherent uncertainties, the
calculations agree in the position of a resonant or a bo
state to lie near the bottom of the conduction band tow
which our results converge. The smooth transition from
surface to bulk is not surprising, since the surface poten
generated by the density fluctuation at the surface g
smoothly over into a screened bulk potential when the ex
nal charge recombines with the exchange and correla
hole.

While the quantitative accuracy of the energy in the i
mediate vicinity of the surface~d<2 a.u.! should be viewed
l-
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with caution, the correct qualitative behavior asd→0 trans-
lates into significant differences at intermediate distan
which are quantitatively significant. For example, charg
transfer into H(1s) near an Al surface is expected to occur
the vicinity of the ‘‘freezing distance’’ ofd54 a.u. @44#.
Here the energy shift relative to the vacuum level is ab
33% smaller than previously calculated.

Another test for the present calculation is the physiso
tion energy

Eph5Vp~d!2„E1s~`!2E1s~d!… ~42!

on a metal surface. A calculation of the total energy of t
hydrogen atom using the ground-state data obtained wi
simple ionic image potential yields a physisorption ener
close to zero, nearly independent of the distance. Our ca
lation yields a physisorption energy ofEph521.4 eV atd52
a.u. in close agreement with the LDA results of Hjelmbe
@13# ~Eph521.2 eV! at this distance. This result could b
further improved by taking into account the interaction b
tween the ion core and the smeared-out electronic im
charge determined from the electron densityuf k

Q~r̃ ;Ek!u
2 as

given in Eq.~20!. This would correspond to the first iteratio
in a self-consistent treatment.

B. Level width

Significant differences to previous calculations can a
be observed in the width of the resonance,G, the imaginary
part of the complex eigenvalueE, as shown in Fig. 9. For
large distances, the width of the resonance decays app
mately exponentially as expected for ‘‘thick-barrier’’ tunne
ing. Since the potential barrier in our present calculation
significantly lower than the one for the simple image pote
tial used in Ref.@8#, the large discrepancy by about a fact
of 8 is easily understood in terms of a semiclassical Went
Kramers-Brillouin~WKB! estimate. The WKB transmissio
coefficientW, and henceG, depend exponentially on th
product of the width of the barrier and the square root of
height ~difference between energy level and potential at
top of the barrier!. Since the present potential is much clos
to the one employed in Ref.@7#, better agreement forG/2 in
this regime is to be expected. The present values are ne
theless larger by about a factor of 2, which may be due

FIG. 9. Width of the H(1s) resonance@G52 Im(E)# as a func-
tion of d; —, present result;n, Ref. @7#; L, Ref. @8#.
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55 475ATOMIC RESONANCES OF HYDROGEN NEAR ALUMINUM . . .
differences in the potential or the smaller basis size.~For
higher excited states the differences are smaller@46#.!

At a critical distancedc'3.6 a.u., the resonance cross
the top of the barrier separating the atomic well from t
jellium. The 1s state becomes a broad ‘‘over-barrier’’ res
nance, and the width begins to saturate with decreasind.
The behavior of the level width including this saturation c
be approximated by@26#

G~d!5
G0

11exp„x~d2dc8!…
, ~43!

wheredc8 should be close todc . G decays exponentially fo
large distances and saturates nearG0 for small distances. Us
ing only the quantum-mechanical result forG0 and fitted val-
ues ofdc852.6 andx51.85, this equation reproduces the n
merical data remarkably well over the whole range
d51 . . . 18, asshown in Fig. 10.

FIG. 10. Width of the H(1s) resonance:d, as obtained with the
CCS; ---, from Eq.~43!.
f

C. Resonant wave function

The classical dynamics near the top of the barrier is c
cial for the structure of resonances and for the char
transfer process@26,48#. Properties of the classical phas
space structure are reflected in the wave functions.
stabilization method@see Eq.~20!# provides an efficient tool
to determine the resonant wave function.

Figure 11 shows the adiabatic evolution of the reson
1s wave function for a range of distances from the surfa
At large distances~d>8 a.u.! for which the level shift is
described well even by the classical image poten
1/4(d2z0) the distortion of the contour lines is barely no
ticeable, i.e., the wave function is hardly perturbed by
presence of the surface@Fig. 11~a!#.

At intermediate distances~around 7 a.u.!, an increasing
leakage current manifests itself in the outgoing wave fron
the continuum portion of the resonant state which ‘‘prop
gates’’ towards the surface asd decreases@Fig. 11~b!#. In the
region belowd55 a.u., where the level shift deviates fro
the simple image potential, this outgoing probability flux b
comes sizeable@Fig. 11~c!#. The magnitude of the outgoing
part of the wave function increases as the energy level
proaches the top of the potential barrier, which it crosse
the critical distancedc ~heredc.3.6 a.u.!. The lowering of
the barrier has opened a channel along which a consider
probability transfer to the solid can occur classically@Fig.
11~d!#. A morphological change of the resonant 1s wave
function becomes clearly visible as a significant portion
the wave function now lies below the jellium edge with
peak in probability density split off the main lobe.

As d is further decreased, we observe a sequence of th
secondary lobes moving inside the metal. However, the e
tron does not become delocalized at once because it is
dynamically confined by the potential well due to abov
barrier reflection. It should be emphasized, however, that
spite the strong distortion of the atomic state, the bound-s
FIG. 11. Contour plot of resonant H(1s)
wave functionf 1s

Q ~r ;E1s;d! in front of Al at
d518 a.u.~a!, d55 a.u.~b!, d53.2 a.u.~c!, and
d52.4 a.u.~d!. The surface is atz50, the ion
position is marked with a%. Thick solid lines,
f1s
Q 50; thin solid lines, f1s

Q .0; thin dashed
lines, f1s

Q ,0. Contours from 2331022 to
331022 in increments of 231023.
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476 55DEUTSCHER, YANG, AND BURGDÖRFER
portion of the resonant wave function remains well localiz
around the ion core, and traceable down to very small
tances. This observation is important in the context of
current controversial discussion as to the existence of ato
resonances in the vicinity of the surface. Our results dem
strate that they remain well defined in the region where ov
barrier transitions become possible.

V. SEMICLASSICAL APPROXIMATION

It is of considerable conceptual and practical interest
inquire about the extent to which atomic resonances can
accounted for semiclassically. The conceptual interest
primarily in its connection to classical models for char
transfer near the surface@26#. From a practical point of view
the semiclassical approximation provides a tool to treat h
n states of multiply charged ions approaching the surfa
First WKB calculations were performed by Janev and
workers@49#. Questions have been raised@7# as to the valid-
ity of this approach. We focus in the following on the calc
lation of the level widthG, or, equivalently, the transition
rate for electron transfer from the atomic orbital to the ba
structure. It is equally possible to determine the level po
tion using an Einstein-Brillouin-Keller multidimensiona
WKB quantization, exploiting the fact that the problem r
mains approximately separable. From here on all coordin
refer again to the ionic core as the origin and we drop
tilde. Since the following is mainly based on Refs.@49–53#,
we will focus on the interesting aspects of our calculation

The system is rotationally symmetric about the surfa
normal, and the leakage current passes primarily throug
small cylindrical region around this axis. Parabolic coor
nates@50,52#

z5r1z, h5r2z, w5arctan
y

x
~44!

are therefore appropriate. The region near the barrier
which the solution of the Schro¨dinger equation is sough
corresponds toz!h. Hence we consider the reaction coord
nateh.22z, which allows to simplify the Hamiltonian and
to write the potential as

Vtot~h!52
2Z

h
1Vsurf~h!. ~45!

The transition rateW, i.e., the probability flux with a veloc-
ity, vz through an areaS perpendicular to thez axis, is given
by @50#

W5E
S
uF~z,h,w!u2vzdS. ~46!

HeredS51/2hdzdw, andF~z,h,w! is the WKB wave func-
tion @50,51# of the system. Assumingh@z, the velocity com-
ponent across the barrier,vz , is related to the quasimomen
tum ph~h! asvz5ph(h)/2 with

ph
2~h!5F2

g2

4
1

b

h
2 1

2V
surf~h/2!1

12m2

4h2 G , ~47!

whereg5A22Er andb5Z2g(m11)/2, and the magnetic
quantum numberm50 for the 1s state. Figure 12 shows
plot of the square of the quasimomentum,ph

2~h!, from Eq.
d
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~47! for d510. Positive values of the ‘‘local’’ kinetic energy
of the electron correspond to the motion of the electron in
classically allowed region, whereas negative values co
spond to classically forbidden tunneling motion.

For energy values below the top of the potential barri
we assume a leakage current small enough so that the w
function can be normalized in the potential well~thick bar-
rier approximation!. Equation~46! in this limit becomes

W.Wh5
exp~22*h2

h3upn~h!udh!

*z1

z2dz*h1

h2dhS 11
z

h D exp~2z!

ph~h!

, ~48!

wherehi51...3 andzj51...2 denote the classical turning poin
in the respective parabolic coordinates [p h

2(h i)
5p z

2(z j )50], counted from the origin on~Fig. 12!. The
numerator in Eq.~48! is the barrier penetration factorT
along the reaction coordinateh, while the denominator is the
normalization integral related to the classical orbital perio
averaged overz.

For the region near the barrier top we employ the unifo
WKB ~UWKB! for the transition rate@53#, which allows us
to study the above-barrier region. We exploit the fact that
potential barrier along the reaction coordinate can be loc
approximated by an inverted parabola

V~h!5Vtop2
1
2v*

2
~h2h top!

2, ~49!

wherev* is obtained from the second derivative of the fu
potential,

v* ~h top!5F2
d2V~h,d!

dh2 G
h5h top

1/2

. ~50!

The barrier penetration factor given by the numerator in E
~48! is now replaced by@53#

T5@11exp~22pe!#21, ~51!

where

e55 2
1

p E
h2

h3
uph~h!udh if Er~d!,Vtop

1
i

p E
h2

h1

p~h!dh otherwise.

~52!

FIG. 12. Plot ofph
2~h! from Eq. ~47! for d510.hi51...3 denotes

the classical turning points of the system, whereph
2(h t)50. h050

corresponds to the position of the ion core.
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Hereh2,3 are again the classical turning points, i.e., zeros
ph
2~h! on the real axis, whileh6 are the zeros ofph

2~h! in the
complex plane, i.e.,ph

2~h6!50, andhtop5~h11h2!/2. For
the quadratic approximation for the barrier@Eq. ~48!#, Eq.
~52! can be reduced to

e5~Er2Vtop!/v* . ~53!

For h values near the jellium edge~h52d!, the approxima-
tion of the potential in terms of an inverted parabola@Eq.
~49!# fails completely, since the flat background potential
the jellium dominates in this region.

We now evaluateW using the energy valuesEr(d) ob-
tained from the quantum-mechanical calculations. The
sulting widths~Fig. 13! agree with the quantum-mechanic
widths to within 15% in both the below-barrier regiond>dc
as well as in the over-barrier region~down tod.2.4!. The
uncertainty introduced by the semiclassical approximatio
much smaller than the differences between quantum calc
tions employing different approximations to the surface p
tential. It should be noted that the present calculation is
fectively one dimensional in the reaction coordinateh, while
thez degree of freedom is averaged over in the normaliza
factor. A fully three-dimensional WKB calculation shou
yield even better agreement, since it takes into account
lateral variation of the potential surface.

VI. CONCLUSIONS

In summary, we have presented results on the adiab
evolution of the H(1s) resonance near a jellium surface wi
the electronic density of aluminum, using complex rotati

FIG. 13. Width of the H(1s) resonance@G52 Im(E)# as a func-
tion of d: Comparison between quantum-mechanical~—! and semi-
classical results~}, WKB; m, UWKB! calculations~see text!.
ys

.

f

f

-

is
la-
-
f-

n

he

tic

and stabilization techniques. Both methods were found
yield results of the resonance parameters of comparable
curacy. While the complex rotation method is more efficie
in accurately determining simultaneously the position a
the width, the stabilization technique provides a more e
cient tool to determine the position alone, and has the ad
benefit that resonant wave functions can be readily extrac

The level position follows the classical image shift fo
mula only for distancesd@dc , wheredc is the distance at
which the 1s resonance becomes an overbarrier resonanc
reaches a maximum neardc , then bends down toward th
bottom edge of the conduction band asd,dc , and appears
to connect smoothly with results for resonances aroun
proton in the bulk jellium. The level width decreases exp
nentially with the distance ford>dc while saturating for
smaller distances. This behavior could be reproduced
semiclassical calculations for both the below- and abo
barrier regions. Semiclassical mechanics was shown to
vide accurate estimates for the resonances width and con
tual insights into the electronic dynamics near the surfa
The resonant wave functions undergo, neardc , a morpho-
logical change with an increasing delocalization and shift
probability density toward the metal.

Level width and position data reported in the present
per differ significantly from previously available data@7,8#,
in particular in the vicinity of the surface. The discrepanc
can be traced primarily to the different choices for the s
face potentials. Discrepancies for the level shift reported
@8# can be attributed to the use of a divergent ionic ima
potential. Overall, the present resonance data are close
the results of Ref.@7# than to Ref.@8#.

Extensions are currently under investigation along th
directions:~a! the adiabatic evolution of highly excited reso
nances~n@1!, ~b! the study of the region ford!dc using
nonlinear density-functional theory@33#, and ~c! the treat-
ment of nonadiabatic transitions in ion-surface scattering

We note that after completion of this work we learned th
Floreset al. @54# obtained a behavior of the 1s level position
similar to ours by means of a density-functional calculati
near the surface. This observation is in qualitative agreem
with the present results.
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