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Complex adiabatic potential curves are an essential input to atomic surface scattering calculations employing
the coupled-states method. We present calculations for the ground state of hydrogen near a jellium surface with
the density of aluminum. Two complementary techniques have been implemented: the complex rotation
method and the stabilization method. We employ large-scale matrix diagonalization and realistic effective
single-particle potentials. The influence of the surface potential on the adiabatic evolution of the wave function
and the resonance parameters as a function of the distafroen the surface have been investigated. Appli-
cation to the ground state H$} yields significant differences for the position and width of the resonance
compared to previously available data. The applicability of semiclassical theory for resonance parameters is
tested and the role of over-barrier transitions is highlighf&d.050-2947@7)08201-3

PACS numbgs): 79.20.Rf, 34.50.Fa

I. INTRODUCTION which are required in a coupled-channel calculation. Due to
the finite velocity of the ion approaching and leaving the
Resonant charge exchange between metal surfaces asdrface, the dynamical charge transfer process will be deter-
ions plays an important role in many surface-diagnostionined by nonadiabatic coupling between these resonances as
methods such as Auger electron spectroscopy, ion neutralizazell as with electronic states of the surface band structure,
tion spectroscopy, and secondary-ion-mass spectrometry, &tich will be considered in a subsequent paper.
well as for emerging technological applicatiofesg., surface At large atom-surface separations, the properties of
catalysis, thin-film growth, and molecular-beam epitaXn  atomic resonances can be studied by means of perturbation
a more fundamental level, the recent availability of eleCtrO”theory[S], and the effective atom-surface interaction poten-
cyclotron resonance and electron-beam ion sources delivefiq entering a calculation can be approximated by the as-

s o oo 2 e T mage potenialt) A smaler isances elevan
: o i o the charge-exchange process, perturbation theory breaks
of MCI's with surfaceq1]. Neutralization and relaxation of g ge p P Y

X e down. Nonperturbative calculations employing a Wigner-
MCI's at surfaces represent an intriguing many-body prOb'Weisko f approximatior{5,6], complex coordinate scalin
lem which involves transitions of a large number of “ac- pt-app T P 9

tive” electrons, and leads to the dissipation of large amount§CCS. [7] and the coupled angular modes'meth{ﬂ}s re-
of potential energytypically ~keV). spectively, have been reported. Irrespective of the differ-

A theoretical description of dynamical ion-surface inter- ences_in detail, previo_us calculations agree in the_qualitative
actions requires a nonperturbative treatment, since a largi€havior: the level shift follows closely the behavior of the
number of channel§.e., atomic statdscontribute, and the Image potential, which suggests a promotion of the level into
perturbation is strong. Appropriate approaches are therefor@e continuun(E=0) at small distances. This shift is accom-
the time-dependent coupled-channel calculations widel@anied by a monotonic, nearly exponential, broadening of
used in ion-atom collisionf2]. Application of this technique the level.
to slow ion-surface scattering involves the expansion of the From the study of the chemisorption of hydrogen and
time-dependent electronic wave function in terms of adia-alkali-metal atoms at metal surfaces, the static limit of
batic states with time-dependent coefficients. The adiabatiatomic resonances at surfaces, i.e., in the limit of small dis-
atomic orbitals near the surface here play the analogous rolances(d—0) is well understood. Detailed calculations em-
of quasi-molecular orbits in slow ion-atom collisions. How- ploying density-functional theor{9—14] indicate the exist-
ever, they should contain many-body effects from the outsetence of low-lying resonances embedded in the conduction
Most importantly, atomic states become resonances, i.eband as well as of bound states below the conduction band.
they acquire a nonzero width because of the electron transf@the connection between thi$— —c limit and the d—oo
to the band structure of the solid, taken to be a metal in théimit of perturbed atomic states in the image field is impor-
following. Moreover, atomic levels are shifted and stronglytant, as it provides insights into the region of intermediate
perturbed due to the collective response of the surface eledistances(d=3-5 a.u) which are most relevant to the
trons. charge-transfer dynamics. We investigate the dependence of

The aim of the present contribution is the calculation andhe resonance parameters in this intermediate region on the
analysis of the perturbed atomic resonances corresponding &pproximate interaction potentials, and show that an appro-
the adiabatic states at a fixed distaddeom the surface. We priate choice for the single-particle potentials is the key for
therefore calculate the position of the resonance, i.e., thestablishing a smooth transition between the:—o and
shifted energy level, its width, and its wave function, all of d—» limits.
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In this paper we employ an alternative, recently devel-

oped method for the calculation of atomic resonances which g °

involves the stabilization technigyéd5,16. One of its ad- clectron image v electron
vantages is the direct determination of the resonant wave ® < .o

function, and the local density of states. The latter is required Ve

for an evaluation of coupling matrix elements for coupled- ion image \ ion
channel calculations. As a complementary method we use .—>z
CCS[17-2Q, which provides an efficient tool for calculat-

ing complex eigenenergigpositions and widthsof atomic Jd—

resonances. The comparative study permits us to gauge the
accuracy and efficiency of different methods. Furthermore, solid surface vacuum
since the stabilization methd®M) proceeds entirely on the
real axis, larger bases can be used and the convergence as &IG. 1. Sketch of the geometry and the contributions to the
function of basis size can be tested. potentialV*® as outlined in the text. The surface coincides with the

As a third method, we employ semiclassical mechanics téellium edge.
calculate the resonance width. Interest in the semiclassical . ) o
treatment is derived from recent advances in the descriptiohne metal will be described by a semi-infinite jellium block
of multiply charged ion-surface scattering employing theWith & Wigner-Seitz radius af;=2.07 a.u., corresponding to
classical over-barrier model. Semiclassical methods providée electron density of aluminum. In this model the surface
a link between the classical and the full quantum descripfoincides with the position of the jellium edge, which is
tions, and can provide physical insight into the properties ofl€fined as the plane half a lattice spacing in front of the
perturbed atomic states near the surface. topmost atomic layer. The origin of coord]nates,(o,o.,() is

In the present paper, we discuss the methods employed Rlaced in the surface and thg atom core is Iocgted in front of
well as accurate results for the adiabatic evolution of théhe surface aR=(0,0d). It is useful also to introduce a
H(1s) resonance in front of an aluminum surface serving agecond coordinate system centered in the atom core, so that
a fundamental prototype system. We find well-defined over! = —R. Because of translation invariance in the plane of
barrier resonances, and illustrate the influence of overbarridhe jellium surface, the parametric dependence in .
transitions for the position and width of the resonances. Preiéfers only to the distance from the surfade,The Hamil-
liminary results forn=1 and 2 states have been reportedtonianH reads
previously[21]. Applications to excited statas=2 systems

=1 tot,
are in progress. H=—3A+V™(r,d), 4

whereA denotes the Laplace operator and(x,y,z) =(u,z)
Il. THEORY the electronic coordinates. Atomic units are used throughout
A Adiabatic atomic states 'EZI’]ZIQFZD unless otherwise stated. The total electronic po-
Within the framework of the independent-particle model ot cor surt
for the “active” electron, the electronic wave function in the VO(r,d)=VrAr)+Vir,d) )

time-dependent Schdinger equation . .
P gereq consists of the atomic core potenthi®4r) and of the sur-

face potentiaV*""(r,d). Figure 1 sketches the geometry of
I g v O=HERO)$(r,Y (1) the system under consideration, and the various contributions
to the total potential. The core potential for hydrogenic at-
oms with atomic numbeZ is a Coulomb potential-Z/r.
Corresponding single-particle potentials for other atoms are
available in the literatur§22,23. The surface potential for
w(r,t)zz aj(t) ¢;(r,R(1)) (2)  the jellium can be written as

]

can be expanded in terms of adiabatic atomic orbitals

VSU(r,d) = Vp(d) + Ve(r) + Vpdr,d), (6)
with time-dependent expansion coefficieat¢t). The time _ _ o '
dependence of the; results from the parametric dependencewhere the first term describes the effective interaction of the
on the classical trajectorfR(t) of the incident ion. At finite  ionic core(the projectile with the surface. At large distances
distances from the surfacd=R,(t), the orbitals are no from the surface, this interaction converges to the classical
longer purely atomic, but contain admixtures from the bandself)-image potential of the projectile, i.e.,
structure(“hybridization™). The z axis is oriented along the 22
surface normal. The_ orbitalg; incorporate many-body ef-_ lim Vp(d)=— . @)
fects on the mean-field level. Electron-electron correlation desoo 4d
effects are presently neglected, but could be incorporated
into an expansion of the trial function in terms of Slater It plays a crucial role for the image acceleration of the pro-
determinants. In the following we consider the adiabatigectile and, hence, for the scattering dynanji24—26, and
limit of Eqg. (1), also has to be taken into account for total-energy calcula-
tions. In the adiabatic limit, the energy positions and widths
H(r,p,d) ¢;(r,d)=E;(d) ¢;(r,d). €] do not depend on this interaction since it is a function of only
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the nuclear coordinate. Hendg, does not enter the calcula- should rapidly converge. The price to pay for this advantage
tion of the resonance energies. The remaining two terms iis that the basis stat¢gq. (10)] form a nonorthogonal basis
Eq. (6) describe the electronic interaction potential with theset which results in a generalized eigenvalue problem.
surfaceV(r), which at large distances also converges to the In what follows we discuss two complementary methods
image limit for determining resonance parameters from the generalized

eigenvalue matrix equation
1
IMmVe(r)y=—— (8)

4z’ Ho[”=EjNg|”, (13

Z— 0
and the indirect interactiol,, between the electron and the whereH andN are the Hamiltonian and the nonorthogonal-
projectile through the charge density fluctuation in the surdty (overlap matrix for the basis of Eq(10). The matrix
face induced by the projectile. The asymptotic limit of the elements can be expressed analytically with the exception of
latter is given by (i[vs“j), which must be computed numerically.

Equation(13), as it stands, gives only discrete real eigen-
values{E;} of bound states. One standard method for the

lim Vpdr,d)= m 9 calculation of resonances is complex coordinate scaling,
d.z—e which corresponds to a canonical transformation in the com-
where (u,z) are the cylindrical coordinates of the electron. plex plane
Equation(9) describes the interaction of the electron with the ~ ~ie
) . L r—re'”, (143
image charge induced by the projectile.
The description of the interactiof, andV . in terms of a _i® 14b
local single-particle potential at intermediate interaction dis- p—pe . (14b)

tances is a nontrivial problem. The choices underlying our

calculations will be discussed below in more detail. This converts resonanfcontinuum wave functions into

square-integrable functions by effectively projecting out the

P space(continuum spacgeportion of the wave function.

Consequently, the Hamiltonian becomes dependent on the
For a given choice of potentials, the calculation proceedgomplex rotation angl®,

through a large-scale basis expansion converting Eqnto

an N-dimensional matrix eigenvalue equation with energy H(T,p)—H(T,p,0)=—3e 29A+VTe®). (15

eigenvaluedE,} ). Atomic (hydrogeni¢ basis functions are

not well suited, as their positive energy subspace is noH(r,p,®) is no longer Hermitian, and Eq13) yields com-

square integrable. To circumvent this problem we choose aplex eigenvalues. Thresholds our case corresponding to

expansion in terms of Sturmian functiofi27] in the ion-  the continua at the bottom of the conduction bawg<O0,

B. Calculation of resonances

centered coordinate system, and at the ionization thresholE=0) are rotated into the
complex plane by an angle ofé thus exposing the reso-
. . nances, while bound states remain on the real axis. Con-
OYin(T.0.0) == s, V(T)YT(6, ). (10

verged resonances are characterized by the stability of the
complex eigenvalu&E=E,—iI'/2 with respect to the rota-
Heren,, |, andm denote the radial, angular, and magnetiction angle®, the Sturmian parameter, and the basis sizs.
guantum numbersy " the spherical harmonics, arﬁﬂ") the  The analytic continuation of the potenti®(re'®) into the

Coulomb-Sturmian functions, given in coordinate represencomp|ex plane is explicitly known only in simple cases.

tation by While the mathematical foundation of the method, the
B Aguilar-Baslev-Combes theoref7], strictly holds only for

Sffrﬂ)(r):hnr|e_‘”(20?)|+1L§f|+1)(207)1 (11 dilatation-analytic potentials, ample evidence exists _that the

method is applicable to a much wider range of potentials. For

with realistic surface potentials we adopt the “passive” rather

than the “active” complex rotation, rotating the wave func-
tion <I>nr|m('r’e"®) instead of the Hamiltonian. However, one

conceptual difficulty of the passive complex rotation is that
the physical interpretation of the resonant wave function is
Lﬁf‘) in Eq. (11) are the associated Laguerre polynomials. Thdess obvious.

Coulomb-Sturmian functions contain the Sturmian parameter A recently developed attractive alternative method
o=2ZIny, which allows for variational optimization of the [15,16 uses the fact that stabilization diagrams, well known
basis according to the principal quantum numhbeof the  as a tool for the determination of the positions of resonances,
atomic level under investigatioiFor integerny, Eq. (10)  can also reveal information on their widths. One advantage is
exactly reproduces the hydrogenic wave function with thethat the calculation proceeds on the real axis, and the deter-
principal quantum numbet,.] The Coulomb-Sturmian basis mination of the resonant wave function is straightforward.
is square integrable ar{dpart from the inevitable truncatipn This method comes with the added benefit that the calcula-
complete. Furthermore, the proximity to atomic wave func-tion on the real axis permits the use of comparatively larger
tions indicates that for weakly perturbed states the expansiobasis sizes.

112
(n,=n—-1-1). (12

n,!
h”r':((nr+2l+1)!
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The spectral density of resonandéise Feshback) space 0.001
complemen{28)) is given by

\

:
A\

DQ(E) L > ! (16) NN
=——1m —_ =, AR
w K (E—Ek)+|Fk/2 0.01 \\\i&\ N

W \\ \ \

AR, A
NS \\*\\‘ N
N

AR NN

with E,—iI",/2 the complex poles of the Green’s function.

D®(E) can be calculated by repeated diagonalization of Eq.
(13) on the real axigi.e., ®=0) for a range ofo values 01
oelomin,Omaxs Yielding o-dependent sets of eigenvalues )
{Ex(a)}Y. The spectral density follows from

-E (a.u)

AR
N

0 1 Tmax (a)
D¥(BE)=———— do D,(E), (17) 1 L L
Omax— Omin J opin 1.0 15 20 25 30 35 40 45 50
/o
where
4000 | n=1 (b)
D, (E)=2 8(Ej(e)~E). (18 _
Z 3000} n=2 n=4
Equation(17) is readily evaluated in terms of theEe(o) :
as & 2000}
1 dEj(o)| &
Q — _ ]
O o ; do | 19 2 1000 W ]
j(a)—E
. . d=11a.u:
D®(E) can also be obtained by binning all enerdigéo) for 0O = = L : .
OminS0<0ax INt0 a histogram and then fitting a smooth e -0. 03 02 01 0
function. Figure 2a) displays a typical stabilization diagram E (a.u)

for hydrogen in front of an aluminum surface. The resulting

hlstogr{:\m fr_om Whlch th_e spectral d_enSII}P(E) can be FIG. 2. (a) Typical stabilization diagram for a hydrogéa=1)
de_termlned IS S_ho".V” in F'g'(ﬁ).' Equathn(19) can be VISU- — atom atd=11 a.u. in front of an aluminum surface: enefgyas a
alized as a projection of the line density of the StabIIIZ""t'onfunction of the inverse Sturmian parametegr.1$tabilized horizon-

diagram onto the energy axis. From the fit of the “raw” 5 «jines” correspond to resonances, e.g., n&#—0.1 a.u. for
spectrum of Eq(19) to a sum over Lorentzian lind&clud- -2 Resonances up =8 can be clearly distinguishetb) Den-
ing a linear background both positionsE, and widthsI'y  sity of stateDOS) extracted from the data shown {a).

can be extracted with high accuracy. Moreover, unlike in the

CCS’ the resonant wave fun(_:t|ons can be d|rect!y Oleterémploy functional forms that smoothly interpolate between
mined. The local spectral density of the corresponding reso;

- : the image potential limits at large distandgls—) and the
,h;/,Q g 2 -
hance wave func.tlo c(MEI" at the energyE,, is analo effective potential of a hydrogen atom embedded in jellium,
gous to Eq.(19) given by

as determined by density-functional thedry/1,13,29. In
-1 this section, we use again the coordinate system centered in

1 dEi(o ) o . .
|¢kQ(?;Ek)|2:— Z |¢j(?, o)|? '—() ) the surface plane, i.ez=0 coincides with the jellium edge.
Omax™ Omin | do Ej(0)=Ey
(20) : _
A. Electronic surface potential
The evaluation of the sum E0) over allj wave functions For the electron-jellium surface interactidh we use the

¢, each containing up te-10° terms of the Sturmian expan- model potential proposed by Jennings, Jones, and Weinert
sion[see Eq(10)] is extremely time consuming. In practice, [30]:
only a few statesp; in the immediate vicinity ofg,, i.e.,

with the largest slopéd Ej(a)/da|’1, can be taken into ac- 1-exg —N(z—z5)] . .

count. Knowledge of the local spectral density and of the 1 2(2-29) if 2>z,

resonant wave function is valuable for the physical interpre- Ve(2)=—= 0 (21)

tation of resonances. 2 2V, .
otherwise,

A exdB(z—z5)]+1
IIl. SURFACE POTENTIALS

An important input for the calculation are the potentialswhereA= —4Vy /A —1 andB= —2V/A are constants deter-
Ve and V.. Differences among different calculations mined by matching the potential and its derivativezatzg.
[7,8,2]] are in part due to different choices for these poten- In the limit z—o, Eq. (21) converges to the proper self-
tials. The present approximations are motivated by the aim témage limit, correct to orde®(z2),
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ol & Vye= uxd 01— txd €0l (25
o | AT - where p=p,+0,,q and g, is the electron density of the un-
3 ' perturbed electron gas taken from calculations in the LDA
< 02t [11]. Keeping only the term linear ip;,q Of the Taylor series
) expansion foru,J o], we obtain
cg; 03} .
S 04 V= ( @ Mxc| Qing(r,d). (26)
05+ this work %
/' from Ref. [7] -2 . .
06 ~# | fromRef. [8] -~ The chemical potentiglk,. can be expressed as
-10 0 10
z (a.u.) d
Nxc:@(gsxc[e])- (27)

FIG. 3. Electronic self-image potential near an Al surfete4
a.u), — this work, --- Nordlander and Tully7], --- Borisov,  For the exchange-correlation energy we used the expres-

Teillet-Billy, and Gauyacd8]. sion from[9,10,35 in terms ofr (0)=(3/(4me))*"?,
) 1 045816 0.442 -
leTl Ve(Z)=—4(Z—_ZS). (22 exc(rsLe])= rs r+7.8 (283

For comparison we also tested

The coordinate § defines the position of the image plane. Its P

numerical value of a jellium with a Wigner-Seitz radius of . 16

r«=2.07 isz£=0.7. The constant¥, (energy at the bottom exc(rfe])=— +0.0311 Inrs—0.048,

of the conduction bandand\ are chosen such as to repro- ® (28b

duce for smalkz the self-consistent local-density approxima-

tion (LDA) of Kohn and Land 11] near and inside the sur- as given in[36]. The resulting expressions fas, . are
face (apart from the Friedel oscillatiopslt should be noted

that, within the fit to Eq(21), z§ is influenced by the behav- 4045816 0.442 rs
ior of the potential at intermediate distances. Somewhat mxclrsLel) =~ 3 ry rg+7.8 + 3(re+7.9
larger values have been found in calculations extractifig (293

from the asymptotic behavior of the 2 term [31—34. Fig-
ure 3 displays/, together with the corresponding potentials and
chosen in previous calculatio,8]. Overall, the potential

functipns are very similar. 'Ehe deviations stem mainly from wrdol)=— f 0.458 16+ 0.0311 Inr,—0.058 35,
the slightly larger value for ;=0.85 and from a different, 3 r
value, r¢=2.0, which lowersV, from V,=-0.574 to (29b)

V,=—0.604. None of these differences, however, have a vel hich differ f h other for the bulk d
profound influence on the resonance parameters. respectively, which diter from each other for the bulk den-

sity of Al by less than 4%.
Our approximation of;,q exploits the fact that the den-
sity profile along the surface normaj(z,d) (integrated over
Much more pronounced differences originate from thethe coordinate in the surface plands for |Z| =1 accurately
projectile-induced surface potentMjy(r,d). It consists of an  known from density-functionalDF) calculations[33,34.
electrostatigel) term and an exchange-correlatiore) term  The induced charge density entering E@3) which

B. lonic surface potential

[11], smoothly interpolates between the bulk lindit——o), and
the asymptotic image limitd—c) is written as a superposi-
Vpe(r ,d)=Vet+Vyc. (23 tion
Both terms are determined by the density fluctuation Qind(r,d)=c105(r,d)+cy0'(r,d). (30

Qing(r,d) at the jellium surface induced by a proton located at

B . . .
a distanced from the surface. The electrostatic term reads Here @ CONVerges to the induced density in the bulk
(d——x), while ¢ is the induced density in the image

oing(r’,d) limit (d—<). Accordingly, we choose the coefficients
—f g3 = (24 =e 9 and c,=1-c,;, where «=15a; and
are=(m12)?%* =0.8471 a.u. denotes the Thomas-Fermi

) ) ) screening length37]. For ¢ we use the functional form
The exchange and correlation teMy., which contributes

only at small distances from the surface, is given by the 08(u,z;d)=c exp(— Vya’u?+b?(z—zg)?) (3D
change of the chemical potential. due to the presence of

the charge densitg;,q induced in the surface by the external wherea, b, andzg are distance-dependent parameters, while
chargez, c=a’b/(8) is a normalization factor andb are related to

r=r']
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the inverse screening length of aluminium in lateral and per- e'(r,d)=f(u,d)g(z,d), (32
pendicular directions. In the bulk limit the screening is iso-
tropic, i.e.,a=b. We obtaina, b, andzg atd=0 andd=1.89
from fits to the averaged charge dengitfz,d) determined wheref describes the lateral charge-density fluctuation in the
by DF theory[31,33,34. Extrapolation ofa(d), b(d), and  surface plane, which we calculate within the framework of
zg(d) to larger distanced is performed by using the scaling the linear dynamical response formulation of Abajo and
relation of the Thomas-Fermi screening length with thie-  Echeniqud 38]. Writing r =(u,z) for the position of the elec-
perturbed distance dependent local electron density,tron andk=(Q,k,) for the wave vector, whera andQ de-
appoen” e, note the components of andk parallel to the surface, the
In order to reproduce the correct asymptotic image limit,dynamical screening potential of an ion of cha#yéocated
we write the density fluctuation for proton positions outsideat a distancel outside the solid is given in the zero-velocity
the surfacgd>0) in separable form, (adiabatig limit by

0-1 .
QU —ZSES 0;+1 e Qztd) 4 g=Qlz=dl jf z>0 (vacuum
S ]

Q 2e5(Q.2.0) 4
— " e
€5(Q,0+1

z
Vpdrd)=5— f d’Q (33)

if z<0(solid),

where eg(Q,w) = €5(Q,z=0,0) is the surface dielectric re- (3)]. Without directly affecting our calculation since the
sponse functiof39,40 related to the bulk dielectric function sheet of zero thickness will be replaced in our treatment by
e by the density profileg(z,d) [Eq. (32)]. It should be noted that
, without the simplifying assumption=0 in eg(Q,z,w), the
~Q (= dk.e'z* specular reflection metho@SRM) yields, instead of the
€s(Qz.w)= ). (k§+ Q% eg(k,w) (34 &shaped charge sheet centered on the surface, an exponen-
tially decreasing polarization charge density as a function of
For our calculations we have used the surface-plasmon-poléistancez into the meta[38], while it cannot account for the

approximation with dispersiop0] spilling out of charge density into the vacuum. The resulting
lateral charge densitiaveraged ovez) differs only margin-
. w? - ally from the one obtained from
ES(Q,(D)— +CYQ+,BQ2+Q4/4_(CU+|')/)(U’ ( )

f(u,d)= iz f d2QdQu 17eQ0 _qia-zqan
where ws=w,/v2 is the surface-plasmon frequency, ampd Am 1+€5(Q.0)
describes phenomenologically the width of the surface- (37
plasmon resonandé1,42. In the static caséw=0) consid- |, Eq. (37) we have explicitly taken into account that the
ered heregs is independent ofy. The surface-plasmon dis- jnqyuced charge density “spills out” of the jellium edge by
persion for smalQ is governed by the parametexsand S. measuring the distance from the ion relative to the centroid
The standard values are= y3/1Qgw, (@=0.269 a.u. for  of the charge distribution along the surface norfisale Eq.
Al), with g chosen such that the resulting dispersion curve ig40) below] rather than to the jellium edge.
consistent with the bulk dispersion curve at its point of in- The realistic density fluctuation profile along the surface

tersection with the single-particle continuys0]. The value  normalz enters Eq(32) throughg(z,d), which we param-
of a determines the linear slope of the dispersion curve. Aetrize in terms of a skewed Lorentzian

more realistic value extracted from experimental data for the

surface plasmon dispersion of M3] is 0.1<a=<0.18. 1+ay(z—ay)

From Poisson’s equation now follows the induced charge 9(z.d)=a (1+a3(z—a4)2)3' (38)
density corresponding to E§33). Neglecting thez depen- . ]
dence ineg by settingz=0 in Eq.(34), we obtain Thed-dependent parameteasin Eq. (38) are subject to the

constraint of normalization,
_ z 20dQu 17 6QO o
n(r,d)=82)| ;> f Qe T 55 ¢ ) f dz gz.d)=1, (39
(36)

. ) ) . and to the constraint of reproducing the correct positjpof
The fact that the density along the surface is localized in ahe centroid of the charge density fluctuation, closely related
&-shaped charge-density sheet centered at the jellium edges put not identical with the image plane position,
a consequence of theindependence oég(Q,w). This ad-
ditional approximation has the advantage that it yields an

explicit expression for the lateral distributioi{u,d) [Eq. f dz gz,d)z=274(d). (40
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0.2

from Eq. (23)
------------ from Ref. [7] d=4
0.16 | - - from Ref. [8] -
~ 02r
5 3
3 012 | 2
_ S
T oo} L
N o0l
g 0.04 >
7, ion
0 1 D z ion
. ) . 0, = & ,
-10 -5 0 5 10 -10 0 10
z (au) z (auw)
FIG. 4. Electron-ion image potential for'Hnear an Al surface FIG. 5. Electron-ion image potentialp for H" near an Al
(d=4 a.u) (—, Vo and its two contributiong---, V; ----- Vo). surface(d=4 a.u): —, present work; ---, from7], --- , image po-

tential as used ifg].
For test purposes we also utilized a parametrization in term

of a Gaussian function instead of E8), which leads to i arily due to the spilling out of the screening chafges.

only minor differences. It should be noted that unlike for (30) and(38)] rather than due to an anomalous plasmon dis-
small distances, where we ug& [Eq. (31)], the separable persion in the surface plane.

approximatior{ Eq. (32)] to the density fluctuation should be *  Figyre 4 displays the resulting potenth),, and its elec-
valid at large distances. Inserting H0) into Eq.(23) leads  trostatic (el) and exchangédex) contribution at a distance
to the total potentiaV/ . entering the calculation. d=4. The electrostatic potential strongly dominates the ex-
The present approximation incorporates several importardhange contribution. The latter becomes only significant for
features of a realistic electron surface respoNggremains  d=<2, where a more accurate determination would require a
finite asr—0 andd—0. It therefore avoids the well-known self-consistent treatment. A comparis@tig. 5) between the
difficulties with the singular behavior of the classical imagepotentialV,. used in our calculations and choices in previous
potential. The residual effect of this singularity makes itselfcalculations indicates that the potential used in Ré&f.
felt even at intermediate distances from the surface, wherelosely mimics the singular behavior of the classical hydro-
charge transfer in ion-surface scattering takes pltmeecriti- ~ gen potential near the image plane. Our potential agrees con-
cal distance for overbarrier transitions or “freezing” dis- siderably better with Ref[7], showing a broad maximum
tance[26,44)). In the limit of small distances it reproduces nNearz=0. The shape is, however, different primarily due to
the charge-density fluctuation of the LDA. At the same time,the fact that the density fluctuation in R¢f7] was deter-
it reproduces the correct asymptotic limit at large distance&nined by the classical charge density rather than by linear-
to orderd 2, i.e., it contains the image interaction with the r€SPonse theory. . at -
approximate position of the image plane outside the jellium , he d dependence of the resulting total potentiel in-
edge. Expansion of Eq23) to orderd 2 leads to a position cluding all surface potential terms as well as the bare
of the image plane

f41,43, and is unsatisfactory since positive valueszpfare

0

Zy=2z4(d—)— (41

a
2-
2wg

For smalla (=0.1) the values ofz,(d— ) andzg approxi-
mately agree, and by an appropriate choice¢tl— ) the
ionic and electronic image planes can be made to coincide at =
large distanceszg,zg—2z,. Note, however, that due to the I
different nature of these two contributions to the induced
charge density, the two image planes need not necessarilygv
coincide at small distances. Furthermore, thdependence =
of the lateral density fluctuations representing virtual
surface-plasmon excitations is consistent with the experi-
mental data for the on-shell surface-plasmon description.

We note that the second term in E4l), —a/2w?2, cor-
responds to the effective image plane position of just the z (au.)
SRM model for the electrostatic potentidq. (33)]. Using
only this term, the correct image plane position could also be F|G. 6. Total surface potential®(z,u;d) for H near an Al
reproduced by Eq(33) provided one chooses a large nega-surface at cut along=0 for d=7, 5, and 0 a.u(—). For compari-
tive @ («=—0.6 for Al), as was pointed out by Annett and son, also shown are the bare core potefl®(-----) and ford=0
Echeniqud45]. Such a choice is, however, inconsistent with the total potential within the LDA/®t from [13] (---), which nearly
the experimental data on surface-plasmon dispersion for Adoincides with our data.

d) (a.uw)
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projectile-electron term is illustrated in Fig. 6 for cits=0) 0.15
through the potential surface, and for distandes/, 4, and ,‘
0. The last frame is of particular interest as self-consistent 01 AEE ——
calculations forV'® in the LDA are available for smald - =‘ AT e
[13]. (Note that the LDA fails at larged because of the lack é 005
of induced long-range potential contributionghe agree- ks 0 e
ment between oufthough not self-consistenpotential with e
the LDA result even at very small=0 is unexpectedly T 005}
good. This provides a clear indication that the potential func-
tion should be sufficiently accurate at intermediate distances 0.1y d=2au. ®
d=3, which are most significant for dynamical charge trans- 015 , . ,
fer. o 12 3 4

With decreasing distance from the surface, the barrier c
separating the atomic well from the jellium is rapidly re- 0.15 - :
duced in height. We therefore anticipate that hydrogenic
resonances become over-barrier resonances near the surface. 0.1 |- AEE —— o
Contrary to conventional wisdom, tunneling plays arole only ~ _ d=2au. e
at distances large compared to typical freezing distances; this & %95 it 7
statement applies even more so to higher excited sta6s %% ol A

3 005 | Ao .
IV. QUANTUM-MECHANICAL RESULTS / {

Our resonance calculations have been performed for 56 o )
values of the rotation angle ranging frat=0.05...0.60 rad, 015 N Lo e
and for about 1500 values of the stabilization parameter 10 100 1000

in the interval 1.8<¢" 1<6.0 in the case of the stabilization
method. Detailed convergence tests were made with respect FIG. 7. Convergence of the ground-state resonance energy

to the basis Sizél €[8Nyq,] and the choice of the Sturmian 4 jing) and width(dashed lingatd=2 a.u. as a function of the
parametep ~<[0.2, 10.0. We used up tiN,,=1891 basis inverse Sturmian parameteroland the basis sizB: (a) Relative
states for the complex rotation, and upNQ,,=4096 for the  eviation with respect to the values for=1 vs inverse Sturmian

stabilization method. At small distances the resonance pgsarameter 1# for N=231.(b) Relative deviation with respect to the
rameters are most sensitive to the basis size and the Sturmiggues forN,,,,, vs basis sizeN for o=1.

parameter when the resonance has become an over-barrier
resonance. An example for the convergence behavior is
given in Fig. 7 ford=2. While at this small distance the
potential cannot be considered reliable, this example illus- The real par, of the complex eigenenergy of the reso-
trates the characteristic sensitivity of over-barrier resonance®ance, i.e., the position of theslevel (Fig. 8), approaches
The ground state was found to be more sensitive to théor large d the simple “image limit,” E;q(d)
proper choice ofr than were excited states which, in turn, = E1s(®) +1/(4(d—2)), predicted by first-order perturbation
were more sensitive to the basis size than the ground statdieory. For small and intermediate distances our results de-
The level position for the 4 state converged faster than the Viate significantly—even on a qualitative level—from pertur-
width, which, ford=2 a.u., already required 496 basis states

for sufficient accuracyFig. 7). In order to achieve conver- —

A. Level position

v T T T
gence for the ground state for all>2 to three significant 0.38 1 ‘ thﬁﬁ;‘; ]
digits, a basis size of aboM,,,=500 with an optimized 04 | Ref. [8] —— |
Sturmian parameter was required. We note that this number L image shift -~
is significantly larger than in previous calculationg]. 042 X -
Higher excited states require even larger basis sets to allow a ; 044 i ]
proper representation of the resonant portion of the electron - Tl
wave function. -0.46 - .

We find the CCS and SM to be of comparable accuracy oa b /]
for the present problem. Typically, resonance parameters are 1 /| = topofbarrier "~
converged to a relative error 6§10 2. It should be stressed 05 F Bl |
that the uncertainties due to the choice of the potential func- . ; ' ; ‘ é : é ' 1'0 ‘ 1'2 : 1'4
tions are much larger. We find the CCS more efficient for the d (aw)

simultaneous calculation of both the positideE;) and the

half-width (—Im E;). On the other hand, the SM is faster  FiG. 8. Position of the H(4) resonancéE, =Re(E)] near an Al
when only the level position is required. It also permits moreas function ofd: —, present resultsA, Ref.[7]; ¢, Ref.[8]; ----- ,
comprehensive convergence tests with respect to larger basisage shift formulaE () +[1/4(d—z)]. Also shown is the en-
sizes. ergy of the top of the barrier as a functionaf(---).
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bation theory as well as from previous nonperturbative cal- 107

culations. The & energy level is not promoted toward the B ‘hfise‘f“"ff}; —
continuum, but displays a local maximum at an intermediate Ref. [8] —o—
distance. This maximum occurs near the critical distance 107 | 7
d.=3.6 a.u., where the shifted level crosses the top of the 5

barrier (denoted by the dotted lineAs the Is resonance ; 03 b A
becomes an over-barrier resonance, its position begins to o

bend down towards the bottom of the conduction band. This ~

gualitative behavior of the resonance position was found to 10" | A
be stable against the variation of the parameters in the po- above | below

tential [e.g., &, \, andz,(d)]. We extended the calculations o | bomer| bamier

to small distances where the validity of the surface potential o 1 2 3 4 5 6 71 8
is questionable because of the lack of self-consistéimg;- d (auw)

cated by a dashed lieand were able to trace the resonance

down to distanceg=1 a.u. FIG. 9. Width of the H(5) resonancg¢l’=2 Im(E)] as a func-

For the purpose of comparison are also plotted the daton of d; —, present resulths, Ref. [7]; O, Ref.[8].
available from other calculatiorg,8], which show a rapid
upward promotion of the level. The difference between thewith caution, the correct qualitative behavior @s-0 trans-
present results and the result of Borisov, Teillet-Billy, andlates into significant differences at intermediate distances
Gauyacget al. [8] can be directly traced to the imagelike Which are quantitatively significant. For example, charge
behavior of the potential at small distances. In fact, the levelransfer into H(E) near an Al surface is expected to occur in
position of Ref.[8] closely follows the classical image shift the vicinity of the “freezing distance” ofd=4 a.u.[44].
~1/(4(d—z,)) down tod=3 a.u. The promotion toward the Here the energy shift relative to the vacuum level is about
continuum results from the narrowing of the potential well 33% smaller than previously calculated.
between the proton and the singular repulsive potentizj,at ~ Another test for the present calculation is the physisorp-
thereby “squeezing out” bound states to the point wheretion energy
they can no longer exist. By contrast, as the barrier height is
diminished in the present calculati¢Fig. 6) the atomic or- Eph=Vp(d) = (Es() — E15(d)) (42)
bital mixes freely with the jellium resulting in a downward
trend in the resonance position. The reason for the differencen a metal surface. A calculation of the total energy of the
between our result and the data of REf] is not equally hydrogen atom using the ground-state data obtained with a
obvious as the input potentials are more similar. One possimple ionic image potential yields a physisorption energy
sible source of the discrepancy could be an inappropriatelose to zero, nearly independent of the distance. Our calcu-
choice of the Sturmian parameter in the basis functionslation yields a physisorption energy Bf,=—1.4 eV atd=2
which in Ref.[7] was chosen to represent time=2 state a.u. in close agreement with the LDA results of Hjelmberg
correctly in combination with rather small basis siz¢8-64  [13] (E;,=—1.2 eV) at this distance. This result could be
state$. Another source could be the difficulty of identifying further improved by taking into account the interaction be-
the resonance trajectory in the complEx—E; plane. It is tween the ion core and the smeared-out electronic image
easily possible to pick up spurious resonances. This hagharge determined from the electron den$i?(f:E, )| as
pened, in fact, in an early stage of our calculation, and wagiven in Eq.(20). This would correspond to the first iteration
recognized only after the resonant wave functions were anan a self-consistent treatment.
lyzed. A very dense mesh this required in the over-barrier
region in order to permit proper identification of the reso-
nance.

The present result for the resonance position provides a Significant differences to previous calculations can also
smooth connection between the value in front of the surfacée observed in the width of the resonanEethe imaginary
and inside the bulk. Various calculations for the energy ofpart of the complex eigenvalug, as shown in Fig. 9. For
the ground state of hydrogen in jellium with an electron dendarge distances, the width of the resonance decays approxi-
sity of aluminum predict a very weakly bound doubly occu- mately exponentially as expected for “thick-barrier” tunnel-
pied state aH™ or a low-lying near-threshold resonance ing. Since the potential barrier in our present calculation is
[13,14,47. Irrespective of the inherent uncertainties, thesesignificantly lower than the one for the simple image poten-
calculations agree in the position of a resonant or a bountlal used in Ref[8], the large discrepancy by about a factor
state to lie near the bottom of the conduction band towaraf 8 is easily understood in terms of a semiclassical Wentzel-
which our results converge. The smooth transition from theKramers-Brillouin(WKB) estimate. The WKB transmission
surface to bulk is not surprising, since the surface potentiatoefficient W, and hencel’, depend exponentially on the
generated by the density fluctuation at the surface goegroduct of the width of the barrier and the square root of its
smoothly over into a screened bulk potential when the exterheight (difference between energy level and potential at the
nal charge recombines with the exchange and correlatiotop of the barrier. Since the present potential is much closer
hole. to the one employed in Ref7], better agreement fdr/2 in

While the quantitative accuracy of the energy in the im-this regime is to be expected. The present values are never-
mediate vicinity of the surfacé<2 a.u) should be viewed theless larger by about a factor of 2, which may be due to

B. Level width
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107 \

2E; (au)
=
L ]

=

12 | above| below
barrier| barrier

QM results
Eq. (43)

0 3 6 9

d (au)

FIG. 10. Width of the H(%) resonance®, as obtained with the

CCS; ---, from Eq.(43).

differences in the potential or the smaller basis si&ar
higher excited states the differences are sma#lér.)

12

15

18

C. Resonant wave function

The classical dynamics near the top of the barrier is cru-
cial for the structure of resonances and for the charge-
transfer proces$26,48. Properties of the classical phase-
space structure are reflected in the wave functions. The
stabilization methodlsee Eq.(20)] provides an efficient tool
to determine the resonant wave function.

Figure 11 shows the adiabatic evolution of the resonant
1s wave function for a range of distances from the surface.
At large distancegd=8 a.u) for which the level shift is
described well even by the classical image potential
1/4(d—zp) the distortion of the contour lines is barely no-
ticeable, i.e., the wave function is hardly perturbed by the
presence of the surfa¢€ig. 11(a)].

At intermediate distance@round 7 a.y, an increasing
leakage current manifests itself in the outgoing wave front of
the continuum portion of the resonant state which “propa-
gates” towards the surface dslecreasefFig. 11(b)]. In the
region belowd=5 a.u., where the level shift deviates from

At a critical distanced.~3.6 a.u., the resonance crossesthe simple image potential, this outgoing probability flux be-
Fhe_ top of the barrier separating the atomic wel! from thecomes sizeablgFig. 11(c)]. The magnitude of the outgoing
jellium. The 1s state becomes a broad “over-barrier” reso- part of the wave function increases as the energy level ap-

nance, and the width begins to saturate with decreasing proaches the top of the potential barrier, which it crosses at
The behavior of the level width including this saturation canthe critical distancel, (hered.=3.6 a.u). The lowering of

be approximated bj26]

o

T'(d)=

whered; should be close td,. I' decays exponentially for
large distances and saturates niégfor small distances. Us-
ing only the quantum-mechanical result 1&g and fitted val-

1+exp(x(d—dp))’

the barrier has opened a channel along which a considerable
probability transfer to the solid can occur classicdliig.
11(d)]. A morphological change of the resonans Wave
function becomes clearly visible as a significant portion of
the wave function now lies below the jellium edge with a
peak in probability density split off the main lobe.

As d is further decreased, we observe a sequence of those
secondary lobes moving inside the metal. However, the elec-
tron does not become delocalized at once because it is still

ues ofd;=2.6 andy=1.85, this equation reproduces the nu- dynamically confined by the potential well due to above-
merical data remarkably well over the whole range ofbarrier reflection. It should be emphasized, however, that de-

d=1...18, ashown in Fig. 10.
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spite the strong distortion of the atomic state, the bound-state
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FIG. 11. Contour plot of resonant H§)

wave function¢‘fs(r;E15;d) in front of Al at
d=18 a.u.(a), d=5 a.u.(b), d=3.2 a.u.(c), and
d=2.4 a.u.(d). The surface is az=0, the ion
position is marked with ab. Thick solid lines,

¢2=0; thin solid lines, $$>0; thin dashed
lines, $%$<0. Contours from —3x1072 to
3%10 2 in increments of X103,
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portion of the resonant wave function remains well localized 0.4
around the ion core, and traceable down to very small dis-

tances. This observation is important in the context of the

current controversial discussion as to the existence of atomic 02y
resonances in the vicinity of the surface. Our results demon-
strate that they remain well defined in the region where over-
barrier transitions become possible.

Py () (a)
<
£

V. SEMICLASSICAL APPROXIMATION -0.2 b
It is of considerable conceptual and practical interest to core barrier surface
inquire about the extent to which atomic resonances can be 04 : : :
accounted for semiclassically. The conceptual interest lies 0 5 10n (au)15 20 25
primarily in its connection to classical models for charge o
transfer near the surfa¢26]. From a practical point of view, FIG. 12. Plot Ofpf,(ﬂ) from Eq.(47) for d=10. 5_, sdenotes

the semiclassical approximation provides a tool to treat highne classical turning points of the system, whpf ) =0. 7=0
n states of multiply charged ions approaching the surfacecorresponds to the position of the ion core.

First WKB calculations were performed by Janev and co-

workers[49]. Questions have been raisg] as to the valid-  (47) for d=10. Positive values of the “local” kinetic energy

ity of this approach. We focus in the following on the calcu- of the electron correspond to the motion of the electron in the
lation of the level widthI', or, equivalently, the transition classically allowed region, whereas negative values corre-
rate for electron transfer from the atomic orbital to the bandspond to classically forbidden tunneling motion.

structure. It is equally possible to determine the level posi- For energy values below the top of the potential barrier,
tion using an Einstein-Brillouin-Keller multidimensional we assume a leakage current small enough so that the wave
WKB quantization, exploiting the fact that the problem re- function can be normalized in the potential wéhick bar-

mains approximately separable. From here on all coordinateser approximatioh Equation(46) in this limit becomes
refer again to the ionic core as the origin and we drop the
d . P exp(—2f 2 pu(m)|d7)

tilde. Since the following is mainly based on Reff49-53, WeW =
we will focus on the interesting aspects of our calculation. B exp(—¢)’
P,(7)

'
The system is rotationally symmetric about the surface fﬁidgff,id 7]( 1+ 77
small cylindrical region around this axis. Parabolic coordi-wheres_; ;and {;_1.denote the classical turning points

(48)

normal, and the leakage current passes primarily through a

nates[50,52 in _the respective parabolic coordinates p2f 7;)
y =p§(§j)=0], counted from the origin orfFig. 12. The
{=r+z, n=r-—z, gozarctan; (44) numerator in Eq.(48) is the barrier penetration factor

along the reaction coordinatg while the denominator is the
are therefore appropriate. The region near the barrier fopormalization integral related to the classical orbital period,
which the solution of the Schdinger equation is sought averaged ovet. _ _
corresponds t@<7. Hence we consider the reaction coordi- ~ For the region near the barrier top we employ the uniform
nate »=—2z, which allows to simplify the Hamiltonian and WKB (UWKB) for the transition rat¢53], which allows us

to write the potential as to study the above-barrier region. We exploit the fact that the
07 potential barrier along the reaction coordinate can be locally
VO )= — — + VUi ). (45) approximated by an inverted parabola
Y 2
V(7)=Vigp— 30* (7~ 710p)%, (49

The transition rat&V, i.e., the probability flux with a veloc- . . .
ity, v, through an ares perpendicular to the axis, is given wherew” is obtained from the second derivative of the full
) zZ H

by [50] potential,
d2v( 7, d) 1/2

W= fS|CD(§!771(P)|ZUZdS- (46) w*(ntop):{_—dnz—

(50

n= 77t0p

HeredS=1/25pd{d¢, and®({,7,¢) is the WKB wave func- The barrier penetration factor given by the numerator in Eq.
tion [50,51] of the system. Assuming>¢, the velocity com-  (48) is now replaced by53]

ponent across the barrier,, is related to the quasimomen- T=[1+exp —2me)] %, (51
tum p,(n) asv,=p,(7)/2 with
¥ B m? where
2 1\ /surf
p(n)=[——+——zV (9l2)+ ——>|,  (47) 1 (s :
’ 4 47 - f Py (mldy if El(d)<Vi,
72

wherey=\/—2E, and 8=Z— y(m+1)/2, and the magnetic €= i (52)
quantum numbem=0 for the 1s state. Figure 12 shows a +— f p(n7)dn  otherwise.
plot of the square of the quasimomentupf,(n), from Eq. ™ Jn
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10° and stabilization techniques. Both methods were found to
oM fgs;ll(“BS . yield results of the resonance parameters of comparable ac-
107 ¢ UWKB + ] curacy. While the complex rotation method is more efficient
in accurately determining simultaneously the position and
the width, the stabilization technique provides a more effi-
cient tool to determine the position alone, and has the added
benefit that resonant wave functions can be readily extracted.
The level position follows the classical image shift for-
mula only for distancesl>d., whered is the distance at
which the Is resonance becomes an overbarrier resonance. It
reaches a maximum nedg, then bends down toward the
, , , , , bottom edge of the conduction bandds d., and appears
3 6 9 12 15 18 to connect smoothly with results for resonances around a
d (au) proton in the bulk jellium. The level width decreases expo-
nentially with the distance fod=d. while saturating for
~ FIG. 13. Width of the H(%) resonanc¢l'=2 Im(E)] as a func-  gmaller distances. This behavior could be reproduced in
tion of d: Comparison between quantum-mechaniea) and semi-  gemiclassical calculations for both the below- and above-
classical result¢o, WKB; A, UWKB) calculations(see text barrier regions. Semiclassical mechanics was shown to pro-
vide accurate estimates for the resonances width and concep-
ftual insights into the electronic dynamics near the surface.
The resonant wave functions undergo, ndar a morpho-
logical change with an increasing delocalization and shift of
probability density toward the metal.
Level width and position data reported in the present pa-
€=(E;— Vi) 0™ (53 per differ significantly from previously available dafa,8],
in particular in the vicinity of the surface. The discrepancies
can be traced primarily to the different choices for the sur-
face potentials. Discrepancies for the level shift reported in
[8] can be attributed to the use of a divergent ionic image

the jellium dominates in this region. potential. Overall, the present resonance data are closer to
We now evaluateN using the energy values,(d) ob- the results of Ref[7] than to Ref[8].

tailn_ed frc')mhthel quantum-mechre]m:::al caIcuIations.hThg rle- Extensions are currently under investigation along three
sulting widths(Fig. 13 agree with the quantum-mechanical g e ctions:(a) the adiabatic evolution of highly excited reso-
widths to within 15% in both the below-barrier regidesd, nances(n>1), (b) the study of the region fod<d, using

. . . . ’ C
as well as in the over-barrier regiddown tod=2.4). The |\ hjinear density-functional theori3], and (c) the treat-
uncertainty introduced by the semiclassical approximation i, ot of nonadiabatic transitions in ion-surface scattering.
much smaller than the differences between quantum calcula- \ye note that after completion of this work we learned that

tion_s employing different approximations to the sur_facg POFloreset al.[54] obtained a behavior of theslevel position
tential. It should be noted that the present calculation is efg;iiar to ours by means of a density-functional calculation

fectively one d|menS|on§1I in the reaction c_:oordmate/vm_le ._near the surface. This observation is in qualitative agreement
the degree of freedom is averaged over in the normahzanor;,vith the present results

factor. A fully three-dimensional WKB calculation should
yield even better agreement, since it takes into account the ACKNOWLEDGMENTS
lateral variation of the potential surface.

2E; (au)
S
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1010 }

.12 | above| below

10 barrier | barrier

104
0

Here 7, 5 are again the classical turning points, i.e., zeros o
p3(7) on the real axis, whiley. are the zeros gb%() in the
complex plane, i.e.pfl(nt)=0, and np=(7,+7-)/2. For
the quadratic approximation for the barridgtq. (48)], Eq.
(52) can be reduced to

For 7 values near the jellium edge;=2d), the approxima-
tion of the potential in terms of an inverted parabpky.
(49)] fails completely, since the flat background potential of
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