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Decay of an atom coupled strongly to a reservoir
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An approach to the decay of a two-state quantum system coupled to a resonant environment is developed in
terms of exact (nonperturbative master equations. Starting from a quantum optical model of a two-level
system coupled to a heatbath, it is shown that the effect of the bath can be replaced by one psendoe
modes This description is valid for a wide class of analytic density-of-state functions and it leads to exact
master equations which fully describe the non-Markovian decay of the quantum system without the use of
perturbation theory, the Born approximation, or the Markov approximation. Two examples are given: a simple
model of a density-of-states gap which has two poles, and a non-Lorentzian resonance.
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PACS numbg(s): 42.50.Md, 31.70.Hq, 42.50.Lc

The decay of quantum systems has long been of interesite from the model function and lead to slight changes in the
and encompasses the fundamental problem of a small quahehavior ag— o and will be ignored here. Thus we focus on
tum system coupling to a large world. The approaches useghodel, normalizable, meromorphic functiobf ).
are many and include Fermi’'s golden rule, the Weisskopf- We consider first a simple model of a gap in the photon
Wigner approach, the method of Heitler-Ma, Goldberger-density of states where the functi@®w) is comprised of
Watson, and the Lehmberg and Agarwal master equationisvo Lorentzians, of which the second has a negative sign
[1]. The master equation approaches, describing the time

evolution of the density matrix, are usually used in conjunc- D(w)=W I'y —W I'>
tion with time-dependent perturbation theory. The purpose of Vw—w)?+(T1/2)?% 72 (w—we)?+(I'5/2)?
this short paper, however, is to show that master equations (1)

can be used to descrilexactlythe atomic dynamics of the

decay problem—even when the bath has a complicate 2 =0 N : :
y P P orentzian introduces a dip into the density of states which

structure. The key tool used to do this, is the concept of L R : :
pseudomodea mode, or modes, which completely replacescan inhibit spontaneous emission in the region of the dip

the heatbath. The importance of exact approaches is of cuw’lg (at Ilea_lst in the_ weTarI](-coupltl_ng Ll|m|t ;Nhere Fngn' S
rent interest because of the recent experimental realizatiorf?!den rule is approprialeThe positive Lorentzian models a

of quantum systems strongly interacting with resonators bot roaq, resonal;mtSbgackgrorl:nd strrl]Jcturte. For colnis;sten;:y with
in the context of cavity QED2] and semiconductor micro- previous wor 48,9] we choose here to normal (w) to .
cavities[3]. 27 and this means that the two weights must satisfy

We will consider a two-level system coupled to a bath of V1~ W2=1. For a perfect gap, whei2(w) =0, we would
oscillators with a density of states described by a frequenc@!SC haveW, /I’y =W, /T’;. The two poles irD are located

dependent functio® (w). Then we know that if the function f"‘t “’_C_irllz’ “’C__ir2/2’ and we note that there is a change
D(w) has a pole close to the real axis, the short-time I SiGn of the residues dD between these poles. The analy-

behavior of the two-level system is modified and leads toIS giyen in Eqs(9)—(20) below .ShO.WS the key resuit that the
exponential decay. However, if there are two or more pole@SSociatedexact master equation if9]

close to the reab axis, it is not clear that a simple picture of T

exponential decay will apply because the poles can interfere  — 5= —i[H,,p]— -t (515113—251/35%[)5151)

with each other. In this paper we consider the class of func- dt 2

ith I',<I'; to ensure positivity ofD). The negative

tionsD comprised of meromorphic functions, that is, smooth I
functions, without branch cuts, that can be expressed as ra- __2 (aa,p—2a,pa)+ pala,) 2)
tios of polynomials ofw. The first example will show that if 2

the residues of the meromorphic functibncan change sign, with the Hamiltonian
we obtain a coupling between the decay channels which we
would not find in the ordinary case_of residues with the same Ho= wo(0,+ 1)/2+ 0 a8, + w aba,+ V(Ala,+ 8,4))

sign. Of course, the chosen functi@(w) may well be an

approximation to the real density-of-states function, but the +Qo(abo_+8,0 ), 3
important point is that it should be a good approximation in

the region of interest. This also enables us to use the antire where the operators.. are the usual Pauli raising and low-
axis, an approximation which neglects threshold eff¢dfs  ering operators for the two-level system with the commutator
However, such threshold effects, due to the turn oDadt [0, ,0_]=0,. The operator®,, anda, are the annihila-
=0 are negligible at optical frequencies and will only tion operators for two modes with decay rates

slightly modify the long-time behavior of the decay. Like-

wise, the realistic behavior @ (w) asw— o [5] will devi- =Wyl =W,I'y,
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1 slowly decaying band-gap mod€ {), and thus Fig. 1 shows
P® ]\ a two-step decay process. The upper-state population first
decays rapidly as a component of the initial population is lost
1) to the background mode. This decay is not exponential be-
\ cause of the strong coupling. Thereafter, the state decays
W\ very slowly because of the slow band-gap mode decay rate.
1 \ The dashed curve in the figure shows the fast decay in the
\ absence of a density-of-states gap. Clearly the gap inhibits
the decay of the system, even when the coupling strength
. \ Q) is comparable to the width of the gap. If we had a zero in
\ the density-of-states functiolwV, /I";=W,/I',, the decay
N rate of one of the modes becomes zdrg< 0), and then we
. ~ have some permanently trapped atomic populatibrthe
- two-level system is resonant with the gap
~ We note that in the limifl’;—oo, the density of states
0 . . . . D(w) becomes very flat away from the gap. In this limit we
0 2 4 9, O 8 10 will obtain results for the atomic dynamics that agree with
' the Laplace transform solutions far, given in Ref.[7].

FIG. 1. The probabilityP=|c,(t)|? of finding the excited AISO, if the couplingQ, becomes very weak, then the oscil-
atomic state in the the band-gap modBl The solid curve shows latory exchange of energy with the resonance ceases and we
the result from the density-matrix master equati@h The nearly ~Obtain exponential decay consistent with the Wigner-
coincident chained curve shows the result from integrating the heaMVeisskopf approximation and Fermi’s golden rule. In this
bath equation(5) with just 30 modes equally spaced betweenregime the field modes can be adiabatically eliminated.
+50,. The parameters used arE;/Q,=10, I',/Qy=1, and To test the master-equation interpretation we can also per-
W;=1.1 (W,=0.1). From these parameters we derive the fast deform a numerical integration of the underlying heatbath
cay ratel';/Q,=10.9 and the slow ratE;/Q,=0.1. The coupling model(in the rotating-wave approximatign
between the two pseudomodes is then approximately 1.49. The
dashed curve shows the decay in the absence of a\Wap ().

H=2 w,ala,+w(o,+1)2+ >, gy(alo_+a,d.),
A A
Fé:erl_Wzrz . (4) (5)

The two modes are coupled b= VW, W,(I';—T',)/2. The whereg, is the frequency dependent coupling between the
atom couples to the continuum wifd,, and the frequency atomic transition and the reservoir modes with labeland
of the two-level transition isw,. It is to be stressed that frequencyw, . The relationship between the couplings
neither the Born nor Markov approximations have beenand the normalized density-of-states functdw) is
made and that the only approximation is the chosen form of
D in Eq. (). Pr(9)?= 05D (w)/(2), 6)
The master equatiof2) is a two-mode version of the ) ) ) )
damped Jaynes-Cummings mofted] with the addition of a wherep, is the density of reservoir mod_es. In this way the
mode-mode coupling in the Hamiltonian. We will clearly see Shape of the bath resonances are describeid (ay) and the
that if we remove the negative LorentzianV,—0  Strength of the coupling is described by.
(W;—1), the master equation reduces to a single-mode Thg time evolution of thg underlying system can then be
damped Jaynes-Cummings model: the exact result for gescribed by a set of amplitudes; for the excited atomic
Lorentzian resonanc@vithout Born or Markov approxima- State(and empty bath modgsc, for an excited bath mode
tions. The two modes are clearly connected to the two(atom in ground stajec, for the atom in the ground state,
Lorentzians in Eq(1), but their decay rates are different With an empty bath. It is convenient to move to an interac-
from the widths of the Lorentzians. The mode-mode coulion representation with the time-dependent transformations
pling is a direct result of the negative Lorentzian; it scalesCa(t) =€'“%'c,(t), Ty(t)=e'*\'c,(t), and then by utilizing
with VW, and disappears as the widths of the two Lorentzthe Schrdinger equation with the Hamiltonian E¢G) we
ians become equdlesulting in a single positive Lorentzign  0Ptain the following well-known coupled equatiofts:
There would also be no mode-mode coupling if we consid- d
ered two Lorentzians wittpositive weights instead of Eq. i—Ca= >, g6 AT, , 7
(1). In that case we would simply obtain a two-mode damped dt A
Jaynes-Cummings model with decay rates giegactly by
the widths of the Lorentziang9], in contradistinction with d AL
the decay rates in the master equatigh LGt AT e Ca, ®
We can examine the decay dynamics of the band-gap sys-
tem by a numerical integration of the master equat®)nAn  where the detuning of the atomic transition from the mode
example is given in Fig. 1 wherE, is much smaller than \ is A, =w,— wy. The amplitudec, is constant in time.
I'y. As a result the modes have very different decay rates. Then to simulate the heatbath with a large but finite num-
There is a fast decaying background modg)), and a ber of discrete modes, we may numerically integrate EQs.
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and (8) with the couplingsy, determined from Eq(6) and to thefaked continuunintroduced by Stenholrfil3]. These
the chosen, normalized functén This type of approach has amplitudes can be considered to be defined by Ed3.and
also been taken for explicitly discrete systefhs], but here  (13), i.e.,
the density of states should be sufficiently large to avoid :
recurrences. In Fig. 1 the result is shown Bf{w) given by _ —izt ' aizt! ,
Eq. (1) and with just 30 heatbath modes. There are slight bi(t)=—if,e ™ fodt e Co(t). (14
deviations from the master-equation result, but as the number
of heatbath modes is increased it is found that the differenceior | =1,2. Now we will introduce parameters specific to the
become indiscernible. band-gap model (1). The poles are located at
We can formally establish the exact correspondence bez;=w.—i1'1/2,2,= w.—iI',/2 and from the residues dd
tween the master equatiq@) and a density-of-states func- we will find that Q2=W,Q3 and Q3=—W,Q3. We note
tion, such as Eq(1), by examining the integro-differential that the second residue is negative, because of the negative
equation associated with the continuum E@3.and(8). To  weight of the Lorentzian, and as a result the couplihgis
obtain this we integrate E¢8) and substitute the result for imaginary In itself, this does not affect the validity of Egs.
‘C, into Eq.(7), so that (11)—(13), but it does mean that we cannot construct a Lind-
4 . blad master equation directly from these equatiis [In
- i _ Tt / part, this is because Eq&l1)—(13) do not contain the con-
gt Ca(t)= ~woCa(t) Jodt G-the(t), O jugatesQ?, Q% .] To resolve this problem we employ an

. _ orthogonal transformation which forms the true pseudomode
where the difference kern€b(t—t’) can be placed in the amplitudesa, ,a, from the amplituded; ,b,

form (r=t—t')

02 (= ‘ 02 | a;)_ 1 cosx i sina (bl). 15
G(T):ﬁf_ de(w)e"W:-Z 3§CdzD(Z)e—|zT a, lcoszy | —i Sine  cosy |\ b,

This transformation applies to poles which lie on a line par-
allel to the imaginaryw axis, the more general case is treated

in the limit where the sum ovex becomes an integral. Cru- 1N Ref.[9]. The anglex is complex, and when
cial assumptions about the form bf{w) have been made in . 2/~ 2

Eq. (10). Tcl? convert the line integbrfgil t)o a contour integral it exp(4ia)=05/01=—W,/W, (16
is assumed that the contribution from a large semicircle in
the lower-half plane is negligible. The residue theorem has
been used to evaluate the contour integral resulting in a sum d

of exponential terms typical of meromorphic functions with i gt Ca= woCat+ Qpay,
simple poles. Here two poles have been inclufledated at

z, and z,) in readiness foD(w) given by Eq.(1), but the

=Q0%e 117+ Q%1227 (10)

e obtain the well behaved equations

d

same result applies for other functioBsand generalization i It a;=zja,+Vay,
to more poles is possibl9]. We return to the case of a
double pole later in this paper. The valuesﬂﬁf andQ% are d
determined by the two residues and thus the normalization of ; ,
. i — a,=2za,+Va;+Qqc,, 1
D will mean thatQ2+ Q2=032. dt ©2 722 TEL TR0 an

Now we could try to solve Eq9) by Laplace transforms ]
(exactly, or approximately(see, e.9.[6,12,7), but here we Wherez/=w.—il'[/2,1=1,2, andl'j andV have been de-
observe that the integro-differential equati¢® [with G  fined above. These equations are well behaved because the
given by Eq.(10)] also results from the elimination of parametelV and the coupling}, are real. To construct the
b, ,b, from the differential equations master equatiof2) we build an unnormalized state vector in
the basis of the pseudomodes

| % Calt)= @oCalt) + €11y (1) +Qaby(1),  (11) |#(1)) =0[0)|0)1]0)+ €(1)[1)]0)1]0),
d +a,(1)|0)[1)1]0)2+a5(1)[0)|0)1]1),. (18)
iﬁ b1(1)=23D1(1) +QsCa(1), (12 By using Egs.(11)—(13) we can show that this state vector
satisfies d/dt|@(t)y=—iH|f(t)), where Hgg=Hy—
PR U E U IR it v St
The advantage of these equations, as compared to(Bqgs. ﬁ(t):Hj(t)|O><O|+|§/7(t))<@(t)|, (19

and (8), is that there are now onlthree amplitudes(when

D has two simple polgsThe amplitude®, ,b, behave simi- is in fact the solution to the master equati@. Here|0) is

larly to amplitudes of real modes, and have thus been calletb be identified with the pseudomode system vacuum state
the amplitudes opseudomodeiB,9]. The concept is similar |0)|0)4]0),, and the quantityI;(t) satisfies
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d d
Jt IT;(t) =T 1ay(t) |2+ T jla(t)[2. (20 P a,=weay+Va;+Q0Cy, (23

Thus the ternI;(t)[0)(0| in the density matriX19) repre-
sents the effect of entanglement of the two-level system wit
the original bath modes. The ground-state population of th
two-level system(after tracing out the field modgss

IT; (1) + | col >+ a1 (t)| >+ [ay(t)|? which naturally obeys the
same time evolution ag,|?+ =, |c,|? in the original heat-
bath model.

Now we return to the problem of a second-order pole,
where we have a meromorphic function, but EXQ) is not
valid. As an example, we suppose that instead of(Egwe
have the squared Lorentzian

I){vhere V=T/2. Note that the first pseudomode decays at
éwice the normal Lorentzian rate, whereas the second mode
does not decay at all. The associated master equation is then
found to be,

d . ) R ta A ~ A~ AnAta
a p= —|[Ho,p]—r(alalp—2a1a1+pa1a1)1 (24)

with the Hamiltonian(3) andV as given above. As before,
this result follows without Born or Markov approximations.
32 In conclusion, we have seen that the dynamics of a two-
5 7, (21) state system coupled to a zero-temperature resonant bath can
[(0=w)™+(I'/2)7] be represented by an appropriate form of the damped Jaynes-
Cummings model in which the two-state system is coupled
to a lossy pseudomode or modes. In the case where the bath
G(1)=Q5(1+T r/2)eliwc= 727, (22)  resonancd(w) has two nearby poles in the complex plane
we have seen that it is possible for the pseudomodes to be-
Then the first pseudomode may be defined as in Eogcome coupled leading to phenomena such as population trap-
(14), and for the second pseudomodeb,(t)= ping. This is seen to be related to a change in sign between
—iQof5dt’ (iz)7)exp(—iz7)cy(t’) with 7=t—t’. If we now the residues oD (w). Then by using the pseudomode basis
leta;=b,;+b, anda,= —ib, we will find that the two-level we may derive master equations that are exact, for the given
system and two pseudomode amplitudes obey the differentidinctionsD (w), i.e., determined without the use of the Born
equations, or Markov approximations. The formalism can be extended
q to cover many function® (o).
i = Ca= woCat+Qpay, i . .
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D(w)=

for which we will find that

d
i & al=(a)c—ir)al+vaz,
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