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Decay of an atom coupled strongly to a reservoir
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~Received 2 December 1996!

An approach to the decay of a two-state quantum system coupled to a resonant environment is developed in
terms of exact ~nonperturbative! master equations. Starting from a quantum optical model of a two-level
system coupled to a heatbath, it is shown that the effect of the bath can be replaced by one or morepseudo-
modes. This description is valid for a wide class of analytic density-of-state functions and it leads to exact
master equations which fully describe the non-Markovian decay of the quantum system without the use of
perturbation theory, the Born approximation, or the Markov approximation. Two examples are given: a simple
model of a density-of-states gap which has two poles, and a non-Lorentzian resonance.
@S1050-2947~97!09906-X#

PACS number~s!: 42.50.Md, 31.70.Hq, 42.50.Lc
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The decay of quantum systems has long been of inte
and encompasses the fundamental problem of a small q
tum system coupling to a large world. The approaches u
are many and include Fermi’s golden rule, the Weissko
Wigner approach, the method of Heitler-Ma, Goldberg
Watson, and the Lehmberg and Agarwal master equat
@1#. The master equation approaches, describing the
evolution of the density matrix, are usually used in conjun
tion with time-dependent perturbation theory. The purpose
this short paper, however, is to show that master equat
can be used to describeexactly the atomic dynamics of the
decay problem—even when the bath has a complica
structure. The key tool used to do this, is the concept o
pseudomode, a mode, or modes, which completely replac
the heatbath. The importance of exact approaches is of
rent interest because of the recent experimental realizat
of quantum systems strongly interacting with resonators b
in the context of cavity QED@2# and semiconductor micro
cavities@3#.

We will consider a two-level system coupled to a bath
oscillators with a density of states described by a freque
dependent functionD(v). Then we know that if the function
D(v) has a pole close to the realv axis, the short-time
behavior of the two-level system is modified and leads
exponential decay. However, if there are two or more po
close to the realv axis, it is not clear that a simple picture o
exponential decay will apply because the poles can inter
with each other. In this paper we consider the class of fu
tionsD comprised of meromorphic functions, that is, smoo
functions, without branch cuts, that can be expressed as
tios of polynomials ofv. The first example will show that if
the residues of the meromorphic functionD can change sign
we obtain a coupling between the decay channels which
would not find in the ordinary case of residues with the sa
sign. Of course, the chosen functionD(v) may well be an
approximation to the real density-of-states function, but
important point is that it should be a good approximation
the region of interest. This also enables us to use the entiv
axis, an approximation which neglects threshold effects@4#.
However, such threshold effects, due to the turn on ofD at
v50 are negligible at optical frequencies and will on
slightly modify the long-time behavior of the decay. Like
wise, the realistic behavior ofD(v) asv→` @5# will devi-
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ate from the model function and lead to slight changes in
behavior ast→` and will be ignored here. Thus we focus o
model, normalizable, meromorphic functionsD(v).

We consider first a simple model of a gap in the phot
density of states where the functionD(v) is comprised of
two Lorentzians, of which the second has a negative sig

D~v!5W1

G1

~v2vc!
21~G1/2!2

2W2

G2

~v2vc!
21~G2/2!2

~1!

~with G2,G1 to ensure positivity ofD!. The negative
Lorentzian introduces a dip into the density of states wh
can inhibit spontaneous emission in the region of the
@6,7# ~at least in the weak-coupling limit where Fermi
golden rule is appropriate!. The positive Lorentzian models
broad, resonant background structure. For consistency
previous works@8,9# we choose here to normalizeD(v) to
2p and this means that the two weights must sati
W12W251. For a perfect gap, whereD(vc)50, we would
also haveW1 /G15W2 /G2 . The two poles inD are located
atvc2 iG1/2, vc2 iG2/2, and we note that there is a chan
in sign of the residues ofD between these poles. The anal
sis given in Eqs.~9!–~20! below shows the key result that th
associated,exact, master equation is@9#

d

dt
r̂52 i @H0 ,r̂ #2

G18

2
~ â1

†â1r̂22â1r̂â1
†1 r̂â1

†â1!

2
G28

2
~ â2

†â2r̂22â2r̂â2
†1 r̂â2

†â2! ~2!

with the Hamiltonian

H05v0~ ŝz11!/21vcâ1
†â11vcâ2

†â21V~ â1
†â21â1â2

†!

1V0~ â2
†ŝ21â2ŝ1!, ~3!

where the operatorsŝ6 are the usual Pauli raising and low
ering operators for the two-level system with the commuta
@ŝ1 ,ŝ2#5sz . The operatorsâ1 , and â2 are the annihila-
tion operators for two modes with decay rates

G185W1G22W2G1 ,
4636 © 1997 The American Physical Society
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G285W1G12W2G2 . ~4!

The two modes are coupled byV5AW1W2(G12G2)/2. The
atom couples to the continuum withV0 , and the frequency
of the two-level transition isv0 . It is to be stressed tha
neither the Born nor Markov approximations have be
made and that the only approximation is the chosen form
D in Eq. ~1!.

The master equation~2! is a two-mode version of the
damped Jaynes-Cummings model@10# with the addition of a
mode-mode coupling in the Hamiltonian. We will clearly s
that if we remove the negative Lorentzian,W2→0
(W1→1), the master equation reduces to a single-m
damped Jaynes-Cummings model: the exact result fo
Lorentzian resonance~without Born or Markov approxima-
tions!. The two modes are clearly connected to the t
Lorentzians in Eq.~1!, but their decay rates are differen
from the widths of the Lorentzians. The mode-mode co
pling is a direct result of the negative Lorentzian; it sca
with AW2 and disappears as the widths of the two Loren
ians become equal~resulting in a single positive Lorentzian!.
There would also be no mode-mode coupling if we cons
ered two Lorentzians withpositiveweights instead of Eq
~1!. In that case we would simply obtain a two-mode damp
Jaynes-Cummings model with decay rates givenexactlyby
the widths of the Lorentzians@9#, in contradistinction with
the decay rates in the master equation~2!.

We can examine the decay dynamics of the band-gap
tem by a numerical integration of the master equation~2!. An
example is given in Fig. 1 whereG2 is much smaller than
G1 . As a result the modes have very different decay ra
There is a fast decaying background mode (G28), and a

FIG. 1. The probabilityP5uca(t)u2 of finding the excited
atomic state in the the band-gap model~1!. The solid curve shows
the result from the density-matrix master equation~2!. The nearly
coincident chained curve shows the result from integrating the h
bath equation~5! with just 30 modes equally spaced betwe
65V0 . The parameters used are:G1 /V0510, G2 /V051, and
W151.1 (W250.1). From these parameters we derive the fast
cay rateG28/V0510.9 and the slow rateG18/V050.1. The coupling
between the two pseudomodes is then approximately 1.49.
dashed curve shows the decay in the absence of a gap (W250).
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slowly decaying band-gap mode (G18), and thus Fig. 1 shows
a two-step decay process. The upper-state population
decays rapidly as a component of the initial population is l
to the background mode. This decay is not exponential
cause of the strong coupling. Thereafter, the state dec
very slowly because of the slow band-gap mode decay r
The dashed curve in the figure shows the fast decay in
absence of a density-of-states gap. Clearly the gap inh
the decay of the system, even when the coupling stren
V0 is comparable to the width of the gap. If we had a zero
the density-of-states functionW1 /G15W2 /G2 , the decay
rate of one of the modes becomes zero (G2850), and then we
have some permanently trapped atomic population~if the
two-level system is resonant with the gap!.

We note that in the limitG1→`, the density of states
D(v) becomes very flat away from the gap. In this limit w
will obtain results for the atomic dynamics that agree w
the Laplace transform solutions forca given in Ref. @7#.
Also, if the couplingV0 becomes very weak, then the osc
latory exchange of energy with the resonance ceases an
obtain exponential decay consistent with the Wign
Weisskopf approximation and Fermi’s golden rule. In th
regime the field modes can be adiabatically eliminated.

To test the master-equation interpretation we can also
form a numerical integration of the underlying heatba
model ~in the rotating-wave approximation!,

H5(
l

vlal
†al1v0~ ŝz11!/21(

l
gl~al

†ŝ21alŝ1!,

~5!

wheregl is the frequency dependent coupling between
atomic transition and the reservoir modes with labelsl and
frequencyvl . The relationship between the couplingsgl

and the normalized density-of-states functionD(v) is

rl~gl!25V0
2D~vl!/~2p!, ~6!

whererl is the density of reservoir modes. In this way th
shape of the bath resonances are described byD(v) and the
strength of the coupling is described byV0 .

The time evolution of the underlying system can then
described by a set of amplitudes:ca for the excited atomic
state~and empty bath modes!, cl for an excited bath mode
~atom in ground state!, c0 for the atom in the ground state
with an empty bath. It is convenient to move to an intera
tion representation with the time-dependent transformati
c̃a(t)5eiv0tca(t), c̃l(t)5eivltcl(t), and then by utilizing
the Schro¨dinger equation with the Hamiltonian Eq.~5! we
obtain the following well-known coupled equations@1#:

i
d

dt
c̃a5(

l
gle

2 iDltc̃l , ~7!

i
d

dt
c̃l5gle

iDltc̃a , ~8!

where the detuning of the atomic transition from the mo
l is Dl5vl2v0 . The amplitudec0 is constant in time.

Then to simulate the heatbath with a large but finite nu
ber of discrete modes, we may numerically integrate Eqs.~7!
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and ~8! with the couplingsgl determined from Eq.~6! and
the chosen, normalized functonD. This type of approach ha
also been taken for explicitly discrete systems@11#, but here
the density of states should be sufficiently large to av
recurrences. In Fig. 1 the result is shown forD(v) given by
Eq. ~1! and with just 30 heatbath modes. There are sli
deviations from the master-equation result, but as the num
of heatbath modes is increased it is found that the differen
become indiscernible.

We can formally establish the exact correspondence
tween the master equation~2! and a density-of-states func
tion, such as Eq.~1!, by examining the integro-differentia
equation associated with the continuum Eqs.~7! and~8!. To
obtain this we integrate Eq.~8! and substitute the result fo
c̃l into Eq. ~7!, so that

d

dt
ca~ t !52 iv0ca~ t !2E

0

t

dt8G~ t2t8!ca~ t8!, ~9!

where the difference kernelG(t2t8) can be placed in the
form (t5t2t8)

G~t!5
V0

2

2p E
2`

`

dv D~v!e2 ivt52
V0

2

2p R
C
dz D~z!e2 izt

5V1
2e2 iz1t1V2

2e2 iz2t, ~10!

in the limit where the sum overl becomes an integral. Cru
cial assumptions about the form ofD(v) have been made in
Eq. ~10!. To convert the line integral to a contour integral
is assumed that the contribution from a large semicircle
the lower-half plane is negligible. The residue theorem
been used to evaluate the contour integral resulting in a
of exponential terms typical of meromorphic functions w
simple poles. Here two poles have been included~located at
z1 and z2! in readiness forD(v) given by Eq.~1!, but the
same result applies for other functionsD and generalization
to more poles is possible@9#. We return to the case of
double pole later in this paper. The values ofV1

2 andV2
2 are

determined by the two residues and thus the normalizatio
D will mean thatV1

21V2
25V0

2.
Now we could try to solve Eq.~9! by Laplace transforms

~exactly, or approximately! ~see, e.g.,@6,12,7#!, but here we
observe that the integro-differential equation~9! @with G
given by Eq. ~10!# also results from the elimination o
b1 ,b2 from the differential equations

i
d

dt
ca~ t !5v0ca~ t !1V1b1~ t !1V2b2~ t !, ~11!

i
d

dt
b1~ t !5z1b1~ t !1V1ca~ t !, ~12!

i
d

dt
b2~ t !5z2b2~ t !1V2ca~ t !. ~13!

The advantage of these equations, as compared to Eqs~7!
and ~8!, is that there are now onlythreeamplitudes~when
D has two simple poles!. The amplitudesb1 ,b2 behave simi-
larly to amplitudes of real modes, and have thus been ca
the amplitudes ofpseudomodes@8,9#. The concept is similar
d
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to the faked continuumintroduced by Stenholm@13#. These
amplitudes can be considered to be defined by Eqs.~12! and
~13!, i.e.,

bl~ t !52 iV le
2 izl tE

0

t

dt8eizl t8ca~ t8!. ~14!

for l51,2. Now we will introduce parameters specific to t
band-gap model ~1!. The poles are located a
z15vc2 iG1/2,z25vc2 iG2/2 and from the residues ofD
we will find that V1

25W1V0
2 andV2

252W2V0
2. We note

that the second residue is negative, because of the neg
weight of the Lorentzian, and as a result the couplingV2 is
imaginary. In itself, this does not affect the validity of Eqs
~11!–~13!, but it does mean that we cannot construct a Lin
blad master equation directly from these equations@9#. @In
part, this is because Eqs.~11!–~13! do not contain the con-
jugatesV1* , V2* .# To resolve this problem we employ a
orthogonal transformation which forms the true pseudom
amplitudesa1 ,a2 from the amplitudesb1 ,b2

S a1a2D5
1

Acos2a
Fcosa2 i sina

i sina
cosa G S b1b2D . ~15!

This transformation applies to poles which lie on a line p
allel to the imaginaryv axis, the more general case is treat
in Ref. @9#. The anglea is complex, and when

exp~4ia!5V2
2/V1

252W2 /W1 ~16!

we obtain the well behaved equations

i
d

dt
ca5v0ca1V0a2 ,

i
d

dt
a15z18a11Va2 ,

i
d

dt
a25z28a21Va11V0ca , ~17!

wherezl85vc2 iG l8/2, l51,2, andG l8 andV have been de-
fined above. These equations are well behaved becaus
parameterV and the couplingV0 are real. To construct the
master equation~2! we build an unnormalized state vector
the basis of the pseudomodes

uc̃~ t !&5c0u0&u0&1u0&21ca~ t !u1&u0&1u0&2

1a1~ t !u0&u1&1u0&21a2~ t !u0&u0&1u1&2 . ~18!

By using Eqs.~11!–~13! we can show that this state vecto
satisfies d/dt uc̃(t)&52 iH effuc̃(t)&, where Heff5H02
i (G18/2)â1

†â12 i (G28/2)â2
†â2 and â1 annihilates u1&1 , etc.

Then it is easily shown that the density matrix

r̂~ t !5P j~ t !u0&^0u1uc̃~ t !&^c̃~ t !u, ~19!

is in fact the solution to the master equation~2!. Here u0& is
to be identified with the pseudomode system vacuum s
u0&u0&1u0&2 , and the quantityP j (t) satisfies
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d

dt
P j~ t !5G18ua1~ t !u

21G28ua2~ t !u
2. ~20!

Thus the termP j (t)u0&^0u in the density matrix~19! repre-
sents the effect of entanglement of the two-level system w
the original bath modes. The ground-state population of
two-level system~after tracing out the field modes! is
P j (t)1uc0u21ua1(t)u21ua2(t)u2 which naturally obeys the
same time evolution asuc0u21(luclu2 in the original heat-
bath model.

Now we return to the problem of a second-order po
where we have a meromorphic function, but Eq.~10! is not
valid. As an example, we suppose that instead of Eq.~1! we
have the squared Lorentzian

D~v!5
G3/2

@~v2vc!
21~G/2!2#2

, ~21!

for which we will find that

G~t!5V0
2~11Gt/2!e~ ivc2G/2!t. ~22!

Then the first pseudomode may be defined as in
~14!, and for the second pseudomode,b2(t)5
2 iV0*0

t dt8( izlt)exp(2izlt)ca(t8) with t5t2t8. If we now
let a15b11b2 anda252 ib2 we will find that the two-level
system and two pseudomode amplitudes obey the differe
equations,

i
d

dt
ca5v0ca1V0a2 ,

i
d

dt
a15~vc2 iG!a11Va2 ,
f
p
d

a,

h,
h
e

,

q.

ial

i
d

dt
a25vca21Va11V0ca, ~23!

where V5G/2. Note that the first pseudomode decays
twice the normal Lorentzian rate, whereas the second m
does not decay at all. The associated master equation is
found to be,

d

dt
r̂52 i @H0 ,r̂ #2G~ â1

†â1r̂22â1â1
†1 r̂â1

†â1!, ~24!

with the Hamiltonian~3! andV as given above. As before
this result follows without Born or Markov approximations

In conclusion, we have seen that the dynamics of a tw
state system coupled to a zero-temperature resonant bat
be represented by an appropriate form of the damped Jay
Cummings model in which the two-state system is coup
to a lossy pseudomode or modes. In the case where the
resonanceD(v) has two nearby poles in the complex pla
we have seen that it is possible for the pseudomodes to
come coupled leading to phenomena such as population
ping. This is seen to be related to a change in sign betw
the residues ofD(v). Then by using the pseudomode bas
we may derive master equations that are exact, for the g
functionsD(v), i.e., determined without the use of the Bo
or Markov approximations. The formalism can be extend
to cover many functionsD(v).
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