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Transverse excess noise factor in geometrically stable laser resonators
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The excess noise factor due to the nonorthogonality of the transverse modes of a geometrically stable cavity
subject to large diffraction losses is calculated. This calculation is based on an exact determination of the
transverse field distribution of the cavity fundamental eigenmode. It is shown that when the modes become
essentially determined by diffraction, the transverse modes are far from being orthogonal, leading to the
appearance of a large excess noise factor that must multiply the standard Schawlow-Townes linewidth. More-
over, in the presence of two diffracting apertures, the excess noise factor is shown to exhibit a resonant
behavior reminiscent of the one observed in unstable cavities. We estimate that, in the case of circular
apertures, excess noise factors as large as 100 can be experimentally measured using a high-gain gas micro-
laser.[S1050-294{@7)09706-(

PACS numbdis): 42.55.Ah, 42.60.Da

[. INTRODUCTION non-negligible excess noise factor due to the nonorthogonal-
ity of the transverse modes in stable resonators has, to our
The linewidth of a monomode laser is fundamentally lim- best knowledge, been overlooked. The aim of this paper is
ited by spontaneous emission into the laser mode, leading ©@Pnsequently to compute the excess noise factor in a non-
the well-known Schawlow-Townes linewidttil]. This  Hermitian stable resonator and to discuss the possibility to
theory predicts a Lorentzian line shape for the laser powepbserve it experimentally. Section Il is hence devoted to the
spectral density, which has been found in agreement wit§xact calculation of the fundamental mode of a stable cavity
experiments[2—4]. However, more recently, it has been containing a single aperture and to the determination of the
shown that the nonorthogonality of the different laser modegorresponding excess noise factor. In Sec. lll, we wonder
can give rise to an enhancement of this fundamental |a5é/yhether the resonant behavior of the excess noise factor in
linewidth. This so-called excess noise factor was first disunstable cavities can equivalently occur in a geometrically
cussed5,6] and observed7,8] in the case of gain-guided Stable cavity, when a second aperture is introduced. Section
semiconductor lasers and amplifiers. Independently, Siegmdy is then devoted to a discussion of the possible observation
[9-11] has shown that the non-Hermitian nature of theOf these phenomena.
Huygens-Fresnel operator for one round-trip in unstable
resonators leads to peculiar nonorthogonality properties of Il. SINGLE APERTURE STABLE CAVITY
the transverse modes of such resonators, and hence to large
excess noise factors. In such geometrically unstable cavities,
excess noise factors as large as a fewt hve been pre-
dicted[11-17 and observefil8-21. Physically, this effect Let us consider the cavity schematized in Figg),lwhich
has been attributed to the adjoint coupling of the vacuuntonsists of a spherical mirrdil ; (radius of curvaturd?) and
fluctuations into the laser resonaf@?2,23, exhibiting reso- a plane mirrorM,. If the cavity lengthL is smaller than
nances for the values of the equivalent Fresnel number of thR, the cavity is geometrically stable. Then, if the transverse
cavity that lead to the higher lossiis,21]. Concerning geo- dimensions of the cavity are large enough and if the cavity
metrically stable laser cavities, it has recently been showmbeys a cylindrical symmetry, the transverse modes can be
that large output coupling could lead to a nonorthogonalityobtained from the resolution of the Huygens-Fresnel
of the longitudinal modes of the cavity, and thus to an en-eigenequation given by
hancement of the Schawlow-Townes linewidth of the laser
[24-24. However, it is well known that even in the case of
a geometrically stable cavity, the Huygens-Fresnel kernel is
in general non-Hermitiah10]. Consequently, the transverse
modes of a geometrically stable resonator must also be nonvith the kernel
orthogonal. This fact has already been experimentally con-
firmed through the peculiar evolution of the diffraction 2T T ' ’ 2T
losses in a multiapertured stable resong®. Indeed, ina KW =gy 17~ exg = gy (Ar'"+Dr9) 13| =11’ |,
stable cavity, once a first aperture has been introduced to 2
select the fundamental mode, the diffraction losses exhibit an
oscillating behavior versus the diameter of a second aperturgthere the wave front at the considered plane inside the cav-
a behavior exactly equivalent to the one observed in unstabliéy is u(r)exfdjl¢] in the (r,¢) cylindrical coordinate sys-
cavities. Nevertheless, the possibility for the existence of dem, vy is the associated eigenvaluejs the vacuum wave-

A. Exact calculation of the fundamental mode
of a stable cavity

yu(r)=J?dr’ r'K(r,r’yu(r’), (D)
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L This leads to modifications of the mode profile with respect
M, to the usual Gaussian mof28—32. In particular, the mode
profile is in general different for the two directions of propa-
gation[see Fig. 1b)].

In order to illustrate this point, we have numerically com-
puted the fundamental mode profile of the cavity of Fig)1
with R=0.6 m,L=0.59 m,A=3.39 um, and for different

(@) ?\
é/,___

M M values of¢,. To compute this mode, one can solve E4.
7 o1 al with 1=0 iteratively using a quasifast Hankel transform al-
— gorithm [33,34]. In particular, such a Fox-Li—-type calcula-
(b) > tion [35,36] provides the modulugy| of the eigenvalue that
/ is related to the round-trip intensity diffraction lossEsof
% | the fundamental mode in the following manner:
M, 4 0y M, r=1-|y? (5)
7\ I? The mode profileu,(r) on mirror M, can be obtained by
(© > -+ propagatinguy(r) through the cavity using the following
g / |£ integral:
R *° 27 (12
Uy(r)= —— dr’ r'ug(r’)
FIG. 1. (a) Geometrically stable cavity of length built with a Bioh Jo
a

spherical mirroM; (radius of curvaturdR>L) and a plane mirror

M. The fundamental TEM, eigenmode .has the same shapg in Xexp{ Sy — (Alzr’2+D12r2)}Jo( 2m rrr),
both directions of propagatiorib) The cavity now contains a cir- BoA BoN

cular diffracting aperture of diametes,, which alters the mode 6)
profile. In particular, the two directions of propagation are no longer

equivalent(c) A second aperture of diamete, is introduced near

the plane mirror, where theAB CD matrix corresponding to propagation from

mirror M, to mirror M, is given by

(7)

length of light,J, is the Bessel function of ordéy andl is an (Alz By,
1R 1)

integer. The coefficients\, B, and D are those of the C.. D
ABCD matrix for one round trip inside the cavity starting 12 =12
from the chosen reference plane. For reasons of symmetr
we choose this reference plane at the middle of the len
equivalent to the reflection on the spherical mirkby. Then
the ABCD matrix is given by

_(1—L/R L

¥he resulting mode intensity profiles on mirrok$; and

R/I2 for different values of¢; are shown in Figs. @ and
2(b), respectively. These figures also display the Gaussian
profiles of the unaltered TE)J mode (obtained forg, =)
whose sizes are/;=2.23 mm andwv,=288 xm on mirrors

3 M, and M,, respectively. These figures illustrate the fact
that the diffracting aperture does not only introduce losses

. S for the fundamental cavity mode, it also strongly modifies its
As is well known, in this case, the Huygens-Fresnel transfor-Sha e[27-33. In particular, one can observe in Figa@
mation of Eqg.(1) is Hermitian. This means that the two P ; P ' g

. e Z X that the mode profile on the spherical mirror oscillates
opposite directions of propagation inside the cavity are . .

) ; . around the TEM, mode shape when the diffracting aperture
equivalent. In particular, the fundamental eigenmode of the

L : : diameter¢, is increased. On the contrary, on the plane mir-
cavity is the usual TEN} Gaussian mode, which has the . - :
same shape in both directiofs0], as seen in Fig. (&). ror M, [see Fig. 2b)], when ¢, is increased, the mode di-

However, in general, to select this fundamental mode, Ongmeter decreases until it reaches the unaltered ghEMuss-

has to introduce a diffracting aperture inside the cavity. If we'd" profile. In particular, these profiles confirm the fact that

L . : in the presence of strong diffraction, the mode becomes dif-
I((igzetlr]i:]h;)sezg?ézr aperture on the spherical mimy, Eq. ferent for the two directions of propagation, as schematized

in Fig. 1(b). We can consequently expect the appearance of a
non-negligible excess noise fac{d5].

A B) [ 1-2LIR 2L
C D/”|-2R(1-2L/R) 1-2L/R/

2’7T_|+1 /2 ro '
YU(r) =5 | . dr’ r’ ug(r’)

B. Calculation of the excess noise factor

In the general case of non-Hermitian cavitié®,11], the
excess noise factor is obtained from the biorthogonality
properties of the modes of the cavity {li"(r,¢)} is the set
where ¢, is the diameter of the aperture and where we callof the eigenmodes of the cavity, associated with the eigen-
uy(r) the field distribution on mirrorM;. Then the values{y} [see Eq.(4)], these eigenmodes are in general
Huygens-Fresnel operator of E@) is no longer Hermitian. not orthogonal:

JilBx

oo 2
xex;{—j a(Ar’erDrz) —rr’), (4)
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FIG. 2. Intensity profiles of the fundamental mode of the cavity the fundamental eigenmodenhich has no dependence ¢
of Fig. 1(b) on the(a) spherical andb) plane mirrors computed for - 0N the plane mirror, the excess noise factor for this funda-
different values of ;. The values of the parameters axe ~Mmental mode is given by
=3.39um, L=0.59 m, andR=0.6 m. The profiles corresponding © 2
[, ar o]
0

to the usual TEM, mode are labeled, =oo.
o ” 0= = 2 (12)
(u(m),u(m):f d(,of dr rfu™(r,@)1*u™(r, @) # Smn- fo dr rluy(r)]?
0 0
® Figures 3a) and 3b) display the evolutions of the losses

However, it is always possible to define a set of fieldsl @nd the excess noise factdp computed versug, from

m(p. that obev the followina biorthogonality rela- the mode profiles of Fig.(®). One can notice that the usual
Ei(c? n s:( )} y wing bl 9 'y decrease of the losses versfis [37] is accompanied by a

decrease of the excess noise factor. One must also notice that
o w0 this excess noise factor can reach large values, as large as
<¢<m),u(”))=f ngJ dr ro™(r,e)u™(r, @)= mn. 10%, when ¢, gets very small compared to the unaltered
0 0 mode diameter &, . Of course, such high values of the ex-
€) cess noise factor occur for high losses, as will be discussed in

. i Sec. IV.
Then these field§s(™(r,¢)} can be shown to be the eigen-

modes of the cavity propagating in the opposite direction, 1. MULTIAPERTURED STABLE CAVITY
associated with the same eigenvalyé® [14]. Then, if we
normalize the modes of the cavity according to

As recalled in the Introduction, once a first aperture has
been introduced inside a stable cavity, as in Sec. Il, this
o o cavity becomes non-Hermitian. It then behaves in a manner
(u(“),u(m):f d(pf dr rlu™(r,e)[?=1, (10)  similar to an unstable cavity. In particular, if one introduces
0 0 a second aperture inside the cavity, the losses exhibit oscil-
) . o lations versus the diameter of this second aper{@8.
the excess noise factor associated to modegiven by[11]  \joreover, the diffraction losseE for one round-trip inside
o . the cavity can be reduced by the introduction of the second
Kn=<¢(”),¢(”)>=f dq,f dr r|¢(n)(r,¢)|2> 1. (11 aperture. I_n unstable cavities, the oscillation of Fhe losses is
0 0 accompanied by resonances of the excess noise factor. To
explore the existence of such resonances in a stable cavity,
In the cavity of Fig. 1b) that we consider here, the problem we consider the cavity of Fig.(¢), which now contains two
is simplified since the plane mirrdd , is a plane of symme- apertures of diameterg, and ¢,, located on mirrorsM
try of the cavity[13,14]. Then, on mirrorM,, the adjoint and M,, respectively. To compute the fundamental eigen-
modes{ 4" (r,¢)} have the same profiles as the eigenmodesnode of such a cavity, one must solve the two following
{u™(r,)}. Then, ifuy(r) is the transverse dependence of coupled Huygens-Fresnel equations:
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2 $1/2
Yila(ra) = g— j dryry uy(ry)ex

0

2 $ol2
Youi(ry)=g— f dry ry uy(ro)exp —
Boh Jo

where uy(r1) and u,(r,) are the wave fronts on mirrors
M, and M, respectively, andy,, and y,; give the funda-
mental mode eigenvalug

Y= Y12Ya21- (14

The coefficientsA;,, Biy, Dip, Ay, Byg, andDy; of Egs.
(13) are deduced from thABCD matrices for the two di-

T ) ) 2
_J ﬁ (A12I’1+ D12I’2) ‘JO @ rlr2 y (13@
. 9 5 2
J B (A2arz+Dairf) [Jo Boh rara/, (13b

The result of such a calculation is shown in Fig. 4. Figure
4(a) displays the evolution of the losses and the excess noise
factor in our cavity versus diametef, of the second aper-
ture, for a fixed valuep,=4.2 mm of the diameter of the
first aperture. Such an aperture alone leads to a reasonable
amount of diffraction lossed(=13%), usually sufficient to
select the fundamental mode in high-gain lasers. As already
seen in Ref[27], when ¢, is increased, the lossésof the

rections of propagation through the cavity, given, respecmode oscillate near the valud €13%) obtained in the

tively, by Eq.(7) and by

A21 BZl _ ( A12 BlZ T: 1 L
CZ]_ DZl Clz D12 _l/R 1_L/R ’
(15

presence of the first aperture only. In particular, 65
=1.2 mm, these losses can be reduced because of the intro-
duction of the second aperture. Moreover, one can see that
the excess noise factdt, oscillates with¢,, its maxima
(minima) corresponding to the maxim@ninima) of I'. In
particular, for¢,=1.0 mm, its value can decrease frafg

Here again, the problem can be solved iteratively. Now, to=1.27 toK,=1.1.

compute the excess noise factor, one must notice that mirror This oscillating behavior is still more visible in the results

M, no longer constitutes a plane of symmetry of the resonaof Fig. 4(b), for which the first apertureg, = 1.3 mm) alone

tor. Equation(12) is hence no longer valid and, using Eq. introduces much more diffraction lossds=89.9%). In this

(12), the excess noise factor for the fundamental eigenmodgase, in the presence of the second aperture, the excess noise

is given by

U dr r|u2(r>|2Hf¢2/2dr r|u2<r>|2}
0 0

KOZ $ol2 2 . (16)
f dr rluy(r)]?
0
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factor oscillates betweel,=2.8 (for ¢,=1.7 mm) and
Ko=9 (for ¢,=2.6 mm. Here again, the oscillations of

K, match the oscillations of the lossds as in unstable
cavities, but the resonances are far less sharp than in unstable
cavities. These results show that in such a stable cavity, the
excess noise factor can increase with the aperture diameter,
and not only decrease monotonically.

IV. DISCUSSION AND CONCLUSION

The results of Fig. @) show that contrary to what is
usually stated, geometrically stable cavities can exhibit ex-
cess noise factors far larger than 1. Of course, this occurs just
below the cavity stability limit L<R) and for large values
of diffraction losses, i.e., when the eigenmode of the cavity
is essentially determined by diffraction, as in the case of
geometrically unstable cavities. However, it seems possible
to observe such large values of the excess noise factor in a
stable cavity. Let us recall that to observe the fundamental
linewidth of a laser, one must heterodyne the output beam.
This has been performed either by heterodyning the laser
output with another lasd8,4], by self-heterodyning the out-
put beam of the laser thanks to a Michelson interferometer
including a long delay lin¢20,38—40, or by monitoring the
ot-0~ beat note inside a quasi-isotropic high-gain gas laser
submitted to a longitudinal magnetic figld1,41,43. In this
latter case, using a He-Xe laser, unsaturated gain coefficients
as large as 250 dB/m can be reachid@]. Consequently,
using a small 5-cm-long laser, one can expect a 12-dB
single-pass gain, and hence reach threshold even with 99.6%

FIG. 4. Computed evolutions of the intensity losses per roundlosses per round-trip inside the cavity. If one refers to the

trip I (M) and the excess noise factidy (®) of the fundamental
mode of the cavity of Fig. (t) vs ¢,, with the parameters used in
Fig. 2 and with(a) ¢;=4.2 mm andb) ¢;=1.3 mm.

results of Fig. 3, this means that we could probably observe
excess noise factors due to the nonorthogonality of the trans-
verse eigenmodes of a stable cavity as large as 100 in such a
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high-gain gas microlaser. Such a large value confirms theeviations from standard predictions for the fundamental la-
fact that once diffraction losses become important, a geoser linewidth, due to nonorthogonality of the transverse
metrically stable cavity behaves as an unstable[@fe This  eigenmodes in stable cavities.

fact has also been confirmed by the fact that in a stable cavity

containing two apertures, the excess noise factor behaves

resonantly with the diameter of one of t_he apertures. _These ACKNOWLEDGMENTS
resonances are of course far less sharp in stable cavities than
in unstable cavities. However, the results of Figh)4show This work was partially supported by the Direction de la

that such variations of the excess noise factor are largRecherche et de la Technologie and by the ConsaiidRal
enough to be experimentally observable. One can thus expedé Bretagne.
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