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Transverse excess noise factor in geometrically stable laser resonators

Marc Brunel, Guy Ropars, Albert Le Floch, and Fabien Bretenaker
Laboratoire d’Electronique Quantique—Physique des Lasers, Unite´ Mixte de Recherche du Centre National de la Recherche Scientifi

6627, Universite´ de Rennes I, Campus de Beaulieu, F-35042 Rennes Cedex, France
~Received 6 February 1997!

The excess noise factor due to the nonorthogonality of the transverse modes of a geometrically stable cavity
subject to large diffraction losses is calculated. This calculation is based on an exact determination of the
transverse field distribution of the cavity fundamental eigenmode. It is shown that when the modes become
essentially determined by diffraction, the transverse modes are far from being orthogonal, leading to the
appearance of a large excess noise factor that must multiply the standard Schawlow-Townes linewidth. More-
over, in the presence of two diffracting apertures, the excess noise factor is shown to exhibit a resonant
behavior reminiscent of the one observed in unstable cavities. We estimate that, in the case of circular
apertures, excess noise factors as large as 100 can be experimentally measured using a high-gain gas micro-
laser.@S1050-2947~97!09706-0#

PACS number~s!: 42.55.Ah, 42.60.Da
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I. INTRODUCTION

The linewidth of a monomode laser is fundamentally lim
ited by spontaneous emission into the laser mode, leadin
the well-known Schawlow-Townes linewidth@1#. This
theory predicts a Lorentzian line shape for the laser po
spectral density, which has been found in agreement w
experiments@2–4#. However, more recently, it has bee
shown that the nonorthogonality of the different laser mo
can give rise to an enhancement of this fundamental la
linewidth. This so-called excess noise factor was first d
cussed@5,6# and observed@7,8# in the case of gain-guided
semiconductor lasers and amplifiers. Independently, Sieg
@9–11# has shown that the non-Hermitian nature of t
Huygens-Fresnel operator for one round-trip in unsta
resonators leads to peculiar nonorthogonality properties
the transverse modes of such resonators, and hence to
excess noise factors. In such geometrically unstable cavi
excess noise factors as large as a few 103 have been pre-
dicted@11–17# and observed@18–21#. Physically, this effect
has been attributed to the adjoint coupling of the vacu
fluctuations into the laser resonator@22,23#, exhibiting reso-
nances for the values of the equivalent Fresnel number o
cavity that lead to the higher losses@16,21#. Concerning geo-
metrically stable laser cavities, it has recently been sho
that large output coupling could lead to a nonorthogona
of the longitudinal modes of the cavity, and thus to an e
hancement of the Schawlow-Townes linewidth of the la
@24–26#. However, it is well known that even in the case
a geometrically stable cavity, the Huygens-Fresnel kerne
in general non-Hermitian@10#. Consequently, the transvers
modes of a geometrically stable resonator must also be
orthogonal. This fact has already been experimentally c
firmed through the peculiar evolution of the diffractio
losses in a multiapertured stable resonator@27#. Indeed, in a
stable cavity, once a first aperture has been introduce
select the fundamental mode, the diffraction losses exhibi
oscillating behavior versus the diameter of a second aper
a behavior exactly equivalent to the one observed in unst
cavities. Nevertheless, the possibility for the existence o
551050-2947/97/55~6!/4563~5!/$10.00
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non-negligible excess noise factor due to the nonorthogo
ity of the transverse modes in stable resonators has, to
best knowledge, been overlooked. The aim of this pape
consequently to compute the excess noise factor in a n
Hermitian stable resonator and to discuss the possibility
observe it experimentally. Section II is hence devoted to
exact calculation of the fundamental mode of a stable ca
containing a single aperture and to the determination of
corresponding excess noise factor. In Sec. III, we won
whether the resonant behavior of the excess noise facto
unstable cavities can equivalently occur in a geometrica
stable cavity, when a second aperture is introduced. Sec
IV is then devoted to a discussion of the possible observa
of these phenomena.

II. SINGLE APERTURE STABLE CAVITY

A. Exact calculation of the fundamental mode
of a stable cavity

Let us consider the cavity schematized in Fig. 1~a!, which
consists of a spherical mirrorM1 ~radius of curvatureR! and
a plane mirrorM2 . If the cavity lengthL is smaller than
R, the cavity is geometrically stable. Then, if the transve
dimensions of the cavity are large enough and if the cav
obeys a cylindrical symmetry, the transverse modes can
obtained from the resolution of the Huygens-Fres
eigenequation given by

gu~r !5E
0

`

dr8 r 8K~r ,r 8!u~r 8!, ~1!

with the kernel

K~r ,r 8!5
2p

Bl
j l11 expF2 j

p

Bl
~Ar821Dr 2!GJl S 2p

Bl
rr 8D ,

~2!

where the wave front at the considered plane inside the c
ity is u(r )exp@ jlw# in the (r ,w) cylindrical coordinate sys-
tem, g is the associated eigenvalue,l is the vacuum wave-
4563 © 1997 The American Physical Society
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4564 55BRUNEL, ROPARS, Le FLOCH, AND BRETENAKER
length of light,Jl is the Bessel function of orderl , andl is an
integer. The coefficientsA, B, and D are those of the
ABCD matrix for one round trip inside the cavity startin
from the chosen reference plane. For reasons of symm
we choose this reference plane at the middle of the l
equivalent to the reflection on the spherical mirrorM1 . Then
theABCDmatrix is given by

S AC B
D D5S 122L/R

22/R~122L/R!

2L
122L/RD . ~3!

As is well known, in this case, the Huygens-Fresnel trans
mation of Eq. ~1! is Hermitian. This means that the tw
opposite directions of propagation inside the cavity
equivalent. In particular, the fundamental eigenmode of
cavity is the usual TEM00 Gaussian mode, which has th
same shape in both directions@10#, as seen in Fig. 1~a!.

However, in general, to select this fundamental mode,
has to introduce a diffracting aperture inside the cavity. If
locate this circular aperture on the spherical mirrorM1 , Eq.
~1! then becomes

gu1~r !5
2p

Bl
j l11E

0

f1/2

dr8 r 8 u1~r 8!

3expF2 j
p

Bl
~Ar821Dr 2!GJl S 2p

Bl
rr 8D , ~4!

wheref1 is the diameter of the aperture and where we c
u1(r ) the field distribution on mirrorM1 . Then the
Huygens-Fresnel operator of Eq.~4! is no longer Hermitian.

FIG. 1. ~a! Geometrically stable cavity of lengthL built with a
spherical mirrorM1 ~radius of curvatureR.L! and a plane mirror
M2 . The fundamental TEM00 eigenmode has the same shape
both directions of propagation.~b! The cavity now contains a cir
cular diffracting aperture of diameterf1 , which alters the mode
profile. In particular, the two directions of propagation are no lon
equivalent.~c! A second aperture of diameterf2 is introduced near
the plane mirror.
ry,
s

r-

e
e

e
e

ll

This leads to modifications of the mode profile with resp
to the usual Gaussian mode@28–32#. In particular, the mode
profile is in general different for the two directions of prop
gation @see Fig. 1~b!#.

In order to illustrate this point, we have numerically com
puted the fundamental mode profile of the cavity of Fig. 1~b!
with R50.6 m, L50.59 m, l53.39mm, and for different
values off1 . To compute this mode, one can solve Eq.~4!
with l50 iteratively using a quasifast Hankel transform a
gorithm @33,34#. In particular, such a Fox-Li–type calcula
tion @35,36# provides the modulusugu of the eigenvalue tha
is related to the round-trip intensity diffraction lossesG of
the fundamental mode in the following manner:

G512ugu2. ~5!

The mode profileu2(r ) on mirror M2 can be obtained by
propagatingu1(r ) through the cavity using the following
integral:

u2~r !5
2p

B12l
E
0

f1/2

dr8 r 8u1~r 8!

3expF2 j
p

B12l
~A12r 8

21D12r
2!GJ0S 2p

B12l
rr 8D ,

~6!

where theABCDmatrix corresponding to propagation from
mirror M1 to mirrorM2 is given by

S A12

C12

B12

D12
D5S 12L/R

21/R
L
1D . ~7!

The resulting mode intensity profiles on mirrorsM1 and
M2 for different values off1 are shown in Figs. 2~a! and
2~b!, respectively. These figures also display the Gauss
profiles of the unaltered TEM00 mode~obtained forf15`!
whose sizes arew152.23 mm andw25288mm on mirrors
M1 andM2 , respectively. These figures illustrate the fa
that the diffracting aperture does not only introduce los
for the fundamental cavity mode, it also strongly modifies
shape@27–32#. In particular, one can observe in Fig. 2~a!
that the mode profile on the spherical mirror oscillat
around the TEM00 mode shape when the diffracting apertu
diameterf1 is increased. On the contrary, on the plane m
ror M2 @see Fig. 2~b!#, whenf1 is increased, the mode di
ameter decreases until it reaches the unaltered TEM00 Gauss-
ian profile. In particular, these profiles confirm the fact th
in the presence of strong diffraction, the mode becomes
ferent for the two directions of propagation, as schemati
in Fig. 1~b!. We can consequently expect the appearance
non-negligible excess noise factor@15#.

B. Calculation of the excess noise factor

In the general case of non-Hermitian cavities@10,11#, the
excess noise factor is obtained from the biorthogona
properties of the modes of the cavity. If$u(n)(r ,w)% is the set
of the eigenmodes of the cavity, associated with the eig
values$g (n)% @see Eq.~4!#, these eigenmodes are in gene
not orthogonal:

r
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^u~m!,u~n!&5E
0

2p

dwE
0

`

dr r @u~m!~r ,w!#* u~n!~r ,w!Þdmn .

~8!

However, it is always possible to define a set of fie
$f (m)(r ,w)% that obey the following biorthogonality rela
tions:

^f~m!,u~n!&5E
0

2p

dwE
0

`

dr rf~m!~r ,w!u~n!~r ,w!5dmn .

~9!

Then these fields$f (m)(r ,w)% can be shown to be the eigen
modes of the cavity propagating in the opposite directi
associated with the same eigenvaluesg (m) @14#. Then, if we
normalize the modes of the cavity according to

^u~n!,u~n!&5E
0

2p

dwE
0

`

dr r uu~n!~r ,w!u251, ~10!

the excess noise factor associated to moden is given by@11#

Kn5^f~n!,f~n!&5E
0

2p

dwE
0

`

dr r uf~n!~r ,w!u2.1. ~11!

In the cavity of Fig. 1~b! that we consider here, the proble
is simplified since the plane mirrorM2 is a plane of symme-
try of the cavity @13,14#. Then, on mirrorM2 , the adjoint
modes$f (n)(r ,w)% have the same profiles as the eigenmo
$u(n)(r ,w)%. Then, if u2(r ) is the transverse dependence

FIG. 2. Intensity profiles of the fundamental mode of the cav
of Fig. 1~b! on the~a! spherical and~b! plane mirrors computed fo
different values off1 . The values of the parameters arel
53.39mm, L50.59 m, andR50.6 m. The profiles correspondin
to the usual TEM00 mode are labeledf15`.
s

,

s
f

the fundamental eigenmode~which has no dependence inw!
on the plane mirror, the excess noise factor for this fun
mental mode is given by

K05

F E
0

`

dr r uu2~r !u2G2
U E

0

`

dr r @u2~r !#2U2 . ~12!

Figures 3~a! and 3~b! display the evolutions of the losse
G and the excess noise factorK0 computed versusf1 from
the mode profiles of Fig. 2~b!. One can notice that the usua
decrease of the losses versusf1 @37# is accompanied by a
decrease of the excess noise factor. One must also notice
this excess noise factor can reach large values, as larg
103, when f1 gets very small compared to the unalter
mode diameter 2w1 . Of course, such high values of the e
cess noise factor occur for high losses, as will be discusse
Sec. IV.

III. MULTIAPERTURED STABLE CAVITY

As recalled in the Introduction, once a first aperture h
been introduced inside a stable cavity, as in Sec. II, t
cavity becomes non-Hermitian. It then behaves in a man
similar to an unstable cavity. In particular, if one introduc
a second aperture inside the cavity, the losses exhibit o
lations versus the diameter of this second aperture@27#.
Moreover, the diffraction lossesG for one round-trip inside
the cavity can be reduced by the introduction of the sec
aperture. In unstable cavities, the oscillation of the losse
accompanied by resonances of the excess noise factor
explore the existence of such resonances in a stable ca
we consider the cavity of Fig. 1~c!, which now contains two
apertures of diametersf1 and f2 , located on mirrorsM1
andM2 , respectively. To compute the fundamental eige
mode of such a cavity, one must solve the two followi
coupled Huygens-Fresnel equations:

FIG. 3. Computed evolutions of~a! the intensity losses pe
round-tripG and ~b! the excess noise factorK0 of the fundamental
mode of the cavity of Fig. 1~b! vs f1 , with the parameters used i
Fig. 2.
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g12u2~r 2!5
2p

B12l
E
0

f1/2

dr1 r 1 u1~r 1!expF2 j
p

B12l
~A12r 1

21D12r 2
2!GJ0S 2p

B12l
r 1r 2D , ~13a!

g21u1~r 1!5
2p

B21l
E
0

f2/2

dr2 r 2 u2~r 2!expF2 j
p

B21l
~A21r 2

21D21r 1
2!GJ0S 2p

B21l
r 1r 2D , ~13b!
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where u1(r 1) and u2(r 2) are the wave fronts on mirror
M1 andM2 , respectively, andg12 andg21 give the funda-
mental mode eigenvalueg:

g5g12g21. ~14!

The coefficientsA12, B12, D12, A21, B21, andD21 of Eqs.
~13! are deduced from theABCD matrices for the two di-
rections of propagation through the cavity, given, resp
tively, by Eq. ~7! and by

S A21

C21

B21

D21
D5S A12

C12

B12

D12
D T5S 1

21/R
L

12L/RD .
~15!

Here again, the problem can be solved iteratively. Now,
compute the excess noise factor, one must notice that m
M2 no longer constitutes a plane of symmetry of the reso
tor. Equation~12! is hence no longer valid and, using E
~11!, the excess noise factor for the fundamental eigenm
is given by

K05

F E
0

`

dr r uu2~r !u2GF E
0

f2/2

dr r uu2~r !u2G
U E

0

f2/2

dr r @u2~r !#2U2 . ~16!

FIG. 4. Computed evolutions of the intensity losses per rou
trip G ~j! and the excess noise factorK0 ~d! of the fundamental
mode of the cavity of Fig. 1~c! vs f2 , with the parameters used i
Fig. 2 and with~a! f154.2 mm and~b! f151.3 mm.
-

o
or
-

e

The result of such a calculation is shown in Fig. 4. Figu
4~a! displays the evolution of the losses and the excess n
factor in our cavity versus diameterf2 of the second aper
ture, for a fixed valuef154.2 mm of the diameter of the
first aperture. Such an aperture alone leads to a reason
amount of diffraction losses (G513%), usually sufficient to
select the fundamental mode in high-gain lasers. As alre
seen in Ref.@27#, whenf2 is increased, the lossesG of the
mode oscillate near the value (G513%) obtained in the
presence of the first aperture only. In particular, forf2
51.2 mm, these losses can be reduced because of the i
duction of the second aperture. Moreover, one can see
the excess noise factorK0 oscillates withf2 , its maxima
~minima! corresponding to the maxima~minima! of G. In
particular, forf251.0 mm, its value can decrease fromK0
51.27 toK051.1.

This oscillating behavior is still more visible in the resul
of Fig. 4~b!, for which the first aperture (f151.3 mm) alone
introduces much more diffraction losses (G589.9%). In this
case, in the presence of the second aperture, the excess
factor oscillates betweenK052.8 ~for f251.7 mm! and
K059 ~for f252.6 mm!. Here again, the oscillations o
K0 match the oscillations of the lossesG, as in unstable
cavities, but the resonances are far less sharp than in uns
cavities. These results show that in such a stable cavity,
excess noise factor can increase with the aperture diam
and not only decrease monotonically.

IV. DISCUSSION AND CONCLUSION

The results of Fig. 3~b! show that contrary to what is
usually stated, geometrically stable cavities can exhibit
cess noise factors far larger than 1. Of course, this occurs
below the cavity stability limit (L&R) and for large values
of diffraction losses, i.e., when the eigenmode of the cav
is essentially determined by diffraction, as in the case
geometrically unstable cavities. However, it seems poss
to observe such large values of the excess noise factor
stable cavity. Let us recall that to observe the fundame
linewidth of a laser, one must heterodyne the output be
This has been performed either by heterodyning the la
output with another laser@3,4#, by self-heterodyning the out
put beam of the laser thanks to a Michelson interferome
including a long delay line@20,38–40#, or by monitoring the
s1-s2 beat note inside a quasi-isotropic high-gain gas la
submitted to a longitudinal magnetic field@21,41,42#. In this
latter case, using a He-Xe laser, unsaturated gain coeffici
as large as 250 dB/m can be reached@42#. Consequently,
using a small 5-cm-long laser, one can expect a 12
single-pass gain, and hence reach threshold even with 99
losses per round-trip inside the cavity. If one refers to
results of Fig. 3, this means that we could probably obse
excess noise factors due to the nonorthogonality of the tra
verse eigenmodes of a stable cavity as large as 100 in su

-
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high-gain gas microlaser. Such a large value confirms
fact that once diffraction losses become important, a g
metrically stable cavity behaves as an unstable one@27#. This
fact has also been confirmed by the fact that in a stable ca
containing two apertures, the excess noise factor beh
resonantly with the diameter of one of the apertures. Th
resonances are of course far less sharp in stable cavities
in unstable cavities. However, the results of Fig. 4~b! show
that such variations of the excess noise factor are la
enough to be experimentally observable. One can thus ex
tt

s
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deviations from standard predictions for the fundamental
ser linewidth, due to nonorthogonality of the transver
eigenmodes in stable cavities.
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