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Unified and standardized procedure to solve various nonlinear Jaynes-Cummings models
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In this article we present a simple and unified procedure to solve various nonlinear two-level Jaynes-
Cummings models. By establishing their similarity to the model describing a%smimticle in a magnetic field,
we obtain the standardized forms, appropriate uniformly for all Jaynes-Cummings models, of eigenvalues,
eigenstates, evolution, and atomic inversion operators. In this way, we show that the analytical solution of any
single-mode and two-mode nonlinear Jaynes-Cummings model can easily be obtained. We also apply this
procedure to a three-mode Jaynes-Cummings m@8&D50-294707)07806-3

PACS numbe(s): 42.50.Dv, 32.80-t, 12.20.Ds

[. INTRODUCTION we first show that any single-mode nonlinear JC model can
be solved analytically and the results can be put into closed
Exact solvability of full quantum mechanical models forms. We then explicitly express the results for a most gen-
plays a critically important role in the field of light-atom eral form of the single-mode nonlinear JC model. In Sec. IV,
interactions for the study of purely quantum features, such a&e show that this procedure is still a powerful method in the
collapse and revival of Rabi oscillations, because it permit§ase of two- and three-cavity modes. In fact, we show that
access to regimes that are incompatible with perturbatiofivo-mode JC models can also be solved analytically and the
theory and that embrace most |0ng-time low-loss nearf@SU'tS can be put into closed forms. Section V giVGS con-
resonance phenomena and include the domain of few-photgfuding remarks.
strong fields, in which atomic response can be large even if

the field is extremely weak by conventional measUrEs Il. STANDARDIZED FORMS
Over the last two decades, there has been intensive study _ . ) _ .
[2,3] on the solvable Jaynes-Cummingi) model and its To illustrate the main points of the solving procedure, we

various extensions, such as intensity-dependent coupling:St consider the simplest model, that is, the JC model, al-
constantg4], two-photon or multiphoton transitiors], and ough'solvmg it directly is a]so very simple. A5|de from an
two- [2,6—17 or three-[1,13,14 cavity modes for three- |IIustrat|_ve purpose, we also |nter_1d to _gene_rallze t_hese results
level atoms. These three-level models can be transforme@ obtain standardized expressions in this section that are
into effective two-level models either by exact transforma-2/S0 suitable for nonlinear models. The JC model reads
tion [11] or approximating methods in large detuning cases
[1,6,7,10,13 After so many years, the JC model together H=3A0,+w(a'at ;0;) +Hin, (2.13
with its variants are still under intense investigation and new "
results and new variants are still being reported. In addition, Hin=9(ao,_+a'o_,), (2.1b
these models have found their new applications in laser trap- i + i
ping and cooling of atomL5] and quantum-nondemolition whgre_A Qenotes the detuning, anda' are the greatlon and
measurementgl6]. In view of their importance, it seems annihilation operators of the photon, subscriptsand —
worthwhile to seek a simple and unified solving procedured€note atomic levelst) "’?”d|__>’ the o are the usual atomic
and put the results into standardized forms so that muckansition operators satisfyingjxomn=jnmk, and o
labor can be saved in solving new variants. to =1 0,=0,,—0__ and 0, =(1+0)/2, 0.

We shall present such a procedure in this paper. It i (1—07)/2. ) o
shown that all two-level Jaynes-Cummings models can be We now establish the similarity between the JC model
put into a form closely resembling the model describing a@"d the one describing a spirparticle in a magnetic field.
spin- particle in a magnetic field. In this way, the eigenval- Noting that
ues can usually be quickly obtained and the analytical ex-
pressions of eigenvalues, eigenstates, evolution, and atomic
inversion operators can be put into standardized forms. This | , i +
procedure also reveals that any single-mode and two-mod&hich obviously commutes withao, - +a’o— ), we can
nonlinear model is analytically solvable. In Sec. II, we illus- FeWrite the interaction Hamiltonian as
trate the essential points of this procedure by considering the
JC model, which is a linear model, while, at the same time,
we will derive the standardized expressions for eigenvalues, )
eigenstates, evolution, and atomic inversion operators thaY"ereQ=gv(2Hi/g)" and o,=2H;y/Q, that is,
are suitable not only for this linear model but also for its
nonlinear singlemode and multimode extensions. In Sec. I, Q=2g\a'a+to,,=2gVala+i(1+co,), (2.3

(ac,_+a'o_,)?=a'a+i(l1+o,)=a%a+to,,,

Hin=3Q0y, (2.2
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aoc,_+ alo_ +

o=
va'atoy,

It is easy to check thatoy,oy=io0o,=i(—aoc_,
+a'o,_ )Jalat+o,, and o,=0,,—o__ satisfy the

(2.9
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1\ my—
EN,mX*:w N—z +79N
1 A 271/2
Zw(N—E +m;[gzN+ E } , (2.8

well known Pauli operators’ commutation and anticommuta-whereN=0,1,2..., my= *1, andmy-only takes— 1 when

tion relations oo+ o;0;=26; and [oy,01]=2i €mom.

Note that the operatd? commutes with the three Pauli op-

erators. Substituting Eq2.2) into Eq. (2.1, we arrive at

H= w(aTa+ %O'Z) + %(TO'X_,

(2.9

where

2 1/2

+g¥atato, )

— A
Q=\/A2+92:2HE

1/2

N=0. Consequently, the system’s energy levels manifest a
doublet structure with the doublets’ energy differences equal
to the nonzero eigenvalues of a Rabi operator, while the
ground state is a singlet state correspondindNte0. The
Rabi operatorQ) has zero eigenvalue @$=0, and hence
there is some ambiguity in the definitions of the operators
oy and oy, since their denominataf) becomes zero all

=0, although their numerators are also equal to zero in this
case. This ambiguity is closely related to the singlet structure
of the ground state. It is pointed out that the state corre-
sponding toQ)=0 represents the state without coupling be-
tween the atom and the field, sintk,;=0 in this case, and

a corresponding energy eigenvalexpressed in Eq2.8) as

o1
a a+§ (1+0,) , (2.6

A

A Q _
UX——B—O'Z-% 6—0')(5 cog #)o,+sin(f) oy .

N=0, my=—1) and eigenstate are easily obtained. It is
worthwhile to mention that one of the advantages of this
solving procedure is that the energy eigenvalues can quickly
be obtained without needing to have detailed knowledge of
the energy eigenstates.

Supposén) denotes Fock states aht) are atomic states
Obviously, (@)?=1 and eigenvalues of operater, are ~ and satisfyo,|=)=*|%). Denoting|n; = )=|n)®|=), let
+1. This form of Hamiltonian is identical to the model for a | ;=) represent the common eigenvectors of Rabi opera-
spin- particle in a magnetic fiel® along thex direction  tor { (or ) and operatowr,, satisfying
with its magnitude proportional to the quantify, except
thatB and() are now operators, natnumbers. The quantity
Q (or Q in the case of zero detuniny=0) is nothing but the  \yhere 0 =29 /N. We see from Eq(2.6) that |On_0:—)
Rabi operatofits eigenvalues give all the frequencies in the =|n=0;-) and
Rabi oscillations of the atomic inversipfor the JC model
and the gyration frequencfoperatoy for the latter model.
This similarity between the two models permits us to obtain
the energy eigenvalues and solutions of the evolution opera- N=1,2,.... (2.9
tor and other operators, such as the atomic inversion, as well
as the expression of the Rabi operator, quickly. Let us conour purpose is to express energy eigenstates or the common
sider the eigenvalues and eigenvectors first. eigenvectors|(y;my)) of the Rabi operatof) (or ) and

First of all, note that the three operatofs oy, and  gperatoroy-in terms of|Qy;+). Since we want to obtain
(a'a+1/20,) in Eq. (2.5 are mutually commutative and the expressions of energy eigenstates appropriate for this
hence represent three constants of motion. Two of them, sayodel, and for other models as well, the following derivation
(a'a+o.,) and oy, are independent. To obtain energy and the style of expressing results are rather general and are
eigenvalues, we only need to know the eigenvaldesioted 3 Jittle more complicated than direct calculation and the di-

by N hereaftey of (a'a+ o, .), sinceohas eigenvalues rect expression of results for this particular model. Using Eq.
my= *1. The relation betweeN and photon numben is (2.7 and the relation

N=n for the stateln,—) (the atom in the ground state and
light field havingn photong; N=n-+1 for the statdn,+)
(the atom in the excited state and light field havimgpho-
tong. It is pointed out that the numbeX is a conserved one sees that
guantity, while the photon number is not. For instance, sup-
pose the system is initially in the stdte, — ). The atom can
absorb a photon and make a transition to the excited [state
so that the system’s state becomas-1,+). The photon and|Qy;my;=—1) can be obtained by its orthogonality to
number changes by a unit, whilé does not change during the former vector. The results are

this process and the inverse one, i.e., the corresponding ra-
diating photon process. Obviously, we haie=0,1,2...

and, therefore, immediately obtain the energy eigenvalues as
follows:

(2.7

oQn;E)=%|Qyni ) QQy;E)=Q\Qy; F),

|Qn;+)=[n=N-1;+);

Qn;—)=[n=N;-),

oxtltoxo,)=(oxto,)=(1+050,)0,,

|Qn ;M= 1)~ (1+050,)|Qn; +)

%)H)N;_)v

(2.103

|Qp;+)+sin

0
| QM= 1>=cos<7N
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N N operatorQ) has the formyf+go, wheref andg are two
| QM= _1>:COS(7) |QN§_>_S'n( 7) [Qn;+), functions of field variables. Therefore, it obviously
(2.10b commutes witha,. () also commutes withor,=2H;,./Q,
sinceQ ~ \HZ, obviously commutes withi,,,, and so does
where N=1,2,3... (we need not consideN=0, since the operatowr,=ioyo,. In Eq.(2.12, we have also utilized

[Qn=0i—)=In=0;-) is already the energy eigenstatd e fact thaH, commutes with). We put the eigenvalues of

( P ) (5 —A) 12 QA H;=H—H, into the general form as follows:
. N N N
sinf —| = — = ,
2 20 \/(QN—A)Z-!—Qﬁ 2113 El,\l,mx—:%mxilﬂﬁl"_Azy (2.14
9 O+ A\ Y2 Q wheremy=*1 andmy-only takes—1 whenQy=0.
cos( _N) :( N - N , Equationg2.10), (2.12, (2.13, and(2.14) are the central
2 PAQIN \/(QN—A)2+Qﬁ results of this section. They are the standardized forms for

(2.11b energy eigenstates, evolution operator, atomic inversion op-
— erator, and energy eigenvalues, respectively, and they are
_ A2 _ —_— : . )
where Q= yA®+Qy andN=1,2,3... . In thederivation  gyjtable for any two-level nonlinear JC models. The final
of Eq. (210, we have utilized the relationr,|Qn;*)  results of the solution to any given model can easily be ob-
= |Q? ;¥). (The general result is oyQy;*)  tained from these standardized forms as long as one obtains
=c=*|Qy;+), where constant=exp(p) and the value of the expressions of a Rabi operator's eigenvalues and com-
real constanp depends on the choice of the phase factor ofmgn eigenvectors of a Rabi operator amg. In all cases,
ox. In our case, we have chosen that the Rabi oper@tor optaining them is much easier than obtaining directly the
[Eq. (2.3] has the same sign as coupling parameteand  ejgenvalues and eigenstatesHbf As a matter of fact, little

hence fixed the phase factor @, such that=1,) effort is needed to obtain them in many cases, as will be seen
The dynamics in Heisenberg's scheme is represented by the next two sections.

the transformationsA=A(0)—A(t)=U(t)AU'(t), where

U(t) is the system’s evolution operator and has the form
I1l. SINGLE-MODE NONLINEAR JC MODELS

Let us first show that any single-mode nonlinear model
can be solved analytically. In this case, we have one atom
o - and one field mode, and hence we only have two indepen-

at\ Ot dent constants of motion that completely determine the en-
co ? +loxsin ? ergy eigenvalues and eigenstates. However, we have known
three constants of motiorf), oy, and N=a'a+ao , ,

S{ﬁ 2H,, A ) ot wh.erfa thg value of_integer is d_ifferent for. different models.

co§ — —+ —0, sin( —) This implies that(} is the function of two independent quan-
2 Q  Q 2 tities N and oy~ (in fact, we only need to consider the situa-

(2.12 tion where(} is independent ofr, although it is unimpor-
o tant in this general propf Consequently, to obtain the
where Ho=w(a'a+1/20,) denotes the free Hamiltonian solution to any given model, we only need to know the ei-
H, for zero detuning. The time evolution of the atomic in- genvalues of operatoN (obviously, N=0,1,2...) and the
version operator has the form common eigenvectors ™ ando,, which are certainly easy
to express in terms of Fock states. Once this is done, the
solution to this model is given by Eq&.10, (2.12), (2.13,
0z and(2.14.
We now illustrate this point by considering the following
single-mode nonlinear JC model,

U(t):exp(th)zexp(iH_ot)eXp(i %5@)

—expliH t)

+1

=exp(iH_ot)

2 QZ

O'Z(t): §+ ? COSQt)

2Rz | 8 11— cog )] +i sin@an)
— 91— 1—CO 1 SI
Q 20 E,_
- H:Taz+wa*a+Him, (3.1a
- _
+ é [1—cog Qt)]. (2.13

Hixw=gla™f(a’a)o_  +f(ata)ako,_], (3.1b
Equations(2.10, (2.12, and (2.13 are very general in

that they are suitable not only for this model, but also forwherek can be any positive integer arids any reasonable
other nonlinear JC models, because in their derivations wéunction of photon number operator and satisfiés f, that
have only utilized the general properties of three Pauli opis, Hermitian operator. This kind of Hamiltonian describes
erators(i.e., we do not use their relations to this particular intensity-dependenfcharacterized by functiofi ) k-photon
mode) and because the Rabi operator commutes with thretfansitions and it is the most general form of single-mode
Pauli operators, which is true for this linear and otherJC-type model. It becomes the Buck-Sukumar modgl
nonlinear JC models. Let us explain this point. The Rabiwhenk=1 andf(x)=x+1 by noting identitiesa'f(a'a)
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=f(a'a—1)a" andf(a'a)a=af(a'a—1). It is easily shown
that the constant of motiolN in this case has the formy
=a'a+ko,, and

one then obtains all the rest energy eigenstates. We have now
completely solved this very general single-mode nonlinear
JC model, two particular cases of whidk=1, f(x)
=/(x+1) and any positivk, but takingf(x)=1, the de-
tuning A is taken to be zero in both of these cadesve been
solved by Buck and Sukumar by another methdfi Our
solutions for these two particular cases are easily shown to
be identical to theirs. For instance, substitutibeg 0, k=1,
f(x)=+(x+1) into Egs.(3.12 and (2.13, we obtain the

) Rabi operatofits eigenvalues are Rabi frequengiesd the

As long asF(n) can be expanded as a Taylor series, one calomic inversion(its average represents atomic inversjon

use the identities respectively, as follows:

(Hin/9)*=F(n—=k)+[F(n)—F(n—K)]o.
wheren=a'’a and

F(n)=(n+k)(n+k—=21)---(n+21)f(n)f(n).

k I—p kK)'—n! , 1=0,1,2,3...
(n+ko ) =n+[(n+tk)—n']Jo, 3 Q=2gf(N—1)\/N:29(aTa+0'++)y

to obtain H;,/g)’=F(N—k) or

.29
Q=2gf(n—k)yN(N-1)(N-2)---(N—=k+1), (3.2 crz(t)=008(0t)crz—lﬁ[af(a*a—l)mf
where N=a'a+ko, . . For simplicity, we shall hereafter
useN to denote operatoa’a+ko, , and its eigenvalues,

and usen to denote photon operatafa and its eigenvalues.

—f(a'a—1)a'o__]sin(Qt),

whereo, . =(o,+1)/2. Except for different notation, these

Similar to the explanations in Sec. I, théis a conserved
guantity, whilen is not, and their relation isl=n+k for the
state|n,+) and N=n for the state|n,—). Obviously, N
=0,1,2,3... and theenergy eigenvalues are

1
Enmy=— 5 kot wN+m;{[gf(N—k)]2N(N— 1)

A 2) 1/2
><(N—2)---(N—k+1)+(5 ] , (3.3

where A=E, —kw is also the detuning in this cashl
=0,1,2,3..., my==1, and my-only takes—1 when N
=0,1,...k—1.

Substituting the expressioni3.2) of (), detuning A
=E,_—kw, Hy=—1ZX%ko+oN, and the expressiorf)
= Q%+ AZ into Egs.(2.12 and(2.13, we then obtain the

two expressions are identical to Eq3) and(8) of the first
paper of Ref[4], respectively. Before ending this section,
we mention that a straightforward generation of this model in
the coupling parametey can be any function of operator
N=a'a+ko, , and its solution is the same as the above one
as long as one replacegsin the above results bgy .

IV. MULTIMODE NONLINEAR JC MODELS

In this section, we shall apply the general solving proce-
dure and the standardized forms in Sec. Il to Raman coupling
models with two and three modes. We begin with the two-
mode Raman model.

A. Two-mode Raman model

In dealing with two-mode Raman-type processes, one can

expressions of the evolution and the atomic inversion operaconsider a three-level system of enerdigs E,, andE; in
tors, respectively, for this model. We now consider the enthe A configuration interacting with a pump, and a Stokes

ergy eigenstates. The eigenvalue of the Rabi opef@tis

modew, [6,7,10,12. The Hamiltonian of the system is writ-

zero whenN=0,1,...k—1, and in these situations corre- ten as[6,10-17

sponding energy levels are ones without effective coupling
between the atom and the field and manifest a singlet struc;

ture. The corresponding eigenstates dm®®|—), n

=0,1,2... k—1. The rest levels manifest doublet structure.

Using the expressions @@ andN=a'a+ko ., one may
easily see that the common eigenvector€lodnd o, are

[ Qi +)=[n=N=k+);|Qy;—)=[n=N;-),

N=k,k+1k+2,..., (3.9

3
H= E EiO'ii + ﬁwlaial-l— ﬁw2a£a2+ ﬁgl(a10'31+ a1013)
=1

+10y(a,03,+ %029, (4.)

where symbolsa;(j=1,2) represent the field operators of
modes 1 and 2g;;=|i)(i| are the level occupation numbers
ando;=1i)(j|(i#]) are the transition operators from levels

j toi. Levels 3 and 12) are coupled by a dipole-coupling
constanty,(g,). There is no direct coupling between levels

where|n; £)=[n)®| =), and|n) and|=) denote Fock states 1 and 2. The quantities, andA, denote detunings given by
and atomic states, respectively. Substituting them into EQAj:(Es_Ej)/ﬁ_wj' j=1,2. This three-level problem is

(2.10 and using

Qn=2gf(N—K)YN(N=1)(N=2)---(N—k+1),

usually reduced to an effective two-level one by using adia-
batic elimination[6,7] or evaluating transformation perturba-
tively [10] under the large detuning assumption. It has re-
cently been proven by one of the authptd] that this three-
level problem can be exactly transformed into a two-level
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problem, regardless of whether the detunings are large N, ,Ny;my= 1)

small. The corresponding two-level Hamiltonian reads R

[6,7,10,11 o
On, N, TA

12
) [n;=N;—1n,=Ny;+)

H=31E, o,+wala;+wyalap+Hpy, (4.29 200, N,
(TN L= A 12
Hint:g[a1a20—++a£ala+—]’ (42b) + - |n1=N1,n2=N2—1;—>,
where the frequency differenee;, — w, is roughly equal to (4.63

the energy differencé&, _ of the two atomic levels. The

Rabi operatoK) is easily obtained and has the form
P Y INg,Np;me=—1)

Q=2gVJ(n;+o, . )(n,+to__), 4.3 $TN1,N2+A 12
. . . i = — |n1:N1,n2:N2—1;—>

which is the function of two constants of motioiN, 20N, N,

=ala;+ o, . andN,=a}a,+o__. The total photon num- — "

b r QN N _A

€ 1Nz
- |n1:N1_1,n2:N2;+> (46b)
ZQNl’NZ

nt:n1+ n2: N1+ Nz_l

. . . . where Oy n,=29VYNiNp, A=E,_ —(01—-w3), and
is also a constant of motion. Obviously, eigenvaluesNpf Q. = \/m
areN,,N,=0,1,2,3..., andhence energy eigenvalues are ~ NiN2™ V**Ny N =~

w1+ 0y =2gJN;N,, A=E, _—(w;— w,), and Q= Q%+ A? into
EnyNym =~ 5 toiNit N, Egs.(2.12 and (2.13, one then obtains the evolution and
atomic inversion operators.
) 21112 Last, we point out that the two-mode JC models are in
+ m;{g N1Np+ 2 ; (4.9 fact solvable analytically. The argument is similar to the one

in the single-mode situation. Generally speaking, there are
three independent constants of motioor, N1=aJ{al
+aoc,,, and N2=a£a2+,8(r,, , Where the values of inte-
gersa, B depend on models. For instanees 8=k for the
following model, describing B-photon transitions,

whereA=E, —(w;—wjy) andmy=*+1. However,Q=0
(or interaction Hamiltoniat;,,=0) asN; or N, is zero; the
corresponding energy eigenvalues are easily found to be

E._
wz(Nz_l)—% for N1=0 H:% E,_o,+ w1a1a1+w2a;a2+ Hints (473
E:
E _ l
wl(N1—1)+% for N,=0 Him=g[a1ka'§f(n1,n2)a_++f(nl,nz)agka'{(”_](;l 7

which represent two singlets and are also the two states wittwheref sati.sfiesz:.f, n =a/a; andk can be any positive
out effective coupling between the atom and field modesinteger. This fact implies that another const_ant-of—mouon
The two eigenvectors corresponding to these two energy eRabi operatoX) can be expressed as the function of the two

genvalues are, respectively, quantitiesN1,N,. Consequently, to obtain the energy eigen-
values, one only needs to know the eigenvalued!pfN,,
IN;=0n,=N,—1)®|-), |n;=N;—1n,=0)®|-), which are obviouslyN;,N,=0,1,2..., since another quan-

tum numbemy-is known to taket 1. The energy eigenvec-

where|n,,n,) denote Fock states. These two vectors are alséOrS are|N;,Np;my), which are expressed in E.10 in

. rms of th mmon eigenv r N n whil
the common eigenvectors 6f ando,. The other common tﬁe cso%r;oencgi en(\)/ecic?ri Necﬁ s'?ﬂ’d 2 ng(gzt:;viousel
. H 1 1 0-
eigenvectors of) and o, are easily seen to be 9 172 z y

easy to obtain and express in terms of Fock states. We now

explicitly show that the Rabi operator for the above, rather

general model can indeed be expressed as the function of

N4,N,. Using the expression of the interaction Hamiltonian,

O, i =) =IN=Nyn=N,—1;-), (45 one sees that  H/9)2=F(n;—k,n,+Kk)o__
+F(ny,ny) o, ., where

[Qn g ) =[N1=Ny=1np=Ny; +),

where [ny,np; =)=|n;,n)®|*). Substituting them into  E(n  n,)=(n,+k)(ny+k—1) - (Ny+1)ny(Npy—1)---
Eqg.(2.10, we obtain the rest-energy eigenvectors, expressed
in terms of Fock states and atomic states, as follows: X (ny,—k+1)f(ng,ny)f(ng,ny),
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where use has been made of the identid®)a’=a’G(n+1), G(n)a=aG(n—1). As long asF can be expanded as a
Taylor series, one can use identity

(n1—k)'(n,+k)"o__+ninfo, . =(n;—k+ko, ) (ny+ko__)™I,m=0,1,2...

to obtain H;/g)2=F(n,—k+ko, . ,n,+ko__) or

whereN;=n;+ko,,, N,=n,+ko__. The relations be- whereL _ andL, are the lowering and raising operators of
tweenN; andn; areN;=n;+k, N,=n, for the atomic state the angular momentunh. The quantityL? is the fourth
|[+) andN;=ny, N,=n,+k for the atomic staté—). Itis  simple constant of motion in this situation. The relations be-
pointed out thaN; are conserved quantities whitg are not.  tween angular momentum and field variables are as follows:

= i = T T
B. Three-mode nonlinear JC model L =Letily=v2(asap+anap), (4.113
In this subsection, we consider a Raman-type model pro- L = Lj:ﬁ(apay. a‘,;aA), (4.119
posed by Wang, Puri, and Ebefly] and Wu[14],
—ata At
H=wpN+E, _Jy+Hin, (4.99 L.=2x3a~asas, (4.119

R : : : L?=(na—nNg)?+(Na+ng)(2np+1)+2np+2(aahal
Hin=(d18gap+0zapan) oy - +(g1@pastgrasap)o_ 4, "
(4.9b +apasap). (4.119

where subscript®, S, andA represent pump, Stokes, and The Rabi operator has the form

anti-Stokes modes, respectively,and a’ are the creation

and annihilation operators for the corresponding modes,

=np—Ng+ 3o, —o__), andN=np+ng+n, is the total Q=gv2(L2=32+ D', (4.12

photon number. We have ignored the detuning term and the

Stark shift term. Whemy, or g, is zero, the model becomes Which is the function of the two constants of motidrf, and

the one discussed in the last subsection. We shall considds. The eigenvalues of these two quantities are very easy to

the case of§;g9,# 0 here. obtain and their common eigenvectors are also easy to find.
It is noted that one needs four independent constants ofhen, the solution to the model can be obtained by the stan-

motion to characterize the energy eigenvalues and eigerlardized forms in Sec. Il. The details are referred to in Ref.

states in this case. We have known three of them(or  [14].

oy as detuning term and Stark shift term are incluge

=np+ngtn,, andJ,=ny—ng+3(c,,—o__). No other V. SUMMARY

simple constant of motion has been found yet for the general ) )

case ofg; #g,. This implies that the eigenvalue problem of  In this paper, we have presented a simple procedure to

Rabi operatof) (and therefore the eigenvalue problem of the@nalytically solve various nonlinear two-level JC models. By

Hamiltonian is not simple compared with one- and two- establishing the similarity between the various JC models

mode situations, since the Rabi operator here cannot expre8§d the time for a spis-particle in the presence of a mag-

the function of simple constants of motion unless one ha#etic field, we have obtained the standardized forms for en-

succeeded in finding the fourth simple constant of motion€rgy eigenvalues and eigenvectors, evolution operator, and

This is the reason why no one, to the best of our knowledget,h? time evolution of atomic inversion operator, which are

has solved this model for the general case ot g,. Wang, suitable for all the tvvp-level m_odels. Thefse standardized

Puri, and Eberly have solved this model by another methodorms allow one to quickly obtain the solutions as long as

for g;=g, and J,= — 1. One of us[14] has solved it for ©ON€can obt_aln the eigenvalues a_nd the common eigenvectors

g,=0, by the procedure presented in this paper, which if the Rabi operator and-,, which turn out to be very

considerably simpler than their method. In addition, the soSimple in many cases. We have shown by this procedure that

lution to the model including detuning term and Stark shiftone- and two-mode nonlinear JC models are generally solv-

term for any possibld, is obtained14]. For the purpose of able analytically and their solutions are easily obtained by

completeness, we cite the main points here determining the corresponding solutions of simple operators
S . T . _ _ At

In the situation wherg,=g,=g, the interaction Hamil- ¢, and N=a'a+ko,, (or N;=aja;+ko,, and N,

tonian can be put into the foriri,14], =a£a2+ ko__ in two-mode casgs As examples of this

solving procedure, we have explicitly discussed any

intensity-dependent one- and two-mode models describing

Him:& (Lo, +L,o ), (4.10 k-_or 2k_-ph0ton transitions, respectively. Finally, we haye
V2 briefly discussed a three-mode Raman model and explained
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that this procedure is still simpler than other methods inquencies of the atomic inversion. These properties shall re-

three-mode situations. semble those of the doublets in the usual JC model
According to our results, we find that all the models show
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