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Unified and standardized procedure to solve various nonlinear Jaynes-Cummings models
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In this article we present a simple and unified procedure to solve various nonlinear two-level Jaynes-
Cummings models. By establishing their similarity to the model describing a spin-1

2 particle in a magnetic field,
we obtain the standardized forms, appropriate uniformly for all Jaynes-Cummings models, of eigenvalues,
eigenstates, evolution, and atomic inversion operators. In this way, we show that the analytical solution of any
single-mode and two-mode nonlinear Jaynes-Cummings model can easily be obtained. We also apply this
procedure to a three-mode Jaynes-Cummings model.@S1050-2947~97!07806-2#

PACS number~s!: 42.50.Dv, 32.80.2t, 12.20.Ds
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I. INTRODUCTION

Exact solvability of full quantum mechanical mode
plays a critically important role in the field of light-atom
interactions for the study of purely quantum features, suc
collapse and revival of Rabi oscillations, because it perm
access to regimes that are incompatible with perturba
theory and that embrace most long-time low-loss ne
resonance phenomena and include the domain of few-ph
strong fields, in which atomic response can be large eve
the field is extremely weak by conventional measures@1#.
Over the last two decades, there has been intensive s
@2,3# on the solvable Jaynes-Cummings~JC! model and its
various extensions, such as intensity-dependent coup
constants@4#, two-photon or multiphoton transitions@5#, and
two- @2,6–12# or three- @1,13,14# cavity modes for three-
level atoms. These three-level models can be transfor
into effective two-level models either by exact transform
tion @11# or approximating methods in large detuning cas
@1,6,7,10,13#. After so many years, the JC model togeth
with its variants are still under intense investigation and n
results and new variants are still being reported. In addit
these models have found their new applications in laser t
ping and cooling of atoms@15# and quantum-nondemolition
measurements@16#. In view of their importance, it seem
worthwhile to seek a simple and unified solving proced
and put the results into standardized forms so that m
labor can be saved in solving new variants.

We shall present such a procedure in this paper. I
shown that all two-level Jaynes-Cummings models can
put into a form closely resembling the model describing
spin-12 particle in a magnetic field. In this way, the eigenva
ues can usually be quickly obtained and the analytical
pressions of eigenvalues, eigenstates, evolution, and at
inversion operators can be put into standardized forms. T
procedure also reveals that any single-mode and two-m
nonlinear model is analytically solvable. In Sec. II, we illu
trate the essential points of this procedure by considering
JC model, which is a linear model, while, at the same tim
we will derive the standardized expressions for eigenvalu
eigenstates, evolution, and atomic inversion operators
are suitable not only for this linear model but also for
nonlinear singlemode and multimode extensions. In Sec.
551050-2947/97/55~6!/4545~7!/$10.00
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we first show that any single-mode nonlinear JC model
be solved analytically and the results can be put into clo
forms. We then explicitly express the results for a most g
eral form of the single-mode nonlinear JC model. In Sec.
we show that this procedure is still a powerful method in t
case of two- and three-cavity modes. In fact, we show t
two-mode JC models can also be solved analytically and
results can be put into closed forms. Section V gives c
cluding remarks.

II. STANDARDIZED FORMS

To illustrate the main points of the solving procedure, w
first consider the simplest model, that is, the JC model,
though solving it directly is also very simple. Aside from a
illustrative purpose, we also intend to generalize these res
to obtain standardized expressions in this section that
also suitable for nonlinear models. The JC model reads

H5 1
2Dsz1v~a†a1 1

2sz!1H int , ~2.1a!

H int5g~as121a†s21!, ~2.1b!

whereD denotes the detuning,a anda† are the creation and
annihilation operators of the photon, subscripts1 and 2
denote atomic levelsu1& and u2&, thes are the usual atomic
transition operators satisfyings jksmn5s jndmk , and s22

1s1151, sz5s112s22 and s115(11sz)/2, s11

5(12sz)/2.
We now establish the similarity between the JC mo

and the one describing a spin-1
2 particle in a magnetic field.

Noting that

~as121a†s21!25a†a1 1
2 ~11sz!5a†a1s11 ,

which obviously commutes with (as121a†s21), we can
rewrite the interaction Hamiltonian as

H int5
1
2Vsx , ~2.2!

whereV5gA(2H int /g)
2 andsx52H int /V, that is,

V52gAa†a1s1152gAa†a1 1
2 ~11sz!, ~2.3!
4545 © 1997 The American Physical Society
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sx5
as121a†s21

Aa†a1s11

. ~2.4!

It is easy to check thatsx ,sy5 isxsz5 i (2as21

1a†s12)/Aa†a1s11 and sz5s112s22 satisfy the
well known Pauli operators’ commutation and anticommu
tion relationss is j1s js i52d i j and @sk ,s l #52i eklmsm .
Note that the operatorV commutes with the three Pauli op
erators. Substituting Eq.~2.2! into Eq. ~2.1!, we arrive at

H5v~a†a1 1
2sz!1 1

2 V̄s x̄ , ~2.5!

where

V̄5AD21V252F S D

2 D 21g2~a†a1s11!G1/2
52H S D

2 D 21g2Fa†a1
1

2
~11sz!G J 1/2, ~2.6!

s x̄5
D

V̄
sz1

V

V̄
sx[cos~u!sz1sin~u!sx . ~2.7!

Obviously, (s x̄)
251 and eigenvalues of operators x̄ are

61. This form of Hamiltonian is identical to the model for
spin-12 particle in a magnetic fieldB along thex̄ direction
with its magnitude proportional to the quantityV̄, except
thatB andV̄ are now operators, notc numbers. The quantity
V̄ ~orV in the case of zero detuningD50! is nothing but the
Rabi operator~its eigenvalues give all the frequencies in t
Rabi oscillations of the atomic inversion! for the JC model
and the gyration frequency~operator! for the latter model.
This similarity between the two models permits us to obt
the energy eigenvalues and solutions of the evolution op
tor and other operators, such as the atomic inversion, as
as the expression of the Rabi operator, quickly. Let us c
sider the eigenvalues and eigenvectors first.

First of all, note that the three operatorsV̄,s x̄ , and
(a†a11/2sz) in Eq. ~2.5! are mutually commutative an
hence represent three constants of motion. Two of them,
(a†a1s11) and s x̄ , are independent. To obtain energ
eigenvalues, we only need to know the eigenvalues~denoted
by N hereafter! of (a†a1s11), sinces x̄ has eigenvalues
mx̄561. The relation betweenN and photon numbern is
N5n for the stateun,2& ~the atom in the ground state an
light field havingn photons!; N5n11 for the stateun,1&
~the atom in the excited state and light field havingn pho-
tons!. It is pointed out that the numberN is a conserved
quantity, while the photon number is not. For instance, s
pose the system is initially in the stateun,2&. The atom can
absorb a photon and make a transition to the excited stateu1&
so that the system’s state becomesun21,1&. The photon
number changes by a unit, whileN does not change durin
this process and the inverse one, i.e., the corresponding
diating photon process. Obviously, we haveN50,1,2,...
and, therefore, immediately obtain the energy eigenvalue
follows:
-

n
a-
ell
-

y,

-

ra-

as

EN,mx̄
5vSN2

1

2D1
mx̄

2
V̄N

5vSN2
1

2D1mx̄Fg2N1S D

2 D 2G1/2, ~2.8!

whereN50,1,2,..., mx̄561, andmx̄ only takes21 when
N50. Consequently, the system’s energy levels manife
doublet structure with the doublets’ energy differences eq
to the nonzero eigenvalues of a Rabi operator, while
ground state is a singlet state corresponding toN50. The
Rabi operatorV has zero eigenvalue asN50, and hence
there is some ambiguity in the definitions of the operat
sx andsy , since their denominatorV becomes zero asN
50, although their numerators are also equal to zero in
case. This ambiguity is closely related to the singlet struct
of the ground state. It is pointed out that the state cor
sponding toV50 represents the state without coupling b
tween the atom and the field, sinceH int50 in this case, and
a corresponding energy eigenvalue@expressed in Eq.~2.8! as
N50, mx̄521! and eigenstate are easily obtained. It
worthwhile to mention that one of the advantages of t
solving procedure is that the energy eigenvalues can qui
be obtained without needing to have detailed knowledge
the energy eigenstates.

Supposeun& denotes Fock states andu6& are atomic states
and satisfyszu6&56u6&. Denotingun;6&[un& ^ u6&, let
uVN ;6& represent the common eigenvectors of Rabi ope
tor V ~or V̄! and operatorsz , satisfying

szuVN ;6&56uVN ;6& VuVN ;6&5VNuVN ;6&,

whereVN52gAN. We see from Eq.~2.6! that uVN50 ;2&
5un50;2& and

uVN ;1&5un5N21;1&;uVN ;2&5un5N;2&,

N51,2,... . ~2.9!

Our purpose is to express energy eigenstates or the com
eigenvectors (uVN ;mx̄&) of the Rabi operatorV ~or V̄! and
operators x̄ in terms of uVN ;6&. Since we want to obtain
the expressions of energy eigenstates appropriate for
model, and for other models as well, the following derivati
and the style of expressing results are rather general and
a little more complicated than direct calculation and the
rect expression of results for this particular model. Using E
~2.7! and the relation

s x̄~11s x̄sz!5~s x̄1sz!5~11s x̄sz!sz ,

one sees that

uVN ;mx̄51&;~11s x̄sz!uVN ;1&

and uVN ;mx̄521& can be obtained by its orthogonality t
the former vector. The results are

uVN ;mx̄51&5cosS uN
2 D uVN ;1&1sinS uN

2 D uVN ;2&,

~2.10a!
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uVN ;mx̄521&5cosS uN
2 D uVN ;2&2sinS uN

2 D uVN ;1&,

~2.10b!

where N51,2,3,... ~we need not considerN50, since
uVN50 ;2&5un50;2& is already the energy eigenstate! and

sinS uN

2
D 5S V̄N2D

2V̄N
D 1/25 V̄N2D

A~V̄N2D!21VN
2
,

~2.11a!

cosS uN

2
D 5S V̄N1D

2V̄N
D 1/25 VN

A~V̄N2D!21VN
2
,

~2.11b!

where V̄N5AD21VN
2 andN51,2,3,... . In thederivation

of Eq. ~2.10!, we have utilized the relationsxuVN ;6&
5uVN ;7&. „The general result is sxuVN ;6&
5c61uVN ;7&, where constantc5exp(ib) and the value of
real constantb depends on the choice of the phase factor
sx . In our case, we have chosen that the Rabi operatoV
@Eq. ~2.3!# has the same sign as coupling parameterg and
hence fixed the phase factor ofsx , such thatc51.…

The dynamics in Heisenberg’s scheme is represented
the transformationsA[A(0)→A(t)5U(t)AU†(t), where
U(t) is the system’s evolution operator and has the form

U~ t !5exp~ iHt !5exp~ iH̄ 0t !expS i 1
2

V̄s x̄ t D
5exp~ iH̄ 0t !FcosS V̄t

2
D 1 is x̄ sinS V̄t

2
D G

5exp~ iH̄ 0t !FcosS V̄t

2
D 1 i S 2H int

V̄
1

D

V̄
szD sinS V̄t

2
D G ,

~2.12!

where H̄05v(a†a11/2sz) denotes the free Hamiltonia
H0 for zero detuning. The time evolution of the atomic i
version operator has the form

sz~ t !5FD2

V̄2
1

V2

V̄2
cos~V̄t !Gsz

1
2Hintsz

V̄
H D

2V̄
@12cos~V̄t !#1 i sin~V̄t !J

1
H intD

V̄2
@12cos~V̄t !#. ~2.13!

Equations~2.10!, ~2.12!, and ~2.13! are very general in
that they are suitable not only for this model, but also
other nonlinear JC models, because in their derivations
have only utilized the general properties of three Pauli
erators~i.e., we do not use their relations to this particu
model! and because the Rabi operator commutes with th
Pauli operators, which is true for this linear and oth
nonlinear JC models. Let us explain this point. The R
f

by

r
e
-
r
e
r
i

operatorV has the formAf1gsz where f and g are two
functions of field variables. Therefore, it obvious
commutes withsz . V also commutes withsx52H int /V,
sinceV;AH int

2 obviously commutes withH int , and so does
the operatorsy5 isxsz . In Eq. ~2.12!, we have also utilized
the fact thatH̄0 commutes withV. We put the eigenvalues o
H int8 [H2H̄0 into the general form as follows:

EN,mx̄
8 5 1

2mx̄AVN
21D2, ~2.14!

wheremx̄561 andmx̄ only takes21 whenVN50.
Equations~2.10!, ~2.12!, ~2.13!, and~2.14! are the central

results of this section. They are the standardized forms
energy eigenstates, evolution operator, atomic inversion
erator, and energy eigenvalues, respectively, and they
suitable for any two-level nonlinear JC models. The fin
results of the solution to any given model can easily be
tained from these standardized forms as long as one ob
the expressions of a Rabi operator’s eigenvalues and c
mon eigenvectors of a Rabi operator andsz . In all cases,
obtaining them is much easier than obtaining directly
eigenvalues and eigenstates ofH. As a matter of fact, little
effort is needed to obtain them in many cases, as will be s
in the next two sections.

III. SINGLE-MODE NONLINEAR JC MODELS

Let us first show that any single-mode nonlinear mo
can be solved analytically. In this case, we have one a
and one field mode, and hence we only have two indep
dent constants of motion that completely determine the
ergy eigenvalues and eigenstates. However, we have kn
three constants of motion,V, s x̄ , and N5a†a1as11 ,
where the value of integera is different for different models.
This implies thatV is the function of two independent quan
tities N ands x̄ ~in fact, we only need to consider the situ
tion whereV is independent ofs x̄ , although it is unimpor-
tant in this general proof!. Consequently, to obtain th
solution to any given model, we only need to know the
genvalues of operatorN ~obviously,N50,1,2,...! and the
common eigenvectors ofN andsz , which are certainly easy
to express in terms of Fock states. Once this is done,
solution to this model is given by Eqs.~2.10!, ~2.12!, ~2.13!,
and ~2.14!.

We now illustrate this point by considering the followin
single-mode nonlinear JC model,

H5
E12

2
sz1va†a1H int , ~3.1a!

H int5g@a†kf ~a†a!s211 f ~a†a!aks12#, ~3.1b!

wherek can be any positive integer andf is any reasonable
function of photon number operator and satisfiesf †5 f , that
is, Hermitian operator. This kind of Hamiltonian describ
intensity-dependent~characterized by functionf ! k-photon
transitions and it is the most general form of single-mo
JC-type model. It becomes the Buck-Sukumar model@4#
whenk51 and f (x)5Ax11 by noting identitiesa†f (a†a)
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5f(a†a21)a† and f (a†a)a5a f(a†a21). It is easily shown
that the constant of motionN in this case has the formN
5a†a1ks11 and

~H int /g!25F~n2k!1@F~n!2F~n2k!#s11 ,

wheren5a†a and

F~n!5~n1k!~n1k21!•••~n11! f ~n! f ~n!.

As long asF(n) can be expanded as a Taylor series, one
use the identities

~n1ks11! l5nl1@~n1k! l2nl #s11 , l50,1,2,3,...

to obtain (H int /g)
25F(N2k) or

V52g f~n2k!AN~N21!~N22!•••~N2k11!, ~3.2!

whereN5a†a1ks11 . For simplicity, we shall hereafte
useN to denote operatora†a1ks11 and its eigenvalues
and usen to denote photon operatora†a and its eigenvalues
Similar to the explanations in Sec. II, theN is a conserved
quantity, whilen is not, and their relation isN5n1k for the
state un,1& and N5n for the stateun,2&. Obviously,N
50,1,2,3,... and theenergy eigenvalues are

EN,mx̄
52

1

2
kv1vN1mx̄ H @g f~N2k!#2N~N21!

3~N22!•••~N2k11!1S D

2 D 2J 1/2, ~3.3!

where D5E122kv is also the detuning in this case,N
50,1,2,3,..., mx̄561, andmx̄ only takes21 when N
50,1,...,k21.

Substituting the expression~3.2! of V, detuning D
5E122kv, H̄0521/2kv1vN, and the expressionV̄
5AV21D2 into Eqs.~2.12! and ~2.13!, we then obtain the
expressions of the evolution and the atomic inversion op
tors, respectively, for this model. We now consider the
ergy eigenstates. The eigenvalue of the Rabi operatorV is
zero whenN50,1,...,k21, and in these situations corre
sponding energy levels are ones without effective coup
between the atom and the field and manifest a singlet st
ture. The corresponding eigenstates areun& ^ u2&, n
50,1,2,...,k21. The rest levels manifest doublet structu
Using the expressions ofV andN5a†a1ks11 , one may
easily see that the common eigenvectors ofV andsz are

uVN ;1&5un5N2k;1&;uVN ;2&5un5N;2&,

N5k,k11,k12,..., ~3.4!

whereun;6&5un& ^ u6&, andun& andu6& denote Fock state
and atomic states, respectively. Substituting them into
~2.10! and using

V̄N5AVN
21D2,

VN52g f~N2k!AN~N21!~N22!•••~N2k11!,
n

a-
-

g
c-

.

q.

one then obtains all the rest energy eigenstates. We have
completely solved this very general single-mode nonlin
JC model, two particular cases of which@k51, f (x)
5A(x11) and any positivek, but taking f (x)[1, the de-
tuningD is taken to be zero in both of these cases# have been
solved by Buck and Sukumar by another method@4#. Our
solutions for these two particular cases are easily show
be identical to theirs. For instance, substitutingD50, k51,
f (x)5A(x11) into Eqs.~3.12! and ~2.13!, we obtain the
Rabi operator~its eigenvalues are Rabi frequencies! and the
atomic inversion~its average represents atomic inversio!,
respectively, as follows:

V52g f~N21!AN52g~a†a1s11!,

sz~ t !5cos~Vt !sz2 i
2g

V
@a f~a†a21!s12

2 f ~a†a21!a†s21#sin~Vt !,

wheres115(sz11)/2. Except for different notation, thes
two expressions are identical to Eqs.~7! and ~8! of the first
paper of Ref.@4#, respectively. Before ending this sectio
we mention that a straightforward generation of this mode
the coupling parameterg can be any function of operato
N5a†a1ks11 and its solution is the same as the above o
as long as one replacesg in the above results bygN .

IV. MULTIMODE NONLINEAR JC MODELS

In this section, we shall apply the general solving proc
dure and the standardized forms in Sec. II to Raman coup
models with two and three modes. We begin with the tw
mode Raman model.

A. Two-mode Raman model

In dealing with two-mode Raman-type processes, one
consider a three-level system of energiesE1 , E2 , andE3 in
theL configuration interacting with a pumpv1 and a Stokes
modev2 @6,7,10,12#. The Hamiltonian of the system is writ
ten as@6,10–12#

H5(
i51

3

Eis i i1\v1a1
†a11\v2a2

†a21\g1~a1s311a1
†s13!

1\g2~a2s321a2
†s23!, ~4.1!

where symbolsaj ( j51,2) represent the field operators
modes 1 and 2,s i i5u i &^ i u are the level occupation numbe
ands i j5u i &^ j u( iÞ j ) are the transition operators from leve
j to i . Levels 3 and 1~2! are coupled by a dipole-couplin
constantg1(g2). There is no direct coupling between leve
1 and 2. The quantitiesD1 andD2 denote detunings given b
D j5(E32Ej )/\2v j , j51,2. This three-level problem is
usually reduced to an effective two-level one by using ad
batic elimination@6,7# or evaluating transformation perturba
tively @10# under the large detuning assumption. It has
cently been proven by one of the authors@11# that this three-
level problem can be exactly transformed into a two-le
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problem, regardless of whether the detunings are large
small. The corresponding two-level Hamiltonian rea
@6,7,10,11#

H5 1
2E12sz1v1a1

†a11v2a2
†a21H int , ~4.2a!

H int5g@a1
†a2s211a2

†a1s12#, ~4.2b!

where the frequency differencev12v2 is roughly equal to
the energy differenceE12 of the two atomic levels. The
Rabi operatorV is easily obtained and has the form

V52gA~n11s11!~n21s22!, ~4.3!

which is the function of two constants of motion,N1

5a1
†a11s11 andN25a2

†a21s22 . The total photon num-
ber

nt5n11n25N11N221

is also a constant of motion. Obviously, eigenvalues ofNj
areN1 ,N250,1,2,3,..., andhence energy eigenvalues are

EN1 ,N2 ,mx
52

v11v2

2
1v1N11v2N2

1mx̄Fg2N1N21S D

2 D 2G1/2, ~4.4!

whereD5E122(v12v2) andmx̄561. However,V50
~or interaction HamiltonianH int50! asN1 or N2 is zero; the
corresponding energy eigenvalues are easily found to be

E5H v2~N221!2
E12

2
for N150

v1~N121!1
E12

2
for N250

J ,

which represent two singlets and are also the two states w
out effective coupling between the atom and field mod
The two eigenvectors corresponding to these two energy
genvalues are, respectively,

un150,n25N221& ^ u2&, un15N121,n250& ^ u2&,

whereun1 ,n2& denote Fock states. These two vectors are a
the common eigenvectors ofV andsz . The other common
eigenvectors ofV andsz are easily seen to be

uVN1 ,N2
;1&5un15N121,n25N2 ;1&,

uVN1 ,N2
;2&5un15N1 ,n25N221;2&, ~4.5!

where un1 ,n2 ;6&5un1 ,n2& ^ u6&. Substituting them into
Eq. ~2.10!, we obtain the rest-energy eigenvectors, expres
in terms of Fock states and atomic states, as follows:
or
s

h-
s.
i-

o

d

uN1 ,N2 ;mx̄51&

5S V̄N1 ,N2
1D

2V̄N1 ,N2
D 1/2

un15N121,n25N2 ;1&

1S V̄N1 ,N2
2D

2V̄N1 ,N2
D 1/2

un15N1 ,n25N221;2&,

~4.6a!

uN1 ,N2 ;mx̄521&

5S V̄N1 ,N2
1D

2V̄N1 ,N2
D 1/2

un15N1 ,n25N221;2&

2S V̄N1 ,N2
2D

2V̄N1 ,N2
D 1/2

un15N121,n25N2 ;1& ~4.6b!

where VN1 ,N2
52gAN1N2, D5E122(v12v2), and

V̄N1 ,N2
5AVN1 ,N2

2 1D2.

Substituting H̄052(v11v2)/21v1N11v2N2 , V
52gAN1N2, D5E122(v12v2), and V̄5AV21D2 into
Eqs. ~2.12! and ~2.13!, one then obtains the evolution an
atomic inversion operators.

Last, we point out that the two-mode JC models are
fact solvable analytically. The argument is similar to the o
in the single-mode situation. Generally speaking, there
three independent constants of motion,s x̄ , N15a1

†a1
1as11 , andN25a2

†a21bs22 , where the values of inte
gersa, b depend on models. For instance,a5b5k for the
following model, describing 2k-photon transitions,

H5 1
2 E12sz1v1a1

†a11v2a2
†a21H int , ~4.7a!

H int5g@a1
†ka2

k f ~n1 ,n2!s211 f ~n1 ,n2!a2
†ka1

ks12#,
~4.7b!

where f satisfiesf †5 f , nj5aj
†aj andk can be any positive

integer. This fact implies that another constant-of-moti
Rabi operatorV can be expressed as the function of the t
quantitiesN1 ,N2 . Consequently, to obtain the energy eige
values, one only needs to know the eigenvalues ofN1 ,N2 ,
which are obviouslyN1 ,N250,1,2,..., since another quan
tum numbermx̄ is known to take61. The energy eigenvec
tors areuN1 ,N2 ;mx̄&, which are expressed in Eq.~2.10! in
terms of the common eigenvectors ofN1 ,N2 , andsz , while
the common eigenvectors ofN1 ,N2 , andsz are obviously
easy to obtain and express in terms of Fock states. We
explicitly show that the Rabi operator for the above, rath
general model can indeed be expressed as the functio
N1 ,N2 . Using the expression of the interaction Hamiltonia
one sees that (H int /g)

25F(n12k,n21k)s22

1F(n1 ,n2)s11 , where

F~n1 ,n2!5~n11k!~n11k21!•••~n111!n2~n221!•••

3~n22k11! f ~n1 ,n2! f ~n1 ,n2!,
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where use has been made of the identitiesG(n)a†5a†G(n11), G(n)a5aG(n21). As long asF can be expanded as
Taylor series, one can use identity

~n12k! l~n21k!ms221n1
l n2

ms115~n12k1ks11! l~n21ks22!m,l ,m50,1,2,...

to obtain (H int /g)
25F(n12k1ks11 ,n21ks22) or

V52gAN1N2~N121!~N221!•••~N12k11!~N22k11! f ~N12k,N2!, ~4.8!
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whereN15n11ks11 , N25n21ks22 . The relations be-
tweenNj andnj areN15n11k, N25n2 for the atomic state
u1& andN15n1 , N25n21k for the atomic stateu2&. It is
pointed out thatNj are conserved quantities whilenj are not.

B. Three-mode nonlinear JC model

In this subsection, we consider a Raman-type model p
posed by Wang, Puri, and Eberly@1# and Wu@14#,

H5vpN1E12Jz1H int , ~4.9a!

H int5~g1aS
†aP1g2aP

†aA!s121~g1aP
†aS1g2aA

†aP!s21 ,
~4.9b!

where subscriptsP, S, andA represent pump, Stokes, an
anti-Stokes modes, respectively,a and a† are the creation
and annihilation operators for the corresponding modesJz
5nA2nS1

1
2(s112s22), andN5nP1nS1nA is the total

photon number. We have ignored the detuning term and
Stark shift term. Wheng1 or g2 is zero, the model become
the one discussed in the last subsection. We shall cons
the case ofg1g2Þ0 here.

It is noted that one needs four independent constant
motion to characterize the energy eigenvalues and eig
states in this case. We have known three of them,sx ~or
s x̄ as detuning term and Stark shift term are included!, N
5nP1nS1nA , andJz5nA2nS1

1
2(s112s22). No other

simple constant of motion has been found yet for the gen
case ofg1Þg2 . This implies that the eigenvalue problem
Rabi operatorV ~and therefore the eigenvalue problem of t
Hamiltonian! is not simple compared with one- and tw
mode situations, since the Rabi operator here cannot exp
the function of simple constants of motion unless one
succeeded in finding the fourth simple constant of moti
This is the reason why no one, to the best of our knowled
has solved this model for the general case ofg1Þg2 . Wang,
Puri, and Eberly have solved this model by another met
for g15g2 and Jz52 1

2. One of us@14# has solved it for
g15g2 by the procedure presented in this paper, which
considerably simpler than their method. In addition, the
lution to the model including detuning term and Stark sh
term for any possibleJz is obtained@14#. For the purpose of
completeness, we cite the main points here.

In the situation whereg15g25g, the interaction Hamil-
tonian can be put into the form@1,14#,

H int5
g

&
~L2s121L1s21!, ~4.10!
o-

e

er

of
n-

al

ss
s
.
e,

d

s
-
t

whereL2 andL1 are the lowering and raising operators
the angular momentumL. The quantityL2 is the fourth
simple constant of motion in this situation. The relations b
tween angular momentum and field variables are as follo

L15Lx1 iL y5&~aSaP
†1aA

†aP!, ~4.11a!

L25L1
† 5&~aPaS

†1aP
†aA!, ~4.11b!

Lz5aA
†aA2aS

†aS , ~4.11c!

L25~nA2nS!
21~nA1nS!~2nP11!12np12~aP

2aA
†aS

†

1aP
†2aSaA!. ~4.11d!

The Rabi operator has the form

V5g&~L22Jz
21 1

4 !1/2, ~4.12!

which is the function of the two constants of motion,L2 and
Jz . The eigenvalues of these two quantities are very eas
obtain and their common eigenvectors are also easy to fi
Then, the solution to the model can be obtained by the s
dardized forms in Sec. II. The details are referred to in R
@14#.

V. SUMMARY

In this paper, we have presented a simple procedur
analytically solve various nonlinear two-level JC models.
establishing the similarity between the various JC mod
and the time for a spin-12 particle in the presence of a mag
netic field, we have obtained the standardized forms for
ergy eigenvalues and eigenvectors, evolution operator,
the time evolution of atomic inversion operator, which a
suitable for all the two-level models. These standardiz
forms allow one to quickly obtain the solutions as long
one can obtain the eigenvalues and the common eigenve
of the Rabi operator andsz , which turn out to be very
simple in many cases. We have shown by this procedure
one- and two-mode nonlinear JC models are generally s
able analytically and their solutions are easily obtained
determining the corresponding solutions of simple opera
sz and N5a†a1ks11 ~or N15a1

†a11ks11 and N2

5a2
†a21ks22 in two-mode cases!. As examples of this

solving procedure, we have explicitly discussed a
intensity-dependent one- and two-mode models describ
k- or 2k-photon transitions, respectively. Finally, we ha
briefly discussed a three-mode Raman model and expla
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that this procedure is still simpler than other methods
three-mode situations.

According to our results, we find that all the models sh
a singlet1doublet level structure. The singlets correspond
the zero eigenvalue of a Rabi operator or interaction Ham
tonian and represent the states without effective coup
between the field modes and the atom, very similar to
ground state in the usual JC model. And models have m
more doublets with the energy difference between each d
blet given by one of the eigenvalues of the Rabi opera
while these eigenvalues also determine all the oscillating
P

n

o
l-
g
e
ny
u-
r,
-

quencies of the atomic inversion. These properties shall
semble those of the doublets in the usual JC model
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