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Fractional wave-function revivals in the infinite square well

David L. Aronstein* and C. R. Stroud, Jr.
The Institute of Optics, University of Rochester, Rochester, New York 14627

~Received 27 November 1996!

We describe the time evolution of a wave function in the infinite square well using a fractional revival
formalism, and show that at all times the wave function can be described as a superposition of translated copies
of the initial wave function. Using the model of a wave form propagating on a dispersionless string from
classical mechanics to describe these translations, we connect the reflection symmetry of the square-well
potential to a reflection symmetry in the locations of these translated copies, and show that they occur in a
‘‘parity-conserving’’ form. The relative phases of the translated copies are shown to depend quadratically on
the translation distance along the classical path. We conclude that the time-evolved wave function in the
infinite square well can be described in terms of translations of the initial wave-function shape, without
approximation and without any reference to its energy eigenstate expansion. That is, the set of translated initial
wave functions forms a Hilbert spacebasisfor the time-evolved wave functions.@S1050-2947~97!06606-7#

PACS number~s!: 42.50.Md, 03.65.Ge, 73.20.Dx, 02.10.Lh
in
hi
o
e
in
e
p
to

th
n
hr
o
in
ea
nc
n
tic
o
n,

c
al

iv
n
l-
su
m

ite
-

n
m

to
that
ms
ing
tic

ys
lete
ob-
ic

a
al
n.
h as

a
s a
at
pe.
ng
for
re-
ve-
ical
gn-
the

f
um
en-
nd
d
ns

s in
-
ld
dif-
I. INTRODUCTION

The infinite square-well potential is an important model
quantum mechanics, and insights into the dynamics ex
ited in this model speak immediately to a wide range
physical systems. It is a good description for on
dimensional bound-state problems, whenever the confin
potential is steeper than that of the parabolically curv
harmonic-oscillator potential. It is also an important first a
proximation to the confining potential seen in semiconduc
quantum wells.

It is perhaps surprising that there is new physics in
time evolution of wave functions in a square well. The e
ergy eigenvalues and eigenstates found from solving Sc¨-
dinger’s equation have simple analytic expressions, and
can readily describe the time evolution of a wave function
this system via its eigenstate expansion. But if we look ah
to Fig. 2, for example, we see that time-evolved wave fu
tions can appear to ‘‘clone’’ the initial wave functio
throughout the well, a phenomenon that cannot be an
pated from such an eigenstate expansion. The primary m
vation for this work is to provide a formalism, a foundatio
for understanding this behavior.

In this paper, we describe the evolution of a wave fun
tion in the infinite square well in terms of full and fraction
revivals. We will show that this system isideal for under-
standing fractional revival phenomena: the fractional rev
als in the infinite square well occur to all orders and for a
initial wave function, with no stipulations on its initial loca
ization or its energy bandwidth. Fractional revivals are u
ally thought of as isolated incidents in a quantum syste
time evolution, a few special moments in the long-term tim
dynamics of a carefully excited wave packet. In the infin
square well they allow for a full description of time evolu
tion.

A revivalof a wave function occurs when a wave functio
evolves in time to a state closely reproducing its initial for

*Electronic address: daron@optics.rochester.edu
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In its mathematical description, the revival corresponds
phase alignments of nearest-neighbor energy eigenstates
comprise the wave function. Revivals in quantum syste
were first studied in the Jaynes-Cummings model, describ
a two-level atom interacting with a resonant monochroma
field. Eberly, Narozhny, and Sanchez-Mondragon@1# discov-
ered that the atom’s inversion magnitude initially deca
away, but near special revival times rises to almost comp
inversion before redecaying. Such revivals have been
served experimentally in a micromaser cavity with atom
rubidium @2#. Revivals were also predicted@3# and observed
@4# to occur in Rydberg electron wave packets, in which
‘‘breathing’’ motion between the inner and outer classic
turning points will lose, then regain, its radial localizatio
They have also been observed in molecular systems, suc
in vibrational wave packets in Na2 @5#.

A fractional revival of a wave function occurs when
wave function evolves in time to a state describable a
collection of spatially distributed sub-wave-functions th
each closely reproduces the initial wave-function sha
Macroscopic distinguishability or spatial localization amo
the sub-wave functions has been a major motivation
studying fractional revivals, but should not be seen as a
quirement for such a description, as in general the sub-wa
functions overlap in space and interfere. In its mathemat
description, the fractional revival corresponds to phase ali
ments of nonadjacent energy eigenstates that comprise
wave function.

Averbukh and Perelman@6# made a definitive analysis o
wave packets formed by highly excited states of quant
systems, and described their fractional revivals, giving a g
eral formalism for understanding earlier results in atomic a
nonlinear systems@7#. We will make several references an
comparisons to their work. Other theoretical investigatio
have explored fractional revivals in atomic systems@3,8# and
in the Jaynes-Cummings model@9#. More recently fractional
revivals have been predicted in other systems, such a
Morse-like anharmonic potentials@10# and by atoms bounc
ing vertically against a potential wall in a gravitational fie
@11#. Fractional revivals have been observed in several
4526 © 1997 The American Physical Society
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55 4527FRACTIONAL WAVE-FUNCTION REVIVALS IN THE . . .
ferent experiments in potassium@12# and rubidium@13#, and
more recently in vibrational wave packets in Br2 @14#.

In many systems the fractional revivals will in turn u
dergo decays and revivals. Suchsuper-revivaleffects were
studied extensively by Bluhm and Kostelecky´ @15#, and have
been applied to understanding the role of the quantum de
in alkali metals@15,16# and the role of initial field statistics
in the Jaynes-Cummings model@17#. Experimentally Wals,
Fielding, and van Linden van den Heuvell measured
super-revival ‘‘forerunner’’ in rubidium@16#. Leichtle, Aver-
bukh, and Schleich@18# recently presented an analytical fo
malism of multilevel quantum beats to describe wave-pac
revivals and super-revivals. The infinite square well does
display super-revival effects, so we will not need this bo
of research.

Revival experiments with wave packets have thus far
cused on atomic and photon cavity systems. It is our h
that the predictions of fractional revival phenomena in
infinite square well might be realized experimentally
semiconductor quantum wells. In recent years there h
been tremendous achievements in coherent dynamic
semiconductor systems, including observation of quan
beats in single wells@19# and double wells@20#; the creation
@21# and tunability @22# of terahertz radiation from wave
packets excited in quantum wells; and the detection@23# and
enhancement via laser pulse sequences and pulse sh
@24# of Bloch oscillations in semiconductor superlattices.

In this paper we explore wave-function dynamics in t
infinite square well. We begin by giving phenomenologic
definitions for full and fractional revivals. We do so at th
expense of using the specific analytic form of the infin
square well’s energy eigenfunctions but at the benefit
gaining insights into the interrelationships among the s
tem’s potential, eigenstates, and revival behavior. By prop
ing that fractional revivals occur in ‘‘parity-conservin
form,’’ we find a particularly simple and elegant form for a
eigenstate expansion of the fractional revivals. With the
of results from number theory, we extend Averbukh and P
elman’s analysis@6# to derive phase relationships betwe
sub-wave-functions in the fractional revivals. We end w
many probability density graphs to illustrate the wide arr
of time evolution behavior that is explained with our forma
ism.

II. INFINITE SQUARE-WELL SYSTEM

The one-dimensional infinite square-well potential co
fines a particle to a box of widthL and is described by

V~x!5H 0, uxu<L/2

`, uxu.L/2.
~1!

A particle of massm is placed in this potential. The energ
eigenvalues and eigenstates are found by solving the t
independent Schro¨dinger equation~as in @25#!. The discrete
energy eigenvalues are

En5
p2\2

2mL2
n2 ~2!
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for positive integern. The energy eigenstate wave functio
are

fn~x!55
A2

L
sin~npx/L !, n even

uxu<L/2

A2

L
cos~npx/L !, n odd

0, uxu.L/2.

~3!

The energy eigenstates are states of definite parity, as
must be for any system with symmetric potentialV(x).

A. Time scales

It has been demonstrated repeatedly~such as in@3,6,15#!
that the important time scales of a wave function’s evolut
are contained in the coefficients of the Taylor series of
quantized energy levelsEn around the mean energyn̄ ,

En̄5En̄12p\F ~n2 n̄ !

Tcl
1

~n 2 n̄ !2

Tfr
1

~n 2 n̄ !3

Tsr
1 ••• G ,

~4!

where often the zero of energy is shifted to remove theEn̄
term. Regrouping the infinite square-well energies~2! in this
form gives

En5E1n
25E1 n̄

212E1 n̄~n2 n̄ !1E1~n2 n̄ !2, ~5!

and, comparing Eqs.~4! and ~5!, we relate

Tcl5
h

2 n̄ E1

and

Tfr5
h

2 E1
. ~6!

That the quantized energy levels~5! are exactly quadratic in
n or (n2 n̄ ) leads toTsr→ ` , and so the system shows n
super-revival~or higher-order! effects. In contrast to atomic
systems, it is important to note that the time scaleTfr here
does not depend on the mean energy leveln̄ . This will pro-
vide us with a ‘‘universal’’ time scale for describing wav
function evolution that does not depend on the particle’s
erage energy.

B. Time evolution

We write the particle’s timet50 wave function in the
square well asc(x,t50)5c i(x). We expand this wave
function using the energy eigenstate basis

c i~x!5 (
n51

`

cnfn~x!, ~7!

with

cn5E
2`

`

fn~x!c i~x!dx. ~8!

Using the time scaleTfr5h/E1, the time evolution in the
energy eigenbasis is found from Schro¨dinger’s equation to
be
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4528 55DAVID L. ARONSTEIN AND C. R. STROUD, JR.
c~x,t !5(
n

exp@2 i2p~ t/Tfr!n
2#cnfn~x!. ~9!

C. Classical trajectories

In Eq. ~6! we found that the classical period associa
with motion in the square well wasTcl5h/2 n̄ E1. A classi-
cal particle with energyE travels at speedv5A2E/m. If
placed in an infinite square well, such a particle would tra
in one direction, rebound elastically off one wall, travel
the opposite direction until rebounding off the far wall, a
travel through its starting position, completing one period
classical periodic motion. The round-trip timeTrt associated
with the periodic motion of the particle is

Trt5
2L

v
5LS 2Em D 1/2. ~10!

If we take the particle’s energy to beE5En̄ and use the
quantum-mechanical expression~2! for the energy levels,
then we find thatTcl5Trt , as expected@26#. Using such a
description of a classical particle has proven useful for c
structing propagators for path-integral solutions to infin
square-well systems@27#.

We also can describe the time dynamics in the square
with an analogy to classical wave propagation on a stretc
string of lengthL. We liken the timet50 wave function
c i(x) to the initial profile of a stretched string which the
propagates without dispersion at speedv5A2En̄ /m. The
elastic collisions at the infinitely high potential barriers a
analogous to perfect reflections from fixed ends of the str
When a wave form propagating on a string reflects at
string ends, it travels in the opposite direction with ap phase
change in its amplitude; we will find analogous behavior
the infinite square-well wave function.

A fixed energyE for one-dimensional motion correspond
to two possible velocities, the right- and left-traveling velo
ties with the same magnitudev. The classical trajectories w
will discuss do not lift this ambiguity, and can be taken to
an arbitrary superposition of the initially right-traveling an
initially left-traveling classical paths.

III. FULL WAVE-FUNCTION REVIVALS

An exact wave-function revivalis said to occur when the
particle’s wave function differs from its timet50 wave
function by at most a constant phase; that is, the wave fu
tion revival and the original wave function have the sa
probability densityuc i(x)u2. By direct substitution into the
energy eigenstate expansion~9!, we see that, at time
t5Tfr , the wave function is given by

c~x,t5Tfr!5 (
n

exp@2 i2pn2#cnfn~x!

5(
n

cnfn~x!5c i~x!. ~11!
d
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Thus, at timet5Tfr there is an exact revival of the wav
function. It follows from this that time evolution in the infi
nite square well is periodic with periodTfr , that for any time
t0 and integerk,

c~x,t5t01kTfr!5c ~x,t5t0!. ~12!

For this reason the timeTfr can be referred to as the exa
revival time or the period of the system. The full revivals a
time periodicity of the infinite square-well wave function
were recently discussed by Bluhm, Kostelecky´, and Porter
@28#.

The timeTfr is the shortest time for which we are gua
anteed to have an exact revival of the initial wave functio
There are particular classes of wave functions~such as states
of definite parity! that have full revivals at earlier times. Thi
will be illustrated in Sec. V, but a more detailed discussi
of such population-dependent revivals will be the subject
a future publication.

Mirror wave-function revivals

Again by direct substitution into the energy eigenstate

pansion~9!, we see that, at timet5 1
2Tfr the wave function is

given by

cS x,t51

2
TfrD5(

n
exp@2 ipn2#cnfn~x!

5(
n

~21!ncnfn~x!

52c i~2x!. ~13!

FIG. 1. Probability densities for~a! initial ( t50) and ~b! re-
flected@ t5(1/2)Tfr# wave functions.
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55 4529FRACTIONAL WAVE-FUNCTION REVIVALS IN THE . . .
Thus, at timet5 1
2 Tfr there is a single reflected copy of th

initial wave function~see Fig. 1!.
For initially well-localized wave packets, the tim

t5 1
2Tfr is the first time at which the state regains its init

localization. For revival experiments with Rydberg atom
electron wave packets, this revival of localization is a mo
important time scale than the exact wave-function revi
time, since it also corresponds to a revival of classical p
odic motion of the wave packet.

IV. FRACTIONAL WAVE-FUNCTION REVIVALS

An exact fractional wave-function revivalis said to occur
when the particle8s wave function can be written as a supe
position of translated initial wave functions. We allow fo
the possibility that each translated copy has a relative ph
difference with the original wave function as we did in Se
III.

Simply translating the initial wave function is not, in ge
eral, compatible with the infinite square-well physic
boundary conditions, which requirec(x,t)50 for uxu>L/2.
We address this using the ‘‘wave form on a string’’ analog
We define the functionc̄ i(x,Dx) to be the wave function
found by translating the initial wave functionc i(x) a dis-
tanceDx in the square well, with any probability amplitud
that would be moved out of the well by such a translation
instead reflected back into the well with ap phase change
Translating the wave function a distanceDx52L returns us
to the initial configuration,c̄ i(x,Dx562L)5c i(x), so this
describes periodic motion inDx.

Thus, we say there is an exact fractional revival at ti
t if

c~x,t !5(
j51

r ~ t !

Aj~ t !c̄ i„x,Dx5a j~ t !L…, ~14!

where there arer (t) translations of the initial wave function
centered at positionsa jL, with amplitudesuAj u and phases
arg(Aj ). It is important to note that at the onset we do n
know to what values of timet we must restrict our attention
for Eq. ~14! to hold. This fractional revival description ma
only be valid for special times, special ‘‘time eigenvalue
of the fractional revival equation. But at these special m
ments of time we expect Eq.~14! to hold for all values of
position x. For this reason we will de-emphasize the tim
dependence on the right-hand side of this equation, and w
the fractional revival definition as

c~x,t !5(
j

Aj c̄ i~x,Dx5a jL !. ~15!

A. Parity-conserving fractional revivals

The square-well energy eigenstates are states of defi
parity, so parity is conserved in time evolution. If the initi
wave functionc i(x) is an even or odd function of position
parity conservation places a constraint on the form for a fr
tional revival: if the fractional revival contains a translatio
term c̄ i(x,Dx) it must also contain a termc̄ i(x,2Dx). If
c i(x) is a state of definite parity, pairings of the for
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@ c̄ i(x,Dx)1 c̄ i(x,2Dx)# are the only ones to maintain pa
ity. We defineparity-conserving fractional revivalsas the
subset of possible fractional revivals~15! that conserve par-
ity; thus they have the form

c~x,t !5A0c i~x!1(
j
Aj@ c̄ i~x,Dx5a jL !

1 c̄ i~x,Dx52a jL !].
~16!

We make the ansatz that fractional revivals in the infin
square well are always of this parity-conserving form, ev
whenc i(x) is not a state of definite parity.

B. Energy eigenstate expansion

We extract information on fractional revivals using th
surprisingly simple result that the energy eigenstate exp
sion of a parity-conserving wave-function pair is given by

c̄ i~x,Dx5aL !1 c̄ i~x,Dx52aL !

52(
n

cos~apn!cnfn~x!. ~17!

The derivation of this expression is shown in the Append
We use this to give an energy eigenstate expansion for
posited parity-conserving fractional revivals~16!:

c~x,t !5(
n

HA012(
j
Ajcos~a jpn!J cnfn~x!. ~18!

Comparing this expression to the energy eigenstate ex
sion ~9!, we see that we have a fractional revival at timet
when we can write

exp@2 i2p~ t/Tfr!n
2#5A012(

j
Ajcos~a jp n!. ~19!

That is, we must be able to write the time-evolution exp
nential, quadratic inn, in a cosine series, linear inn. Such an
expansion, introduced by Averbukh and Perelman@6#, is
made using the finite Fourier series.

C. Finite Fourier series

A function f (n) whose domain is restricted to the intege
(nPZ) can be written as a finite sum of exponentials if a
only if it is r periodic, that is, there is an integerr such that
f (n)5 f (n1r ) for all n. Such a finite sum is called the finit
Fourier series.~See@29# for a review of such expansions.!

In our case we identifyf (n)5exp@2i2p(t/Tfr)n
2#. The

necessary and sufficient condition for this exponential to b
periodic function of the quantum numbern is that the time
ratio t/Tfr must be rational, and we writet5(p/q)Tfr for
relatively prime integersp andq ~that is,p/q forms a sim-
plified fraction!. We will refer to p as thetime numerator
andq as thetime denominator.

The time evolution exponential is an even function of t
quantum numbern. This allows us to write the finite Fourie
series in several different ways:
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f ~n!5(
j50

r21

Aj35
exp@1 i2pn j /r #

or

exp@2 i2pn j /r #

or

cos~2pn j /r !,

~20!

with

Aj5
1

r (n50

r21

f ~n!35
exp@1 i2pn j /r #

or

exp@2 i2pn j /r #

or

cos~2pn j /r !.

~21!

The form of the finite Fourier series~20! has the same form
as the sought cosine expansion~19! whenever we are at ra
tional multiples of the revival time,t5(p/q)Tfr . This dem-
onstrates that at such times the wave function can be
scribed by a parity-conserving fractional revival. In order
extract the physics from the details of this mathematical f
malism, we first need to investigate the properties of
expansion coefficients$Aj% ~Secs. IV D and IV E! and give
results for the periodr that appears in the finite Fourier seri
expression~Sec. IV F! before tying the results together into
concrete physical picture~Secs. IV G and IV H!.

D. Expansion coefficient properties and interpretation

From the cosine sum in Eq.~21!, we see directly that
Aj1r5Aj . Comparing Eq.~20! with Eqs.~18! and~19!, this
shows that placing pairs of translated wave functions
Dx56(2 j /r )L is the same as placing them
Dx56(2 j /r )L62L, that translation is periodic in the wel
Similarly, from Eq. ~21! we see thatAr2 j5Aj . Physically
this shows that placing pairs atDx56(2 j /r )L is the same
as placing them atDx57(2 j /r )L, that we are translating
the wave functions in pairs. These two coefficient identit
allow us to extend definitions and meanings to coefficie
not explicitly included in the finite Fourier series.

E. Shift index relations

In computing the coefficientsAj in Eq. ~21! we are sum-
ming a periodic functionf (n) over a full period. We shift the
summing variable fromn to n2k ~wherek is any integer!
without changing the result:

Aj5
1

r (
n50

r21

f ~n!exp@ i2pn j /r #

5
1

r (
n50

r21

f ~n2k!exp@ i2p~n2k! j /r #. ~22!

By using the explicit form of the time-evolution exponenti
f (n) it can be shown that this allows us to relate the differ
coefficients with

Aj12~p/q!rk5Ajexp@ i2p„~p/q!k21~ j /r !k…#. ~23!
e-

-
e

t

s
s

t

SinceAj1r5Aj , we can interpret coefficient indices modu
lo r. Averbukh and Perelman@6# showed this result for
k51. Other values ofk allow us to determine the relativ
phases of the fractional revival pairs.

We recall from number theory that ifp and q are rela-
tively prime, p has an integer multiplicative inversepq

(21)

satisfyingp3pq
(21)[1(modq). While there are no simple

closed-form expressions for the smallest possible value
pq
(21) ~in practice one computes the inverse with trial a

error!, its existence and upper bound are discussed in num
theory texts~such as@30#!. If we choosek5pq

(21) the shift
index relation becomes

Aj12~r /q!5Ajexp@ i2p~pq
~21!/q!„~q/r ! j11…#. ~24!

F. Time-evolution phasor periodicity

At time t5(p/q)T fr , Averbukh and Perelman@6# show
that the time-evolution exponentialf (n)5exp@2i2p(p/q)n2#
is r -periodic in the quantum numbern, with

r5H q, q[” 0~mod 4!

q/2, q[0~mod 4!.
~25!

G. Coefficient properties and fractional revivals

We now tie together the results of the previous section
give general expressions for the finite Fourier series coe
cients.

1. Case 1: q is odd

For odd values of the time denominatorq, the time-
evolution phasor has periodicityr5q, and so there areq
coefficients$Aj% in the finite Fourier expansion. It has bee
shown @6# that all q coefficients have the same magnitud
uAj u51/Aq. The shift index relation~24! is

Aj125Ajexp@ i2p~pq
~21!/q!~ j11!#, ~26!

which allows us to write coefficients in terms ofA0 for even
values ofj with

Aj5A0exp@ i2p~pq
~21!/4q! j 2#. ~27!

We writeA05eif0/Aq in terms of an unknown phase ang
f0 and known magnitude. Sincer5q is odd, exactly one of
the indicesj or r2 j is even. Recalling thatAj5Ar2 j , we
can regroup the finite Fourier series as a sum over even
dices:

f ~n!5A01 (
j52,4,...

2q22

2Ajcos~2pn j /q!. ~28!

Comparing Eq.~20! with Eqs.~18! and~19!, we see that the
wave function can be described as an untranslated cop
the initial wave function, and pairs of translated wave fun
tions with displacementsDx56( j /q)2L for even j .
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2. Case 2: q[2 (mod 4)

In this case,q is an odd multiple of 2. The time-evolutio
phasor has periodicityr5q and there areq coefficients
$Aj% in the finite Fourier expansion. It has been shown@6#
that even- and odd-index coefficients are coupled separa
the even coefficients are zero and the the odd coeffici
have magnitudeuAj u51/Aq/2. The shift index relation is the
same as Eq.~26!, which for odd j leads to

Aj5A1exp@ i2p~pq
~21!/4q!~ j 221!#. ~29!

We write A15eif0/Aq/2 in terms of an unknown phase
Comparing Eq.~20! with Eqs.~18! and~19!, we see that the
wave function can be described as pairs of translated w
functions with displacementsDx56( j /q)2L for odd j .

3. Case 3: q[0 (mod 4)

In this case,q is a multiple of 4. The time-evolution pha
sor has periodicityr5q/2, and so there areq/2 coefficients
$Aj% in the finite Fourier expansion. It has been shown@6#
that all coefficients have the same magnitud
uAj u51/Aq/2. The shift index relation is

Aj115Ajexp@ i2p~pq
~21!/q!~2 j11!#, ~30!

which for all j gives

Aj5A0exp@ i2p~pq
~21!/q! j 2#. ~31!

We writeA05eif0/Aq/2. Comparing Eq.~20! with Eqs.~18!
and ~19!, we see that the wave function can be described
an untranslated copy of the initial wave function and pairs
translated wave functions with displacemen
Dx56(4 j /q)L.

H. Summary of fractional revivals

The results in the previous three sections can be comb
and written in a unified way. Although our derivation beg
with the notion ofparity-conserving pairsof fractional re-
vivals, it is advantageous to rewrite our result using Av
bukh and Perelman8s notion ofclassical paths. It is awkward
to write a unified answer using the parity-conserving p
form because in case 2 above, the pair displacements alw
include the translationsDx56L which correspond to arriv-
ing at the same final location by moving in two differe
directions.

At times t5(p/q)T fr the wave function in the infinite
square well is given by

c„x,t5~p/q!T fr)

5
eif0

Ar (
k50

r21

exp@ i2p~pq
~21!/q!~k1Dr !2#

3cclS x,Dx5
k1Dr

q
4L D . ~32!

The functionccl is an arbitrary superposition of left- an
right-translated copies of the initial wave function usi
wave reflections at the well walls:
ly;
ts

ve

,

s
f

ed

-

r
ys

ccl~x,Dx!5LLc̄ i~x,2Dx!1LRc̄ i~x,Dx! ~33!

for any choice of weights satisfyingLL1LR51. That is, we
are writing the wave function as a superposition of clas
cally moving ‘‘string’’ profiles, where the classical path
taken to be an arbitrary mixture of initially left- and righ
displaced motions.

The number of subpacketsr is given by

r „t5~p/q!Tfr)5H q/2, q even

q, q odd,
~34!

and the path offsetDr is given by

Dr „t5~p/q!Tfr)5H 0, q[” 2~mod 4!

1
2 , q[2~mod 4!.

~35!

The number-theoretic inversepq
(21) is most quickly found by

testing the positive integers sequentially, checking for
smallest number satisfyingp3pq

(21)[1 ~mod q!. The phase
anglef0 is the only unknown, but exact probability densi
expressions are obtained without knowing it.

Such a wave function described by Eq.~32! is called the
‘‘ p/q fractional revival’’ or the ‘‘fractional revival of order
p/q.’’ In this expression, we describe wave function trans
tions coveringtwice the round-trip distance~or in the time
domain, twice the classical period! for odd-time denomina-
tors, and covering a single classical period for even-ti
denominators. We see no way to reform Eq.~32!, for odd-
time denominators in particular, to give a concise phase
lationship and describe the motion alongoneround-trip path.

We note that our method to find the relative phases of
sub-wave-functions via the use of the multiplicative inver
of the time numerator, outlined in Secs. IV E and IV G,
immediately generalizable to any quantum system that
hibits fractional revivals. This number theoretic techniq
has proven to be a useful and insightful method for study
phase interference effects with wave packet fractional rev
als.

In a recent publication, Bluhm, Kostelecky´, and Porter
@28# use numerical autocorrelation calculations to dem
strate the fractional revivals at14 Tfr ,

1
2 Tfr , and

3
4 Tfr without

reference to its manifestation in the position representatio
the well.

I. Fractional revivals as a Hilbert space basis

Result ~32! describes the wave function at time
t5(p/q)Tfr as translated copies of the initial wave functio
We argue that this result can then be extended to comple
describe the time evolution of the wave function, for a
times t.

From a mathematical point of view, we know from re
analysis that the set of times$(p/q)Tfr% for all relatively
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prime integer pairsp and q is a dense subset of the tim
domain: for any choice of timet we can find an arbitrarily
close rational multiple ofTfr . Wave-function time evolution
is continuous in time,c(x,t)→c(x,t0) uniformly in x as
t→t0, so finding arbitrarily close rational approximations
time will also recreate the wave function of interest ar
trarily accurately.

From a more physical point of view, we know that an
physically realizable state will have a largest energyEmax in
its energy eigenstate expansion~9!, and thus the wave func
tion cannot change significantly in time intervals small co
pared withDt'\/Emax.

Using either point of view, we see that the results in E
~32! can describe evolution at any time. We are then able
describe time-evolved wave functions in the infinite squ
well using the set of all translations of the initial wave fun
tion c i(x) as abasis. The number of translations needed
describe the wave function at aparticular time is given in
terms of the time denominator via the quantityr . The set of
all translations needed to describe the wave function atall
times densely covers the set of all possible translations.

V. PROBABILITY DENSITY PICTURES

The wave functions described in Eq.~32! show a rich
array of physical phenomena which we illustrate below.
we wish to emphasize the shape of the wave functions
probability densities and not their scale, the graphs do
have a common dependent axis scale. All graphs supe
pose the predictions of the fractional revival description~32!
with the results from explicit eigenstate time evolution~9!;
the two equations agree in all cases to within the precisio
the computer calculation.

Let us look at a wave packet initially localized in th
center of the well@Fig. 2~a!#. For odd-time denominatorsq,
the wave function isq spatially separated displacements
the initial wave packet@Fig. 2~b!#, which alternate across th
well between initial and reflected shapes. When the time
nominatorq is an odd multiple of 2, the wave function i
q/2 spatially separated copies of the initial wave functi
@Fig. 2~c!#. When the time denominatorq is an even multiple
of 2, there areq/2 copies of the initial wave function, but th
initial and reflected shapes exactly overlap, and the resul
probability densities show strong interference effects@Fig.
2~d!#.

When there is not significant overlap between the d
placed copies of the wave function, the probability dens
uc„x,t5(p/q)Tfr)u2 is determined by the time denominat
q, independent of the numeratorp. Once we have significan
overlap, the relative phases of the overlapping copies is
nificant and the probability density depends on the time
meratorp via its number-theoretic inversepq

(21) . In Fig. 3
we show probability densities for two different time numer
tors for the same time denominator, for the on-axis init
wave function shown in Fig. 2~a!. Both wave functions in
this figure are described by 15 translations of the initial wa
function, but due to interference between the translations
two probability densities they look completely different.

If instead we started with a well-localized wave pack
that initially is slightly off-center@Fig. 4~a!#, the even-time
denominator revivals no longer overlap and we see the i
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vidual wave-function translations@Fig. 4~b!#. Now, however,
the symmetry in the odd-time denominator revivals acr
the well is lost@Fig. 4~c!#, and for even modest time denom
nator values the initial and reflected shapes will interfe
@Fig. 4~d!#.

Initial wave functions with definite parity are interestin
special cases of our theory because the initial and refle
wave forms are indistinguishable. By definition of their pa
ity, such wave functions are centered at the origin. Just a
Fig. 2 we saw interference effects, we seecompletedestruc-
tive and constructive interference in states of definite par

For even-parity states@as in Fig. 5~a!# there are full reviv-

als of the wave function at multiples of timet5 1
8 Tfr . At

times t5(p/8q)Tfr there areq copies of the initial wave

FIG. 2. Initially centered, localized wave function. Probabili

densities for~a! initial ( t50), ~b! t5 1
3Tfr , ~c! t5 1

10Tfr , and ~d!
t5 1

12Tfr wave functions.
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function distributed evenly across the well@Figs. 5~b! and
5~c!#.

For odd-parity states@as in Fig. 6~a!#, there are full reviv-

als of the wave function at multiples of timet5 1
4 Tfr . At

times t5(p/4q)Tfr , for odd values ofq there areq transla-
tion locations that appear in the probability density@Fig.
6~b!#. For even values ofq there areq/211 translation lo-
cations that appear in the probability density@Fig. 6~c!#. For
these evenq values, we find displacements atDx56L/2,
where the first half of the sub-wave-function has reflec
and constructively interferes with the second half.

The fractional revivals are most striking when the init
wave function is well-localized, but our results are in no w
limited to such wave functions. Figure 7 shows a nonloc
ized wave function and two of its fractional revivals.

There is an interesting counterpoint to one’s usual noti
of quantum time evolution in light of the results presented
Eq. ~32!. We expect thatc(x,t1Dt)'c(x,t) for ‘‘suffi-
ciently small’’ values ofDt, so, for example, we expect

lim
k→`

c~x,t5Tfr /10
k!5c ~x,t50! ~37!

This is curious because our result~32! describes the left-hand
side of this equation as;10k translated copies of the initia
wave function~and thus the number of translated copies
unbounded ask→`), whereas the right-hand side is a sing
copy of the initial wave function. We show graphs of th
asymptotic behavior of the left-hand side for decreasing v
ues ofk in Fig. 8.

VI. FINITE SQUARE WELLS

It is impossible to find a physical system that create
truly infinite confining potential, so we now make some ge

FIG. 3. Initially centered, localized wave function. Probabili
densities for~a! t5 1

15Tfr and ~b! t5 4
15Tfr wave functions.
d

l-

s

s

l-

a
-

eral comments on the evolution of wave functions in a fin
well of depthV0. Finite square wells only support a finit
number of bound energy eigenstates. The number of bo
states isnmax5int~2P/p!11], whereP5(2mV0 /\

2)1/2L/2
is the well strength parameter. Solving the time-independ
Schrödinger equation for such a well leads to transcende
equations for the energy levels. Via a first-order expansion
such equations, Barkeret al. @31# showed that a finite squar
well’s energy levels are given by

En'
P2

~P11!2
p2\2

2mL2
n2. ~38!

FIG. 4. Initially off-center localized wave function. Probabilit

densities for~a! initial ( t50), ~b! t5 1
4Tfr , ~c! t5 1

3 Tfr , and ~d!

t5 1
5 Tfr wave functions.
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These energies are the same as would be found in a la
infinitesquare well of sizeL85(111/P)L. Barkeret al.also
gave a second-order expression for the energies of the fi
square well. One could take such an expression, expand
in Eq. ~4!, and associate a super-revival time scaleTsr with
the cubic contribution to the energy levels as a function
the well strength parameterP.

In our treatment we have used the simple classical mo
of a wave form propagating on an ideal string. In a fin
square well this would have to be expanded to describe
evanescent part of the wave function outside the confin
well. VII. SUMMARY AND OUTLOOK

We have found an expression~32! that relates the wave
function at rational multiples of a revival timeTfr to the
initial wave functionc i(x) in terms of translations of the
initial wave function, treating it as a wave on a string th
reflects probability amplitude at the well boundaries. T
result holds without approximation, to all fractional reviv
orders, without limiting the class of initial wave functions
the time ranges considered.

It is no surprise that free time evolution preserves
energy level populationsucnu2. Far more surprising is that th
initial wave function shape, the coherent superposition

FIG. 5. Even-parity wave function. Probability densities f

~a! initial ( t50) and full revival (t5 1
8Tfr!, ~b! t5 1

24Tfr , and ~c!
t5 1

64Tfr wave functions.
er

ite
as

f

el

e
g

t
s

e

f

energy eigenstates, is in some sense ‘‘remembered’’ by
system in its time evolution. Mathematically, Eq.~32! states
that the set of initial wave functions translated by ration
multiples of the periodic round-trip distance forms
function-spacebasisfor the time-evolved wave functions a
rational multiples of the revival timeT fr . This has interest-
ing connections with, and distinctions from, wavelet expa
sion theory@32# that may deserve more exploration.

In Rydberg atoms, wave packets that exhibit revival a
fractional revival behavior need to be excited with consid
able care, and a great deal of attention has been given,
theoretically and experimentally, to find the regime in whi
expansion~4! gives a good description of the pertinent e
ergy levels of the system so that the wave packet will exh
revival behavior. In this sense the infinite square well is
ideal system for fractional revivals: all wave functions e
hibit fractional revivals of all orders just because they we
created in a system with such special energy-level spaci
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FIG. 6. Odd-parity wave function. Probability densities f

~a! initial ( t50) and full revival (t5 1
4Tfr!, ~b! t5 1

12Tfr , and ~c!
t5 1

24Tfr wave functions.
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APPENDIX: PARITY-CONSERVING FRACTIONAL
REVIVAL PAIR EXPANSION

We wish to calculate the overlap integral between
parity-conserving pair of wave-translated wave functions a
the nth energy eigenstate. That is, we wish to compute
quantity

E
2`

`

@ c̄ i~x,Dx5aL !1 c̄ i~x,Dx52aL !#fn~x!dx. ~A1!

We will break the integral up into three separate contribut
terms: the translated copies of the initial wave function a
the two boundary reflections withp phase shifts. Figure 9
gives an example initial wave function and its translated c
ies for reference. Although the geometry of this figure wou
imply translations satisfying 0<aL<L/2, the result is valid
for all aL. For brevity, we will use the notation

trign~x!55A
2

L
sin~npx/L !, n even

A2

L
cos~npx/L !, n odd.

~A2!

FIG. 7. Initially nonlocalized wave function. Probability dens

ties for ~a! initial ( t50), ~b! t5 1
5Tfr and ~c! t5 7

9Tfr wave func-
tions.
a
d
e

g
d

-

The overlap integral is given by

E
2`

`

@ c̄ i~x,Dx5aL !1 c̄ i~x,Dx52aL !#fn~x!dx

5E
2L/2

L/2

@c i~x2aL !1c i~x1aL !#trign~x!dx

1E
L/22aL

L/2

eipc i~@L2x#2aL !trign~x!dx

1E
2L/2

2L/21aL

eipc i~@2L2x#1aL !trign~x!dx. ~A3!

FIG. 8. Initially entered, localized wave function. Probabili
densities for ~a! initial ( t50), ~b! t5(1/104)Tfr , ~c!
t5(1/103)Tfr , and~d! t5(1/102)Tfr wave functions.
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We rewrite the first term as two integrals, each with t
initial wave function recentered at the origin:

E
2L/2

L/2

c i~x6aL !trign~x!dx

5E
2L/26aL

L/26aL

c i~x!trign~x6aL !dx. ~A4!

As the initial wave function vanishes foruxu>L/2, the range
of integration can be reduced to2L/21aL<x<L/2 for the
‘‘positive’’ ( 1) integral and to2L/2<x<L/22aL for the
‘‘negative’’ (2) integral. The second term of Eq.~A3! can
be rewritten with the change of variablesL2x2aL→x to
center the initial wave function at the origin:

FIG. 9. Sample~a! initial wave function and~b! translated pairs
to illustrate the geometry used in the Appendix.
on

v

E
L/22aL

L/2

eipc i~@L2x#2aL !trign~x!dx

5E
L/22aL

L/2

c i~x!trign~x1aL !dx. ~A5!

Similarly, rewriting the third term of Eq.~A3! with the
change of variables2L2x1aL→x leads to

E
2L/2

2L/21aL

eipc i~@2L2x#1aL !trign~x!dx

5E
2L/2

2L/21aL

c i~x!trign~x2aL !dx. ~A6!

Combining all these results gives a simple expression for
quantity we wish to calculate:

c̄ i~x,Dx5aL !1 c̄ i~x,Dx52aL !

5E
2L/2

L/2

c i~x!@ trign~x1aL !1trign~x2aL !#.

~A7!

Using the explicit expressions for trign(x), one can show
that, for alln,

trign~x1aL !1trign~x2aL !52 cos~apn!trign~x!. ~A8!

The remaining integral is our defining equation for the co
ficient cn ~8!, so we conclude that

c̄ i~x,Dx5aL !1 c̄ i~x,Dx52aL !52cncos~apn!. ~A9!

Using the energy eigenfunction orthonormality, this is r
written as

c̄ i~x,Dx5aL !1 c̄ i~x,Dx52aL !

52(
n

cncos~apn!fn~x!. ~A10!
.
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