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Fractional wave-function revivals in the infinite square well
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We describe the time evolution of a wave function in the infinite square well using a fractional revival
formalism, and show that at all times the wave function can be described as a superposition of translated copies
of the initial wave function. Using the model of a wave form propagating on a dispersionless string from
classical mechanics to describe these translations, we connect the reflection symmetry of the square-well
potential to a reflection symmetry in the locations of these translated copies, and show that they occur in a
“parity-conserving” form. The relative phases of the translated copies are shown to depend quadratically on
the translation distance along the classical path. We conclude that the time-evolved wave function in the
infinite square well can be described in terms of translations of the initial wave-function shape, without
approximation and without any reference to its energy eigenstate expansion. That is, the set of translated initial
wave functions forms a Hilbert spatasisfor the time-evolved wave functiongS1050-294{@7)06606-1

PACS numbe(s): 42.50.Md, 03.65.Ge, 73.20.Dx, 02.10.Lh

[. INTRODUCTION In its mathematical description, the revival corresponds to
phase alignments of nearest-neighbor energy eigenstates that
The infinite square-well potential is an important model incomprise the wave function. Revivals in qguantum systems
guantum mechanics, and insights into the dynamics exhibwere first studied in the Jaynes-Cummings model, describing
ited in this model speak immediately to a wide range ofa two-level atom interacting with a resonant monochromatic
physical systems. It is a good description for one-field. Eberly, Narozhny, and Sanchez-Mondra@bhdiscov-
dimensional bound-state problems, whenever the confiningred that the atom’s inversion magnitude initially decays
potential is steeper than that of the parabolically curvedaway, but near special revival times rises to almost complete
harmonic-oscillator potential. It is also an important first ap-inversion before redecaying. Such revivals have been ob-
proximation to the confining potential seen in semiconductoserved experimentally in a micromaser cavity with atomic
quantum wells. rubidium[2]. Revivals were also predict¢8] and observed
It is perhaps surprising that there is new physics in thg4] to occur in Rydberg electron wave packets, in which a
time evolution of wave functions in a square well. The en-"breathing” motion between the inner and outer classical
ergy eigenvalues and eigenstates found from solving ‘Schrdurning points will lose, then regain, its radial localization.
dinger’s equation have simple analytic expressions, and onghey have also been observed in molecular systems, such as
can readily describe the time evolution of a wave function inin vibrational wave packets in N45].
this system via its eigenstate expansion. But if we look ahead A fractional revival of a wave function occurs when a
to Fig. 2, for example, we see that time-evolved wave funcwave function evolves in time to a state describable as a
tions can appear to “clone” the initial wave function collection of spatially distributed sub-wave-functions that
throughout the well, a phenomenon that cannot be anticieach closely reproduces the initial wave-function shape.
pated from such an eigenstate expansion. The primary motMacroscopic distinguishability or spatial localization among
vation for this work is to provide a formalism, a foundation, the sub-wave functions has been a major motivation for
for understanding this behavior. studying fractional revivals, but should not be seen as a re-
In this paper, we describe the evolution of a wave func-quirement for such a description, as in general the sub-wave-
tion in the infinite square well in terms of full and fractional functions overlap in space and interfere. In its mathematical
revivals. We will show that this system ideal for under-  description, the fractional revival corresponds to phase align-
standing fractional revival phenomena: the fractional reviv-ments of nonadjacent energy eigenstates that comprise the
als in the infinite square well occur to all orders and for anywave function.
initial wave function, with no stipulations on its initial local- Averbukh and Perelma6] made a definitive analysis of
ization or its energy bandwidth. Fractional revivals are usuwave packets formed by highly excited states of quantum
ally thought of as isolated incidents in a quantum system’systems, and described their fractional revivals, giving a gen-
time evolution, a few special moments in the long-term timeeral formalism for understanding earlier results in atomic and
dynamics of a carefully excited wave packet. In the infinitenonlinear systemf7]. We will make several references and
square well they allow for a full description of time evolu- comparisons to their work. Other theoretical investigations
tion. have explored fractional revivals in atomic systdi®8] and
A revival of a wave function occurs when a wave function in the Jaynes-Cummings modél]. More recently fractional
evolves in time to a state closely reproducing its initial form.revivals have been predicted in other systems, such as in
Morse-like anharmonic potentia]&¢0] and by atoms bounc-
ing vertically against a potential wall in a gravitational field
*Electronic address: daron@optics.rochester.edu [11]. Fractional revivals have been observed in several dif-
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ferent experiments in potassiurh2] and rubidium[13], and  for positive integem. The energy eigenstate wave functions
more recently in vibrational wave packets in,B4]. are
In many systems the fractional revivals will in turn un- (3
dergo decays and revivals. Sustper-revivaleffects were \ﬁ sin(nmx/L), n even
studied extensively by Bluhm and Kosteledib|, and have L '
been applied to understanding the role of the quantum defect IX|<L/2
in alkali metals[15,16 and the role of initial field statistics dn(X)= 5 (3
in the Jaynes-Cummings modgdl7]. Experimentally Wals, \ﬁ
Fielding, and van Linden van den Heuvell measured the LCOS(mTX/L)’ n odd
super-revival “forerunner” in rubidiunj16]. Leichtle, Aver- 0 Ix|>L/2
bukh, and Schleichl8] recently presented an analytical for- \ '
malism of multilevel quantum beats to describe wave-packeThe energy eigenstates are states of definite parity, as they
revivals and super-revivals. The infinite square well does notnust be for any system with symmetric potentgix).
display super-revival effects, so we will not need this body
of research. A. Time scales
Revival experiments with wave packets have thus far fo- It has been demonstrated repeate@lych as inf3,6,15)
cused on atomic and photon cavity systems. It is our hopéhat the important time scales of a wave function’s evolution
that the predictions of fractional revival phenomena in theare contained in the coefficients of the Taylor series of the
infinite square well might be realized experimentally in quantized energy levels, around the mean energy,
semiconductor quantum wells. In recent years there have — — — 3
been tremendous achievements in coherent dynamics ing—_ E+2mh (n—n) +(n - n +(n —-n T+
semiconductor systems, including observation of quantum " " Ty T Te '
beats in single well§19] and double well§20]; the creation (4)

[21] and tunability[22] of terahertz radiation from wave where often the zero of energy is shifted to remove Ere

packets excited in quantum wells; and the detedt®8} and o Regrouping the infinite square-well energi@sin this
enhancement via laser pulse sequences and pulse shapkgm, gives

[24] of Bloch oscillations in semiconductor superlattices.

In this paper we explore wave-function dynamics in the E,=Ein?=E;n?+2E;n(n—n)+Ey(n—Nn)?, (5
infinite square well. We begin by giving phenomenological
definitions for full and fractional revivals. We do so at the

and, comparing Eq44) and(5), we relate

expense of using the specific analytic form of the infinite h
square well’s energy eigenfunctions but at the benefit of Tg= —
gaining insights into the interrelationships among the sys- 2nkE

tem’s potential, eigenstates, and revival behavior. By propos;,q4

ing that fractional revivals occur in “parity-conserving

form,” we find a particularly simple and elegant form for an h

eigenstate expansion of the fractional revivals. With the use Te=5E ®)

of results from number theory, we extend Averbukh and Per-

elman’s analysi§6] to derive phase relationships betweenThat the quantized energy level) are exactly quadratic in

sub-wave-functions in the fractional revivals. We end withn or (n—n) leads toTy— %, and so the system shows no
many probability density graphs to illustrate the wide arraysuper-revival(or higher-order effects. In contrast to atomic

of time evolution behavior that is explained with our formal- SyStéms, it is important to note that the time scajehere
ism. does not depend on the mean energy leveThis will pro-

vide us with a “universal” time scale for describing wave
function evolution that does not depend on the particle’s av-
II. INFINITE SQUARE-WELL SYSTEM erage energy.

The one-dimensional infinite square-well potential con- B. Time evolution

fines a particle to a box of width and is described by We write the particle’s time=0 wave function in the

square well asy(x,t=0)=;(x). We expand this wave

0, |x|sL/2 function using the energy eigenstate basis
VOI=1 xsLe. @) -
Bi)= 2, Cabr(X), v

A particle of masan is placed in this potential. The energy
eigenvalues and eigenstates are found by solving the timauith
independent Schroinger equatior(as in[25]). The discrete

energy eigenvalues are cn=j dn(X) i (x)dx. (8
m2h2 Using the time scald=h/E,, the time evolution in the
E"=2mL2 n? (2 energy eigenbasis is found from Sctimger's equation to

be
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. ] 1
0= ex —i2a(Tpn?lean(¥). (9 - (@
E
-
C. Classical trajectories 5;
In Eq. (6) we found that the classical period associated “5
with motion in the square well waky=h/2n E;. A classi- &
cal particle with energyE travels at speed = y2E/m. If = /\
placed in an infinite square well, such a particle would travel /\ . i
in one direction, rebound elastically off one wall, travel in . (b)
the opposite direction until rebounding off the far wall, and 2
travel through its starting position, completing one period of g
classical periodic motion. The round-trip tinfg, associated -g;
with the periodic motion of the particle is -
T 2L L 28| ™ 10 5
=—=L|— 8
=, m (10 g /\
1 S r/\
-L2 -L/4 0 L/4 L2

If we take the particle’s energy to le=E;and use the
guantum-mechanical expressi@®) for the energy levels, Square well position, z
then we find thaflT=T,, as expected26]. Using such a
description of a classical particle has proven useful for con-
structing propagators for path-integral solutions to infinite FIG. 1. Probability densities fofa) initial (t=0) and (b) re-
square-well system27]. flected[t=(1/2)T;] wave functions.
We also can describe the time dynamics in the square well
with an analogy to classical wave propagation on a stretched
string of lengthL. We liken the timet=0 wave function Thus, at timet=T;, there is an exact revival of the wave
#i(x) to the initial profile of a stretched string which then function. It follows from this that time evolution in the infi-
propagates without dispersion at speed 2E;;/m. The nite square well is periodic with pericH, , that for any time
elastic collisions at the infinitely high potential barriers arety and integeik,
analogous to perfect reflections from fixed ends of the string.
When a wave form propagating on a string reflects at the P(Xt=to+kTg)=¢ (X, t=tg). (12
string ends, it travels in the opposite direction withr gphase
change in its amplitude; we will find analogous behavior inpoy this reason the tim&; can be referred to as the exact
the infinite square-well wave function. revival time or the period of the system. The full revivals and
A fixed energyE for one-dimensional motion corresponds time periodicity of the infinite square-well wave functions

to two possible velocities, the right- and left-traveling veloci-\yere recently discussed by Bluhm, Kosteleckyd Porter
ties with the same magnitude The classical trajectories we [2g].

will discuss do not lift this ambiguity, and can be taken to be The time Ty, is the shortest time for which we are guar-
an arbitrary superposition of the initially right-traveling and gnteed to have an exact revival of the initial wave function.
initially left-traveling classical paths. There are particular classes of wave functigsisch as states
of definite parity that have full revivals at earlier times. This
will be illustrated in Sec. V, but a more detailed discussion
ll. FULL WAVE-FUNCTION REVIVALS of such population-dependent revivals will be the subject of

An exact wave-function revivas said to occur when the 2 future publication.

particle’s wave function differs from its timé=0 wave
function by at most a constant phase; that is, the wave func- Mirror wave-function revivals

tion revival and the original wave function have the same Again by direct substitution into the energy eigenstate ex-

probability density|¢;(x)|?. By direct substitution into the : . 1 o
energy eigenstate expansio®), we see that, at time gs/zsr:ot?y(/g)’ we see that, at time= 3 Ty, the wave function is

t=T;, the wave function is given by

‘ﬁ(xvt:%Tfr):E eX[i—iﬂTnz]Cnd)n(X)
(X, t=Ty)= > exd —i27n]c,¢n(X)

=; Cnd’n(x):wi(x)- (11) :_wi(—x). (13)
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Thus, at timet= 3 T, there is a single reflected copy of the [ ;(x,AX) + ;(x,— Ax)] are the only ones to maintain par-

initial wave function(see Fig. 1 ity. We defineparity-conserving fractional revivalas the
For initially well-localized wave packets, the time subset of possible fractional revivals5) that conserve par-

t= 1T, is the first time at which the state regains its initial 'Y thus they have the form

localization. For revival experiments with Rydberg atomic

_electron wave packets, this revival of Iocalization_ is a more z//(x,t)onzpi(x)JrE Al i (X,Ax=a;L)
important time scale than the exact wave-function revival !
time, since it also corresponds to a revival of classical peri- +E(X,Ax= —ajL)].
odic motion of the wave packet. (16)
IV. FRACTIONAL WAVE-FUNCTION REVIVALS We make the ansatz that fractional revivals in the infinite

square well are always of this parity-conserving form, even

An exact fractional wave-function revivad said to occur  when y;(x) is not a state of definite parity.
when the particles wave function can be written as a super-
position of translated initial wave functions. We allow for
the possibility that each translated copy has a relative phase
difference with the original wave function as we did in Sec. ~We extract information on fractional revivals using the
1. surprisingly simple result that the energy eigenstate expan-

Simply translating the initial wave function is not, in gen- Sion of a parity-conserving wave-function pair is given by
eral, compatible with the infinite square-well physical

B. Energy eigenstate expansion

boundary conditions, which requirg(x,t)=0 for |x|=>L/2. Pi(X,Ax=al)+ (X, Ax=—al)

We address this using He “wave form on a string” analogy:

We define the functions;(x,Ax) to be the wave function =22 cog amn)Cydy(X). (17
n

found by translating the initial wave functiog;(x) a dis-

tanceAx in the square well, with any probability amplitude_ The derivation of this expression is shown in the Appendix.

fchatt WSUIdﬂbetme\éedkOl.JttOftLhe weI:I b)f[hSUChha tranﬁlatlon 'SWe use this to give an energy eigenstate expansion for our
Instead reriected back into the well withraphase change. posited parity-conserving fractional revivalst):

Translating the wave function a distande&=2L returns us

to the initial configuration;(x,Ax==2L) = ¢;(x), so this

describes periodic motion iAX. lﬂ(X:t):; Ag+22, Ajcod a;mn) | Cadn(X). (18)
Thus, we say there is an exact fractional revival at time )

tif Comparing this expression to the energy eigenstate expan-
r(t) sion (9), we see that we have a fractional revival at tiine
P, 0= 2 A1) g0, Ax= ag(D)L), (14 ~ When we can write
j=1
where there are(t) translations of the initial wave function, exd —i2m(t/Ty)n?]=Ag+ 22}_: Ajcogajm n). (19

centered at positiong;L, with amplitudes|A;| and phases

arg(Ay). It is important to note that at the onset we do Notypyt is we must be able to write the time-evolution expo-
know to what values of timé we must restrict our attention antial quadratic im, in a cosine series, linear m Such an

for Eq. (14) to hold. This fractional revival description may expansion, introduced by Averbukh and Perelniéh is
only be valid for special times, special “time eigenvalues” .- 4e using the finite Fourier series.

of the fractional revival equation. But at these special mo-
ments of time we expect Eq14) to hold for all values of
position x. For this reason we will de-emphasize the time
dependence on the right-hand side of this equation, and write A function f(n) whose domain is restricted to the integers

C. Finite Fourier series

the fractional revival definition as (neZ) can be written as a finite sum of exponentials if and
only if it is r periodic, that is, there is an integeisuch that
o i . . . I
w(x,t)=; A(x,Ax=ajL). (15) f(n)=f(n+r) for all n. Such a finite sum is called the finite

Fourier series(See[29] for a review of such expansions.

In our case we identifyf (n) =exg —i2#(t/T;)n?]. The
necessary and sufficient condition for this exponential to be a
periodic function of the quantum numbaris that the time

The square-well energy eigenstates are states of definit@tio t/T;, must be rational, and we write=(p/q) Ty, for
parity, so parity is conserved in time evolution. If the initial relatively prime integerg andq (that is, p/q forms a sim-
wave functiony;(x) is an even or odd function of position, pilified fraction. We will refer to p as thetime numerator
parity conservation places a constraint on the form for a fracandq as thetime denominator

tional revival: if the fractional revival contains a translation  The time evolution exponential is an even function of the
term ¢;(x,Ax) it must also contain a terng;(x,—AXx). If guantum numben. This allows us to write the finite Fourier
i(x) is a state of definite parity, pairings of the form series in several different ways:

A. Parity-conserving fractional revivals
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exg+i2mnjir] SinceA;,=A;, we can interpret coefficient indices modu-
or lo r. Averbukh and Perelmah6] showed this result for
r-1 k=1. Other values ok allow us to determine the relative
f(n)=2, Ajx{ exd—i2mnjir] (200  phases of the fractional revival pairs.
1=0 or We recall from number theory that g and q are rella)\-
cog 2amnjir), tively prime, p has an integer multiplicative mverqé]

satisfyingp < pg_l)zl(modq). While there are no simple
closed-form expressions for the smallest possible value of
pg_l) (in practice one computes the inverse with trial and
erron, its existence and upper bound are discussed in number
theory texts(such ag30]). If we choosek= pg_l) the shift

with

exd +i2wnj/r]
or

17t . . index relation becomes
AJ:?Z f(n)x{ exd—i2mnj/r] 1) | ) |
e or A 20 =Aexdi2a(pl V) (anj+1)]. (24
cog2mnjlr).

F. Time-evolution phasor periodicity

At time t=(p/q) Ty, Averbukh and Perelmal6] show
that the time-evolution exponentifi{n) =ex{ —i2m(p/q)n?]
ég, r-periodic in the quantum number, with

The form of the finite Fourier serig®0) has the same form
as the sought cosine expansid®) whenever we are at ra-
tional multiples of the revival timet=(p/q) T, . This dem-
onstrates that at such times the wave function can be d

scribed by a par_ity-conserving frgctional_ revival. In o_rder to a, g#0(mod 4

extract the physics from the details of this mathematical for- r= _ (25

malism, we first need to investigate the properties of the 9/2, gq=0(mod 4.

expansion coefficient§A;} (Secs. IV D and IV E and give

results fpr the period that appears in the finite Fourier geries G. Coefficient properties and fractional revivals

expression(Sec. IV B before tying the results together into a , . :

concrete physical picturéSecs. IV G and IV B We now tie together the results of the previous sections to
give general expressions for the finite Fourier series coeffi-
cients.

D. Expansion coefficient properties and interpretation
From the cosine sum in Eq21), we see directly that 1. Case 1: q is odd
Aj+r=A; . Comparing Eq(20) with Egs.(18) and(19), this For odd values of the time denominatgt the time-

shows that placing pairs of translated wave functions agyolution phasor has periodicity=g, and so there are
Ax==x(2j/r)L is the same as placing them at coefficients{A,} in the finite Fourier expansion. It has been
Ax=*(2j/r)L=2L, that translation is periodic in the well. shown[6] that all q coefficients have the same magnitude,
Similarly, from Eq.(21) we see thai,_;=A;. Physically |A‘|=1/\/a- The shift index relatior(24) is
this shows that placing pairs atx= = (2j/r)L is the same = °
as placing them af\x=*(2j/r)L, that we are translating
the wave functions in pairs. These two coefficient identities
allow us to extend definitions and meanings to coefficients
not explicitly included in the finite Fourier series. which allows us to write coefficients in terms Af, for even
values ofj with

Ajro=Ajexdi2a(pl VIg)(j+ 1)1, (26)

E. Shift index relations
— ; -1 ;
In computing the coefficientd; in Eq. (21) we are sum- Aj=Acexili2m(py V14q)j?). (27
ming a periodic functiori(n) over a full period. We shift the _
summing variable froom to n—k (wherek is any integer ~ We write Ag=e'%0/\/q in terms of an unknown phase angle

without changing the result: ¢o and known magnitude. Sinee=q is odd, exactly one of
o the indicesj or r—j is even. Recalling thad;=A,_;, we
Aj:_Z f(myexdi2anj/r] can regroup the finite Fourier series as a sum over even in-
r i=o dices:
1 r—-1 g2
: . q-
=-2, f(n—k 2m(n—k : 22

F 2, f(n-kexlizm(n-kjr]. (22 f(n)=Ag+ > 2Aco82mnj/q). 28)

i=2.4

By using the explicit form of the time-evolution exponential
f(n) it can be shown that this allows us to relate the differentComparing Eq(20) with Egs.(18) and(19), we see that the
coefficients with wave function can be described as an untranslated copy of
the initial wave function, and pairs of translated wave func-
Aj+2(p,q),k=Ajexp[i277((p/q)k2+(j/r)k)]. (23)  tions with displacementdx= = (j/q)2L for evenj.
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2- Case 2 2 (mod 4) Ya(XAX) = A (X, — AX) +Agdi(x,Ax)  (33)
In this caseq is an odd multiple of 2. The time-evolution
phasor has periodicity =q and there areq coefficients
{A;} in the finite Fourier expansion. It has been shd@h  for any choice of weights satisfying, + Ag=1. That is, we
that even- and odd-index coefficients are coupled separatelgre writing the wave function as a superposition of classi-
the even coefficients are zero and the the odd coefficientsally moving “string” profiles, where the classical path is
have magnitudéAjlzll\/q_lz. The shift index relation is the taken to be an arbitrary mixture of initially left- and right-
same as Eq(26), which for oddj leads to displaced motions.
The number of subpacketsis given by

Aj=Aexdi2m(py P/4g)(j2-1)]. (29
We write A;=¢e'%0/\/g/2 in terms of an unknown phase. g/2, g even
Comparing Eq(20) with Egs.(18) and(19), we see that the rt=(p/q)Ty)= 0. qodd (34)
wave function can be described as pairs of translated wave ' '
functions with displacementax==*(j/q)2L for oddj.

3. Case 3: G=0 (mod 4) and the path offseAr is given by
In this caseq is a multiple of 4. The time-evolution pha-

sor has periodicity =q/2, and so there arg/2 coefficients 0, q#2(mod 4
{A;} in the finite Fourier expansion. It has been shd®h Ar(t:(p/q)Tfr):{ N _ (35
that all coefficients have the same magnitude, 2, 9=2(mod 4.
|Aj|=1/\Jq/2. The shift index relation is

Ajr1=Ajexdi2m(py Va)(2j + 1)1, (300  The number-theoretic invergs " is most quickly found by

testing the positive integers sequentially, checking for the
which for all j gives smallest number satisfyingx p{” =1 (mod g. The phase
] (~1)y i 2 angle ¢ is the only unknown, but exact probability density
Aj=Aoexdi2m(pg /)il (31)  expressions are obtained without knowing it.

) . . ) Such a wave function described by E§2) is called the
We write Ao =e' %0/ \[g/2. Comparing Eq(20) with Eqs.(18)  « p/q fractional revival” or the “fractional revival of order
and(19), we see that the wave function can be described ag/q.” In this expression, we describe wave function transla-
an untranslated copy of the initial wave function and pairs oftjons coveringtwice the round-trip distancéor in the time
translated  wave  functions  with  displacementsdomain, twice the classical peripébr odd-time denomina-

Ax==x(4j/q)L. tors, and covering a single classical period for even-time
denominators. We see no way to reform E8Q), for odd-
H. Summary of fractional revivals time denominators in particular, to give a concise phase re-

eIationship and describe the motion alomgeround-trip path.

We note that our method to find the relative phases of the
sub-wave-functions via the use of the multiplicative inverse
of the time numerator, outlined in Secs. IVE and IV G, is
immediately generalizable to any quantum system that ex-
hibits fractional revivals. This number theoretic technique
s proven to be a useful and insightful method for studying
ase interference effects with wave packet fractional reviv-
als.

In a recent publication, Bluhm, Kosteleckand Porter
[28] use numerical autocorrelation calculations to demon-
strate the fractional revivals atT;,, 3 Ty, and3 Ty, without
reference to its manifestation in the position representation in

X, t=(p/q)T ) the well.

ei‘r/’O r—1
:T kzo exdi 27T(pf{ l)/Q)(k"' Ar)?] I. Fractional revivals as a Hilbert space basis

Result (32) describes the wave function at times
t=(p/q) T as translated copies of the initial wave function.
We argue that this result can then be extended to completely
describe the time evolution of the wave function, for all
The function ¢ is an arbitrary superposition of left- and timest.
right-translated copies of the initial wave function using From a mathematical point of view, we know from real
wave reflections at the well walls: analysis that the set of timegp/q)Ts} for all relatively

The results in the previous three sections can be combin
and written in a unified way. Although our derivation began
with the notion ofparity-conserving pairsof fractional re-
vivals, it is advantageous to rewrite our result using Aver-
bukh and Perelmda notion ofclassical pathslt is awkward
to write a unified answer using the parity-conserving pair
form because in case 2 above, the pair displacements alwag
include the translationd x= L which correspond to arriv-
ing at the same final location by moving in two different
directions.

At times t=(p/q) T+ the wave function in the infinite
square well is given by

X,AX=

X wcl

Ar
4L). (32
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domain: for any choice of timé we can find an arbitrarily (@)
close rational multiple off;, . Wave-function time evolution
is continuous in time(x,t)— #(X,ty) uniformly in x as
t—tgp, so finding arbitrarily close rational approximations of
time will also recreate the wave function of interest arbi-
trarily accurately.
From a more physical point of view, we know that any J
physically realizable state will have a largest enefgy, in
its energy eigenstate expansi@®, and thus the wave func- t
tion cannot change significantly in time intervals small com-
pared withAt=~#/E 4.
Using either point of view, we see that the results in Eq.
(32) can describe evolution at any time. We are then able to

(b)
describe time-evolved wave functions in the infinite square
well using the set of all translations of the initial wave func-
tion ¢;(x) as abasis The number of translations needed to }
terms of the time denominator via the quantityThe set of J '
all translations needed to describe the wave functioallat ©)
times densely covers the set of all possible translations. . ‘
V. PROBABILITY DENSITY PICTURES )

describe the wave function atgarticular time is given in
The wave functions described in E(B2) show a rich

|

0

| (z, t))* (arb. units)

prime integer pairp and g is a dense subset of the time T T

l(z,t)|* (arb. units)

[o(z,t)|° (arb. units)

have a common dependent axis scale. All graphs superim- t
pose the predictions of the fractional revival descriptid®)
with the results from explicit eigenstate time evoluti(®;
the two equations agree in all cases to within the precision of
the computer calculation.
Let us look at a wave packet initially localized in the
center of the wel[Fig. 2(@)]. For odd-time denominatois,
the wave function ig) spatially separated displacements of
the initial wave packeftFig. 2(b)], which alternate across the
well between initial and reflected shapes. When the time de-
nominatorq is an odd multiple of 2, the wave function is L2 -L;4
g/2 spatially separated copies of the initial wave function
[Fig. 2lc)]. When the time denominatoris an even multiple
of 2, there are/2 copies of the initial wave function, but the
initial a'n.d reflect.e'd shapes exactly'overlap, and the rgsulting FIG. 2. Initially centered, localized wave function. Probability
g(rg)li?blllty densities show strong interference effdétg. denlsities for(a) init@al (t=0), (b) t= 3T, . (0) t= 4T, . and (d)
When there is not significant overlap between the dis—t_l_2Tfr wave functions.
placed copies of the wave function, the probability density
|$(th:(p/q)Tfr)|2 is determined by the time denominator vidual wave-function tranSlatiOl’[gig. 4(b)] Now, however,
g, independent of the numeratpr Once we have significant the symmetry in the odd-time denominator revivals across
overlap, the relative phases of the overlapping copies is sighe well is los{Fig. 4(c)], and for even modest time denomi-
nificant and the probability density depends on the time nuna_tor values the initial and reflected shapes will interfere
meratorp via its number-theoretic inverse{ V. In Fig. 3 [Fig. 4(d)]. _ _ o _ _ _
we show probability densities for two different time numera- In|_t|al wave functions with definite pant_y are interesting
tors for the same time denominator, for the on-axis initia/SPecial cases of our theory because the initial and reflected
wave function shown in Fig. (@). Both wave functions in Wave forms are indi§tinguishable. By definitioq qf their par-
this figure are described by 15 translations of the initial wavel, Such wave functions are centered at the origin. Just as in
function, but due to interference between the translations thE'9- 2 We saw interference effects, we seenpletedestruc-
two probability densities they look completely different. tive and constrL!cnve mterf(_erence in states of definite parlty.
If instead we started with a well-localized wave packet O even-parity statg@s in Fig. §a)] there are full reviv-
that initially is slightly off-cente{Fig. 4@a)], the even-time als of the wave function at multiples of timte=g Ty,. At
denominator revivals no longer overlap and we see the inditimes t=(p/8q) T;, there areq copies of the initial wave

l(z,t)]> (arb. units)

array of physical phenomena which we illustrate below. As
A (d)

I
we wish to emphasize the shape of the wave functions anc
probability densities and not their scale, the graphs do not
L/4 L2
Square well position, x
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FIG. 3. Initially centered, localized wave function. Probability G
densities for(a) t= T, and(b) t= 1T, wave functions. o
function distributed evenly across the wéHigs. §b) and )
5(0)]. 2
For odd-parity statefas in Fig. €a)], there are full reviv- t 4 t n
als of the wave function at multiples of timte= 3 T, . At 7 )
timest=(p/4q) T, for odd values ofy there areq transla- §
tion locations that appear in the probability dendiBig. 3
6(b)]. For even values of there areq/2+ 1 translation lo- 3
cations that appear in the probability dengifyg. 6(c)]. For o
these everg values, we find displacements A= *L1/2, =
where the first half of the sub-wave-function has reflected \%
and constructively interferes with the second half. =
The fractional revivals are most striking when the initial T T T
wave function is well-localized, but our results are in no way -L72 -L/a 0 L/4 L2

limited to such wave functions. Figure 7 shows a nonlocal-
ized wave function and two of its fractional revivals.

There is an interesting counterpoint to one’s usual notions
of quantum time evolution in light of the results presented in o i B a1 1
Eq. (32). We expect thaty(x,t+At)~y(x,t) for “suffi- denlsmes for(a) |n|t.|al (t=0), (b) t= 3Ty, (c) t=3 T, and(d)
ciently small” values ofAt, so, for example, we expect t=5 Ty, wave functions.

Square well position,

FIG. 4. Initially off-center localized wave function. Probability

lim (x,t=Tg /10 =4 (x,t=0) (37)

K— o0

eral comments on the evolution of wave functions in a finite
well of depthV,. Finite square wells only support a finite
This is curious because our res(82) describes the left-hand number of bound energy eigenstates. The number of bound
side of this equation as 10¢ translated copies of the initial States isn,=int(2P/m)+ 1], whereP=(2mV,/#2)Y2L/2
wave function(and thus the number of translated copies isis the well strength parameter. Solving the time-independent
unbounded ak— =), whereas the right-hand side is a single Schralinger equation for such a well leads to transcendental
copy of the initial wave function. We show graphs of the equations for the energy levels. Via a first-order expansion of
asymptotic behavior of the left-hand side for decreasing valsuch equations, Barket al.[31] showed that a finite square
ues ofk in Fig. 8. well's energy levels are given by

VI. FINITE SQUARE WELLS

P2 71_2ﬁ2
It is impossible to find a physical system that creates a Epy~—=—5 —3N%
truly infinite confining potential, so we now make some gen- (P+1)° 2mL
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Square well position, z FIG. 6. Odd-parity wave function. Probability densities for

FIG. 5. Even-parity wave function. Probability densities for (& ilnitial (t=0) and full revival ¢= iTw), (b) t=1Ty, and (c)
(@) initial (t=0) and full revival ¢= 1T,), (b) t=4T,, and(c) | 24w Wave functions.
t= G%Jfr wave functions.
energy eigenstates, is in some sense “‘remembered” by the
These energies are the same as would be found in a larggystem in its time evolution. Mathematically, E82) states
infinite square well of siz&’ = (1+1/P)L. Barkeret al.also  that the set of initial wave functions translated by rational
gave a second-order expression for the ener_gies of the fi_niytﬁuy[imeS of the periodic round-trip distance forms a
square well. One could take such an expression, expand it gnction-spaceasisfor the time-evolved wave functions at
in Eq. (4), and associate a super-revival time sCBlewith  y4tional multiples of the revival tim@ ¢, . This has interest-
the cubic contribution to the energy levels as a function Ofing connections with, and distinctions from, wavelet expan-
the well sirength parametét. . . ﬁion theory[32] that may deserve more exploration.
of l::\?v:(/gigtrmeg:ov;z;:t\i/r?gu(fﬁdatr?? dse:;rrpslttarizlgsféci ?nci)tdee In Rydberg atoms, wave packets that exhibit revival and
: ' . fractional revival behavior need to be excited with consider-
square well this would have to be expanded to describe theble care. and a areat deal of attention has b ) both
evanescent part of the wave function outside the confinin . great deal of attention has been given, bo
well. heoretically and experimentally, to find the regime in which
VII. SUMMARY AND OUTLOOK expansion(4) gives a good description of the pertinent en-
We have found an expressidB?) that relates the wave €9y levels of_the syst_em so that thg wave packet will e_xhibit
function at rational multiples of a revival tim&, to the revwal behavior. In th_|s sense _the infinite square well is the
initial wave function ¢;(x) in terms of translations of the ideal system for fractional revivals: all wave functions ex-
initial wave function, treating it as a wave on a string thathibit fractional revivals of all orders just because they were
reflects probability amplitude at the well boundaries. Thiscreated in a system with such special energy-level spacing.

result hol_ds withogt_ approximation,_ to all fractional _revival ACKNOWLEDGMENTS
orders, without limiting the class of initial wave functions or
the time ranges considered. We would like to thank Jake Bromage, John D. Corless,

It is no surprise that free time evolution preserves theMichael Van Leeuwen, Michael Noel, and James A. West
energy level populationg,|. Far more surprising is that the for discussions on this work. This work was partially sup-
initial wave function shape, the coherent superposition oported by the U.S. Army Research Office.
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APPENDIX: PARITY-CONSERVING FRACTIONAL T T I e

REVIVAL PAIR EXPANSION -L2 -L/4 0 L/4 L2

We wish to calculate the overlap integral between a Square well position,

Fha;%czrr:sé?rvmg pear:rsgt\éva'\éﬁzatﬁgsﬁfevgﬁvg fzgﬁzlo‘?tseiﬁg FIG. 8. Initially entered, localized wave function. Probability
9y €9 : ’ P densities for (@) iniial (t=0), (b) t=(1/10H)T,, (c)

quantity t=(1/10)T,, and(d) t=(1/10)T, wave functions.

f_w[E(X,AX=aL)+E(X,AX= —al)]gn(x)dx. (Al)  The overlap integral is given by

We will break the integral up into three separate contributing

terms: the translated copies of the initial wave function and » — Ax— Jix Ax=

the two boundary reflections witl phase shifts. Figure 9 i Ax=abl)+ ¢i(x,Ax=—al)pq(x)dX
gives an example initial wave function and its translated cop- o

?es for reference. Althpug_h the geometry of this fig_ure vv_ould — f [ (x— aL) + ¢ (x+ aL)]trign(x)dx
imply translations satisfying € aL<L/2, the result is valid )

for all «L. For brevity, we will use the notation

L2 ,
+J e' i ([L—Xx]— al)trigh(x)dx
2 L/2—al
\[Esm(m-rx/L), n even

tig,0=1 (A2) + f T ([ —L—x]+ al)trig,(x)dx. (A3)
\[Ecos{m-rx/L), n odd.

—L/2
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(a)

Y;(x)

1
alL |L2
L2-aL

-L2+a L

Square well position, x

FIG. 9. Sampldga) initial wave function andb) translated pairs

to illustrate the geometry used in the Appendix.

We rewrite the first term as two integrals, each with the

initial wave function recentered at the origin:

L/2
i (X* al)trig,(x)dx
L/2

Li2xal
:J i (X)trign(X= aL )dx. (A4)

—L/2xalL

As the initial wave function vanishes fox|=L/2, the range
of integration can be reduced toL/2+ aL=<x=<L/2 for the
“positive” ( +) integral and to—L/2<x<L/2— «aL for the

“negative” (—) integral. The second term of EGA3) can

be rewritten with the change of variables-x—alL —X to

center the initial wave function at the origin:
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L2 ,
J e' " ([L—X]— al)trigh(x)dx
L/2—al

=fu2 Pi(x)trigny(x+ aL)dx. (A5)
L/2—alL

Similarly, rewriting the third term of Eq(A3) with the
change of variables-L —x+ aL—Xx leads to

—L/2+al
f / €' " ([ —L—x]+ aL)trig,(x)dx
—L/2

—L/2+aL
= f i (x)trigy(x—aL)dx. (AB)
L/2

Combining all these results gives a simple expression for the
quantity we wish to calculate:
Wi(X,Ax=aL)+ ;(X,Ax=—aL)
L/2
= i (X[ trigy(X+ aL) +trig,(x—al)].
—L/2
(A7)

Using the explicit expressions for tri), one can show
that, for alln,

trig,(X+ aL) + trig,(X— aL) =2 cog amn)trig,(X). (A8)

The remaining integral is our defining equation for the coef-
ficient c, (8), so we conclude that

E(X,Ax= al) +E(X,Ax= —al)=2c,cogamn). (A9)

Using the energy eigenfunction orthonormality, this is re-
written as

(X, Ax=al)+ ¢;(X,AX=—al)

=22, c,cog amn)dn(X). (A10)
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