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Resonant interaction between identical atoms including recoil

P. R. Berman
Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 9 December 1996!

The emission spectrum is calculated for a system of two identical atoms, having relative coordinater .
Initially one atom is in an excited state and the other in its ground state. Both atom and field variables are fully
quantized, so that the calculation automatically includes effects related to both retardation and atomic recoil on
the absorption or emission of radiation. It is shown that fork0r@1 ~wherek052p/l andl is the wavelength
associated with the resonant excited- to ground-state transition!, the emission spectrum can consist of a triplet.
The frequency separation between the components of the triplet can be interpreted in terms of the recoil the
atoms undergo individually on emitting or absorbing radiation. Fork0r!1, the atoms emit as a composite
system and the recoil~while not resolvable! is that associated with a ‘‘molecule’’ of mass 2m, wherem is the
mass of one of the atoms.@S1050-2947~97!01506-0#

PACS number~s!: 42.50.Fx, 32.80.Lg
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I. INTRODUCTION

In a recent experimentaltour de force, Devoe and Brewer
@1# observed the variation in the decay rate of a two-
system as a function of the separation of the ions. This pa
was preceded by a theoretical paper by Brewer@2# on two-
ion superradiance that contained a survey of the literature
the theory of two-atom superradiance. Of particular r
evance to the present discussion are the articles by Milo
and Knight@3# and Power@4#. Milonni and Knight consider
the evolution of a system of two identical atoms, one
which starts in an excited state and the other in its gro
state. They concentrate on the limit in which the atoms
separated by a fixed distance that is larger than the w
length of the excited- to ground-state transition and obt
solutions that reflect the retardation effects associated
the finite transmission time it takes for radiation emitted
one atom to influence the other atom. Their calculation tre
the motion of the atoms~or, more precisely, the lack of mo
tion of the atoms! classically. At the other extreme, Pow
presents a fully quantized calculation of transition rates
energy shifts in order to assess the role played by the mo
of the atoms in modifying the superradiant decay. Althou
the starting point of the theory is a fully quantized Ham
tonian for the atoms and the~vacuum! field that, in principle,
contains all effects related to retardation and atomic recoi
the emission of radiation, there is no explicit mention
retardation effects in the paper and effects related to re
are neglected.

It is the purpose of this paper to present a fully quantiz
calculation of the emission spectrum from a system of t
identical atoms in which the effects of retardation and rec
are considered explicitly. The two atoms are represented
wave packets that are separated initially by some ave
distancer 0 , with one of the atoms in its excited state and t
other in its ground state. The goal of the calculation is
answer questions of the following nature.~i! How does recoil
modify the emission spectrum?~ii ! Do the atoms recoil as a
composite system or as a system of two individual atom

In attempting to answer these questions, a formalism
developed in which retardation and recoil enter the equat
551050-2947/97/55~6!/4466~11!/$10.00
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in an intuitively obvious fashion. Both coordinate and m
mentum state representations are used. The paper is o
nized as follows. In Sec. II, the problem is defined, the n
tation is established, and the equations of motion
obtained. The limiting cases ofk0r@2p and k0r!1 are
discussed in Secs. III and IV, respectively, wherek0
52p/l, l is the wavelength of the ground- to excited-sta
transition, andr is the interatomic separation. In each
these limits, the emission spectrum is evaluated and its
pendence on atomic recoil is analyzed. The results are s
marized in Sec. V. The paper contains an appendix in wh
the use of the Weisskopf-Wigner approximation is justifi
and questions related to causality are explored.

II. EQUATIONS OF MOTION AND SOLUTION

The system under consideration is shown in Fig. 1. T
identical atoms are separated by a distance that is large c
pared to the spatial extent of the electronic wave function
each of the atoms. Each atom has a ground stateg and ex-
cited statee that are separated in frequency byv0 . Initially,
atom 1 is excited and atom 2 is in its ground state~the atoms
can be considered as distinguishable owing to their relativ
large separation!. As a result of the atoms’ interaction wit
the vacuum radiation field, the system evolves into a sup

FIG. 1. Schematic representation of the initial conditions for
problem under discussion. Atom 1 is in its excited state, atom 2
its ground state, and there are no photons in the field. The ce
of-mass motion of the atoms is described by a plane-wave s
while the relative motion is described by a wave packet tha
centered atr5r0 at t50, having an average relative momentu
equal to zero. The extent of the wave packet associated with
relative motion is much less thanr 0 .
4466 © 1997 The American Physical Society



e

to

a
e
e
tio
is

th
e

i
i-
tw
t

it
ult
is

he

o-

w
s
t

se
e

oi
m
ut
.

e.

the

and
the
the
re-
xci-
tate
ns

s.

ed
e-
s

re

he
o-
eld

ga-

nd

ry

55 4467RESONANT INTERACTION BETWEEN IDENTICAL . . .
position of three internal states:ua&5ue1 ,g2;0& in which
atom 1 is excited, atom 2 in its ground state, and there ar
photons in the field;ua8&5ug1 ,e2 ;0& in which atom 2 is
excited, atom 1 in its ground state, and there are no pho
in the field; andub&5ug1 ,g2 ;ke& in which both atoms are in
their ground states and a photon is emitted into a mode h
ing wave vectork and polarizatione. States other than thes
enter the calculation as virtual states and can contribut
single-atom level shifts and to the van der Waals interac
between the atoms@3#: such effects are neglected in th
work @5#.

In order to describe the external state variables of
atoms, we follow the general procedure outlined by Pow
The center of mass of atomi ( i51,2) is located at position
Ri and the momentum canonical to the position variable
Pi . The Ri and Pi are quantum-mechanical variables. In
tially, the average separation of the wave packets of the
atoms is^R22R1&5r0 . We are interested in mapping ou
the evolution of the system as a function ofk0r 0 , wherek0
5v0 /c. On the other hand, we are not concerned here w
the modification of the internal state dynamics that res
from an initial relative velocity of the two atoms since th
has been discussed previously by Cooper and Stacey@6# and
Power @4#. Consequently, it is assumed that^P22P1&50
initially.

Rather than work with the individual coordinates of t
atoms, it is useful to introduce the variables

R5~R11R2!/2, P5P11P2 ,
~1!

r5R22R1 , p5~P22P1!/2,

which imply that

R15R2 1
2 r , R25R1 1

2 r ,
~2!

P15
1
2P2p, P25

1
2P1p.

The vectorR is the center-of-mass coordinate of the tw
atom system andP is its conjugate momentum, whiler is the
relative coordinate of the two atoms andp is the momentum
conjugate tor .

The formalism developed below is quite general; ho
ever, the discussion in this article is aimed at a restricted
of wave functions and interatomic separations. It may help
put the problem in better perspective if these restricted
are discussed at this point. The initial wave function is tak
to be of the form

uC~R,r ,t50!&5x0~R!c0~r !ua&. ~3!

Although the center of mass of the two-atom system rec
as a result of spontaneous emission, the center-of-mass
tion really is not a critical element of this problem. Witho
loss of generality, one can takex0(R) as a plane-wave state
With regard to the relative motion, it is assumed that

Dr!r 0 , @\k0 /m#/G!r 0 ,

@\/~mDr !#/G!r 0 , r 0@c/G, ~4!

wherem is the mass of one of the atoms,Dr is the spread
associated withc0(r ), andG is the excited-state decay rat
no
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The first inequality corresponds to the requirement that
spread of the initial wave packet~for the relative motion! is
much less than the interatomic separation, the second
third inequalities correspond to the requirements that
wave packet does not move or spread significantly during
lifetime of the excited state, and the last inequality cor
sponds to the requirement that the atoms can undergo e
tation exchange in a time short compared to the excited-s
lifetime. As long as we restrict the calculation to separatio

104*k0r 0*0.1,

inequalities~4! are satisfied for typical atomic decay rate
Note that if k0r 0,1, the momentum spreadDp must be
greater than\k0 ; as a result, the Doppler width associat
with this spreadk0Dp/m is necessarily greater than the r
coil frequency shiftvk0

r 5\k0
2/2m. As a consequence, it i

impossible to resolve the recoil splitting if the atoms a
separated by less than the wavelengthl052p/k0 of the
resonant transition. On the other hand, for separationsr 0
@l0 , it is possible to chooseDr.l0 , Dp,\k0 , enabling
one to resolve the recoil shift for such separations.

In the dipole approximation, it is possible to neglect t
variation of the electric-field amplitude on the electronic c
ordinates of each of the atoms and simply evaluate the fi
acting on atomi at positionRi . In this limit, the Hamiltonian
describing the two-atom system is

H5
P2

4m
1
p2

m
1H11H21(

k
\Vkak

†ak2m1•ESR2
1

2
r D

2m2•ESR1
1

2
r D , ~5!

where

E~R!5(
k

@gkekak exp~ ik•R!1gk*ekak
†exp~2 ik•R!#,

~6!

Hi is the Hamiltonian for atomi , ak andak
† are the destruc-

tion and creation operators for a field mode having propa
tion vectork and frequencyVk5kc, mi is the dipole mo-
ment operator of atomi , gk5 iA\Vk/2«0V, V is the
quantization volume, andek is the polarization vector for
modek ~there are two independent values ofek for eachk!.

To simplify matters, it is assumed that the ground a
excited states of each of the atoms are nondegenerate~a pre-
scription for generalizing the calculation to states of arbitra
angular momentum is given below!. The wave function for
the system is expanded as

uC~R,r ,t&5~2p\!23E dPE dp

3 (
s5a,a8,b

exp@2 i ~Es1EP1Ep!t/\#

3exp@ i ~P•R1p•r !/\#bs~P,p,t !us&, ~7!

where
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4468 55P. R. BERMAN
EP5P2/4m, Ep5p2/m,

Ea5Ea85\v0 , andEb5\Vk . It then follows from Schro-
dinger’s equation that the state amplitudesbs(P,p,t) evolve
as

ḃa~P,p,t !5~ i\!21(
k
gk~2m•ek!

3expF i S ~v02Vk!1
k•P

2m
2
k•p

m
2vk

r D t G
3bb~P2\k,p1 1

2 \k,t !, ~8a!

ḃa8~P,p,t !5~ i\!21(
k
gk~2m•ek!

3expF i S ~v02Vk!1
k•P

2m
1
k•p

m
2vk

r D t G
3bb~P2\k,p2 1

2 \k,t !, ~8b!

ḃb~P,p,t !5~ i\!21gk* ~2m* •ek!

3expF2 i S ~v02Vk!1
k•P

2m
1vk

r D t G
3FexpS i k•pm t Dba~P1\k,p2 1

2 \k,t !

1expS 2 i
k•p

m
t Dba8~P1\k,p1 1

2 \k,t !G ,
~8c!

where

vk
r5

\k2

2m
~9!

is a recoil frequency andm5^eum1ug&5^eum2ug& is a matrix
element. Equations~8! are written in a resonance or rotatin
wave approximation; counterrotating or antiresonance te
would contribute to single-atom level shifts@3,5#, but single-
atom level shifts are not considered in this work.

When Eq.~8c! is formally integrated over time and in
serted back into Eq.~8b!, one obtains

ba8~P,p,t !52\22(
k

ugku2um•eku2

3E
0

t

dt8 exp@ i ~v02Vk!~ t2t8!#

3†ba8~P,p,t8!1exp$2i @~k•p/m!2vk
r #t8%

3ba~P,p2\k,t8!‡, ~10!

with a similar equation forba(P,p,t). A common factor

expF i S k•P2m
1
k•p

m
2vk

r D (t2t8)G
s

has been omitted from Eq.~10! since it leads to correction
of orderP/(mc) or p/(mc), which can be neglected in th
nonrelativistic limit. When the sum overk is converted
to an integral using the prescription(k→@V/
(2pc)3#*Vk

2dVkdUk , the first term on the right-hand sid
of Eq. ~10! gives 2@(G/2)1 iS0#ba8(P,p,t), where G5 4

3

@m2/(4p«0\c)#(v0
3/c2! is the single-atom excited-state d

cay rate andS0 is a single-atom level shift. Although single
atom shifts are neglected, it is useful to point out that, with
the context of this nonrelativistic calculation, the shift d
verges asvc

3, wherevc is a some cutoff used for theVk

integration. The origin of the divergence can be traced
virtual transitions in which an excited-state atom emits
off-resonance photon and reabsorbs it. The virtual state l
for a time of orderuVk2v0u21 . There is no natural cutoff
placed onVk in this process by the energy-time uncertain
principle; the larger the detuning, the shorter the lifetime
the virtual state. We return to this point shortly in conside
ing the exchange of energy between the two atoms. One
notes that the center-of-mass momentum appears simply
spectator variable in Eq.~10!, enabling one to write

bs~P,p,t !5bs~p,t !@~2p\!3/2V21/2d~P2P0!#, ~11!

whereP0 is the center-of-mass momentum associated w
the initial plane-wave state of the center-of-mass motion

In light of the above comments, one can rewrite Eq.~10!
as

ḃa8~p,t !52gba8~p,t !2gS 3

8p2Dv0
23 (

n51,2

3E
0

`

Vk
3dVkE dUk

um•ek
~n!u2

m2

3E
0

t

dt8 exp@ i ~v02Vk!~ t2t8!#

3exp$2i @~k•p/m!2vk
r #t8%ba~p2\k,t8!,

~12!

where

g5G/2

and the sum is over any two independent polarization vec
for a given k. It is seen that the relative momentum (P2
2P1)52p changes by 2\k on the exchange of radiatio
between the two atoms. Atom 1 recoils with momentu
2\k on emitting the radiation and atom 2 recoils by1\k on
absorbing it. It is sometimes convenient to use a mix
coordinate-momentum representation rather than a pure
mentum state representation. Ifba(p,t) is expanded as

ba~p,t !5~2p\!23/2E dr

3exp @2~ i /\!~p•r2Ept !#ba~r ,t !, ~13!
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55 4469RESONANT INTERACTION BETWEEN IDENTICAL . . .
and substituted into the integrand of Eq.~12!, one finds

ḃa8~p,t !52gba8~p,t !2~2p\!23/2E
0

t

dt8E dr

3exp(2 ip•r /\)exp~ iEpt8/\!

G~r ,t2t8!ba~r ,t8!, ~14!

where

G~r ,t!5S 3

8p2Dgv0
23E

0

`

Vk
3dVkexp@ i ~v02Vk!t#

3 (
n51,2

E dUk

um•ek
nu2

m2 exp~ ik•r !, ~15!

andk5Vk /c.
The sum overn and integral overUk can be carried ou

using a geometry in which thekz axis is taken alongr̂ and
the polarization vectors areek

(1)5cosukcosfki1cosuksinfkj
2sinukr̂ andek

(2)52sinfki1cosfkj . One obtains

G~r ,t!5 3
2gp21v0

23E
0

`

Vk
3dVk exp@ i ~v02Vk!t#

3F S sinkrkr
1
coskr

~kr !2
2
sinkr

~kr !3D sin2am~ r̂ !

12S 2
coskr

~kr !2
1
sinkr

~kr !3D cos2am~ r̂ !G , ~16!

where

sin2am~ r̂ !5
umxu21umyu2

m2 , cos2am~ r̂ !5
umzu2

m2 .

~168!

In contrast to the integral that appears in the theory of sin
atom decay, this integral is not divergent. There is a nat
cutoff in the integral that results from the exchange of ene
between the two atoms. Atom 1 can emit radiation at a
frequencyVk , which is then reabsorbed by atom 2. How
ever, the reabsorption cannot occur instantaneously a
could in the single-atom case. There is a time delayt for
absorption equal tor /c. For separationsr*l0 considered in
this paper, conservation of energy limits the maximum f
quency of the radiation exchanged between the two atom
be of order (Vk2v0)&t21;v0 . The integral can be evalu
ated by:~i! writing k5k01(k2k0), wherek05v0 /c, ~ii !
evaluatingVk atv0 andk at k0 , exceptin the arguments of
the sin, cos, and exp functions, and~iii ! extending the lower
bound of the integral to2`. When this program is carried
out using the fact thatt>t8, one finds

G~r ,t!5G~r !d~t2r /c!, ~17!

where

G~r !5
3

2
gF S 2

ieik0r

k0r
1

eik0r

~k0r !2
1

ieik0r

~k0r !3D sin2am~ r̂ !
-
al
y
y

it

-
to

12X2 eik0r

„k0r …
22

ieik0r

„k0r …
3Ccos2 am~ r̂ !G . ~18!

When this result is substituted back into Eq.~14!, one ob-
tains

ḃa8~p,t !52gba8~p,t !2~2p\!23/2E dr G~r !

3exp~2 ip•r /\!exp@ iEp~ t2r /c!/\#

3ba~r ,t2r /c!, ~19!

in which the retardation is indicated explicitly. The corr
sponding equation forḃa is obtained by interchanginga and
a8. A somewhat more rigorous evaluation of the integral
Eq. ~16! is given in the Appendix, where it is pointed out th
the use of thed function in Eq.~17! is strictly valid only for
k0r@2p and uct/r21u@1/k0r . However, in the near zone
k0r,1, one can still use Eq.~17! since the difference be
tween the retarded and actual times is of orderr /c,1/k0c
;1/v0 and can be neglected.

Whenk0r&1, Eq.~19! can be recast in a form that allow
for a simple physical interpretation. Starting with the tran
formation to ther representation,

ba~r ,t !5~2p\!23/2E dp exp~ ip•r /\!

3exp~2 iEpt/\!ba~p,t !, ~20!

one can differentiate Eq.~20! with respect to time and us
Eq. ~19!, along with the fact thatEpr /\c;Ep /\v0!1, to
obtain

i\ḃa8~r ,t !52~\2/m!¹ r
2ba8~r ,t !2 i\gba8~r ,t !

2 i\G~r !ba~r ,t2r /c!. ~21!

If one defines

b65~ba6ba8!/A2, ~22!

sets

G~r !5g~r !1 is~r !, ~23!

and uses Eq.~21! and the corresponding equation witha and
a8 interchanged, one finds

i\ḃ6~r ,t !52~\2/m!¹ r
2b6~r ,t !6\s~r !b6~r ,t2r /c!

2 i\gb6~r ,t !7 i\g~r !b6~r ,t2r /c!. ~24!

The equations are uncoupled in the ‘‘6’’ basis. If retardation
is neglected, the equations become

i\ḃ6~r ,t !52~\2/m!¹ r
2b6~r ,t !6\s~r !b6~r ,t !

2 i\g6~r !b6~r ,t !, ~25!

where

g6~r !5g6g~r !. ~26!
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4470 55P. R. BERMAN
In this limit, the 6 states move along their respectiv
potential-energy curves as they undergo spontaneous d
with a rate that is a function of the interatomic separation

III. EMISSION SPECTRUM FOR k0r@2p

For large separationsk0r@2p, the dynamics of sponta
neous emission is pretty much what one would expect,
though there are a few interesting wrinkles. The initial st
for the system has atom 1 excited and atom 2 in its gro
state. For definiteness, the wave function for the relative
ordinate at timet50 is taken as

c0~r !5@p~Dr !2#23/4exp@2 1
2 ~ ur2r0u/Dr !2#, ~27!

with the corresponding momentum-space wave funct
given by

ba~p,0!5@p~Dp!2#23/4 exp@2 1
2 ~p/Dp!2#

3exp~2 ip•r0 /\!, ba8~p,0!50, ~28!

whereDp5\/Dr . For k0r 0@2p, it is possible to choose
r 0@Dr@l such thatDp!\k0 . With this choice ofDp, the
momentum spread of the packet is less than the momen
with which the atom recoils when it absorbs or emits rad
tion.

To order (k0r 0)
22, the emission spectrum arises fro

three channels.~i! Atom 1 decays by emitting radiation in a
arbitrary direction. The amplitude for this channel
(k0r 0)

0. ~ii ! Atom 1 exchanges its excitation with atom
followed by emission from atom 2. Owing to recoil, the e
change process does not conserve energy, as is seen b
The amplitude for this channel is (k0r 0)

21. ~iii ! It is also
possible for atom 1 to exchange its excitation with atom
and atom 2 to reexchange the excitation with atom 1,
lowed by emission from atom 1. In principle, this chann
can interfere with the first channel, giving rise to a contrib
tion to the emission spectrum of order (k0r 0)

22; however,
the momentum of atom 1 after this double exchange diff
from the initial momentum by22\k0r̂0 . As a consequence
the interference term vanishes since there is no overlap o
wave packets for the two channels whenDp!\k0 . As a
result, the contribution from this channel is neglected.

The emission spectrum can be defined as

I ~k,e!5E dPE dpubb~P,p,`!u2, ~29!

that is, the probability to find both atoms in their groun
states and emission into the mode~k,e!. The amplitude
bb(P,p,t) can be found using Eqs.~8c! and ~11! once we
have expressions forba(p2 1

2\k,t) and ba8(p1 1
2\k,t),

which in turn can be obtained as solutions of Eq.~19! and the
corresponding equation witha and a8 interchanged. For
k0r 0@2p andk0r 0(Dr /r 0)

2!1,

G~r !; 3
2gS 2

ieik0•r

k0r
D sin2am~ r̂ !, ~30!

where

k05k0r̂0 . ~31!
ay
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Moreover, the energyEp appearing in Eq.~19! can be writ-
ten as

Ep5Ep2\k0
12\k0•p/m12\vk0

r , ~32!

wherevk0
r is given by Eq.~9!. Substituting Eqs.~30! and

~32! into Eq. ~19!, evaluating all terms in the integrand atr
5r0 exceptfor the phase factorseik0•r and e2 ip0•r /\, and
using Eq.~13!, one finds that Eq.~19! reduces to

ḃa8~p,t !52gba8~p,t !1 3
2 ig~k0r 0!

21sin2am~ r̂0!

3exp~2ik0•pt/m!exp~22ivk0
r t !

3ba~p2\k0 ,t2r 0 /c!, ~33!

with a similar equation forḃa(p,t). These equations are now
solved to zeroth order in (k0r 0)

21 for ba and first order in
(k0r 0)

21 for ba8 since this will give the emission spectrum
correct to order (k0r 0)

22.
To zeroth order in (k0r 0)

21,

ba~p,t !5ba~p,0!exp~2gt !U~ t !,

whereU(x)51 for x.0 andU(x)50 for x,0. When this
solution is substituted into Eq.~33!, one finds that, to orde
(k0r 0)

21, ba8 is given as a solution to

ḃa8~p,t !52gba8~p,t !1 3
2 ig~k0r 0!

21sin2am~ r̂0!

3exp~2ik0•pt/m!exp~22ivk0
r t !

3ba~p2\k0,0!exp~2gt !U~ t2r 0 /c!,

~34!

where it has been assumed thatgr 0 /c!1. The initial wave
function ba(p,0) is sharply peaked aboutp50, having a
width Dp!\k0 . This fact enables one to evaluate the m
mentump appearing in the exponent in Eq.~34! at p5\k0
and to rewrite this equation as

ḃa8~p,t !52gba8~p,t !1 3
2 ig~k0r 0!

21sin2am~ r̂0!

3exp~2ivk0
r t !ba~p2\k0,0!U~ t2r 0 /c!.

~35!

This equation directly reflects the dynamics of the excitat
exchange between the two atoms. Initially atom 1 is exci
and the relative momentum of the two atoms is cente
aboutp50. When atom 2 gets excited, the relative mome
tum is shifted top5\k0 , which corresponds to atom 1 re
coiling with momentum2\k0 and atom 2 recoiling with
momentum\k0 as a result of emission and reabsorption
radiation emitted in ther̂0 direction connecting the two at
oms. Moreover, the exponential term in Eq.~35! indicates
that there is an energy mismatch of 2\vk0

between statesa
and a8. It is easy to understand how this mismatch aris
The energy associated with the initial state of relative mot
is zero, but that associated with the two atoms recoiling a
the excitation exchange is 2(\k0)

2/2m52\vk0
r .
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It is now possible to calculatebb(P,p,`) @recall that the
emission spectrum is equal toubb(P,p,`)u2] using Eqs.~8c!,
~35!, and ~9!, along with the fact thatDp,\k0 . After car-
rying out the integrations, one finds

bb~P,p,`!5~ i\!21gk* ~2m* •ek!

3Fba~P1\k,p2 1
2\k,0!

d1
1S 3

2 ig sin2am~ r̂0!

k0r 0
D

3
ba~P1\k,p2\k01

1
2\k,0!

d2~d222ivk0
r !

,G ~36!
i
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where

d15g1 i S ~v02Vk!1
k•P0
2m

2vk
r D ,

~37!

d25d11 i\k0•k/m,

and it has been assumed thatudi ur 0 /c!1, i51,2.
Using Eqs.~29!, ~36!, ~11!, and ~28!, one finds that the

emission spectrum is given by@7#
I ~k,e!5ugkm•ek /\u2F 1

ud1u2
1U ~3/2!g sin2am~ r̂0!

~k0r 0!d2~d222ivk0
r !U2

22 ReH 3
2 ig sin2am~ r̂0!

~k0r 0!d1d2* ~d222ivk0
r !*

eikr0~cosuk0
21!e2u\~k2k0!/~2Dp!u2J G , ~38!
ing.
by
m
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ed,
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f

whereuk0 is the angle betweenk andk05k0r̂0 . The spec-
trum consists of three terms. The first term is associated w
emission from atom 1~channel 1! and is centered at

Vk~1!5v01
k•P0
2m

2vk
r . ~39!

The second term is associated with exchange of excita
between atoms 1 and 2 followed by emission from atom
~channel 2! and consists of adoublet, centered at frequencie

Vk~2!5Vk~1!1
\k0•k

m
, ~40a!

Vk~3!5Vk~2!22vk0
r . ~40b!

The third term consists of interference between channe
and 2 and contributes only in the forward directionk5k0 .
The width~full width at half maximum! associated with each
of the resonances isG52g. If vk0

r .G, the spectrum can be

resolved into three components, with emission from atom
spectrallyresolved from emission from atom 1. This is th
spectral analog of the fact that the radiation pattern from
two-atom system can be used to distinguish from which a
the emission has occurred provided thatk0r 0@2p.

The emission spectrum~38! is the principle result of this
section. As a result of recoil, the emission spectrum i
triplet and the terms corresponding to emission from atom
can be distinguished from the term corresponding to em
sion from atom 1. Ifvk0

r ,G, as is typically the case, it ma

not be possible to resolve the spectral components; howe
this result is somewhat unimportant for the present disc
sion. What has been demonstrated is that, in principle, re
leads to spectral components that can be resolved ifk0r 0
@2p.
th

n
2

1

2

a
m

a
2
s-

er,
s-
il

The dynamics of the emission process is also interest
Emission can be viewed in terms of sequential emission
the individual atoms rather than in terms of emission fro
the composite system of the atoms. The resonance posi
~39! and~40! can be given a simple physical interpretation
terms of the emission process. The initial~average! momenta
of the atoms arep15p25P0/2 and the initial energy of the
system is

E15
~P0/2!2

2m
1

~P0/2!2

2m
1\v0 . ~41!

Following emission of a photon by atom 1 into modek of
the radiation field, the momentum of atom 2 is unchang
the momentum of atom 1 isP0/22\k, the energy of the
atoms is

E2~k!5
~P0/22\k!2

2m
1

~P0/2!2

2m
, ~42!

and the energy in the field is\Vk . If emission is in ther̂0
direction, there can be an exchange of excitation betw
atoms 1 and 2. Following absorption by atom 2 of the pho
emitted into modek05k0r̂0 by atom 1, the momentum o
atom 1 isP0/22\k0 , the momentum of atom 2 isP0/2
1\k0 , and the total energy of the system is

E3~k0!5
~P0/22\k0!

2

2m
1

~P0/21\k0!
2

2m
1\v0 . ~43!

Finally, following emission by atom 2 into modek of the
vacuum field, the momentum of atom 2 changes toP0/2
1\k02\k, the final energy of the atoms is

E4~k0 ,k!5
~P0/22\k0!

2

2m
1

~P0/21\k02\k!2

2m
, ~44!
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and the energy in the field is\Vk .
Emission by atom 1 into modek is a one-photon proces

that is resonant when\Vk5E12E2(k), leading to Eq.~39!.
Emission by atom 2 into modek is a three-photonprocess
~see Fig. 2! in which ak0 photon is exchanged between ato
1 and 2, followed by emission of radiation into modek by
atom 2. As shown in Fig. 2, this process can be resona
enhanced if the emission into modek is such that~a! the
three-photon process is resonant@\Vk5E12E4(k0 ,k)#,
leading to Eq.~40b!, or ~b! the single-photon process from
state 3 to state 4 is resonant@\Vk5E3(k0)2E4(k0 ,k)#,
leading to Eq.~40a!. In some sense this overall process c
be viewed as a cascade emission in a three-level system
initial stateua& having energyE1 is driven by the~emission
and reabsorption! of the vacuum field to stateua8& having
energyE3 . The effective frequency of this two-photon driv
ing field is zero since the same photon is emitted and a
sorbed in the excitation exchange. From stateua8&, the
vacuum field mode having frequencyVk drives the system to
stateub& having energyE4 .

Finally, it is of some interest to calculate the integrat
spectrum

I5I 11I 21I 35(
e
E dk@ I 1~k,e!1I 2~k,e!1I 3~k,e!#,

~45!

where the three terms on the right-hand side of Eq.~45!
correspond to the three terms in Eq.~38!. The
exp@ikr0(cosuk021)# factor in I 3(k,e) is rapidly varying in

all but theuk050 direction. Evaluating all the other factor
in this term~which are slowly varying compared to this e
ponential factor! at uk050, it is possible to carry out the

integration overwk anduk to show explicitly that this term
exactly cancelsI 2 . This cancellation is nothing more than
manifestation of the optical theorem. As a result, from E
~45! and ~38!, one finds thatI51, as it must since it repre
sents the probability to find both atoms in their ground sta

FIG. 2. Energy-level diagram for the two-atom system, inclu
ing recoil, appropriate to the emission channel in which atom
exchanges its excitation energy with atom 2 via emission and r
sorption of a photon having frequencyVk0

, followed by emission
from atom 2 of a photon having frequencyVk . Owing to recoil,
state ua8& differs in energy from stateua& by 2\vk0

r . The solid
arrows indicate a process that is resonant whenVk5E12E45v0

2vk
r22vk0

r 1\k0•k/m, while the dashed arrows, starting in th
Lorentzian tail of stateua&, indicate a process that is resonant wh
Vk5E32E45v02vk

r1\k0•k/m. The energies shown are for th
case when the initial center-of-mass momentum equals zero.
ly

n
he

-

.

s

and a photon present at timet5`. Using Eqs.~45! and~38!
one finds that the ratio of emission into channel 2 to tha
channel 1 is equal to

I 2 /I 15
9
8 sin

4 am~ r̂0!

~k0r 0!
2

G2

G21~2vk0
r !2

.

This ratio clearly shows that the excitation exchange occ
with a frequency defect of 2vk0

r . The width 2G represents

the sum of the widths of the initial~statea! and final~state
a8! states involved in the excitation exchange.

IV. EMISSION SPECTRUM FOR k0r!1

In calculating the emission spectrum fork0r!1, it is con-
venient to express the amplitudes on the right-hand side
Eq. ~8c! in terms ofb6(r ,t) defined in Eqs.~20! and ~22!.
Using Eqs.~8c!, ~13!, ~22!, and~11!, one can rewrite Eq.~8c!
as

ḃb~P,p,t !5~ i\!21~2p\!23/2A2gk* ~2m* •ek!

3exp@~2d31g!t#E dr exp~2 ip•r /\!

3exp~ iEpt/\!] FcosS k•r2 Db1~r ,t !

1 i sinS k•r2 Db2~r ,t !G
3@~2p\!3/2V21/2d~P1\k2P0!#, ~46!

where

d35g1 i S ~v02Vk!1
k•P0
2m

2
vk
r

2 D . ~47!

This equation is valid for arbitraryk0r . In order to solve
these equations, we must solve the Schro¨dinger equations for
b6(r ,t) in the presence of the complex potentials\@6s(r )
2 ig6(r )#. In the regionk0r!1, it follows from Eqs.~18!,
~23!, and~26! that

s~r !; 3
2g@sin2am~ r̂ !22 cos2am~ r̂ !#/~k0r !3@g,

g1~r !;2g,

g2~r !;g@2 sin2am~ r̂ !1cos2am~ r̂ !#~k0r !2/10. ~48!

Immediately, one runs into a problem that is not discus
often in considering two-atom superradiance. We are in
ested in emission when the atoms are separated by a dis
r!1/k0 , but the potential\s(r ) is sufficiently strong to
cause atoms to move a distance of order or greater
1/k0 for time scales of ordert651/(2g6) relevant to the
emission process. For example, for the symmetric~1! state,
the relevant time scale ist151/(2g). On this time scale, the
atom moves a distance of orderu$“@s(r )#/m%t1

2 u
;(vk0

r /G)r 0(k0r 0)
25. If we ask that the distance the ato

moves be small compared tor 0 , then we must require tha

-
1
b-
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k0r 0.(vk0
r /G)1/5, which equals 0.25 for (vk0

r /G)50.001.

For the antisymmetric states, the lifetime is increased b
factor 10(k0r 0)

22, leading to the more stringent conditio
k0r 0.(100vk0

r /G)1/9, which equals 0.77 forvk0
r /G50.001.

Thus, for reasonable ratios ofvk0
r to G ~typically vk0

r /G

*0.001!, it is not possible to restrict the atomic separation
distancesk0r!1 owing to the strength of the potential. T
simplify the discussion, however, I assume that the ra
vk0
r /G is sufficiently small to guarantee that the atomic se

ration does not change significantly during the emission p
cess. Even if this corresponds to somewhat unphysical va
of the parameters, it will afford us a qualitative picture
emission and the role of recoil in the regionk0r!1. Since
vk0
r /G!1, any recoil shifts are negligibly small compared

the natural linewidth.
The assumption thatvk0

r /G!1 allows one to neglec

spreading of the wave packet on the time scale of emis
@the wave packet spreads by a distance of order (Dp/m)t6

;@\/(mDr )#t6.@\/(mr0)#t6;(vk0
r /G)r 0(k0r 0)

22 for

the symmetric state and (10vk0
r /G)r 0(k0r 0)

24 for the anti-

symmetric state#. Thus the symmetric and antisymmetr
states can be thought to move on classical trajectories du
the emission process. Motion along the classical trajecto
leads to phase factors in the wave functions of the fo
exp$7i*0

t s@r (t8)#dt8%. To further simplify matters, it is as
sumed that the integrands in these phase factors ca
evaluated atr (t8)5r0 „this amounts to neglect of phas
changes of ordermu“@s(r )#/mu2t6

3 ;(vk0
r /G)r 0(k0r 0)

28

for the symmetric state and (1000vk0
r /G)(k0r 0)

214 for the

antisymmetric state…. This latter assumption is not essent
to the calculation, but does allow one to arrive at analyti
expressions for the spectrum. Had this assumption not b
adopted, one would find that changes in the potential du
the emission process result in a broadening of the emis
lines.

In light of the above approximations, the solutions of E
~19! and the corresponding equation witha and a8 inter-
changed are

b6~p,t !5e2g6~r0!i7 is~r0!tb6~p,0!, ~49!

where Eq.~27! has been used and retardation has been
glected. The spectrum is obtained by expanding the sin
cos terms in Eq.~46! to lowest order ink•r to obtain

ḃb~P,p,t !5~ i\!21A2gk* ~2m* •ek!exp@~2d31g!t#

3@b1~p,t !2 1
2\k•“pb2~p,t !#

3@~2p\!3/2V21/2d~P1\k2P0!#. ~50!

Then, using Eqs.~29!, ~50!, ~49!, and ~28!, along with the
fact that the1 and 2 components are spectrally distin
since s(r0)@g6(r0) and the fact thatDp@(\/r 0) since
Dr!r 0 , one finds that the spectrum can be expressed a

I ~k,e!5ugkm•ek /\u2F 1

ud1u2
1

uk•r0u2

4ud2u2G , ~51!
a
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.
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where

d65g6~r0!1 i S ~v02Vk!6s~r0!1
k•P0
2m

2
vk
r

2 D .
~52!

The spectrum consists of a doublet, split in frequency
2s(r0). The strength of the2 component at line center i
25uk•r0u2/$@2 sin2am(r̂ )1cos2am(r̂ )#(k0r )

2%2 times larger
than that of the1 component at line center and the width
the 2 component is @2 sin2am(r̂ )1cos2am(r̂ )#(k0r )

2/20
times smaller than that of the1 component. The integrate
intensities of the two components are equal. Althou
the recoil shift is much smaller thang6 , it is important
to note that the recoil shift of each spectral compon
vk
r /25\k2/@2(2m)# corresponds to recoil of thetwo-atom

system. For k0r!1, the atoms emit as a composite syste
which is consistent with the idea that it is impossible
distinguish which atom of a system of two identical atom
has emitted radiation if the separation of the atoms is m
smaller than a wavelength.

To gain additional insight into the emission process, o
can redo the calculation starting directly from Eq.~8c!. Us-
ing Eqs. ~29!, ~8c!, ~22!, ~49!, and ~11!, one finds that the
contributions to the emission spectrum for the1 and2 com-
ponents are given by

I6~k,e!5
1

2
ugkm•ek /\u2

3E dpUb6S p2
\k

2
,0D

Ud62
ip•k

m U2 6

b6S p1
\k

2
,0D

Ud61
ip•k

m U2 U
2

,

~53!

where

d65g6~r0!1 i S ~v02Vk!6s~r0!1
k•P0
2m D . ~54!

When the initial wave function~28! is substituted into Eq.
~53!, one finds four terms in the integrand. Owing to t
exponential factors in the wave function, the first term
sharply peaked atp5\k/2, the second atp52\k/2,
while the cross terms contain a factor exp@2 (p2

1\2k2/2) /Dp2#exp (6ik•r0) .exp @2p2/Dp2#exp(6ik•r0),
which is sharply peaked atp50. Evaluating the slowly vary-
ing denominators of these terms at these values ofp and
carrying out the integration overp, one finds that the spectra
components can be written as

I6~k,e!5
1

2
ugkm•ek /\u2F 1

ud62 ivk
r u2

6
cos~k•r0!

ud6u2 G .
~55!

The recoil shift of the first component is2vk
r , while the

interference term has no recoil shift. These two terms co
bine to give an overall recoil shift of2vk

r /2, characteristic
of emission from a composite, two-atom system. The
nominators in Eq.~55! can be rewritten (d67 ivk

r /2); it is
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then easy to show that the sum ofI11I2 evaluated from Eq.
~55! reduces to Eq.~51! in the limit that kr0!1 and
(vk

r /g)2(kr0)
24!1, as has been assumed.

The spectrum written in the form~53! or ~55! is particu-
larly revealing. The terms corresponding to interference
the radiation emitted by atoms contain phase fact
exp(6ik•r0). For kr0!1, these phase factors are of ord
unity and the interference terms contribute for all directio
of the emitted radiation; moreover, the interference terms
comparable in magnitude to the direct terms. Thus the at
emit as a composite system. On the other hand, forkr0@1,
the interference terms contribute only for radiation emit
along the line connecting the two atoms and are smaller t
the direct terms by a factor (kr0)

21.
It has already been noted that the use of the retarded t

in the evolution equations is not strictly valid fork0r 0!1,
although its use introduces negligible corrections. Just as
retarded time loses its significance in the near zone, the
terpretation of recoil on excitation exchange between the
oms differs in the radiation and near zones, despite the
plicit appearance of recoil momentum in Eq.~12!. In the
radiation zone, we have seen that an interpretation of exc
tion exchange involved atom 1 emitting and atom 2 abso
ing radiation emitted in the directionr̂0 , with both atoms
recoiling along this axis. In the near zone, the moment
spread of the wave packetDp@\k0 is sufficiently large to
allow for excitation exchange involving intermediate sta
in which the radiation field coupling the atoms can be em
ted in any direction. The recoil in the near zone cannot
viewed in terms of individual recoil of the atoms; rather, t
excitation exchange between the atoms can be interprete
giving rise to the interatomic potential\s(r ).

V. SUMMARY

The emission spectrum of a system of two identical ato
has been calculated, including effects of atomic recoil.
separations of the atoms much larger than an optical wa
length, the emission process can be viewed as involving
channels: direct emission from one of the atoms and exc
tion exchange between the two atoms followed by emiss
from the second atom. Interference between the chan
occurs only for emission along the line connecting t
atoms. In principle, the recoil shift can be used to distingu
the two channels. For separations much less than
optical wavelength, the spectrum can be viewed as aris
from a coherent emission from the composite, two-at
system. The recoil shift in the spectrum is that associa
with emission from an ‘‘atom’’ of mass 2m. The spectrum is
split into a doublet, owing to the strength of the interatom
potential. For realistic values of the parameters, it is imp
sible for atoms to remain in the regionkr0!1 for times of
order of the emission time, owing to the strength of the p
tential.

It might prove interesting to carry out numerical calcu
tion for atomic separationskr0;1, where neither of the
above limits and interpretations remains valid. In this co
text, there may be some different effects related to the po
ization of the emitted radiation@8#. During the excitation
exchange, the atoms can acquire some relative orbital a
lar momentum as a result of recoil, which will cause t
n
s
r
s
re
s

d
n

es

he
n-
t-
x-

a-
-

s
-
e

as

s
r
e-
o
a-
n
ls

h
an
g

d

-

-

-
r-

u-

internal magnetic state polarization to be modified as a re
of the exchange process. In this manner, recoil can lea
changes in the polarization of the emitted radiation. To stu
this effect in detail, the calculations must be generalized
states of arbitrary angular momentum@9#.

Although experimental verification of some of these p
dictions may be all but impossible at the current time, o
could imagine creating an atomic lattice, turning off the tra
ping fields, exciting the atoms by electron collisions, a
observing the resultant spectra.

ACKNOWLEDGMENTS

I am pleased to acknowledge useful discussions of
problem with B. Dubetsky, J. Cohen, P. Milonni, and H
Teng and wish to thank J. Cohen for a careful reading of
manuscript. This research is supported by the National S
ence Foundation through Grant No. PHY-9414020 and
the U. S. Army Research Office under Grant No. DAAH0
93-G0503.

APPENDIX

The integral that must be evaluated is

H~r ,t !5E
0

t

dt8E
0

vc
Vk

3dVkexp@ i ~v02Vk!~ t2t8!#ba~ t8!

3F S sinkrkr
1
coskr

~kr !2
2
sinkr

~kr !3D sin2am~ r̂ !

12S 2
coskr

~kr !2
1
sinkr

~kr !3D cos2am~ r̂ !G , ~A1!

whereVk5kc andvc is a cutoff frequency that will even
tually go to infinity. It is necessary to consider only the i
tegral

F~r ,t !52E
0

t

dt8E
0

vc
dVksinkr

3exp@ i ~v02Vk!~ t2t8!#ba~ t8! ~A2!

since the other integrals can be obtained from it by differ
tiation with respect tor . Introducing dimensionless variable

s5c~ t2t8!/r21, sf5ct/r21,

s85c~ t2t8!/r11, sf*5ct/r11,
~A3!

y5k0r5v0r /c, z5vcr /c,

one can rewrite Eq.~A2! as

F~r ,t !5
1

2 FeiyE
21

sf
dsS 12e2 isz

s DeisybaS rc ~sf2s! D
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2e2 iyE
1

sf8
ds8S 12e2 is8z

s8
D eis8ybaS rc ~sf82s8! D .

~A4!
re

y

es

o
no

r

in

a

x

When ct/r@1, the first integral is dominant since th
range of integration includes the pole ats50. Keeping only
this term for the moment and evaluating the amplitudeba at
s50, one finds
F~r ,t !5
1

2
eiyF 2Ci~ uyu!1Ci~ usfyu!1Ci~z2y!2Ci@ usf~z2y!u#

1 i Si~y!1 i Si~z2y!1 i Si~sfy!1 i Si@sf~z2y!#GbaS t2 r

cD , ~A5!
for

s
h

in a
1
the
-
on
oint

is
where Ci(x)52*x
`ds cos(s)/s and Si5*0

xds sin(s)/s. Let-
ting the cutoffvc go to infinity is equivalent to lettingz
;`. In this limit, Eq. ~A5! reduces to

F~r ,t !5
1

2
eiyF 2Ci~ uyu!1Ci~ usfyu!

1 i Si~y!1 ipU~sf !1 i Si~sfy!GbaS t2 r

cD ,
~A6!

whereU(x)51 for x.0 and 0 forx,0. If, in addition, we
take the limit thatsf5ct/r21@1 and y@1, Eq. ~A6! re-
duces to

F~r ,t !5 ipeiybaS t2 r

cD , ~A7!

which coincides with the corresponding term in Eq.~18!.
The remaining terms are obtained by differentiation with
spect tor . The terms involving derivatives ofba can be
neglected since they are smaller than the other terms b
factor of orderg/v0 . In this way, one arrives at Eq.~18!.

Thus the result of the main text involving retarded tim
is strictly valid only in the limitsusf u5uct/r21u@y21 and
y@1. When these inequalities are not satisfied, the sec
integral in Eq.~A4! must be considered as well. There is
justification for evaluatingba at the retarded time in this
integral.

It is an interesting exercise to setba equal to unity in Eq.
~A4!, which will lead to the perturbation theory result fo
gt!1. In this way we can see ifba8 is nonvanishing fort
,r /c, a result that would appear to violate causality. Sett
ba51 in Eq. ~A4! and using the facts thatz@1 and sf8z
@1, one finds
-

a

nd

g

F~r ,t !5 1
2e

iy@2Ci~ uyu!1Ci~ usfyu!1 ipU~sf !1 i Si~y!

1 i Si~sfy!#2 1
2e

2 iy@2Ci~ uyu!1Ci~ usf8yu!

2 i Si~y!1 i Si~sf8y!#. ~A8!

It is easy to verify that this expression is nonvanishing
0,ct/r,1, regardless of the value ofy. It would appear
that causality is violated.

An objection may be raised that ‘‘counterrotating’’ term
associated with the stateue1 ,e2 ;k& have been omitted. Suc
terms are incorporated easily into Eq.~A8! by the addition of
terms havingy→2y, which is equivalent to replacing
nearly resonant terms varying as exp@i(Vk2v0)t# with coun-
terrotating terms varying as exp@i(Vk1v0)t# in Eq. ~A2!.
When this is carried out one finds

F~r ,t !5 ipU~sf !e
iy1cosy@2Ci~sf8y!1Ci~ usfyu!#

2siny@Si~sf8y!1Si~sfy!2pU~sf !#. ~A9!

This expression is also nonvanishing for 0,ct/r,1.
The question of causality is planned to be addressed

future paper. The fact that the joint probability to find atom
in its ground state, atom 2 excited, and no photons in
field is nonvanishing for 0,ct/r,1 does not violate causal
ity, in the sense that it is impossible to convey informati
with a speed faster than the speed of light based on this j
probability@10#. If the total probability to find atom 2 excited
was nonvanishing for 0,ct/r,1, this would constitute a
violation of causality; however, it can be shown that th
probability vanishes identically forct/r,1 using the basis
states ue1 ,g2 ;0&, ug1 ,g2 ;k&, ug1 ,e2 ;0&, ue1 ,e2 ;k&,
ug1 ,e2 ;k&, ue1 ,g2 ;k&, andug1 ,e2 ;k,k8& @10,11#.
an-
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obtained by replacing Eq.~14! with

ḃG,mG ;H,mH~p,t !52gbG,mG ;H,mH
~p,t !2~2p\!23/2

3 (
mG8 ,mH8

E
0

t

dt8E dr exp~2ip•r /\!

3exp~iEpt8/\!GmG ,mH ;mH8 ,m
G8
~r ,t2t8!

3bH,m
H8 ;G,m

G8
~r ,t8!,

whereGmG ,mH ;m
H8 ,m

G8
is obtained fromG in Eq. ~16! by re-

placing the factorsm2sin2am( r̂ ) andm2cos2am( r̂ ) by

^H,mHumxuG,mG8 &^H,mH8 umxuG,mG&*

1^H,mHumyuG,mG8 &^H,mH8 umyuG,mG&*

and
^H,mH umzuG,mG8 &^H,mH8 umzuG,mG&* ,
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@10# A. K. Biswas, G. Compagno, G. M. Palma, R. Passante, an
Persico, Phys. Rev. A42, 4291~1990!.

@11# P. W. Milonni, D. F. V. James, and H. Fearn, Phy
Rev. A 52, 1525 ~1995!. In this reference and Ref.@10#
conclusions regarding causality were reached us
the Heisenberg picture. In a planned paper, identical con
sions are reached using the Schro¨dinger picture.
Although the Schro¨dinger picture calculations are mor
complicated than those in the Heisenberg picture, th
reveal interesting correlations between the atom and fi
states.


