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Quenching of spontaneous emission via quantum interference
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A four-level atom, driven by a coherent field, is considered. We show that under certain conditions complete
quenching of spontaneous emission is possible. Hence the population inversion on some specific atomic
transitions can be created using a very weak incoherent pumping. We investigate the physics of the effect using
bare and dressed states. The proposed scheme may be useful, in principle, for generation of high-frequency
and/or high power laser light.@S1050-2947~97!01306-1#

PACS number~s!: 42.50.Ct, 42.50.Gy, 32.80.Bx, 42.50.Lc
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I. INTRODUCTION

Modification of spontaneous emission is an active
search topic in quantum optics. The three-peak spectrum
resonance fluorescence was one of the first developmen
this area@1#. Cavity electrodynamics has made possible
enhancement@2# and suppression@3# of spontaneous emis
sion from an atom via a ‘‘tailoring’’ of the mode density
Elimination of resonance fluorescence from a driven thr
level atom was proposed in@4#. Dynamical suppression ha
also been achieved from a driven, cavity-confined, two-le
atom @5#. Furthermore, it has been predicted@6# and experi-
mentally demonstrated@7# that three-level atoms can exhib
a narrowing of spectral linewidth on one transition controll
by coherent driving another transition.

Cancellation of emission into a single mode was dem
strated in@8#, when an atom is excited to a certain cohere
superposition of two upper levels, as in Fig. 1. In such a c
both spontaneous and stimulated emission on one spe
frequency are suppressed. Elimination of steady-state r
nance fluorescence was proposed in@4#. Furthermore, it has
been shown@9# that the emission spectrum can be subst
tially modified via atomic coherence and interference ev
for an atom in an ordinary vacuum~see Fig. 2!. The coherent
preparation of atomic states essential for this effect can
realized via Autler-Townes splitting, as in Fig. 3@10#. In a
recent paper@11# it was shown that spectral line eliminatio
and cancellation of spontaneous emission is possible u
certain conditions, and experiment has also been perfor
to observe this phenomenon@12#. It was also shown@13# that
the spectrum of resonance fluorescence, under certain co
tions, can have spectral lines which are very narrow co
pared to the natural width of individual levels.

All spontaneous emission suppression effects mentio
above have one common origin: the quantum interferenc
spontaneous transitions from two closely lying atomic lev
to a third level. But the emission cancellation in the model
Ref. @11# ~see Fig. 4!, which is the subject of the presen
paper, is different in that the emission can be suppressed
all modes near the transition frequencies and this canc
tion is possible even if the upper levels are well separa
That is, the atoms can be ‘‘trapped’’ in the upper states w
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-
of
in
e

-

l

-
t
e
ific
o-

-
n

e

er
ed

di-
-

d
of
s
f

for
a-
d.
-

out decaying. It is our goal to give a simple dressed-st
description of this phenomenon. These studies suggest
one can, in principle, ‘‘control’’ the amount of fluorescenc
as well as the population of the upper levels.

We note that if spontaneous emission on some ato
transition is quenched, it might become possible to crea
population inversion on this transition using a very we
incoherent pumping. Thus the control of spontaneous em
sion can be potentially useful in order to achieve high f
quency lasing, since the spontaneous emission rate is
cally proportional to the frequency cubed (v3), and creating
the inversion on the high frequency transition with allow
spontaneous emission is therefore problematic.

The paper is organized as follows. In Sec. II we study
quenching of spontaneous emission in the driven four-le
atom using bare states. In Sec. III we introduce the dres
states and explain how a spectral line can be eliminated f
the emission spectrum. In order to describe the other a
tional decay processes from the upper levels and the inco
ent pumping processes, we approach the problem via den
matrix formalism in Sec. IV. In Sec. V we illustrate th
mechanism of the upper level decay along the driven tra
tions and discuss how these decays influence the effec
spontaneous emission quenching. Section VI contains a s
mary of the results.

II. QUENCHING OF SPONTANEOUS EMISSION
AND SPECTRAL LINE ELIMINATION

We consider a four-level model atom as shown in Fig.
It has two upper levelsua1& and ua2&, which are coupled by
the same vacuum modes to the lower leveluc&. The two
upper levels are coupled by strong coherent field with f
quencyn0 to another upper lying levelub&. The interaction
picture Hamiltonian can be written as

V5\V1e
iD1tua1&^bu1\V2e

iD2tua2&^bu1H.c.

1\(
k
gk

~1!ei ~v1c2nk!tua1&^cub̂k

1gk
~2!ei ~v2c2nk!tua2&^cub̂k1H.c. ~1!
4454 © 1997 The American Physical Society
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FIG. 1. Scheme of emission cancellation in
a single mode. TheV-type three-level atom is
excited by the pulsed laser light and then broug
through the high-Q-factor micromaser cavity. If
microwave radiation appropriately mixes two up
per states, then emission~both spontaneous an
stimulated! of the photon with frequencyn is
canceled@8#.
i-

by

.
di-

nts

re-

lev-
the
The interaction of driven transitions with the vacuum mode
is neglected in this section.V1,2 are the Rabi frequencies of
the field couplingua1,2& and ub&; in general,V1 andV2 can
be different since they are proportional to the matrix ele
ments of the corresponding dipole moments. The frequen
differences between levelsua1&, ua2&, ub&, and uc& are de-
noted byv1c , v2c , vbc , respectively. Detunings of the
driving field are D15(v1c2vbc)2n0, D25(v2c2vbc)
2n0. gk

(1,2) are the coupling constants between thekth
vacuum mode and the atomic transitions fromua1& and
ua2& to uc&; they are assumed to be real.b̂k (b̂k

†) is the anni-
hilation ~creation! operator for thekth vacuum mode with
frequencynk ; k here represents both the momentum an
polarization of the vacuum mode. If the atom is initially
excited, we can write the initial state vector as

C~0!5@A1~0!ua1&1A2~0!ua2&1B~0!ub&] u$0%&, ~2!

whereu$0%& represents the absence of photons in all vacuu
modes. The state vector at timet can be written as

C~ t !5@A1~ t !ua1&1A2~ t !ua2&1B~ t !ub&#u$0%&

1(
k
Ck~ t !uc&u1k&. ~3!

FIG. 2. Emission spectrum from an atom that has two closel
spaced upper levels, coupled by the same vacuum modes to
common lower level. The spectrum shows a Fano zero at a certa
frequency@9#.
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After a substitutionAj (t)5aj (t)e
iD j t we have~see Ap-

pendix A! the equations of motion for the probability ampl
tudes:

d

dt
R̂~ t !52MR̂~ t !, ~4!

where

R̂5S a1~ t !

a2~ t !

B~ t !
D , M5S G1 pAg1g2/2 iV1

pAg1g2/2 G2 iV2

iV1* iV2* 0
D ,

~5!

andG1,25g1,2/21 iD1,2. g1 and g2 are the radiative decay
rates from the two upper levels to the lower level given
g j5umW jcu2v jc

3 /3pe0\c
3 ( j51,2), andmW jc’s are the matrix

elements of the dipole moments of the two transitionsp
denotes the alignment of the matrix elements of the two
pole moments and is given by

p5
^a1ur uc&•^a2ur uc&
z^a1ur uc& zz^a2ur uc& z . ~6!

We say that the matrix elements of the two dipole mome
are parallel~or antiparallel!, if p51 ~or p521) and when
they are orthogonal,p50.

The solutions fora1(t), a2(t), andB(t) are now given by

a1~ t !5(
j51

3

a je
2l j t, a2~ t !5(

j51

3

b je
2l j t,

B~ t !5(
j51

3

bje
2l j t, ~7!

wherel j ’s are the three roots of the secular equation cor
sponding to matrixM . The coefficientsa j , b j , bj in Eq. ~7!
are determined by the initial state of the atom.

If we have nonzeroa1(t5`), a2(t5`), andB(t5`),
this means that some population is trapped in the upper
els, which indicates that the spontaneous emission from
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4456 55LEE, POLYNKIN, SCULLY, AND ZHU
two upper levels to leveluc& is canceled. To have nonzer
steady-state solution of Eq.~4! one needs

detM[
1

2
~g1uV2u21g2uV1u2!2

1

2
pAg1g2~V1*V2

1V1V2* !1 i ~D1uV2u21D2uV1u2!50. ~8!

If upuÞ1, Eq. ~8! cannot be satisfied. Forp561, we find
two conditions for having the nonzero upper level popu
tions in the steady state:

D1uV2u21D2uV1u250, ~9a!

p
V1

V2
5Ag1

g2
~p561!. ~9b!

For Eq.~9b! to be true, one needsp51 if V1 andV2 have
the same sign, orp521 whenV1 andV2 have the opposite
signs.

Now, in steady state, the probability amplitudeCk(`) of
the atom being in the lower level with one photon emitted
given by @see Eq.~A9!#

Ck~`!5(
j51

3 i ~gk
~1!a j1gk

~2!b j !

2l j1 i @nk2~vbc1n0!#
. ~10!

Since the spontaneous emission spectrum is proportion
uCk(t5`)u2, one might expect that there would be thr
peaks in the spectrum corresponding to the three reso
denominators in Eq.~10!. This is the case ifp50. However,
if upu51 and conditions~9a! and~9b! are fulfilled, the spec-
trum can have only two peaks. Mathematically this simp
follows from the fact that under conditions~9a! and~9b! one
of the three numerators in Eq.~10! is identically zeroat
arbitrary initial state of the atom. The physical reason for th
spectral line elimination is the quantum interference of
two spontaneous transitionsua1&→uc& and ua2&→uc&.

III. PHYSICS OF THE EFFECT VIA DRESSED STATES

In Sec. II and Ref.@11# it was shown that the genera
three-peak spontaneous emission spectrum, typical for su

FIG. 3. Three-level driven atom and its ‘‘dressed’’ analog. If t
initial state is stateu2& then the emission spectrum has a dip at
central frequency@10#.
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scheme, can be modified under certain conditions involv
the intensity and detuning of the driving field. In particula
we saw that the central peak can be eliminated. A sim
explanation of the peak elimination and cancellation of sp
taneous emission can be given within the dressed-state
ture. We now rewrite the interaction picture Hamiltonian in
rotating frame such as

V5V01V1 ,

V05\D1ua1&^a1u1\D2ua2&^a2u

1~\g1ua1&^buâ1\g2ua2&^buâ1H.c.!,

V15\(
k
gk

~1!e2 inktei ~n01vbc!tua1&^cub̂k

1gk
~2!e2 inktei ~n01vbc!tua2&^cub̂k1H.c., ~11!

where V1 describes the interaction with vacuum mode
g1,2 are the coupling constants betweenua1,2& and ub&. In
spite of the fact that basic physics of spontaneous emis
cancellation can be understood even if we consider the d
ing field classically, here we quantize it since we are going
use the formulas of this section later, when this quantizat
will be necessary. So,â (â†) is the annihilation~creation!
operator for the one-mode driving field. DiagonalizingV0
which corresponds to the interaction of the atom with t
driving field, we arrive at the characteristic equation

xn
32xn

2~D11D2!2xn@g1
2~n11!1g2

2~n11!2D1D2#

1D1g2
2~n11!1D2g1

2~n11!50. ~12!

If we assume, for simplicity, that

D1g2
21D2g1

250, ~13!

then there is one trivial eigenvaluexn
050 and we find the

eigenstates such as

u0,n&5N0,nFg2An11ua1 ,n&2g1An11ua2 ,n&

2
g2
g1

D1ub,n11&G ,

FIG. 4. Level scheme of a model atom. Upper levelsua1& and
ua2& are coupled toub& by a coherent field of frequencyn0.
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55 4457QUENCHING OF SPONTANEOUS EMISSION VIA . . .
u6,n&5N6,nFg1An11S m6
v12

2 D ua1 ,n&

1g2An11S m7
v12

2 D ua2 ,n&

6~g1
21g2

2!~n11!ub,n11&G , ~14!

where

m5Ag1
2~n11!1g2

2~n11!1
v12
2

4
, ~15!

v125v1c2v2c is the spacing between two upper levels, a
N0,n andN6,n are the normalization constants. Correspon
ing eigenvalues are

xn
050, xn

65
D11D2

2
6m. ~16!

Once we have a ‘‘dressed’’-state description of the t
upper levelsua1&, ua2& connected toub& by the driving field,
we can describe spontaneous emission from the upper le
in terms of decay from the atom–driving-field combined s
tem ~see Fig. 5!. For the matrix element of the atom
vacuum-field interaction between the stateu0,n& and the
ground stateuc,n&, we have

Vc,0;n~ t !5Šc,nz^1kuV1u0,n& z$0%‹

5N0,n@\g2An11gk
~1!

2\g1An11gk
~2!#einkte2 i ~n01vbc!t. ~17!

This matrix element vanishes if

gk
~1!

gk
~2! 5

g1
g2

~18!

FIG. 5. Atomic transitions in view of dressed states.
d
-
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for arbitrary mode of the vacuum field. Since, by definitio

gk
~1!

gk
~2! 5

mW 1c•êk

mW 2c•êk
~19!

~whereêk is the unit polarization vector of thekth radiation
mode andmW jc’s are the matrix elements of the dipole m
ments of the two transitions!, the parallel matrix elements o
the two dipole moments are needed for vanishing ofVc,0;n
for arbitrary polarization of the vacuum field, assuming th
g1 andg2 have the same sign. In the case wheng1 andg2
have opposite signs, matrix element~17! can be zero for each
vacuum mode, if the dipole moments are antiparallel.

An explicit expression for the decay rate from the dress
stateu0,n& to the stateuc,n& can be obtained as

g0;n5
d

dt(k U2 i

\E0
t

dt8Vc,0;nU2

5
d

dt
N0,n
2 (

k
E
0

t

dt8E
0

t

dt9@g2
2~n11!

3gk
~1!gk

~1!ei ~nk2n!~ t82t9!1g1
2~n11!

3gk
~2!gk

~2!ei ~nk2n!~ t82t9!2$g2g1~n11!

3gk
~1!gk

~2!ei ~nk2n!~ t82t9!1c.c.%#, ~20!

wheren5n01vbc . Replacing the summation overk by an
integration and using the Weisskopf-Wigner approximat
@14#, we have

g0;n5N0,n
2 @g1g2

2~n11!1g2g1
2~n11!

22pAg1g2g2g1~n11!#. ~21!

Similarly, we can find the decay rates from the other dres
states:

g6,n5N6,n
2 Fg1g1

2~n11!S m6
v12

2 D 21g2g2
2~n11!

3S m7
v12

2 D 212pAg1g2g2g1~n11!S m22
v12
2

4 D G .
~22!

One can see thatg0 can be zero only ifupu51 ~parallel or
antiparallel case!. Then the condition for zero transition rat
is

g1
g2

5pAg1

g2
, ~23!

together with Eq.~13!. We will call upu51 and Eqs.~13! and
~23! the trapping conditions. ‘‘Trapping conditions’’ simply
mean that atom–vacuum-field interaction does not couple
transition between the dressed stateu0,n& and the state
uc,n&. Note here that if we introduce the Rabi frequencies
the driving field such asV1,25g1,2An11 (n is the number
of photons in the one-mode driving field!, then the trapping
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4458 55LEE, POLYNKIN, SCULLY, AND ZHU
conditions will exactly coincide with the conditions~9a! and
~9b! obtained in the preceding section with classical drivi
field.

Assume thatg1 andg2 have the same sign. Thenp51 is
required for destructive interference in spontaneous emis
from the dressed stateu0& and for suppression of the corre
sponding peak in spectrum. However, a constructive inter
ence is also possible. From Eq.~21! one can see that fo
p521, the decay rateg0 increases. In particular, i
g15g2 and p521, g0 becomes twice greater than in th
case when interference of spontaneous transitions is ab
(p50). Thus, for the central peak we have destructive in
ference ifp51 and constructive interference ifp521.

On the contrary, for the two side peaks, we have const
tive interference if p51 and destructive interference
p521. This is indicated by the increase of the widths of t
side peaks for the casep51 ~which means the increase o
the decay rates from the dressed statesu6,n&) and by the
decrease of these widths for the casep521. It can be
shown that the decay ratesg6 are not equal to zero for an
p, therefore two side peaks cannot be eliminated for arbitr
initial state of the atom.

Consider a simple particular case:g1An11
5g2An115D152D2[g. @If we additionally require Eq.
~23!, the trapping conditions will be fulfilled#. Then three
dressed states read

u0,n&5
1

A3
@ ua1 ,n&2ua2 ,n&2ub,n11&#,

u6,n&5
1

A3
FA361

2
ua1 ,n&1

A371

2
ua2 ,n&

6ub,n11&G . ~24!

Corresponding energies arexn50,6A3g. Now if the initial
atomic state isua1&, it can be rewritten as

ua1 ,n&5
1

2A3
@~A311!u1,n&2~A321!u2,n&12u0,n&#.

~25!

Then we expect that the spontaneous emission spectrum
have three peaks centered at2A3g, 0, andA3g which cor-
respond to the three dressed statesu2&, u0&, and u1&. For
p51, however, there is no coupling betweenu0,n& and
uc,n& @see Eq.~17!#. The entire initial population inu0,n&
will stay there and give no contribution to the spontaneo
emission. That is why we have the central peak elimina
from the spectrum~Fig. 6!. ~Note that under the trappin
conditions there will be no central peak in the spectrum
any initial state of the atom.! If the atomic state isu0,n&
initially, one can clearly see the difference betweenp50 and
p51 cases. Ifp50, we simply expect one peak at the cen
since it is the dressed stateu0,n& which is responsible for the
central peak. On the other hand, there is no spontane
emission at all forp51 and the entire population is trappe
in the stateu0,n&. In this last case spontaneous emission
completely canceled.
on

r-

ent
r-

c-

ry

ill

s
d

r

r

us

s

If the trapping conditions are fulfilled, then the populatio
trapped in the upper levels can be calculated as a portio
the state u0,n& in the initial state. For example, a
g1An115g2An11[Vn andD152D25v12/2, stateua1&
can be rewritten in terms of the dressed states as

ua1 ,n&5
1

2m F S m1
v12

2 D u1,n&1S m2
v12

2 D u2,n&

12Vnu0,n&G , ~26!

with m5A2Vn
21v12

2 /4. Hence for the atom initially pre-
pared in the stateua1&, we can find that trapped population
are

uA1~`!u25uA2~`!u25
16Vn

4

~8Vn
21v12

2 !2
,

uB~`!u25
Vn

2v12
2

~8Vn
21v12

2 !2
. ~27!

Here we can see that even if two upper levels are well se
rated, a significant amount of population can be trapped
the upper levels provided that the driving field is stro
enough.

IV. MASTER EQUATION APPROACH

In the preceding section the decays along the driven tr
sitionsua1&→ub& andua2&→ub& were not taken into accoun
and, to have population trapped in the upper levels, the a
was assumed to be initially prepared in a specific~dark!
state. To describe more realistic situations one needs to
clude the decays from upper levelsua1& and ua2& to ub&, see
Fig. 7. In other words, levelsua1& and ua2& are coupled by
the same vacuum modes also to the levelub& ~these modes
are supposed to be different from those relevant to the t
sitions fromua1& andua2& to uc&). For this purpose, it is more
convenient to describe the system by standard density m
formalism, and the spontaneous emission spectrum can

FIG. 6. Spontaneous emission spectra forv1252g1,
V15V25g25D15g1, and ~a! p50 and ~b! p51. The atom is
initially in level ua1& @11#.
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calculated with use of the quantum regression theorem
the following we will treat the driving field classically. It is
difficult to obtain simple analytical expressions in the mas
equation approach, therefore we find the populations a
spectrum numerically. Since we are now interested in
steady-state solution, we also include the incoherent pum
ing from level uc& to levelsua1& and ua2&.

Including the interaction of the atom and the vacuu
modes which couple the transitions betweenua1,2& and ub&,

FIG. 7. Atomic level scheme including all the decay and inc
herent pumping processes. The incoherent pumpingr j ’s are sup-
posed to be in both directions.
In

r
d
a
p-

the total interaction Hamiltonian in this case can be writt
as

V5\D1ua1&^a1u1\D2ua2&^a2u

1~\V1ua1&^bu1\V2ua2&^bu1H.c.!1V11V2 ,
~28!

V15\(
k
gk

~1!e2 inktei ~n01vbc!tua1&^cub̂k

1gk
~2!e2 inktei ~n01vbc!tua2&^cub̂k1H.c.,

V25\(
q

g̃ q
~1!ei ~n02nq!tua1&^buâq

1g̃ q
~2!ei ~n02nq!tua2&^buâq1H.c.,

whereV1 andV2 are Rabi frequencies of the driving fiel
corresponding to the two transitions fromua1& and ua2& to
ub&, respectively,g̃q

(1,2) are coupling constants between th
qth vacuum mode and the atomic transitions fromua1,2& to
ub& ~for simplicity they are assumed to be real!, âq (âq

†) is
the annihilation~creation! operator for theqth vacuum mode
with frequencynq . In the following the Rabi frequencies ar
assumed to be real and positive~which corresponds to the
case of positive coupling constantsg1,2 in Sec. II!.

Using a Weisskopf-Wigner approximation in the gener
ized reservoir theory@15#, we derive the equations of motio
for the atomic density matrix elements which are@16#

-

ṙa1c52F12 ~g11g181r 11r !1 iD1Gra1c2 1

2
~pAg1g21p8Ag18g28!ra2c2 iV1rbc ,

ṙa1a252F12 ~g11g181g21g281r 11r 2!1 i ~D12D2!Gra1a22 1

2
~pAg1g21p8Ag18g28!~ra1a11ra2a2!1 i ~V2ra1b2V1rba2!,

ṙa1a152~g11g181r 1!ra1a12
1

2
~pAg1g21p8Ag18g28!~ra1a21ra2a1!1r 1rcc2 iV1~rba12ra1b!,

ṙa1b52F12 ~g11g181gb1r 11r b!1 iD1Gra1b2 1

2
~pAg1g21p8Ag18g28!ra2b2 iV1~rbb2ra1a1!1 iV2ra1a2,

ṙa2c52F12 ~g21g281r 21r !1 iD2Gra2c2 1

2
~pAg1g21p8Ag18g28!ra1c2 iV2rbc ,

~29!

ṙa2a252~g21g281r 2!ra2a22
1

2
~pAg1g21p8Ag18g28!~ra2a11ra1a2!1r 2rcc2 iV2~rba22ra2b!,

ṙa2b52F12 ~g21g281gb1r 21r b!1 iD2Gra2b2 1

2
~pAg1g21p8Ag18g28!ra1b2 iV2~rbb2ra2a2!1 iV1ra2a1,

ṙbc52
1

2
~gb1r b1r !rbc2 iV2ra2c2 iV1ra1c ,
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ṙbb52~gb1r b!rbb1g18ra1a11g28ra2a21r brcc1p8Ag18g28~ra1a21ra2a1!2 iV2~ra2b2rba2!2 iV1~ra1b2rba1!,

15ra1a11ra2a21rbb1rcc ,
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whereg j8 is the decay rate from leveluaj& to ub& and the
level ub& decays touc& ~due to collisions, for example! with
a decay rategb . p stands for the alignment of the dipo
moments along the transitions from levelsua1& and ua2& to
uc& as in Eq.~6! and, similarly,p8 denotes the alignment o
the dipole moments along the transitions fromua1& and
ua2& to ub&. We assume the incoherent pumping to be in b
directions; the pumping rate from the leveluc& to level ua1&
(ua2&) and back is denoted byr 1 (r 2). For generality we also
include the incoherent pumping from leveluc& to level ub&
and back (r b), but in our numerical calculations we set
equal to zero.r denotes the sum of all three pumping rate
r[r 11r 21r b . The atom is assumed to be a closed syst
therefore the total population is conserved.

Solving Eq.~29!, we can obtain the time evolution of th
populations and the steady state population in each le
Thus we can define how much population inversion we w
have in the steady state with a certain incoherent pumping
Fig. 8 we plot the time evolution of the population in ea
level under the trapping conditions. Att50, a weak incoher-
ent pumping is switched on (r 15r 250.01g1); at
t5500/g1, the system almost reaches steady state. In
steady state we have 80% of population trapped in the
upper levels, with the lower level having only 0.2% of th
total population. In Fig. 9 we plot the population inversio
(ra1a11ra2a22rcc) as a function of the Rabi frequency fo
different upper level separations. Larger upper level sep
tion needs a larger Rabi frequency for the driving field
order to get the same amount of inversion in the steady s
For a quite large separation,v12520g1, we need Rabi fre-
quency of'2g1 to have an inversion. Note that in the lim

FIG. 8. Time evolution of the populations forv1252g1, D1

52D25g25g1, g185g2850.5g1, V15V251.5g1, gb51024g1,
and r 15r 250.01g1.
h

:
,

el.
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a-

te.

of very large intensity of the driving field, whenV1@v12,
both levels ub& and uc& are not populated and the who
population is distributed between only two upper leve
ua1& and ua2&. Actually, in this limit the steady state of th
atomic system is the antisymmetric combination of these
upper levels.

Figures 8 and 9 are the main result of the present pa
They show that for the proposed scheme~Fig. 4! under the
certain trapping conditions specified in Sec. III, it is possib
to establish the population inversion and hold it up in t
steady state even with a very weak incoherent pumping.

Calculation of spontaneous emission spectrum using
quantum regression theorem is described in detail in App
dix B. The spectrum of radiation, spontaneously emitted
the transitions fromua1& and ua2& to uc&, is given by Eq.
~B14!. As we expect from the discussion of the previo
sections, we have a three-peak spectrum forp5p850
(V1Þ0,V2Þ0) as shown in Fig. 10~a!. Now compare two
cases:p521,p851 andp5p851. First, as shown in Fig.
10~b!, for the case ofp521,p851, the central peak is
broadened while the two side peaks are narrowed. A bro
ening ~or narrowing! of the peak means an increase~or de-
crease! of the corresponding dressed-state decay rate. Th
fore we have decay rate enhancement for the dressed
corresponding to the central peak at the expense of de
rate decrease for the states corresponding to the side p
There is no population trapping in the upper levels for t
casep521, p851, and the steady-state populations a
only slightly different from those of the casep5p850 cor-
responding to the absence of interference in spontane
emission. However, in the case ofp5p851 we have almost

FIG. 9. Population inversion (ra1a1
1ra2a2

2rcc) vs Rabi fre-
quency V1. D152D25v12/2, g25g1, g185g2850.5g1,
gb51024g1, r 15r 250.01g1, and V25V1, ~a! v1252g1, ~b!
v12510g1 and ~c! v12520g1.
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FIG. 10. Spontaneous emis
sion spectra for v1252g1,
D152D25g25g1, V15V2

51.5g1, g185g2850.5g1, gb

51024g1, r 150.01g1, and ~a! p
5p850, with steady-state popu
lation ra1a1

50.010, ra2a2
50.010, rbb50.012, and rcc

50.969, ~b! p521,p851, with
steady-state population ra1a1
50.017, ra2a2

50.017, rbb

50.024, andrcc50.941; and~c!
p5p851, with steady-state popu
lation ra1a1

50.408, ra2a2
50.408, rbb50.181, and
rcc50.002.
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zero emission from levelsua1& andua2& to level ub& @the area
under the spectrum curve is almost zero, as shown in
10~c!#, which indicates almost complete cancellation of t
spontaneous emission.~The fact that very weak emission
still present in this last case is only due to both two-w
incoherent pumping and small decay rate fromub& to uc&. If
we used one-way upward pumping with no decay alo
ub&→uc& transition, there would be no emission at all in t
steady state, and the population of the leveluc& would be
identically zero.!

V. THE EFFECT OF UPPER LEVEL DECAYS
ALONG THE DRIVEN TRANSITIONS

In the preceding section we have shown that even if
include the decays of the upper levels to the levelub&, the
effect of spontaneous emission cancellation is not destro
Moreover, these decays make it possible to have popula
inversion in the steady state, independently of the initial s
of the system at very low incoherent pumping rates. We n
discuss, in more detail, how these decays actually work.
do this in the simplest way we again switch to the quantiz
description of the driving field. A very clear picture ca
again be provided in terms of the dressed states introduce
Sec. III.

Let us consider mutual decays between the dressed s
due to the upper level decays to the levelub& ~Fig. 5!. The
interaction Hamiltonian for these transitions is given byV2 in
Eq. ~28!,

V25\(
q

g̃ q
~1!ei ~n02nq!tua1&^buâq

1g̃ q
~2!ei ~n02nq!tua2&^buâq1adj. ~30!

The matrix element of the transition from the dressed s
u6,n11& to the stateu0,n& can be written as
g.

g

e

d.
on
te
w
o
d

in

tes

te

V0,6;n~ t !5Š0,nz^1quV2u6,n11& z$0%‹

5N0,nN6,n11K 0,nUF\g̃ q
~1!g1An12S m6

v12

2 D
1\g̃ q

~2!g2An12S m7
v12

2 Dei ~nq2n0!tUb,n11L
5N0,nN6,n11S 2

g2
g1

D1D F\g̃ q
~1!g1An12

3S m6
v12

2 D1\g̃ q
~2!g2An12

3S m7
v12

2 Dei ~nq2n0!t. ~31!

On the other hand, matrix elements of the transitions fr
u0,n11& to u6,n& are given by

V6,0;n~ t !5Š6,nz^1quV2u0,n11& z$0%‹

5N6,nN0,n11^6,nu@\g̃ q
~1!g2An12

2\g̃ q
~2!g1An12#ei ~nq2n0!tub,n11&

5N6,nN0,n11@6~g1
21g2

2!~n11!#@\g̃ q
~1!g2An12

2\g̃ q
~2!g1An12ei ~nq2n0!t. ~32!

One can see that matrix element~32! can be zero and the
condition for this is similar to Eq.~18!:

g̃ q
~1!

g̃ q
~2! 5

g1
g2
. ~33!

Hence we can have no decay fromu0,n11& to u6,n&. On the
other hand, under the condition~33! the matrix element~31!
is maximal, and the decay rates from statesu6,n11& to the
stateu0,n& are not zero. Therefore if Eq.~33! is valid, dressed
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statesu6& can decay into the dressed stateu0&, but not vice
versa@4#. By analogy with Eq.~23!, condition ~33! can be
rewritten as

g1
g2

5p8Ag18

g28
, ~34!

whereg18 andg28 are the radiative decay rates from the tw
upper levels to the levelub& andp8 was defined in the pre
ceding section as the alignment of the dipole moments
responding to the driven transitions. Now one can see th
the trapping conditions~specified in Sec. III! are fulfilled
together with Eq.~34!, then for any initial state of the atom
and arbitrarily small incoherent pumping rates from lev
uc& to levelsua1,2&, the decays from the two upper levels
the levelub& eventually put the atom into a coherent sup
position state, which is nothing but the nondecaying st
u0,n&. The atom stays in this dark state as long as the driv
field is turned on.

VI. CONCLUSION

In this paper we have presented the physical origin of
cancellation of spontaneous emission in terms of the at
field dressed states. One of the dressed states can be a
decaying one under certain conditions, and it is theref
possible to hold the population in the upper levels even
the case when the two bare states are well separated.
spontaneous emission processes along the driven trans
can make this effect even more pronounced. These additi
decays add population to the nondecaying state and co
quently we can have complete cancellation of spontane
emission together with population inversion in steady sta
This effect could be potentially useful for high frequency a
high power laser systems.
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APPENDIX A: DERIVATION OF EQ. „7…

The Schro¨dinger equation with the Hamiltonian given b
Eq. ~1! reads

iȦ1~ t !5(
k
Ck~ t !gk

~1!ei ~v1c2nk!t1B~ t !V1e
iD1t,

iȦ2~ t !5(
k
Ck~ t !gk

~2!ei ~v2c2nk!t1B~ t !V2e
iD2t,

iḂ~ t !5A1~ t !V1* e
2 iD1t1A2~ t !V2* e

2 iD2t, ~A1!
r-
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te
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and

iĊk~ t !5A1~ t !gk
~1!e2 i ~v1c2nk!t1A2~ t !gk

~2!e2 i ~v2c2nk!t.
~A2!

By formal integration of Eq.~A2!, the probability amplitude
Ck(t) can be written as

Ck~ t !52 igk
~1!E

0

t

dt8A1~ t8!e2 i ~v1c2nk!t8

2 igk
~2!E

0

t

dt8A2~ t8!e2 i ~v2c2nk!t8. ~A3!

After inserting Eq.~A3! into the first equation of Eq.~A1!
we find

Ȧ1~ t !52(
k
gk

~1!ei ~v12nk!tS gk~1!E
0

t

dt8A1~ t8!e2 i ~v12nk!t8

1gk
~2!E

0

t

dt8A2~ t8!e2 i ~v22nk!t8D 2 iB~ t !V1e
iD1t.

~A4!

We now in a usual manner replace the summation overk by
an integration, which gives

Ȧ1~ t !52
V

~2p!3
E k2dkE df sinu du(

s

3S gk~1!gk
~1!E

0

t

dt8A1~ t8!e2 i ~v1c2nk!~ t2t8!

1gk
~1!gk

~2!E
0

t

dt8A2~ t8!e2 i ~v2c2nk!~ t2t8!eiv12t8D
2 iB~ t !V1e

iD1t

52
V

~2p!3
E S nk

2

c3D dnkE df sinu duF S um1u2sin2u
\2 D

3S \nk
2e0V

D E
0

t

dt8A1~ t8!e2 i ~v1c2nk!~ t2t8!

1S um1uum2upsin2u
\2 D S \nk

2e0V
D

3E
0

t

dt8A2~ t8!e2 i ~v1c2nk!~ t2t8!eiv12t8G
2 iB~ t !V1e

iD1t, ~A5!
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where the factors of sin2u come from the summation over th
polarization vectors, and the cross term has the factor op,
given by Eq.~6!. Integration overf andu gives

Ȧ1~ t !52
1

6p2e0\c
3S um1u2E

0

`

dnknk
3

3E
0

t

dt8A1~ t8!e2 i ~v1c2nk!~ t2t8!

1um1uum2upE
0

`

dnknk
3E

0

t

dt8A2~ t8!

3e2 i ~v1c2nk!~ t2t8!eiv12t8D 2 iB~ t !V1e
iD1t

.2
1

6p2e0\c
3S um1u2v1c

3 E
2`

`

dnk

3E
0

t

dt8A1~ t8!e2 i ~v1c2nk!~ t2t8!

1um1uum2upv1c
3 E

2`

`

dnkE
0

t

dt8A2~ t8!

3e2 i ~v1c2nk!~ t2t8!eiv12t8D 2 iB~ t !V1e
iD1t,

~A6!

where we have used the Weisskopf-Wigner approximatio
the last step. Hence we have

Ȧ1~ t !52
1

6p2e0\c
3S um1u2v1c

3 E
0

t

dt8A1~ t8!2pd~ t2t8!

1um1uum2upv1c
3 E

0

t

dt8A2~ t8!2pd~ t2t8!eiv12t8D
2 iB~ t !V1e

iD1t

.2
g1

2
A1~ t !2p

Ag1g2

2
A2~ t !e

iv12t2 iV1B~ t !eiD1t.

~A7!

@We replaced (um1uum2uv1c
3 )/(3pe0\c

3) by Ag1g2, using
the assumption that the upper level separationv12 is much
smaller than the optical frequenciesv1c andv2c .# Similarly,
we obtain

Ȧ2~ t !52p
Ag1g2

2
A1~ t !e

2 iv12t2
g2

2
A2~ t !2 iV2B~ t !eiD2t.

~A8!

After transformingAj (t)5aj (t)e
iD j t we arrive at Eq.~4!.

Now, substituting Eqs.~7! into Eq. ~A3!, in the steady state
we find

Ck~`!5(
j51

3 i ~gk
~1!a j1gk

~2!b j !

2l j1 i @nk2~vbc1n0!#
. ~A9!
in

APPENDIX B: SPONTANEOUS EMISSION SPECTRUM

Spontaneous emission spectrum can be calculated
Fourier transform of the two-time correlation function
electric field intensity:

Sr t~v!5
1

2pE0
`

dt e2 ivt^E~2 !~r ,t1t!•E~1 !~r ,t !&1c.c.,

~B1!

whereE(1)(r ,t) @E(2)(r ,t)# is the positive~negative! part of
the electric field operator at timet and positionr . In the
far-zone approximation this operator takes the form

E1~r ,t !5
v0
2

4pe0c
2r
n̂3@ n̂3P~1 !~ t2r /c!#, ~B2!

where n̂ is a unit vector in the direction of observation
P(1) is the positive part of the atomic polarization operator
the Heisenberg picture. We are interested in the spectrum
radiation emitted by the transitionsua1&→uc& and
ua2&→uc& ~Fig. 4!. In this casev05(va1c

1va2c
)/2 and

P~2 !~ t !5mW 1c~ ua1&^cu!H~ t !1mW 2c~ ua2&^cu!H~ t !,

P~1 !~ t !5@P~2 !#†, ~B3!

where superscriptH denotes that the operators are taken
the Heisenberg picture. Note that

mW 1c•mW 2c

m1cm2c
5p ~B4!

according to Eq.~6!. From Eqs.~B2! and~B3! it follows that
the spontaneous emission spectrum is proportional to
Fourier transform of the atomic two-time correlation fun
tion

G~1!~ t,t!5^P~2 !~ t1t!•P~1 !~ t !&. ~B5!

Calculation of Eq.~B5! involves a straightforward applica
tion of the quantum regression theorem@17#. This theorem
states that if, for some operatorÔi ,

^Ôi~ t1t!&5(
j
cj~ t,t!^Ôj~ t !&, ~B6!

where$Ôj% is a complete set of system operators andcj ’s are
c-number functions of time, then

^Ôi~ t1t!Ôk~ t !&5(
j
cj~ t,t!^Ôj~ t !Ôk~ t !&. ~B7!

Rewrite the equations of motion~29! in the following
vector form:

d

dt
ĉ5Lĉ1Ĉ, ~B8!
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where

~B9!

andĈ is the inhomogeneous part arising from elimination
rcc from Eqs. ~29! by the normalization condition
( ir i i51. Explicit expressions for the matrixL and vector
Ĉ are too bulky to be presented here, but they can be ea
derived from Eqs.~29!. The solution of the system~B9! can
be written as
f

ily

ĉ~ t !5exp@L~ t2t0!#ĉ~ t0!1E
t0

t

dt8exp@L~ t2t8!#Ĉ,

~B10!

and the steady-state solution reads

ĉ~ t5`!52L21Ĉ. ~B11!

The first step in the application of the regression theorem
to find the one-time expectation value of the atomic pol
ization operator. The expectation values calculated in Sch¨-
dinger and Heisenberg pictures coincide, therefore

^P~2 !~ t1t!&5mW 1cŠ~ ua1&^cu!H~ t1t!‹

1mW 2cŠ~ ua2&^cu!H~ t1t!‹

5mW 1crca1
S ~ t1t!1mW 2crca2

S ~ t1t!

5~mW 1cc21mW 2cc1!e
i ~n01vbc!~ t1t!.

~B12!

SuperscriptsH and S stand here for the Heisenberg an
Schrödinger picture, respectively. Now in order to find E
~B5! we need to rewrite this expectation value in terms of
system operators (u i &^ j u)H and carry out the replacement

Š~ u i &^ j u!H~ t !‹→Š~ u i &^ j uP~1 !!H~ t !‹. ~B13!

Taking the Fourier transform of the result, in the lim
t→`, we find the spontaneous emission spectrum in
form @6#

S~v!5ReĜ~1!~a!ua5 iv , ~B14!

where
Ĝ~1!~a!5m2c
2 SM11~a8!ra2a2~`!1M12~a8!ra2a1~`!1M13~a8!ra2b~`!1(

j
N1 j~a8!Cjra2c~`! D

1pm2cm1cSM11~a8!ra1a2~`!1M12~a8!ra1a1~`!1M13~a8!ra1b~`!1(
j
N1 j~a8!Cjra1c~`! D

1pm1cm2cSM21~a8!ra2a2~`!1M22~a8!ra2a1~`!1M23~a8!ra2b~`!1(
j
N2 j~a8!Cjra2c~`! D

1m1c
2 SM21~a8!ra1a2~`!1M22~a8!ra1a1~`!1M23~a8!ra1b~`!1(

j
N2 j~a8!Cjra1c~`! D , ~B15!

with a85a2 i (n01vbc). The matricesM andN are defined as

M ~a!5~aI2L !21, N~a!5L21~aI2L !21, ~B16!

and I is a 15315 unit matrix.
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