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Low pump limit of the bifurcation to periodic intensities in a semiconductor laser
subject to external optical feedback
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The conditions for a bifurcation to periodic intensities~Hopf bifurcation! for low values of the pump current
are examined using singular perturbation methods. We show that the frequency of the oscillations at the
bifurcation point remains close to the relaxation oscillation frequency of the solitary laser until the pump
parameter is close to its effective threshold value. This part of our analysis adds substance to previous
estimates of the frequency of the oscillations, which were guided by experiments. In the second part of our
analysis, we show that, very close to threshold, the frequency exhibits a sharp transition from the relaxation
oscillation frequency to a frequency proportional to the external cavity frequency~i.e., 2p/t, wheret is the
external round-trip time!. @S1050-2947~97!06805-4#

PACS number~s!: 42.65.Sf, 42.60.Mi
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I. INTRODUCTION

A semiconductor laser subject to weak optical feedb
quickly exhibits chaotic intensity oscillations as the feedba
rate is increased. A particular form of chaotic output cal
low-frequency intensity fluctuations~LFF! is observed when
the laser operates close to its solitary threshold@1#. LFF’s are
characterized by successive dropouts of the average lase
tensity, followed by slow recoveries. Recent numerical sim
lations have improved our understanding of the dynam
mechanisms responsible for LFF@2,3#, but analytical infor-
mation on the bifurcation possibilities remain rare due to
complexity of the laser equations.

Earlier investigations of LFF revealed that the LFF ma
frequency is much smaller than the relaxation oscillat
~RO! frequency of the solitary laser, which dominates as
laser operates far above threshold. They suggested tha
external cavity~EC! may have a stronger effect as the pum
current is progressively decreased. Following this idea, F
wara, Kubato, and Lang@4# proposed a frequency of th
form f; fRO/Agt, where fRO is defined as the RO fre
quency andg andt are the feedback rate and the delay tim
of the feedback, respectively. Later, Tatah and Garmire@5#
and Sacher, Elsasser, and Gobel@6# derived a frequency o
the form

f; fRO/A11gt. ~1!

The expression~1! is based on several simplifications of th
characteristic equation, which describes the stability o
single frequency solution~constant intensity!. For low values
of the pump above threshold, intensity oscillations are
pected to appear at higher feedback rates~higherg!, which
then implies, according to Eq.~1!, a frequencyf lower than
fRO.
However, the small pump limit of the characteristic equ

tion is a delicate limit, because it depends on how we co
pare the pump parameter to other small parameters in
551050-2947/97/55~6!/4443~6!/$10.00
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problem. The main objective of this paper is to derive
systematic approximation of the Hopf bifurcation frequen
and discuss its behavior as the pump parameter is prog
sively decreased.

In order to examine the small pump limit of the las
equations, it is necessary to formulate these equations in
mensionless form so that we may identify and relate differ
small or large parameters. In@7#, two large parameters wer
related to find an approximation of the Hopf bifurcatio
point for arbitrary values of the pump parameterP. These
large parameters areT[tntp

21 and u[ttp
21 where tn ,

tp , andt denote the carrier lifetime, the photon lifetime, an
the external round-trip time, respectively. Typical values
these time constants~tp;2 ps, tn;2 ns, andt;1–10 ns!
imply that T;u;103. The advantage of an approximatio
of the Hopf bifurcation point based on the large values
T and u is discussed in@8#. However, this approximation
fails mathematically for low values ofP, which suggests tha
a different limit may exist for a specific scaling betweenT,
u, andP. After relating these parameters, we derive new a
richer equations for the Hopf bifurcation point, which w
analyze in detail.

In Sec. II, we formulate the dimensionless Lang a
Kobayashi equations. We then show that the frequency
the oscillations admits two different limits corresponding
ther to the RO frequency or to an EC frequency. Sections
and IV are the technical sections and lead to two sepa
approximations of the Hopf bifurcation point. Section
summarizes the main results in terms of the original para
eters. Section VI examines the validity of the expression~1!
and discusses the physical meanings of the RO and EC
mains. All nonstandard mathematical details are describe
the Appendix and are not essential for the comprehensio
our main results.

II. FORMULATION

Lang and Kobayashi@9# have considered a laser diod
exposed to optical feedback from a flat external mirror. F
4443 © 1997 The American Physical Society
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weak to moderate feedback, the laser is modeled by the
lowing dimensionless rate equations for the electrical fi
Y and the excess carrier numberZ @7,10#:

dY

ds
5~11 ia!ZY1h exp~2 iV0u!Y~s2u!, ~2!

T
dZ

ds
5P2Z2~112Z!uYu2. ~3!

In these equations,s is time measured in units of the photo
lifetime tp (s[ttp

21). T andu are ratios of time constant
and were previously defined@T,u5O(103)#. V0[v0tp is
the angular frequency of the solitary laserv0 normalized by
tp

21@V0u (mod 2p)5O(1)#. h[gtp is the feedback rateg
normalized bytp

21(h,1). P is the excess pump curren
~uPu is proportional toJ2Jth whereJ andJth are the electri-
cal pump current and its value at the solitary laser thresh
respectively;uPu,1!. a is the linewidth enhancement facto
(a;5–6).

A basic solution of Eqs.~2! and~3! is a single-frequency
solution ~constant intensity! of the form

Y5Asexp@ i ~Vs2V0!s# and Z5Zs , ~4!

whereAs , Vs , andZs are constants. Introducing Eq.~4! into
Eqs. ~2! and ~3!, we obtain equations forAs , Vs , andZs ,
which are given in the Appendix. We wish to determine
Eq. ~4! admits a Hopf bifurcation to a new solution chara
terized by time-periodic intensities. To this end, we first
write Eq.~2! in terms of the amplitudeA and the phaseF of
the complex field defined as

Y5A exp@ i ~F2V0s!# ~5!

and then formulate the linearized equations for (A,F,Z)
5(As ,Vss,Zs). The condition for a nontrivial solution o
this linearized problem leads to a transcendental charact
tic equation for the growth ratel. Substitutingl5 iv gives
two equations for the critical feedback rateh and the fre-
quencyv of the oscillations at the Hopf bifurcation poin
They are given by Eqs.~A8! and ~A9! in the Appendix.

The simplest approximation of these conditions consid
the caseP5O(1) and assumes the scalingu5O(T1/2) and
h5O(T21) @7#. The leading approximation of the Hopf b
furcation frequency is then the laser relaxation frequency

v.A2PT21, ~6!

which is the well-known result@11#. On the other hand, a
Hopf bifurcation may appear at the effective laser thresh
~defined by the conditionAs50!. The conditions for such a
Hopf point are analyzed in the Appendix. We find that t
parameterP must be small (P;T21) and that the Hopf
bifurcation frequency is now inversely proportional to t
delay timeu,

v.
2

u
~p1D!, ~7!
l-
d

d,

-

is-

rs

d

whereD[Vsu is the external cavity mode frequency. Thu
we wish to understand how the Hopf bifurcation frequencyv
continuously changes from Eq.~6! to Eq. ~7! as uPu→0.

Figure 1 shows the numerically determined Hopf bifurc

FIG. 1. First Hopf bifurcation. The Hopf bifurcation points hav
been obtained numerically from the original laser equations~2! and
~3! by tracking the critical feedback rateh above which a super-
critical transition from steady to time-periodic oscillations is o
served, and by evaluating the Hopf conditions~A8! and ~A9!. The
values of the parameters areu5T51000, a56, and
V0u(mod 2p)52p. The effective laser threshold is exactly lo
cated atP50 becauseV0u52p andD52p/2 @see Eq.~A15!
and then Eq.~A12!#. We have found numerically that the effect o
changingV0u is mainly a shift of the laser threshold to either
positive or a negativeP. ~a! The dotted line RO represent
h5T21a21RH , whereRH is given by Eq.~18!. The dotted line EC
representsh5T21E and is obtained from Eqs.~26! and ~27!. ~b!
The dotted line RO representsv5T21s, wheres is obtained nu-
merically from Eq.~13!. The dotted line EC isv5T21s, wheres
is given by the implicit solution~27!.
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tion point h and its frequencyv as functions ofP. The
dotted lines in the figures are approximations that we in
duce in Secs. III and IV below. Note that the curvesh
5h(P) andv5v(P) exhibit a layer nearP50. As we shall
demonstrate, the width of this layer is typically proportion
to anO„(Ta)21

… quantity.
In order to determine an approximation of the Hopf bifu

cation, we first take into account the fact thatu5O(T) and
P5O(T21) as T→`. The leading approximate equation
are then examined in terms ofa. Specifically, we introduce a
small parametere, defined by

e[T21, ~8!

and scale the parametersu, P, andh and the frequencyv as

u5e21Q, P5ep, h5eE, and v5es. ~9!

These scalings are satisfied by both Eqs.~6! and ~7!. After
inserting Eq.~9! into the Hopf conditions~A8! and~A9!, we
find that the unknownsE and s satisfy Eqs.~A16! and
~A17!. Unfortunately, the reduced equations are almost id
tical to the original equations. The idea now is to investig
this problem in terms ofa. Because we anticipate a transitio
layer near the effective laser thresholdp5pth , our analysis
will involve two parts:~1! p5O(1) andE5O(a21) and~2!
p2pth5O(a21) andE5O(1). Note that the frequencys is
assumed to be anO(1) quantity for both cases.

III. THE RELAXATION OSCILLATION „RO…
FREQUENCY DOMAIN

We examine the domain away from the laser first thre
old @i.e., p5O(1) andp.0# by seeking a solution of the
Hopf conditions~A16! and ~A17! of the form

E5a21R and s5O~1!. ~10!

We note thatD(a), defined by Eq.~A10!, simplifies as
D(a).2asin(D) and obtain the following equations forR
ands asa→`:

22pR sin~D!F11s250, ~11!

2p@2R sin~D!F22s#1s350. ~12!

EliminatingR from these two equations and using the de
nitions of F1 andF2 , given by Eq.~A18!, we find the fol-
lowing equation fors:

s22s cot~sQ/2!22p50. ~13!

Note thats is a function ofp only.
From Eq. ~13!, we find that s5sc at p50, where

0,sc,p/2 is the root of the equation

sc2cot~scQ/2!50. ~14!

Furthermore,s approaches the parabolas.A2p as p→`.
From Eq.~13!, we find a good numerical approximation o
s(p) valid for smallQ:

s.A~2/Q!12p. ~15!
-

l

-
e

-

-

The expression~15! clearly shows the competing effects o
the laser RO frequencys5A2p and an EC frequencys
5A2/Q.

After determinings, we findR using Eq.~11!. However,
D in Eq. ~11! is a function ofR, which satisfies the basic
state equation~A1!. For a large, Eq.~A1! reduces to the
following equation forD:

D2V0u52RQ cos~D!. ~16!

Using Eqs.~11! and Eq.~16!, we eliminateR and obtain an
equation for the critical frequencyD5DH , at which a Hopf
bifurcation occurs. This equation forDH is given by

DH2V0u5
s2Q cot~DH!

4p sin2~sQ/2!
. ~17!

After solving Eq.~17! for DH , we obtainR5RH from Eq.
~11! as

RH52
s2

4p sin~DH!sin2~sQ/2!
.0. ~18!

In Figure 1, the dotted lines RO representh5T21E
5T21a21RH andv5T21s as functions ofP5T21p.

Sincep.0, the conditionRH.0 implies the inequality

sin~DH!,0. ~19!

The behavior ofRH as a function ofp is more difficult to
capture analytically. Asp→0, s→sc and cos(DH)→0, from
Eq. ~17!, andRH5O(p21)→`, from Eq.~18!. Note that the
limit cos(DH)→0, together with Eq.~19!, implies that

DH~mod2p!→2p/2. ~20!

In Figure 2, we show the bifurcation diagram of the E
mode frequenciesD as a function ofRQ. The implicit solu-
tion R5R(D) is obtained from Eq.~16!. Full and broken
lines correspond to stable and unstable modes, respecti
The stability conditions are~i! the saddle-node stability con
dition @12#, which reduces to the approximate condition

12RQ sin~D!.0 ~21!

and ~ii ! the Hopf conditionR,RH .
In the next section, we analyze the layer nearp50 by

introducing a different scaling of the parameters. Asp→0,
we know thats→sc , DH (mod 2p)→2p/2, and from Eq.
~18! we obtain

RH→
sc
2

4p sin2~scQ/2!
. ~22!

These limits will be the starting point of our analysis near t
effective laser threshold.

IV. THE EXTERNAL CAVITY „EC…
FREQUENCY DOMAIN

In this section, we investigate the Hopf bifurcation poi
close to threshold, because our previous approximation f
as p approaches zero@i.e., RH becomes unbounded a
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p→0, see Eq.~22!#. We resolve this difficulty by assuming
the following scaling of the parameters:

p5a21q, E5O~1!, and s5O~1!. ~23!

Before we determine the leading approximation of the Hop
conditions, it is worthwhile to first inspect the basic stat
equation ~A1!. With the scaling~23!, we havehu5EQ
5O(1) and Eq.~A1! reduces to the condition cos(D)50 for
a large andD5O(1). This is consistent with our previous
observation thatDH(mod 2p)→2p/2 near threshold. This
implies that the effective laser thresholdp5pth(E) defined
by the zero intensity condition@As50, or, equivalently,
pth(E)52E cos(D)# is zero in the first approximation.

Our goal is to findE and s as functions ofp. Equiva-
lently, we may determineE andp as functions ofs. Substi-
tuting Eq. ~23! into the Hopf conditions~A16! and ~A17!,
assuming sin(D).21 and taking the limita large leads to
the following equations forE ands:

2qEF12@E2~F1
22F2

2!2s2#12sE2F1F250, ~24!

2qEF222E2F1F22s@E2~F1
22F2

2!2s2#50. ~25!

Eliminatingq, we obtain a quadratic equation forE(s):

E2~F21sF1!1s2
F22sF1

F1
21F2

2 50. ~26!

Using Eq.~25!, we findq and thenp:

FIG. 2. Bifurcation diagram of the EC frequencies and the
bifurcations. Values of the parameters areu5T51000,a56, and
V0u(mod 2p)521, P50.001. The dots correspond to Hopf bifur-
cation points. The figure represents the EC mode frequencyD (D
5Vsu) as a function of the scaled feedback rateRQ (RQ5
hau) and is obtained from Eq.~16!. The Hopf bifurcation points
are found using Eq.~18!.
f

q[ap52
1

2EF2
$22E2F1F22s@E2~F1

22F2
2!2s2#%.

~27!

The dotted lines EC in Fig. 1 representh5T21E and v
5T21s in terms ofP5T21p.

As q increases,E decreases, and from Eq.~26! we find
the limit F25sF1 , which impliess→sc . Using Eq.~27!,
we then obtain

q5ap→
sc
2

4E sin2~s0Q/2!
, ~28!

which matches Eq.~22! if E5a21R. Thus, we have shown
that our two approximations overlap.

Finally, we may determine the leading approximation
the Hopf bifurcation point and its frequency at the thresho
In the first approximation fora large,pth50 and the condi-
tions ~24! and ~25! are satisfied ifF250 and E2F1

22s2

50, or, equivalently, if

s5
np

Q
and E5

s

2
~n51,3,...!. ~29!

Equation~29! clearly displays a frequency that is only co
trolled by the delay of the feedback.

V. SUMMARY

In this section, we summarize our main results. The bif
cation point is characterized by a critical value of the fee
back rateh and by the frequencyv of the oscillations at that
point. Depending on the scaling ofP, we have found two
different limits.

~1! The RO domain@P5O(T21)# appears for low values
of P and is characterized by a frequency that is close to
frequency of the relaxation oscillations of the solitary las

v.A~2/T!@~1/u!1P#. ~30!

In Eq. ~30!, we note the progressively stronger effect of t
delay u as P decreases. The critical value of the feedba
rate is given by

h.2
v2

4Pa sin~DH!sin2~vu/2!
.0, ~31!

whereDH satisfies the transcendental equation~17!. This ex-
pression is equivalent to the approximation of the bifurcat
point for moderate values of the pump@7#. Thus, it is the
frequency of the oscillations that first changes as the pu
parameter is decreased.

~2! The EC domain@P5O(T21a21)# appears for very
low values of the pump and is characterized by a domin
effect of the external cavity. The expressions are of the fo
v5T21s andh5T21E, wheres andE are given, in para-
metric form, by Eqs.~26! and ~27!. Near threshold,

v.
p

u
and h.

v

2
, ~32!

which clearly exhibits the dominant effect of the delayu.

r
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VI. DISCUSSION

The bifurcation to time-periodic intensity regimes for
semiconductor laser subject to optical injection is stud
using Lang and Kobayashi equations. We concentrated
low values of the pump parameterP and derive two distinct
asymptotic approximations of the Hopf bifurcation poin
Our approximations are in good agreement with the num
cal estimates of the Hopf bifurcation point and its frequen
~see Fig. 1!. The numerical location of the Hopf bifurcatio
point has been obtained by numerically integrating Eqs.~2!
and ~3! and looking for the onset of time-dependent inten
ties. It has also been obtained by direct evaluation of
Hopf conditions using the complete characteristic equatio

The approximation~1! formulated by Tatah and Garmir
@5# and Sacher, Elsasser, and Gobel@6# corresponds to the
first regime@i.e.,P5O(T21)#. This can be shown by evalu
ating Eq.~12! for smallQ and with sin(D)521. We find

s5S 2p

11RQ D 1/2, ~33!

which is Eq.~1! rewritten in terms of our new variables. W
conclude that the approximation~1! is valid provided that the
delay u is not too large, that the EC mode frequencyD is
close to2p/2, and that the pump parameterP is not too
small. For largeru, the frequencyv5v(P) can be obtained
by solving Eq.~13! implicitly. Note from Eq. ~13! that the
frequency does not depend onD. However, this is no more
the case ifP is very small, close to the threshold. Then t
solution is obtained in parametric form from Eqs.~26! and
~27!.

The specific scaling that characterizes each domain inP is
useful if we examine the nonlinear problem@10#. In the RO
domain, the proper time scale isS5vs ~v is the RO fre-
quency! and the feedback rate is very low@h
5O(T21a21)#. Using this information, it can be shown th
the nonlinear problem reduces to thelinearizedsolitary laser
equations coupled nonlinearly to the phase of the laser fi
@13#. This explains the numerical observation of nearly h
monic intensity oscillations exhibiting a frequency close
the RO frequency of the solitary laser. However, this is
longer the case in the EC domain. In this domain, the
quency strongly depends on the delayu and the feedback
rate is larger@h5O(T21)#. Using the scalings appropriat
for the EC domain, we have found that the approximation
the nonlinear problem exhibits a stronger amplitude-ph
coupling @13#. This leads to pulsating intensity oscillation
which need to be investigated in detail.

ACKNOWLEDGMENTS

This research was supported by U.S. Air Force Office
Scientific Research Grant No. AFOSR F49620-95-0065,
tional Science Foundation Grant No. DMS-9625843, NAT
Collaborative Research Grant No. 961113, the Fonds
tional de la Recherche Scientifique~Belgium!, and the Inter-
University Attraction Pole of the Belgian government.

2e
a
ied
on

t.
eri-
cy
n

si-
the
n.
e

-

e

he

at

eld
ar-
to
no
fre-

e
of
ase
s

of
Na-
O
Na-

APPENDIX: THE SINGLE MODE SOLUTION AND THE
HOPF BIFURCATION CONDITIONS

A basic reference solution of LK equations~2! and~3! is
the single frequency solution~4!. Introducing Eq.~4! into
Eqs. ~2! and ~3! leads to three equations for the consta
As , Vs , andZs , given by

D2V0u52hu@a cos~D!1sin~D!#, ~A1!

As
25

P1h cos~D!

122h cos~D!
>0, ~A2!

Zs52h cos~D!, ~A3!

whereD is the EC mode frequency defined by

D[Vsu. ~A4!

As h progressively increases from zero, the number of p
sible solutions increases but always remains odd. Note
the inequality in Eq.~A2! implies the condition

P>2h cos~D! ~A5!

if h is small.
We wish to determine the conditions for a Hopf bifurc

tion from the single frequency solution~4!. To this end, we
rewrite Eq.~2! in terms of the amplitudeA and the phaseF,
defined byY5A exp@i(F2V0s)#. From the linearized equa
tions for (A,F,Z)5(As ,Vss,Zs), we determine the condi
tion for a nontrivial solution which then leads to a transce
dental equation for the growth ratel. Using Eq.~A2!, we
eliminateAs from its coefficients and obtain

2e~P2Z!@2~ZF1l!2h sin~D!Fa#2Fe 112P

112Z
1l G

3@h2F222lh cos~D!F1l2#50, ~A6!

whereF is defined by

F[exp~2lu!21. ~A7!

In Eq. ~A6!, we have omitted the subscriptss for Z @Z now
means Eq.~A3!#. The small parametere is defined by ex-
pression~8!. The conditions for a Hopf bifurcation are ob
tained by substitutingl5 iv into Eq.~A6! and by separating
the real and imaginary parts. We find two conditions for t
critical feedback rateh and the frequencyv:

@P1h cos~D!#hF1D2e
112P

122h cos~D!
@h2~F1

22F2
2!

12vh cos~D!F22v2]

12vhF1@hF22v cos~D!#50, ~A8!

2e@P1h cos~D!#@hF2D2v#

2e
112P

122h cos~D!
2hF1@hF22v cos~D!#

2v@h2~F1
22F2

2!12vh cos~D!F22v2#50,

~A9!

where
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D[cos~D!2sin~D!a ~A10!

and

F1[cos~vu!21 and F2[2sin~vu!. ~A11!

We next examine the particular case of a Hopf bifurcation
the laser first threshold.

1. Hopf bifurcation at the laser first threshold

At the laser first threshold, the laser intensity is ze
From Eq.~A2!, this implies the condition

P1h cos~D!50. ~A12!

Inserting l5 iv into Eq. ~A6!, and using the fact thatP
2Z50 from Eq.~A12!, we obtain the condition

h2F222ivh cos~D!F2v250, ~A13!

where F5F12 iF 2 and F1 ,F2 are defined by Eq.~A11!.
From the real and imaginary parts of Eq.~A13!, we find the
following solution if D,0 ~we obtain similar conditions if
D.0!:

h52
p1D

u sin~D!
.0 and v5

2

u
~p1D!. ~A14!
.

tu

.

t

.

In Eq. ~A14!, D satisfies Eq.~A1! or, equivalently, using Eq.
~A14!,

V0u1p1a~p1D!cot~D!50. ~A15!

2. Hopf bifurcation conditions for low pump

We are interested in solving the Hopf bifurcation cond
tions assumingu5O(T) andP5O(T21). We introduce the
expressions~9! for u, P, h, andv into Eqs.~A8! and ~A9!
and take the limite→0. The leading order equations a
O(e3) and are given by

2@p1E cos~D!#EF1D2@E2~F1
22F2

2!12sE cos~D!F2

2s2#12sEF1@EF22s cos~D!#50, ~A16!

2@p1E cos~D!#@EF2D2s#22EF1@EF22s cos~D!#

2s@E2~F1
22F2

2!12sE cos~D!F22s2#50, ~A17!

whereF1 andF2 defined by Eq.~A11! are rewritten in terms
of sQ as

F1[cos~sQ!21 and F2[2sin~sQ!. ~A18!

These equations are analyzed fora large in Secs. III and IV.
.
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