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Low pump limit of the bifurcation to periodic intensities in a semiconductor laser
subject to external optical feedback
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The conditions for a bifurcation to periodic intensiti@sopf bifurcation for low values of the pump current
are examined using singular perturbation methods. We show that the frequency of the oscillations at the
bifurcation point remains close to the relaxation oscillation frequency of the solitary laser until the pump
parameter is close to its effective threshold value. This part of our analysis adds substance to previous
estimates of the frequency of the oscillations, which were guided by experiments. In the second part of our
analysis, we show that, very close to threshold, the frequency exhibits a sharp transition from the relaxation
oscillation frequency to a frequency proportional to the external cavity frequ@ecy 2w/ 7, wherer is the
external round-trip time [S1050-294{@7)06805-4

PACS numbg(s): 42.65.5Sf, 42.60.Mi

[. INTRODUCTION problem. The main objective of this paper is to derive a
systematic approximation of the Hopf bifurcation frequency
A semiconductor laser subject to weak optical feedbacland discuss its behavior as the pump parameter is progres-
quickly exhibits chaotic intensity oscillations as the feedbaclively decreased.
rate is increased. A particular form of chaotic output called In order to examine the small pump limit of the laser
low-frequency intensity fluctuatior&FF) is observed when €guations, it is necessary to formulate these equations in di-
the laser operates close to its solitary thresliaJdLFF’s are ~ Mensionless form so that we may identify and relate different

characterized by successive dropouts of the average laser iﬁnrall gr Iar?e dparameters._[ﬁl], two I?rgﬁ pirarr;eéirs were
tensity, followed by slow recoveries. Recent numerical simy-elated to find an approximation of the Hopf bifurcation
oint for arbitrary values of the pump paramekr These

lations have improved our understanding of the dynamic _ =
P g Y arge parameters aré=r,7 1 and =r7_1 where Tn,

mechanisms responsible for LKE,3], but analytical infor- Snip e
! pons e, 3], bu yneal | , andr denote the carrier lifetime, the photon lifetime, and

mation on the bifurcation possibilities remain rare due to the,[Tr;)e axternal round-trin time. respectivelv. Tvpical values of
complexity of the laser equations. P » Fesp y.- 1yp

L N .these time constants,~2 ps, 7,~2ns, andr~1-10ng
Earlier |r_1vest|gat|0ns of LFF revealed that _the LFF_ mamimply that T~ 6~ 10%. The advantage of an approximation
frequency is much smaller than the relaxation oscillation

. : . of the Hopf bifurcation point based on the large values of
(RO) frequency of the solitary laser, which dominates as thel. and 6 isF,) discussed irFS]. However. this app?oximation

laser operates far above threshold. They suggested that tlfwéalls mathematically for low values ¥, which suggests that

external cavity EC) may have a stronger effect as the pump_~ . . : ’ |
current is progressively decreased. Following this idea, Fuji% dlggsn;\#n:ltrr?a&/neﬁﬁt for arspn?c;ﬂcr sc\:;hr:jg E\?“A:]eﬁvc nd
wara, Kubato, and Lan4] proposed a frequency of the ' 8 - Allerrelating Inese parameters, we derive new a

form f~fao/\y7, Where fro is defined as the RO fre- richer equations for the Hopf bifurcation point, which we

guency andy and 7 are the feedback rate and the delay timeanalyze in detail.

) In Sec. Il, we formulate the dimensionless Lang and
of the feedback, respectively. Later, Tatah and Garifbie L
and Sacher, Elsasser, and Gofl derived a frequency of Kobayashi equations. We then show that the frequency of

the form the oscillations admits two different limits corresponding ei-
ther to the RO frequency or to an EC frequency. Sections IlI
— and IV are the technical sections and lead to two separate
f=fro/V1tyr @D approximations of the Hopf bifurcation point. Section V
The expressiolfl) is based on several simplifications of the summ:;nze; the main r_esultshln telr_?s offtr%e original param-
characteristic equation, which describes the stability of ‘,Pters.. ection Vi examlr]est e vall ity of the expression
and discusses the physical meanings of the RO and EC do-

single frequency solutiofconstant intensify For low values . : : : .
of tghe pu?np agove thrg':shold intensitym(/)scillations are exmains. All nonstandard mathematical details are described in

pected to appear at higher feedback ratugher y), which  the Appendix and are not essential for the comprehension of
then implies, according to Eql), a frequencyf lower than our main results.
fro: - - Il. FORMULATION

However, the small pump limit of the characteristic equa-
tion is a delicate limit, because it depends on how we com- Lang and Kobayashi9] have considered a laser diode
pare the pump parameter to other small parameters in thexposed to optical feedback from a flat external mirror. For
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weak to moderate feedback, the laser is modeled by the folwhereA=( .0 is the external cavity mode frequency. Thus,
lowing dimensionless rate equations for the electrical fieldve wish to understand how the Hopf bifurcation frequency
Y and the excess carrier numbef7,10]: continuously changes from E¢) to Eq. (7) as|P|—0.

Figure 1 shows the numerically determined Hopf bifurca-

‘;—::(Hm)zw 7 exp—iQe0)Y(s— ), 2

dz

. —PpP_7_ 2
Jo=P-Z-(1+22)|Y>. 3)

1.5
In these equations, is time measured in units of the photon

lifetime 7, (s=tr, 1. T and 6 are ratios of time constants

and were previously defingdrl,=0(10%)]. Q= wQTp IS ©
the angular frequency of the solitary laseg normalized by = 1.0
75 [Q06 (mod 27) =O(1)]. =1y, is the feedback rate e
normalized byrgl( 7n<1). P is the excess pump current

(|P| is proportional taJ— J;, whereJ andJy, are the electri-

cal pump current and its value at the solitary laser threshold, 0.5
respectively] P|<1). a is the linewidth enhancement factor
(a~5-6).
A basic solution of Eqs(2) and(3) is a single-frequency
solution (constant intensityof the form 0.0
Y=Aexdi(Qs—Qp)s] and Z=Zg, 4
whereA, (¢, andZ are constants. Introducing E@) into 35

Egs.(2) and(3), we obtain equations foh, ., andZ,
which are given in the Appendix. We wish to determine if
Eq. (4) admits a Hopf bifurcation to a new solution charac- 3.0
terized by time-periodic intensities. To this end, we first re-
write Eqg.(2) in terms of the amplitudé& and the phasé of

the complex field defined as

wx10®

Y=A exgi(®—QpS)] (5)

and then formulate the linearized equations féy,&,Z2)
=(As,QsS,Z;). The condition for a nontrivial solution of
this linearized problem leads to a transcendental characteris
tic equation for the growth rate. Substitutingh =i gives
two equations for the critical feedback raieand the fre-
guency w of the oscillations at the Hopf bifurcation point.
They are given by EqgA8) and (A9) in the Appendix. 10 ,
The simplest approximation of these conditions considers Px10°
the caseP=0(1) and assumes the scalig- O(T*? and

77:0(,T 1) [7]. Theileadlng approximation c_’f the Hopf bi- FIG. 1. First Hopf bifurcation. The Hopf bifurcation points have
furcation frequency is then the laser relaxation frequency been obtained numerically from the original laser equati@snd
(3) by tracking the critical feedback ratg above which a super-
w=\2PT %, (6) critical transition from steady to time-periodic oscillations is ob-
served, and by evaluating the Hopf conditid@8) and (A9). The
which is the well-known resulf11]. On the other hand, a values of the parameters are=T=1000, «=6, and
Hopf bifurcation may appear at the effective laser thresholdof(mod 2r)=—m. The effective laser threshold is exactly lo-
(defined by the conditiom=0). The conditions for such a cated atP=0 becausd)of=—m and A=—m/2 [see Eq.(A15)
Hopf point are analyzed in the Appendix. We find that thea”d th_en Eq(A_lZ)]. We have_found numerically that the effect of
parameterP must be small PMT—l) and that the Hopf changing(,6 is mainly a shift of the laser threshold to either a

bifurcation frequency is now inversely proportional to the POSitivé or a negativeP. (a) The dotted line RO represents
delay timed q y y prop n=T"ta Ry, whereRy is given by Eq(18). The dotted line EC

representsy=T 'E and is obtained from Eq$26) and (27). (b)
5 The dotted line RO represeanFT’la, whereo is obtained nu-
. . Y
=2 (7+A 7 merically from Eq.(13). The dotted line EC i9n=T -0, whereo
w=7 (T+a), (s given by the implicit solutior27).

1.3
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tion point » and its frequencyw as functions ofP. The

4445

The expressioril5) clearly shows the competing effects of

dotted lines in the figures are approximations that we introthe laser RO frequency=+2p and an EC frequency

duce in Secs. lll and IV below. Note that the curves
= 5(P) andw= w(P) exhibit a layer neaP=0. As we shall

=2/0.

After determiningo, we findR using Eq.(11). However,

demonstrate, the width of this layer is typically proportional A in Eq. (11) is a function ofR, which satisfies the basic

to anO((Ta) 1) quantity.

state equatior(Al). For « large, Eq.(Al) reduces to the

In order to determine an approximation of the Hopf bifur- following equation forA:

cation, we first take into account the fact thst O(T) and

P=0O(T 1) asT—x. The leading approximate equations
are then examined in terms af Specifically, we introduce a

small parameteg, defined by
e=T 1, (8)
and scale the paramete#sP, and » and the frequencw as
f=€e10,

P=ep, n=¢€E, and w=¢€0. (9

These scalings are satisfied by both E@g.and (7). After
inserting Eq.(9) into the Hopf conditiongA8) and(A9), we
find that the unknown€ and o satisfy Eqgs.(A16) and

(A17). Unfortunately, the reduced equations are almost iden-

A—Qy60=—R0O cogA). (16)
Using Egs.(11) and Eq.(16), we eliminateR and obtain an
equation for the critical frequency=A,,, at which a Hopf
bifurcation occurs. This equation fdry is given by

20 cot(Ay)

A= 0= SR ren)

17

After solving Eq.(17) for Ay, we obtainR=Ry from Eq.
(11) as

0_2

Ri= "~ 20 siA ) siP(c 02

)>0. (18

tical to the original equations. The idea now is to investigate
this problem in terms of. Because we anticipate a transition In Figure 1, the dotted lines RO represemt=T E
layer near the effective laser threshqler py,, our analysis

will involve two parts:(1) p=0(1) andE=0(a 1) and(2)
p—pn=0(a" 1) andE=0(1). Note that the frequency is
assumed to be a®(1) quantity for both cases.

Ill. THE RELAXATION OSCILLATION
FREQUENCY DOMAIN

(RO)

=T 'a 'Ry andw=T 10 as functions oP=T"1p.
Sincep>0, the conditionR,>0 implies the inequality
sin(Ay)<O0. (19
The behavior ofRy as a function ofp is more difficult to
capture analytically. Ap—0, o— o, and cosf)—0, from
Eq.(17), andRy=0(p~ 1) —=, from Eq.(18). Note that the

We examine the domain away from the laser first threshlimit cos(Ay)—0, together with Eq(19), implies that

old [i.e., p=0(1) andp>0] by seeking a solution of the

Hopf conditions(A16) and (A17) of the form

E=a 'R and 0=0(1). (10

We note thatD(«), defined by Eq.(A10), simplifies as
D(a)=—asin(d) and obtain the following equations f&t

ando asa—x:

—2pRsiN(A)F;+0?=0, (11

2p[—R si(A)F,— o]+ 03=0. (12

Eliminating R from these two equations and using the defi-

nitions of F; andF,, given by Eq.(A18), we find the fol-
lowing equation foro:
a?— o cot(0®/2)—2p=0. (13

Note thato is a function ofp only.
From Eg. (13), we find that c=0. at p=0, where
0<o.<m/2 is the root of the equation
o.—cot(a:.0/2)=0. (14

Furthermore o approaches the parabale=\2p asp— .

From Eq.(13), we find a good numerical approximation of

o(p) valid for small®:

o=\/(2/0)+2p.

(15

Ap(mod2m)— — /2. (20

In Figure 2, we show the bifurcation diagram of the EC

mode frequencied as a function oR®. The implicit solu-

tion R=R(A) is obtained from Eq(16). Full and broken

lines correspond to stable and unstable modes, respectively.

The stability conditions aré) the saddle-node stability con-

dition [12], which reduces to the approximate condition
1—RO sin(A)>0 (21

and (i) the Hopf conditionR<Ry.

In the next section, we analyze the layer nearO by
introducing a different scaling of the parameters. ;s 0,
we know thato— o, Ay (mod 27)— — 7/2, and from Eq.
(18) we obtain

0_2
Cc

Ri= 2p sif(0.012)"

These limits will be the starting point of our analysis near the
effective laser threshold.

(22

IV. THE EXTERNAL CAVITY
FREQUENCY DOMAIN

(EC)

In this section, we investigate the Hopf bifurcation point
close to threshold, because our previous approximation fails
as p approaches zerdi.e., Ry becomes unbounded as
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8 RO 10

FIG. 2. Bifurcation diagram of the EC frequencies and their

bifurcations. Values of the parameters @&eT=1000,«=6, and

QOo6(mod 27)=—1, P=0.001. The dots correspond to Hopf bifur-

cation points. The figure represents the EC mode frequan¢ix
=(.0) as a function of the scaled feedback r&® (RO=
naf) and is obtained from Eq16). The Hopf bifurcation points
are found using Eq(18).

p—0, see Eq(22)]. We resolve this difficulty by assuming

the following scaling of the parameters:

p=a'g, E=0(1), and c=0(1). (23
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1
4=ap=- e {~2E°F F,— o E*(FI-F)) - o?]}.
(27)

The dotted lines EC in Fig. 1 represept=T E and
=T 1o in terms of P=T 1p.

As q increasesk decreases, and from E6) we find
the limit F,=oF, which impliesoc— o. Using Eq.(27),
we then obtain

2
o

9= 2P ZE sif(0,0/2)

which matches Eq22) if E=a'R. Thus, we have shown
that our two approximations overlap.

Finally, we may determine the leading approximation of
the Hopf bifurcation point and its frequency at the threshold.
In the first approximation for large, py,=0 and the condi-
tions (24) and (25) are satisfied ifF,=0 and E?F5— o2
=0, or, equivalently, if

(28)

nT g
o=— and EZE (n=1,3,..). (29

Equation(29) clearly displays a frequency that is only con-
trolled by the delay of the feedback.

V. SUMMARY

In this section, we summarize our main results. The bifur-
cation point is characterized by a critical value of the feed-
back rater and by the frequency of the oscillations at that
point. Depending on the scaling &f, we have found two
different limits.

(1) The RO domairf P=0O(T~1)] appears for low values

Beforg we dpt_ermine the'leading ap.proximation of the Hopfot p and is characterized by a frequency that is close to the
conditions, it is worthwhile to first inspect the basic statefrequency of the relaxation oscillations of the solitary laser:

equation (Al). With the scaling(23), we have n6=EO®
=0(1) and Eq.(Al) reduces to the condition cas(=0 for w=+/(2M[(1/6)+P].

a large andA=0(1). This is consistent with our previous

(30

observation that\(mod 2r)— — #/2 near threshold. This
implies that the effective laser threshagbe= py,(E) defined
by the zero intensity conditionA;=0, or, equivalently,
pin(E)=—E cos@)] is zero in the first approximation.

Our goal is to findE and o as functions ofp. Equiva-
lently, we may determin& andp as functions ofr. Substi-
tuting Eqg. (23) into the Hopf conditiongA16) and (A17),
assuming sinf)=—1 and taking the limita large leads to
the following equations foE and o

2qEF,—[E3(F2—F3)— %]+ 20E%F,F,=0, (24)

20EF,— 2E%F,F,— o[ E?(F3—F2)—0?]=0. (25

Eliminating q, we obtain a quadratic equation fafo):

FZ_O'F]_

E%(F,+0F;)+0? TR

=0. (26)

Using Eq.(25), we findq and thenp:

In Eqg. (30), we note the progressively stronger effect of the
delay 6 as P decreases. The critical value of the feedback
rate is given by

wZ

=" 4Pa sin(AH)sinz(w0/2)>O’

(31)

whereA satisfies the transcendental equatid@. This ex-
pression is equivalent to the approximation of the bifurcation
point for moderate values of the puniig]. Thus, it is the
frequency of the oscillations that first changes as the pump
parameter is decreased.

(2) The EC domaifP=0(T 'a1)] appears for very
low values of the pump and is characterized by a dominant
effect of the external cavity. The expressions are of the form
w=T ' andp=T"E, whereo andE are given, in para-
metric form, by Eqs(26) and (27). Near threshold,

w
and n=

w=—

0

which clearly exhibits the dominant effect of the delay
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VI. DISCUSSION APPENDIX: THE SINGLE MODE SOLUTION AND THE

. . . C . . HOPF BIFURCATION CONDITIONS
The bifurcation to time-periodic intensity regimes for a

semiconductor laser subject to optical injection is studied A basic reference solution of LK equatiof® and(3) is
using Lang and Kobayashi equations. We concentrated ofe single frequency solutiot4). Introducing Eq.(4) into
low values of the pump parametBrand derive two distinct EdS. (2) and (3) leads to three equations for the constants
asymptotic approximations of the Hopf bifurcation point. As: {s, @ndZs, given by
Our approximations are in good agreement with the numeri- A—Qy0=— o[ a cogA)+sin(A)], (A1)
cal estimates of the Hopf bifurcation point and its frequency
(see Fig. 1L The numerical location of the Hopf bifurcation
point has been obtained by numerically integrating Egks.
and (3) and looking for the onset of time-dependent intensi-
ties. It has also been obtained by direct evaluation of the Zs=—1n cogA), (A3)
Hopf conditions using the complete characteristic equation.
The approximatior(1) formulated by Tatah and Garmire

A2 P+ 7% cogA) _

*T1-2yc088) "

whereA is the EC mode frequency defined by

[5] and Sacher, Elsasser, and Gof&l corresponds to the A=Q.0. (Ad)
first regime[i.e., P=0(T~1)]. This can be shown by evalu- ) )
ating Eq.(12) for small® and with sinf)=—1. We find As 7 progressively increases from zero, the number of pos-

sible solutions increases but always remains odd. Note that
the inequality in Eq(A2) implies the condition
vz P=—7 cogA) (A5)

P\ (33

1+RO

g=

if 7is small.

We wish to determine the conditions for a Hopf bifurca-
tion from the single frequency solutidd). To this end, we
rewrite Eq.(2) in terms of the amplitudé and the phase,
defined byY=A exdi(®—Qgs)]. From the linearized equa-
tions for (A,®,Z)=(As,QS,Zs), we determine the condi-
tion for a nontrivial solution which then leads to a transcen-
dental equation for the growth rate Using Eqg.(A2), we
eliminate A from its coefficients and obtain

which is Eq.(1) rewritten in terms of our new variables. We
conclude that the approximatigh) is valid provided that the
delay 6 is not too large, that the EC mode frequenkyis
close to—#/2, and that the pump paramet@ris not too
small. For largem, the frequencyw= w(P) can be obtained
by solving Eq.(13) implicitly. Note from Eq.(13) that the
frequency does not depend dn However, this is no more
the case ifP is very small, close to the threshold. Then the
solution is obtained in parametric form from Edg&6) and 2e(P=2Z)[—(ZF+N\)—7n sinf(A)Fa]—
(27).

The specific scaling that characterizes each domakhim X[ 7?F?—2\ 7 cogA)F+2\?]=0, (AB)
useful if we examine the nonlinear probldi0]. In the RO ] ]
domain, the proper time scale 8= s (w is the RO fre- WhereF is defined by
guency and the feedback rate is very lowy F=exg—\6)—1 (A7)
=0(T ta™1)]. Using this information, it can be shown that '
the nonlinear problem reduces to tireearizedsolitary laser  In Eq. (A6), we have omitted the subscripgsor Z [Z now
equations coupled nonlinearly to the phase of the laser fieltheans Eq(A3)]. The small parameter is defined by ex-
[13]. This explains the numerical observation of nearly har-pression(8). The conditions for a Hopf bifurcation are ob-
monic intensity oscillations exhibiting a frequency close totained by substituting =i w into Eq.(A6) and by separating
the RO frequency of the solitary laser. However, this is nothe real and imaginary parts. We find two conditions for the
longer the case in the EC domain. In this domain, the fre<ritical feedback rate; and the frequencw:
guency strongly depenlds on the delayand the feedback +op
rate is largef »=0O(T ™ ")]. Using the scalings appropri _
for the EC domain, we have found that the approximati%a%fgfjL 7 CosA)JnFaD e 1-27 coqA) L7
the nonlinear problem exhibits a stronger amplitude-phase )
coupling [13]. This leads to pulsating intensity oscillations +t2w07 codA)F,— 0]
which need to be investigated in detail. +2wnF [ 7F,—  cogA)]=0, (A8)

+2P
1+2Z

€ +A

AFI-F)

2¢[P+ n cogA)][ nF,D — w]
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D=cogA)-sin(A)a (A10) In Eq.(Al4), A satisfies Eq(A1) or, equivalently, using Eq.
(Al14),
and
) Qb+ 7+ a(m+A)cot(A)=0. (A15)
Fi=coqwh)—1 andF,=—sin(wb). (A1l
We next examine the particular case of a Hopf bifurcation at 2. Hopf bifurcation conditions for low pump

the laser first threshold. We are interested in solving the Hopf bifurcation condi-

tions assuming=O(T) andP=0(T ). We introduce the

1. Hopf bifurcation at the laser first threshold expressiong9) for 6, P, 7, andw into Egs.(A8) and (A9)
At the laser first threshold, the laser intensity is zero.and take the limite—0. The leading order equations are
From Eqg.(A2), this implies the condition O(€%) and are given by
P+ 7 cogA)=0. (A12) 2[p+E cogA)]EF,D—[EX(F2—F3)+20E cogA)F,
Inserting \=iw into Eq. (A6), and using the fact thaP —0%]+20EF{EF,~ 0 cogA)]=0, (A16)

—Z=0 from Eq.(A12), we obtain the condition
2[p+E cogA)][EF;D—o0]—2EF{EF;— 0 cogA)]
7°F?—2iwn codA)F— w?=0, (A13)
— o[E*(F2—F3)+20E codA)F,—0?]=0, (Al7)
where F=F,;—iF, and F,,F, are defined by Eq(A1l).
From the real and imaginary parts of E&13), we find the  whereF, andF, defined by Eq(A11) are rewritten in terms
following solution if A<<O (we obtain similar conditions if of ¢® as
A>0):
Fi=cog§00)—1 andF,=-sin(c®). (A18)
T+ A

2
n== a0 ade=7(7+a).  (Al4)

0 sin(A) These equations are analyzed #olarge in Secs. Ill and IV.
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