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Quantum-mechanical counterpart of nonlinear optics
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Raman-type laser excitation of a trapped atom allows one to realize the quantum-mechanical counterpart of
phenomena of nonlinear optics, such as Kerr-type nonlinearities, parametric amplification, and multimode
mixing. Additionally, huge nonlinearities emerge from the interference of the atomic wave function with the
laser waves. They lead to a partitioning of the phase space accompanied by a significantly different action of
the time evolution in neighboring phase-space zones. For example, a nonlinearly modified coherent “displace-
ment” of the motional quantum state may induce strong amplitude squeezing and quantum interferences.
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[. INTRODUCTION In nonlinear optics, however, other interactions are known

which leave the electronic transitions of the nonlinear me-

A single atom trapped in a harmonic potential turns out todium almost unchanged. Examples are the Kerr nonlinearity,
be a very well-defined object for studying fundamental phefarametric interactions, and several types of nonlinear wave
nomena of quantum dynamics. Since the first realization ofixings. The question appears as to whether it is possible to
such a system in an ion trap by Neuhauseasl. [1], the realize such phenomena in the motional dynamics of a single
subject has stimulated much experimental and theoretic&@tom, where the trap potential replaces a cavity used in non-
work. As has been shown by Blockley, Walls, and Riskenlinéar optics. o ,
[2], the laser-assisted coupling between the internal and ex- !N the present contribution we propose Raman-type exci-

ternal degrees of freedom of a trapped atom can be dégtions for inducing various kinds of nonlinear interactions in
the quantized motion of a trapped atom. We consider the

scribed, under appropriate conditions, by a Jaynes . . .
bprop Y Y uantum-mechanical counterpart of nonlinear optical effects

Cummings model. This allows one to study phenomena w . .
are familiar with from cavity QED, such as the micromaser at dp not |_nﬂuence the electronic degrges of freedom of the
' atomic medium. We show that even a single degree of free-

dynamics[3], in the vibronic motion of a trapped atop]. dom of the atomic center-of-mass motion can be driven in a

Evgntually, sevgral proposals have been published for pre"s'trongly nonlinear manner. Surprising phenomena are caused
paring nonclassical states, such as squeezed $@it@d |y the interference effects of the atomic wave function with
motional number statg$], and successful experiments have e driving light waves. They induce a nonlinear partitioning
been performed7,8]. of the phase space, the action of the time evolution being
The dynamics of a trapped atom, however, not only alitferent in neighboring phase-space zones. This partitioning
lows one to reproduce effects of cavity QED in the quantizedyay he used for the generation of nonclassical effects, such
motion. When the spatial extension of the atomic wave funcq amplitude squeezing and quantum interferences.
tion representing the center-of-mass motion is no longer e paper is organized as follows. In Sec. Il the basic
small compared with the driving laser wavelength, nonlineag,oqel for the Raman-induced motional dynamics is intro-
effects emerge that have no counterpart in standard nonlineg,ced and the effective Hamiltonian for the nonlinear mo-
optics. It has been shown by Vogel and de Matos Filho thafiong| interactions is derived. Section Il is devoted to the

the atom may undergo a vibronic coupling, which is verynonjinear phase-space partitioning together with the illustra-

well described by a nonlinear, multiquantum Jaynession of its effects in simple examples of motional dynamics.
Cummings mode[9]. Meanwhile this prediction has been a summary and some conclusions are given in Sec. IV.
confirmed experimentally7] and modifications due to mi-

cromotion have been studi¢dl0]. The nonlinearities in this

model allow us to prepare exg:iting motional quantum states, II. RAMAN-INDUCED MOTIONAL DYNAMICS
such as quantum superpositions of both cohefgémt and
squeezed statd4?2], nonlinear coherent stat¢3,14], pair Let us consider an atom harmonically bound in a trap. In

coherent statefl5] and pair cat stategl6]. Measurement general, the atom oscillates in the three principal axes of the
technigues for the full diagnostics of motional quantumtrap with frequenciesy; (i=1,2,3). The trapped atom is
states have been propoddd] and realized 18]. driven in a Raman configuration with two classical laser
These outstanding feasibilities render it possible to raiséields of frequencieso, and v, +A (A<w,), which are

new types of questions. The nonlinear Jaynes-Cummingsff-resonant with respect to the electronic transitions, see
model has introduced new kinds of nonlinearities that sub¥ig. 1. During the interaction with the two lasers, the atom
stantially modify phenomena we are familiar with from non- stays in its electronic ground state. However, in the resolved
linear optics, such as multiphoton absorption and emissiorsideband regime and for appropriately chosen laser-beam ge-
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———————————— differencek is determined by the laser-beam geometry, the

coupling of the motional degrees of freedom can be designed
12) to include one, two, or three directions.

To consider these couplings in more detail, we assume
that the vibrational frequencies are well resolved by the Ra-
man excitation, so that we may introduce a vibrational
rotating-wave approximation. Choosing the laser beat fre-
quency to be a multiple of the three vibrational frequencies,
A=syv;+s,v, (51,=0,+1,+2,...), oneobtains a cou-
pling of all vibrational mode$19]. In this case the interac-
tion Hamiltonian(in the interaction pictureis of the form
[20]

©

1) Hin= 2 hQn;w gnfsl(éi ag; nl)gnfsz(é; 1825 72)

FIG. 1. The|1l)«|2) t_ransition of a trapped atom is driven by xgn(ag,é3;7;3)+ H.c. (4)
two off-resonant laser field&,; and E, of frequenciesw, and
w_+A, respectively. Other electronic statésoken lineg are far  and the operator-valued functioﬁﬁ(éT,é_; n) are given by
off-resonant. The beat frequendycan be tuned on resonance with .
multiples of vibrational frequencies. s (i néT)|k|f|k|(ﬁ;7;) if k=0

it it i i WMEADT: Aomiga) it k<0,

ometry and laser detuning, it is possible to affect the mo- kM 7) U7
tional quantum state of the atom in a well-controlled manner, y A

The effective interaction Hamiltonian for the Raman cou- | & Hermitian operator functiorig(n; ) depend solely on

L= . . o ibrati =213 i
pling (in optical rotating-wave approximatipneads as the number of vibrational quanta=a'a and read(in nor-
mally ordered form as

©)

H (t)=1a0e Atk e, (1)
ey D
wherek=k;—k, is the difference wave vector of the two fi(n;n)=e IZO MET (6)
laser beams and is the operator of the atomic center-of-
mass position. For small relative detunings from the fre-From Egs.(5) and (6) it is seen, that for the decreasing
quencywy; of the dipole transition |@,;— w |[/w,1<1), the  Lamb-Dicke parameter only the coupling witt=0 sur-
effective two-photon Rabi frequendy is given by vives. Therefore, by varying the geometry of the laser-beam
* propagation one can vary the Lamb-Dicke parameters in or-

_ } Q.05 ) der to change the Hamiltonian from a coupling of only one,
2 wy— .’ two, or three vibrational modes.

) ) ) ) ] It is seen from Eqgs(4) and(5) that the Hamiltonian de-
with Q=2dE;/# (i=1,2) being the single-photon Rabi fre- gcrihes a motional dynamics with the following basic effects.
quencies of the dipole transition of dipole momelntdriven  Fijrst, there appear combinations of different powers of the
by the electric-field amipllf[udeﬁl andE; of the two lasers.  mqtional operatord; , a7 . Interactions of this type represent
The phase of2=|(e'? is determined by the difference yhe quantum-mechanical counterpart of wave-mixing effects

szfsitgglfeh?nt\gf (I::isr‘?]:ar?tildg:faltitﬁﬂgszczr:\db(;a\?vrﬁteer?ei:]d in nonlinear optics. Second, via the functiohgn; ») the
terr}rlws of creationpand annihilgtion operators of vibrationalCouplings depend in a nonlinear manner on the excitations of
P the modes. This results from the interference of the atomic

i i oA At
quanta by using the relatiomsx; = 7;(a+a;), wherek; are  .onter of.magswave functions and the beat node of the
the projections of the wave-vector difference on the principaj gq, waves, which is a typical effect of quantized atomic

axesx; of the trap andy; are the Lamb-Dicke parameters of |, iion.
the vibration in these directions. After disentangling the re-
sulting exponential operator function, the Hamiltoniél)

may be expanded in a power series as 11l. NONLINEAR PHASE-SPACE PARTITIONING

To get some insight into these effects, we first consider

-~ . 2 2 2
Hi(t) = 3 aQe'Ate™ (7F 72t 73)2 the one-dimensional dynamics, where only the motion in
o mem e nent s 2l X1 _direction is affected by the Iaserszz(z 73= 0). T_his_ re-
SO (i71) (im2)"" " (im3) quires a geometry of laser propagations with vanishing pro-
T m!m’Inin"t1"! jections of the difference wave-vectkron the axex, and

X3. In this case the Hamiltonian simplifies as
xalmajrallar ay’al +H.c. &) . R
Hine= 3 QL (R ) (i p@)*+H.c., @)
This interaction includes, via the mode functidog Eq.(1)]
of the laser waves, a laser-assisted coupling of the three mavhere we assumed a laser detuningAet kv, (k=0) and

tional degrees of freedonx{,x,,X3). Since the wave-vector we have omitted the indices of thg direction. Interactions
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of this type may be considered as nonlinear mode couplings
of one (weakly excitedl quantized mode withistrongly ex-
cited classical modes. Such approximations are frequently
used in quantum optics. Experiments of the type proposec
here would allow one to realize these couplings almost per-
fectly and to study the additioné&xcitation-dependenton-
linearities.

For example, let us consider the one-quantum resonanc
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(A=v,) in more detail. In this case the structure of the uni-
tary time-evolution operator obtained from the Hamiltonian
(7) shows some formal resemblance to a nonlinearly modi-
fied coherent “displacement” operatf21],
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For small values of the Lamb-Dicke parametergl, ac-

cording to Eq.(6) the operator(8) may be replaced by the FIG. 2. Time evolution of a coherent state that is initially placed

usual displacement operatbi( — nQ*t/2). on the boundary between two phase-space zones with opposite dis-
The nonlinear dependence of the “displacement” operaplacement directionéchosen along the real axisThe dimension-

tor (8) on the mean number of vibrational quanta leads tdess times#|€Q|t are given by 0(a), 2.5 (b), 5 (c), and 15(d);

effects of a new type. For a first insight we may replace then=0.25. The contours represent tigefunctions of the motional

number operator by its eigenvalue. We arrive at thequantum states.

c-number functionf ;(n; 77)=(n|?1(ﬁ; 7)|n), which reads as

-5 0 10 15

5
Refx)

strength of displacement becomes negligible. The result is a
squeezing of each substate onto the corresponding circle par-
titioning the phase space.

This effect can be used to generate quantum states exhib-

. (K) . . . iting strong amplitude squeezing. Let us consider the nonlin-
W'th Ln”(x) belng_Laguer.re polynomlgls. To consider the.ear displacement of a coherent state that is initially located
action of the ”Or?"”ea' displacement in phase space, .'t Within a single phase-space zone. As expected, the state is
?d(;/antagel;ous tottl_ntrodLE:|e ﬁ(zrmmTpr:e» phasE_-spaclzce al‘pph- displaced in a well-defined direction in phase space until it is
ude a Dby seting n=ja|". e resuling function squeezed onto the next circle separating two zones. The re-

f1(|a|% ) has zeros and changes its sign for certain valueg i consists in a strongly amplitude-squeezed $@2@ewith
of |al. Consequently, the direction of the displacement can b% nonvanishing coherent amplitude as shown in Fig. 3. It is

reversed, dependmg_on the amplitude of th_e quantum state {fj, ., noting that in its further evolution this quantum state
phase space. That is, the phase space is effectively party,

. ; . " . . oes not approach a Fock state. The reason consists in the
tioned in zones. The action of the displacement in adjacent

zones differs in the fact that the directions of displacements
are opposite to each other, along an axis which is controlle
by the phase difference of the lasers. These phase-spa
zones are separated by the circles on which the couplin = Q(q)
function f,(]a|?; %) changes its sign. This nonlinear parti-

tioning of the phase space leads to striking consequence ©-03
with respect to the evolution of the quantum state.

Let us consider the evolution of a coherent state that it
initially located on the boundary between two such phase
space zones. Inside the corresponding circle the couplin
f1(|a|?; n) is positive and outside it is negative. Due to this
fact the nonlinear “displacement” operator tends to split the
coherent state as shown in Fig. 2. For rather short times th
state can exhibit a significant reduction of phase fluctuations
In the further course of time the states are split into well
separated substates. This leads to a coherent superposition ofF|G. 3. Q function of a strongly amplitude-squeezed state with
two quantum states, accompanied by quantum-interferenq@n?)/(ny=0.006. This state is reached from an initially coherent
effects. The displacement of each substate is limited by thetate @¢=—9) in a dimensionless time)|Q|t~10, for =0.25.
boundaries between the phase-space zones, where thke displacement acts along the real axis.

e 7;2/2

n+1

fi(n; )= LD (5?), 9)
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tions. For example, a detuning ofA=2v;—v,
®) (s1=2, s,= —1) reduces the interaction Hamiltonié) to

Hin=— 5 finimQfo(Ae; n)atalfa(Rzmo) +He., (10

z . z representing a nonlinear generalization of the parametric in-
T teraction. For small Lamb-Dicke parametetg, ,<1, this
-6 -8 interaction simplifies to
-6 -4 -2 0 2 4 3 -6 -4 -2 0 2 4 6
~ i o
6 Hin=—5 hnp2p,Qa3al+H.c., (11)
4
2 which is the standard form of the parametric coupling. Be-
o yond the Lamb-Dicke regime the interaction includes nonlin-
= earities of the type considered above, which now appear in
4 both motional degrees of freedom. Consequently, the nonlin-
» ear phase-space partitioning effects considered above will be
of relevance for each degree of freedom involved in the
Tt e ° e o2 s Raman-induced motional dynamics.
FIG. 4. Time evolution of theQ function for k=0 (Kerr-type IV. SUMMARY AND CONCLUSIONS
effecty and »=0.25. The dimensionless tim¢Q|t are (a) O, (b)
173.5,(c) 346.6, andd) 500. In conclusion, we have shown that a Raman-type laser

excitation allows one to induce nonlinear interactions of mo-
tional degrees of freedom of a trapped atom, which are

. - . . closely related to phenomena of nonlinear optics that do not
fact that, in general, the transitions between nelghbormg:hange the electronic quantum states of the medium. The

phase-space zones are very weak, but not suppressed COftiper of coupled modes can be easily controlled by the
pletely. This leads to continued deformations of the phasej,ger.heam geometry. Standard effects can be realized, in-
space distributions of the motional quantum state. cluding coherent displacements, Kerr nonlinearities, and
The one-dimensional HamiltoniafY) allows us to con-  parametric mode couplings. In the laser-assisted motional
sider other types of phenomena known from nonlinear opgynamics additional nonlinearities emerge, which are caused
tics. Choosing= 0, the corresponding dynamics is related topy the interference between the light waves and the wave
the Kerr nonlinearityf 23]. The standard Kerr nonlinearity is function representing the atomic center-of-mass motion.
reproduced by expanding the Hamiltonian upsth In the An important consequence of these nonlinearities consists
more general case of larger Lamb-Dicke parameters the noma a partitioning of the motional phase space, which is caused
linear functionfy(n; ) =(n|fy(N;7)|n) plays a similar role by an oscillatory behavior of the.motional in.teract?ons as a
as the functiorf(n; 7) for the casek=1. Its oscillations as ~function of the phase-space amplitude. In neighboring phase-
a function ofn again lead to the phase-space partitioningSPace zones the actions of the time evolution appear to be
effect. This is illustrated in Fig. 4 for an initially coherent Significantly different from each other. For example, in two
state situated at a circle in phase space whigta; 7)=0. adjacent zones a nonlinearly modified “displacement” op-

One clearly observes a rotation of the state which is due ggrator acts in. c_Jpposite _dire_ctions. Consequently, a quantum
2 3 n e state whose initial location is on the boundary between two
the terme < of fo(Nn; ). Moreover, the state is significantly

R : , zones will be split in two substates, which eventually gives
deformed: inside and outside the circle the state undergogs,q tq quantum interferences. Moreover, the partitioning al-

p_hase shifts into _opposite directions, reflecting the change s one to generate strongly amplitude-squeezed motional
sign of the coupling. states. Eventually, in the case of a generalized Kerr nonlin-
For k=2 the Hamiltonian(7) represents the nonlinear egrity the phase-space partitioning may lead to pronounced
generalization of a classically driven parametric interactiondeformations of the initial state, which are caused by oppo-
For »<1 the time-evolution operator agrees with thesite phase shifts appearing in adjacent phase-space zones.
squeeze operator. This limiting case has been realized ex- The phase-space partitioning, although illustrated in this
perimentally[7]. In the more general case of larger Lamb- paper for the motional dynamics in one dimension, is a uni-
Dicke parameters, a rather complex dynamics appears. Theersal feature of the interference between the Raman beat
interpretation of all of its features needs some further renode and the wave function describing the center-of-mass
search. motion of the atom. When two or three dimensions are in-
For studying a quantized version of the parametric intervolved in the Raman-induced dynamics, the partitioning ef-
action, the coupling of two degrees of freedom is neededfects appear in the phase space of each motional degree of
Consider a laser-beam geometry with the projection of thdreedom. Consequently, the coupling between different mo-
difference wave-vectok on thex; axis being zero, so that tional modes will be strongly influenced by the interplay of
73=0. The dynamics couples the motionxpandx, direc-  these nonlinear effects. In general the dynamics will sensi-
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tively depend on the initial conditions. Besides the feasibilityscheme for inducing a parameteric interaction of motional
of realizing phenomena well known from nonlinear optics indegrees of freedom of a trapped ion.
the motion of a trapped atom, this opens novel possibilities
for studying nonlinear phenomena in a well-defined quantum ACKNOWLEDGMENTS
system.
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