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Quantum-mechanical counterpart of nonlinear optics

S. Wallentowitz and W. Vogel
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Raman-type laser excitation of a trapped atom allows one to realize the quantum-mechanical counterpart of
phenomena of nonlinear optics, such as Kerr-type nonlinearities, parametric amplification, and multimode
mixing. Additionally, huge nonlinearities emerge from the interference of the atomic wave function with the
laser waves. They lead to a partitioning of the phase space accompanied by a significantly different action of
the time evolution in neighboring phase-space zones. For example, a nonlinearly modified coherent ‘‘displace-
ment’’ of the motional quantum state may induce strong amplitude squeezing and quantum interferences.
@S1050-2947~97!10406-1#

PACS number~s!: 42.50.Vk, 03.65.2w, 42.65.2k, 32.80.Lg
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I. INTRODUCTION

A single atom trapped in a harmonic potential turns ou
be a very well-defined object for studying fundamental p
nomena of quantum dynamics. Since the first realization
such a system in an ion trap by Neuhauseret al. @1#, the
subject has stimulated much experimental and theore
work. As has been shown by Blockley, Walls, and Risk
@2#, the laser-assisted coupling between the internal and
ternal degrees of freedom of a trapped atom can be
scribed, under appropriate conditions, by a Jayn
Cummings model. This allows one to study phenomena
are familiar with from cavity QED, such as the micromas
dynamics@3#, in the vibronic motion of a trapped atom@4#.
Eventually, several proposals have been published for
paring nonclassical states, such as squeezed states@5# and
motional number states@6#, and successful experiments ha
been performed@7,8#.

The dynamics of a trapped atom, however, not only
lows one to reproduce effects of cavity QED in the quantiz
motion. When the spatial extension of the atomic wave fu
tion representing the center-of-mass motion is no lon
small compared with the driving laser wavelength, nonlin
effects emerge that have no counterpart in standard nonli
optics. It has been shown by Vogel and de Matos Filho t
the atom may undergo a vibronic coupling, which is ve
well described by a nonlinear, multiquantum Jayn
Cummings model@9#. Meanwhile this prediction has bee
confirmed experimentally@7# and modifications due to mi
cromotion have been studied@10#. The nonlinearities in this
model allow us to prepare exciting motional quantum sta
such as quantum superpositions of both coherent@11# and
squeezed states@12#, nonlinear coherent states@13,14#, pair
coherent states@15# and pair cat states@16#. Measurement
techniques for the full diagnostics of motional quantu
states have been proposed@17# and realized@18#.

These outstanding feasibilities render it possible to ra
new types of questions. The nonlinear Jaynes-Cumm
model has introduced new kinds of nonlinearities that s
stantially modify phenomena we are familiar with from no
linear optics, such as multiphoton absorption and emiss
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In nonlinear optics, however, other interactions are kno
which leave the electronic transitions of the nonlinear m
dium almost unchanged. Examples are the Kerr nonlinea
parametric interactions, and several types of nonlinear w
mixings. The question appears as to whether it is possibl
realize such phenomena in the motional dynamics of a sin
atom, where the trap potential replaces a cavity used in n
linear optics.

In the present contribution we propose Raman-type e
tations for inducing various kinds of nonlinear interactions
the quantized motion of a trapped atom. We consider
quantum-mechanical counterpart of nonlinear optical effe
that do not influence the electronic degrees of freedom of
atomic medium. We show that even a single degree of fr
dom of the atomic center-of-mass motion can be driven i
strongly nonlinear manner. Surprising phenomena are cau
by the interference effects of the atomic wave function w
the driving light waves. They induce a nonlinear partitioni
of the phase space, the action of the time evolution be
different in neighboring phase-space zones. This partition
may be used for the generation of nonclassical effects, s
as amplitude squeezing and quantum interferences.

The paper is organized as follows. In Sec. II the ba
model for the Raman-induced motional dynamics is int
duced and the effective Hamiltonian for the nonlinear m
tional interactions is derived. Section III is devoted to t
nonlinear phase-space partitioning together with the illus
tion of its effects in simple examples of motional dynamic
A summary and some conclusions are given in Sec. IV.

II. RAMAN-INDUCED MOTIONAL DYNAMICS

Let us consider an atom harmonically bound in a trap.
general, the atom oscillates in the three principal axes of
trap with frequenciesn i ( i51,2,3). The trapped atom i
driven in a Raman configuration with two classical las
fields of frequenciesvL and vL1D (D!vL), which are
off-resonant with respect to the electronic transitions,
Fig. 1. During the interaction with the two lasers, the ato
stays in its electronic ground state. However, in the resol
sideband regime and for appropriately chosen laser-beam
4438 © 1997 The American Physical Society
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55 4439QUANTUM-MECHANICAL COUNTERPART OF NONLINEAR . . .
ometry and laser detuningD, it is possible to affect the mo
tional quantum state of the atom in a well-controlled mann

The effective interaction Hamiltonian for the Raman co
pling ~in optical rotating-wave approximation! reads as

ĤL~ t !5 1
2\Ve2 i [Dt2k• r̂ ]1H.c., ~1!

wherek5k12k2 is the difference wave vector of the tw
laser beams andr̂ is the operator of the atomic center-o
mass position. For small relative detunings from the f
quencyv21 of the dipole transition (uv212vLu/v21!1), the
effective two-photon Rabi frequencyV is given by

V5
1

2

V1V2*

v212vL
, ~2!

with V i52dEi /\ ( i51,2) being the single-photon Rabi fre
quencies of the dipole transition of dipole momentd, driven
by the electric-field amplitudesE1 andE2 of the two lasers.
The phase ofV5uVueiw is determined by the differenc
phase of the two laser fieldsw5w12w2 and can be held
very stable in experiments. Equation~1! can be written in
terms of creation and annihilation operators of vibratio
quanta by using the relationski x̂i5h i(âi1âi

†), whereki are
the projections of the wave-vector difference on the princi
axesxi of the trap andh i are the Lamb-Dicke parameters
the vibration in these directions. After disentangling the
sulting exponential operator function, the Hamiltonian~1!
may be expanded in a power series as

ĤL~ t !5 1
2 \Ve2 iDte2~h1

2
1h2

2
1h3

2
!/2

3 (
m,m8

(
n,n8

(
l ,l 8

~ ih1!
m1m8~ ih2!

n1n8~ ih3!
l1 l 8

m!m8!n!n8! l ! l 8!

3â1
†mâ2

†nâ3
†l â1

m8â2
n8â3

l 81H.c. ~3!

This interaction includes, via the mode functions@cf. Eq.~1!#
of the laser waves, a laser-assisted coupling of the three
tional degrees of freedom (x1 ,x2 ,x3). Since the wave-vecto

FIG. 1. Theu1&↔u2& transition of a trapped atom is driven b
two off-resonant laser fieldsE1 and E2 of frequenciesvL and
vL1D, respectively. Other electronic states~broken lines! are far
off-resonant. The beat frequencyD can be tuned on resonance wi
multiples of vibrational frequencies.
r.
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-
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differencek is determined by the laser-beam geometry,
coupling of the motional degrees of freedom can be desig
to include one, two, or three directions.

To consider these couplings in more detail, we assu
that the vibrational frequencies are well resolved by the R
man excitation, so that we may introduce a vibration
rotating-wave approximation. Choosing the laser beat
quency to be a multiple of the three vibrational frequenci
D5s1n11s2n2 (s1,250,61,62, . . . ), oneobtains a cou-
pling of all vibrational modes@19#. In this case the interac
tion Hamiltonian~in the interaction picture! is of the form
@20#

Ĥ int5
1
2 \V (

n52`

`

ĝn2s1
~ â1

† ,â1 ;h1!ĝn2s2
~ â2

† ,â2 ;h2!

3ĝn~ â3
† ,â3 ;h3!1H.c. ~4!

and the operator-valued functionsĝk(â
†,â;h) are given by

ĝk~ â
†,â;h!5H ~ ihâ†! uku f̂ uku~ n̂;h! if k>0

f̂ uku~ n̂;h!~ ihâ! uku if k,0 .
~5!

The Hermitian operator functionsf̂ k(n̂;h) depend solely on
the number of vibrational quantan̂5â†â and read~in nor-
mally ordered form! as

f̂ k~ n̂;h!5e2h2/2(
l50

`
~21! lh2l

l ! ~ l1k!!
â†l âl . ~6!

From Eqs.~5! and ~6! it is seen, that for the decreasin
Lamb-Dicke parameter only the coupling withk50 sur-
vives. Therefore, by varying the geometry of the laser-be
propagation one can vary the Lamb-Dicke parameters in
der to change the Hamiltonian from a coupling of only on
two, or three vibrational modes.

It is seen from Eqs.~4! and ~5! that the Hamiltonian de-
scribes a motional dynamics with the following basic effec
First, there appear combinations of different powers of
motional operatorsâi , âi

† . Interactions of this type represen
the quantum-mechanical counterpart of wave-mixing effe
in nonlinear optics. Second, via the functionsf̂ k(n̂;h) the
couplings depend in a nonlinear manner on the excitation
the modes. This results from the interference of the ato
~center-of-mass! wave functions and the beat node of th
laser waves, which is a typical effect of quantized atom
motion.

III. NONLINEAR PHASE-SPACE PARTITIONING

To get some insight into these effects, we first consi
the one-dimensional dynamics, where only the motion
x1 direction is affected by the lasers (h25h350). This re-
quires a geometry of laser propagations with vanishing p
jections of the difference wave-vectork on the axesx2 and
x3 . In this case the Hamiltonian simplifies as

Ĥ int5
1
2 \V f̂ k~ n̂;h!~ ihâ!k1H.c., ~7!

where we assumed a laser detuning ofD5kn1 (k>0) and
we have omitted the indices of thex1 direction. Interactions
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4440 55S. WALLENTOWITZ AND W. VOGEL
of this type may be considered as nonlinear mode coupl
of one ~weakly excited! quantized mode with~strongly ex-
cited! classical modes. Such approximations are freque
used in quantum optics. Experiments of the type propo
here would allow one to realize these couplings almost p
fectly and to study the additional~excitation-dependent! non-
linearities.

For example, let us consider the one-quantum resona
(D5n1) in more detail. In this case the structure of the u
tary time-evolution operator obtained from the Hamiltoni
~7! shows some formal resemblance to a nonlinearly mo
fied coherent ‘‘displacement’’ operator@21#,

Û int~ t !5D̂F2
hV* t
2

f̂ 1~ n̂;h!G
5expF2

hV* t
2

â† f̂ 1~ n̂;h!1
hVt

2
f̂ 1
†~ n̂;h!âG .

~8!

For small values of the Lamb-Dicke parameter,h!1, ac-
cording to Eq.~6! the operator~8! may be replaced by the
usual displacement operatorD̂(2hV* t/2).

The nonlinear dependence of the ‘‘displacement’’ ope
tor ~8! on the mean number of vibrational quanta leads
effects of a new type. For a first insight we may replace
number operator by its eigenvalue. We arrive at
c-number functionf 1(n;h)5^nu f̂ 1(n̂;h)un&, which reads as

f 1~n;h!5
e2h2/2

n11
Ln

~1!~h2!, ~9!

with Ln
(k)(x) being Laguerre polynomials. To consider th

action of the nonlinear displacement in phase space,
advantageous to introduce the~complex! phase-space ampli
tude a by setting n5uau2. The resulting function
f 1(uau2;h) has zeros and changes its sign for certain val
of uau. Consequently, the direction of the displacement can
reversed, depending on the amplitude of the quantum sta
phase space. That is, the phase space is effectively p
tioned in zones. The action of the displacement in adjac
zones differs in the fact that the directions of displaceme
are opposite to each other, along an axis which is contro
by the phase difference of the lasers. These phase-s
zones are separated by the circles on which the coup
function f 1(uau2;h) changes its sign. This nonlinear par
tioning of the phase space leads to striking conseque
with respect to the evolution of the quantum state.

Let us consider the evolution of a coherent state tha
initially located on the boundary between two such pha
space zones. Inside the corresponding circle the coup
f 1(uau2;h) is positive and outside it is negative. Due to th
fact the nonlinear ‘‘displacement’’ operator tends to split t
coherent state as shown in Fig. 2. For rather short times
state can exhibit a significant reduction of phase fluctuatio
In the further course of time the states are split into w
separated substates. This leads to a coherent superposit
two quantum states, accompanied by quantum-interfere
effects. The displacement of each substate is limited by
boundaries between the phase-space zones, where
s
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strength of displacement becomes negligible. The result
squeezing of each substate onto the corresponding circle
titioning the phase space.

This effect can be used to generate quantum states ex
iting strong amplitude squeezing. Let us consider the non
ear displacement of a coherent state that is initially loca
within a single phase-space zone. As expected, the stat
displaced in a well-defined direction in phase space until it
squeezed onto the next circle separating two zones. The
sult consists in a strongly amplitude-squeezed state@22# with
a nonvanishing coherent amplitude as shown in Fig. 3. It
worth noting that in its further evolution this quantum sta
does not approach a Fock state. The reason consists in

FIG. 2. Time evolution of a coherent state that is initially place
on the boundary between two phase-space zones with opposite
placement directions~chosen along the real axis!. The dimension-
less timeshuVut are given by 0~a!, 2.5 ~b!, 5 ~c!, and 15~d!;
h50.25. The contours represent theQ functions of the motional
quantum states.

FIG. 3. Q function of a strongly amplitude-squeezed state wi
^Dn̂2&/^n̂&50.006. This state is reached from an initially cohere
state (a529) in a dimensionless timehuVut'10, for h50.25.
The displacement acts along the real axis.
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55 4441QUANTUM-MECHANICAL COUNTERPART OF NONLINEAR . . .
fact that, in general, the transitions between neighbor
phase-space zones are very weak, but not suppressed
pletely. This leads to continued deformations of the pha
space distributions of the motional quantum state.

The one-dimensional Hamiltonian~7! allows us to con-
sider other types of phenomena known from nonlinear
tics. Choosingk50, the corresponding dynamics is related
the Kerr nonlinearity@23#. The standard Kerr nonlinearity i
reproduced by expanding the Hamiltonian up toh4. In the
more general case of larger Lamb-Dicke parameters the
linear functionf 0(n;h)5^nu f̂ 0(n̂;h)un& plays a similar role
as the functionf 1(n;h) for the casek51. Its oscillations as
a function of n again lead to the phase-space partition
effect. This is illustrated in Fig. 4 for an initially coheren
state situated at a circle in phase space wheref 0(n;h)50.
One clearly observes a rotation of the state which is due
the term}h2 of f̂ 0(n̂;h). Moreover, the state is significantl
deformed: inside and outside the circle the state underg
phase shifts into opposite directions, reflecting the chang
sign of the coupling.

For k52 the Hamiltonian~7! represents the nonlinea
generalization of a classically driven parametric interacti
For h!1 the time-evolution operator agrees with t
squeeze operator. This limiting case has been realized
perimentally@7#. In the more general case of larger Lam
Dicke parameters, a rather complex dynamics appears.
interpretation of all of its features needs some further
search.

For studying a quantized version of the parametric int
action, the coupling of two degrees of freedom is need
Consider a laser-beam geometry with the projection of
difference wave-vectork on thex3 axis being zero, so tha
h350. The dynamics couples the motion inx1 andx2 direc-

FIG. 4. Time evolution of theQ function for k50 ~Kerr-type
effects! andh50.25. The dimensionless timesuVut are ~a! 0, ~b!
173.5,~c! 346.6, and~d! 500.
g
om-
e-

-

n-

to

es
in

.

x-

he
-

-
d.
e

tions. For example, a detuning ofD52n12n2
(s152, s2521) reduces the interaction Hamiltonian~4! to

Ĥ int52
i

2
\h1

2h2V f̂ 2~ n̂1 ;h1!â1
2â2

† f̂ 1~ n̂2 ;h2!1H.c., ~10!

representing a nonlinear generalization of the parametric
teraction. For small Lamb-Dicke parameters,h1,2!1, this
interaction simplifies to

Ĥ int52
i

2
\h1

2h2Vâ1
2â2

†1H.c., ~11!

which is the standard form of the parametric coupling. B
yond the Lamb-Dicke regime the interaction includes nonl
earities of the type considered above, which now appea
both motional degrees of freedom. Consequently, the non
ear phase-space partitioning effects considered above wi
of relevance for each degree of freedom involved in
Raman-induced motional dynamics.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have shown that a Raman-type la
excitation allows one to induce nonlinear interactions of m
tional degrees of freedom of a trapped atom, which
closely related to phenomena of nonlinear optics that do
change the electronic quantum states of the medium.
number of coupled modes can be easily controlled by
laser-beam geometry. Standard effects can be realized
cluding coherent displacements, Kerr nonlinearities, a
parametric mode couplings. In the laser-assisted motio
dynamics additional nonlinearities emerge, which are cau
by the interference between the light waves and the w
function representing the atomic center-of-mass motion.

An important consequence of these nonlinearities cons
in a partitioning of the motional phase space, which is cau
by an oscillatory behavior of the motional interactions as
function of the phase-space amplitude. In neighboring pha
space zones the actions of the time evolution appear to
significantly different from each other. For example, in tw
adjacent zones a nonlinearly modified ‘‘displacement’’ o
erator acts in opposite directions. Consequently, a quan
state whose initial location is on the boundary between t
zones will be split in two substates, which eventually giv
rise to quantum interferences. Moreover, the partitioning
lows one to generate strongly amplitude-squeezed motio
states. Eventually, in the case of a generalized Kerr non
earity the phase-space partitioning may lead to pronoun
deformations of the initial state, which are caused by op
site phase shifts appearing in adjacent phase-space zon

The phase-space partitioning, although illustrated in t
paper for the motional dynamics in one dimension, is a u
versal feature of the interference between the Raman
node and the wave function describing the center-of-m
motion of the atom. When two or three dimensions are
volved in the Raman-induced dynamics, the partitioning
fects appear in the phase space of each motional degre
freedom. Consequently, the coupling between different m
tional modes will be strongly influenced by the interplay
these nonlinear effects. In general the dynamics will sen
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4442 55S. WALLENTOWITZ AND W. VOGEL
tively depend on the initial conditions. Besides the feasibi
of realizing phenomena well known from nonlinear optics
the motion of a trapped atom, this opens novel possibili
for studying nonlinear phenomena in a well-defined quant
system.

Note added in proof:Recently we became aware of th
fact that G. S. Agarwal and J. Banerji@Phys. Rev. A~this
issue! 55, 4007 ~1997!# have proposed a Raman excitatio
e

tt.
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scheme for inducing a parameteric interaction of motio
degrees of freedom of a trapped ion.
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