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Population dynamics and phase effects in periodic level crossings
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We present an analytic study of the population dynamics of a two-state system interacting with an external
field and subjected to periodic level crossings. We apply an evolution matrix approach to calculate the excited-
state population at the crossin@le nodesand at the antinodes. The results are expressed in terms of only two
parameters: the transition probabiliyfor a quarter period from a crossing to an antinode, and the transition
probability P for a half period between two successive crossings. We find that the values of the excited-state
population at the antinodes can form glolgdoss structures. We show that these structures and the population
dynamics as a whole are very sensitive to the initial phasé the frequency-modulated field, particularly in
the limits ¢=0 (cosine modulationand ¢ = 7/2 (sine modulation We calculate the parametgosandP by
using two analytic approaches: one based on the original Landau-Zener model, and the other based on the finite
Landau-Zener model. Both approaches unexpectedly lead to the same results. The notion of the global struc-
tures and the relevant parametrization in termspoénd P allow us to find various distinctive cases of
population dynamics, such as population swapping, completely periodic evolution, superpositional trapping,
and stepwise evolutionS1050-294@7)06806-9

PACS numbegps): 32.80.Bx, 33.80.Be, 42.50p

[. INTRODUCTION simple approximate analytic models in the limit of strong
dissipation[11,13. In this latter case, a simplification arises
The problem of a two-state system coupled to an externdfom the loss of coherence between the crossings.
time-dependent field can be met in many areas in physics, In this paper, we study analytically the population dynam-
such as magnetic resonangk-3|, laser-atom interactions ics of a two-state system subjected to periodic level crossings
[4], atomic collisiong 5], solid-state physicf5], in chemis- by an external field in the absence of dissipation, that is, in
try [7] and even in biology{8]. Particular attention in the the fully coherent limit. To be specific we will use the quan-
literature has been paid to the problems of a level crossintum optical terminology appropriate for a two-state atom
[1], noncrossing[2], adiabatic evolution and nonadiabatic coupled to frequency-modulated light. We developeanlu-
transitions. It is, for instance, well known that in the adia-tion matrix approacho periodic two-state systems that is a
batic regime, a level crossing leads to a large transition probdseful alternative to the standard Floquet theory. The evolu-
ability while the absence of a crossing leads to no transitiongion matrix approach enables us to identifyoss(or global)
Less obvious is the population dynamics of a two-state sysstructuresin the time evolution of the system. These struc-
tem whose interaction with an external time-dependent fieldures are formed from the values of the excited-state popula-
leads to repeated and periodic level crossings that produde®n at the antinodes, and result in features of the evolution
multiple interference effects. on a short time scal@substructurgsbeing repeated at regular
Periodic level crossings may arise in a number of probdintervals on a long time scale. Our results generalize and
lems, e.g., two-level atoms interacting with frequency-contain as particular cases some known results, such as the
modulated laser light, transitions in a double-well potentialperturbative limit, and the adiabatic solution. We derive the
due to an external harmonic field, atoms traveling in periodicconditions for new, exotic, types of time evolution and
structures, ions in traps, and mode dynamics in optical cavielarify the conditions for some cases discussed earlier. Fur-
ties. The problem has been a subject of considerable interedtermore, we establish the relationship between the periodic
in recent years, particularly in studies on transitions in gproblem and the Landau-Zener model. We also demonstrate
double-well potential in solid-state physit®—11], in quan-  that the global structures and the population dynamics as a
tum transport analysigl2] and in optical physic$13,14.  whole are very sensitive to thenitial phase ¢ of the
Among the results, we will mention an interesting effectfrequency-modulated field, particularly in the cases 0
called coherent destruction of tunneling double-well po- and = 7/2.
tential studies[9,10], dynamic localizationin transport This paper is organized as follows. In Sec. Il, we intro-
analysis[12], andpopulation trappingin laser-atom physics duce the model and give the approximate solutions in two
[14]. It consists of the suppression of transitions and take$imiting cases: that of small coupling and in the adiabatic
place when the ratio between the modulation amplitdde limit. In Sec. Ill, we present the evolution matrix approach,
and the modulation frequenay is equal to a zero of the which provides the values of the excited-state population at
Bessel functionly(z) with the proviso that the modulation the crossinggthe nodes and at the antinodes in terms of
frequencyw is much larger than the coupling. Attention  only two parameters: the transition probabilfiyfor a quar-
has also been paid to the effect of dissipation on the populder period from a crossing to an antinode, and the transition
tion dynamics by using numerical methokl,13,14 and  probability P for a half period between two successive cross-
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ings. This leads to a description of the global structures men-
tioned above. In Sec. IV, we calculate the paramepeasnd (a)

P by using two approaches based on the original Landau- /\
Zener (LZ) model [1] and the finite Landau-Zener model
[15]. In Sec. V, we apply the results to find various types of
population dynamics, including population swapping, com-
pletely periodic evolution, superpositional trapping, stepwise
evolution, and others. Finally, in Sec. VI, we present the
conclusions.

A
VARV

Q(r)

Il. DEFINITION OF THE PROBLEM
AND LIMITING CASES ' '

TN N
VARV

Q(>f)

A. Definition of the problem

The time evolution of the probability amplitudes
c(t)=(cq(t),c,(t))" of a coherently driven nondissipative
two-level system is governed by the Scflimger equation,
which in the interaction representation has the form

1 .
0 E\Q{(t)ele(t)

d
i—c(t)= c(1), 1 ' — '
gt @ 4 90¢ 1 2 3 4 5

5Q(1)ePM 0
2 ot (units of )

where the rotating-wave approximatidiRWA) has been FIG. 1. (@) The model2) studied in this paper. The laser field is

made andD(t)zng(t’)dt’. We assume that théon-
resonanceRabi frequency)(t) and the detuning\(t) are
given by

turned on at timey= — ¢/ w and kept constant while the detuning
has a sinusoidal behavior, leading to repeated and periodic cross-
ings of the resonancéb) The equivalent problem of a coupling

turned on aty=0 and detuning\(t) =A cost— ).
0 0, owt<—9¢ .
t)=
(t) 0, ot=—o, 2

A(t)=A coq wt), | , . ; . , . . .

that is, the laser field is turned on at time= — ¢/ @ and kept
constant while the detuning has a sinusoidal behavior, thus
leading to repeated and periodic crossings of the resonance L
as shown in Fig. 1. The problem is equivalent to and leads to
the same results as the model with a coupling turned on at
to=0 and detuningA(t)=A cost—¢), which is also
shown in Fig. 1, but the definitio2) leads to simpler deri-
vations. We suppose that the system is initially in its ground
state,

Adiabatic B

Ci(—elw)=1, cy(—¢/w)=0, ©)

and we are interested in the excited-state population at time
t, P (wt)=]|c,y(t)|% The problem is characterized by three
parameters with the dimension of frequerQy A, and w.
Insofar as the populations are dimensionless, they must de-
pend on the ratios of these frequencies. Among the three
possible ratios only two are independent and we choose these
to be A/w and )/w. Furthermore, we will use the dimen- 5 5 gopemaic representation of the region of validity of the

glonless timewt in the evolution matrices and the popula- ¢o.onq rotating-wave approximatiofsmall coupling, /w<1)
tions throughout the paper. In other words, we choose thghose houndaries are shown by the dashed line and which is dis-
modulation frequency to determine the frequency and time ¢yssed in Sec. 11B, and the region of validity of theiabatic
scales of our problem. Simple solutions exist in two particu-spjution[ (Q/w)2>A/w] presented in Sec. Il C, whose boundaries
lar extreme cases: that sfall coupling({2/w<1) and in  are depicted by the solid curve. Note that the regions shown
the adiabatic limit(Q2?>Aw). These cases are schematically[Q/w<1 and Q/w)?>Alw] are larger than the actual regions
shown in Fig. 2 and we will consider them below. [Q/w<1 and Q/w)?>>Alw ].

Alo
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B. Small coupling (Q/w<1)

Ll Q
This case has been well studied and understood in the |a§t¢(wt)~ sir? ZJO(A/L’))WH ¢)|+0(Q/w)

few years by means of the Floquet formali$fy11,12,14.
We summarize it here for the sake of completeness and in
order to emphasize later the differences between its features (Q<w). (5)
and those in the other regimes. Since(t)
=[LA(t")dt' = (A/w) sin(wt), we can expand the exponents
in Eg. (1) in terms of Bessel functions by using the relation This result is valid for any modulation amplitude Equa-
[16] tion (5) suggests that i/ w is equal to one of the zeroes of
. Jo(A/w) [denoted usually by, (k=1,2,3,...)], then the
ezsm— 3 ginvg (7)) ﬁxcited—state population is approximately zero. This effect
o as been calledoherent destruction of tunnelirig studies
on tunneling in a double-well potentif®], dynamic local-
Thus we obtain ization in quantum transport theorj12], and population
trappingin optical physicg14]. Moreover, we have to stress
that the phase doesnot affect substantially the population
evolution and, as Ed5) shows, it only shifts the time scale.
Evidently, this effect is strictly valid in the second RWA
When o>, only the nonoscillating term with=0 in the  only. ForA/w=]jq,, we can estimate the excited-state popu-
sum contributes significantly to the population evolution. Bylation by keeping the terms with odo==*=1,£3, ... in Eq.
neglecting all other terméwhich is equivalent to @econd (4) and neglecting those with evem. Then, since
rotating-wave approximation, one finds that the excited- J_,(2)=(—1)"J,(2), the sum in Eq.4) is purely imagi-

> e (Alw). @)

n=-—o

1 ) 1
_ iD() = _
2Qe 29

state population is given by nary. Equationgl) are easily solved and we find
P (wt)~ sir? 95) M[cos{Zerl)wt—cos{Zerl)(p] (Q<wandAlw=jgy). (6)
¢ Wm=0 2m+1 0k
|
Obviously, P (wt) is small due toQ)<w and it oscillates 02> Aw. (10)
between 0 and its maximum value, which is of order
0(Q%/w?). Note that forA/w# oy, the solution(5) oscil-  The adiabatic solution is, of course, well known. For the

lates between 0 and 1. WheWw= | is large, Eq.(6)  reader's convenience, it is given in Appendix A. Provided
should be a good approximation because, as the asymptotitise population is in the ground state at time the excited-

[16] state population at timein the adiabatic limit is
1 1
I(2)~2l(72) cos( 2= Smv— Zw) (v fixed,|z|—) P o) = - — A(DA(to)
@ ¢ 2 200(t)Qo(to)
Q()Q(t
shows, the zeros ak,,,(z) are close to the zeros d§(z) and - % €c0S2p,{ wt,wty), (11)
henceJom(jox) =0. Although rather simple, formul@) has o(){o(to)
not, apparently, appeared in the literature so far. where
C. Adiabatic limit (Q%>Aw) 1t o
The adiabatic evolution is realized when the system fol- Pad @lo, 1) = ELOQO(t ydt (12

lows one of the eigenstatdadiabatic statgsof the Hamil-

tonian. This takes place when the nonadiabatic coup}i{hg is the adiabatic phase acquired between titgesndt. It is

is much smaller than the eigenvalue splitt§@, (Appendix cle_ar from Eq.(l_l) that the populat_ion evolut_ion is charac-
) - terized by two time scales. There is a fast time scale deter-
A), i.e., |9 <Qg, where

mined by the last term that generates rapid oscillations. In

Q the Bloch vector representation of a two-state state system
tand = -+ (O=I=m), (8)  this is caused by the rapid precession of the Bloch vector
about a pseudomagnetic field vector. The slow time scale is

Qo= O+ AZ (9)  determined by the second term, which causes slow preces-

sion. In the Bloch vector picture, the pseudomagnetic field
The adiabatic condition in our problem is least well satisfiedvector slowly moves about, carrying the precessing Bloch
at the crossingsX=0), where it requires vector with it. The ensuing modulation of any projection of
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occur around the crossingthe nodepswhile between them
(around the antinodg¢sne is to expect Rabi-like oscillations.
The global structure(exhibited on a longer time scalés a
feature that will be discussed in more detail below. It
emerges when we consider the curves on which the values of
the populations at the antinodes lie. We will be mainly con-
cerned with the two limiting caseg=0 and o= /2, as
they lead to the most extreme differences in the population
evolution.

Excited-State Population

Ill. EVOLUTION MATRIX APPROACH AND GLOBAL

consists of several stepd) we separate the entire evolution
027 ‘ into intervals of lengthr/2 (quarter periods (i) we express
ot | l the evolution matrix for any quarter-period interval in terms

§ 101 ]
.g : ‘ STRUCTURES

<

g_ 0.8 A. Evolution matrix approach

?.; 067 | The approach we choose to treat the global structures for
g 04t ] ¢=0 (cosine modulationand ¢= /2 (sine modulation

=

]

R3]

]

m

of the evolution matrixU(7/2,0) for the interval[ 0,7/2];
(i) we find the evolution matrix for the entire evolution
of (units of ) from wt, to theNth node or antinode by matrix multiplica-
tion of the evolution matrices for the preceding intervals.
FIG. 3. A case of almost perfect adiabatic evolution By definition, c(t) = U(wt, wtg)c(ty). Let us denote the
(Y w=20A/0=50). Upper figurep=m/2; lower figure,¢=0.  basic evolution matrix in the interval[0,7/2] by
The adiabatic solutior(11) (not shown coincides almost com- U=U(#/2,0). Since it is a unitary matrix, it can be param-

0 2 4 6

pletely with the exact numerical results. etrized by
the Bloch vector(such as populationscorresponds to ele- _ _ V1-—pe(7tor \/Ee_i(”_o/2
ments of theglobal structuresntroduced in the next section. U=U(n/2,0=| Jper=02 1= peitnror)’

It is worthwhile pointing out that in contrast to the case of (13

small coupling, considered in Sec. Il B, in the adiabatic re-

gime the initial phasep can alter the population dynamics wherep is the transition probability if0,7/2] while » and
significantly becauseA(ty) is different. For example, if ¢ are dynamical phases. In order to find the evolution matrix
¢=0, the initial value of the detuniny(t,=0)=A is maxi- for any interval in terms ofJ we need the following rela-
mal and the precession amplitude is maximal too, but iftions, which can readily be deduced from E{b:

¢=m/2, we haveA(t,=—¢/w)=0 and there is no slow

precessiorifrom the second term in Eq11)]. On the other U(0,—w/2)=UT, (14
hand, for cosine modulationp(=0) andA>() [the condi- .

tion (10) can still be satisfied if bottA/w and Q/w are U(mr,ml2)= 03U o3, (15
largel, then near the antinodea & A) the third term in(11) .

is much smaller than the second one, which approaghes U(37/2,m)=05U" o3, (16)
Hence, depending on the sign&ft), the population around

the antinodes resides either in the ground or in the excited Ulpat2m, ¢1+2m) =U(e2,¢1), (17)

state a_llmost_completely. _This is the regime pafpulation _whereo is the Pauli matrix

swapping which will be discussed later on. Such a case is

shown in Fig. 3. Note that this effect cannot take place for

sine modulation ¢= 7/2). Finally, we should point out that o3=

as Eq.(11) shows, and in agreement with earlier conclusions

[17], adiabatic evolution and a level crossing do not necesl—: | i d the t ii bability in th

sarily lead to a diabatic transition probability of unity, unless. or exampie, we will heed the transition probabiiity in the

the ratioA/€) diverges at the initial and the final times. mt_erval [~ 77/2’7742]’ . Whlch IS given by
For 1<0% w?<Alw, neither the Floquet analysis from P=[U1{w/2,~ w/2)|* Using relation(14) we find

Sec. Il B nor the adiabatic §0Iution apply. In the next section U(m/2,— m/2)=UUT. (18)

we develop a completely different approach to treat the gen-

eral case. Following the discussion of the adiabatic regimey terms of the parameters bf[see Eq(13)], P is given by

we will separate the population evolution into two parts, or

in other words, we will distinguish two time scales. The P=4p(1-p) sirt7. (19

local behavior(the short time scajecan be deduced from the

knowledge compiled on two-level systems, which suggests It is possible to express the values of the populations at

that the biggest changes in the populati¢tjsmps”) must  the antinodesot=N7 and at the crossingst=(N+ 3) in

1 O
0 -1}
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terms of the transition probabilitiep and P only. The
evolution-matrix elements at these points are derived in Ap+r,37,57, . ..
pendix B for cosine £=0) and sine ¢= 7/2) modulation.

while the excited-state population at the bottom antinodes
is[cf. Eq. (B11)]

Given the initial conditiong3), the excited-state population 1 3

is equal to the squared modulus of the off-diagonal element Pe=m2l 2N+ 1)7]=5— 2\/1T 2N+3 B

of the corresponding evolution matrix. The values of the

excited-state population at the antinodes form the global (N=01.2, ..). (27)

structures.

B. Excited-state population at the antinodes: global structures

For cosine modulatior{¢=0), the excited-state popula-

tion at the everftop) antinodeswt=0,27,4, . .. is[cf. Eq.
(BS)]
(1-2p)? 2 B
Py—o(2Nm)=——5—siF(NB) (N=0.12,..)
(20)
while at the oddbottom antinodeswt= 7,375, ... itis
[cf. Eq. (B7)]
. (1-2p)? 1
Pool2N+1)7]=1- ——F— cog +5|8
(N=0,1,2,..), (2D
where
cosB=1-2P (0=B<m). (22

The pointsP,_o(2N7) (N=0,1,2,...) form an “even”
global structure @:O(wt) and the points
P,—o[(2N+1)7] (N=0,1,2,...) form another “odd”
global structure @:o(wt)- By replacing N by wt in Eq.
(200 and (2N+1)7 by wt in Eqg. (21) we obtain the equa-
tions for these global structures

1-2p)?
Gzzo(wt)z% sinz(%wt), (23
_ 2
Zo(wt)=1—%co§<£wt). (24)

Therefore, for cosine modulation, there &ne global struc-
tures, which are twoin-phase sinusoids with periods of
2% B shifted with respect to each other by tteonstant

splitting

(1-2p)?

1-p =0.

Go_p(wt)— G _g(wt)=1— (25

Note that the upper structw@g=
tom (odd) antinodes.

o(wt) comprises the bot-

For sine modulation¢= 7/2), the excited-state popula-

tion at the top antinodes 0524, ... is[cf. Eq. (B9)]

o owe e

(N=0,1,2, . .

1
P€D=1T/2(2N7T):§ 2\/—

), (26)

By replacing N by wt in Eq.(26) and (N+ 1) by ot in

Eq. (27) we conclude that for sine modulation, there is only
one global structure comprising the values of the excited-
state population at both the top and the bottom antinodes.
This gross structure is defined by

wt

1
G(p=77/2( (y)t) = + B (28)

1 1-2p S{
2 2/J1—-P

and its period is 2%/ 3, the same as the period of the global
structures for cosine modulation. It can be shown that this is
the period of the global structures for apy

The implication from the above results is that if the jumps
at the crossings are small enough, the global excitation his-
tory for sine modulation is atepwisetrajectory. For cosine
modulation, the global evolution is more complicated and,
depending on the splittin@25), can either consist of alterna-
tive upward and downward jumps be a stepwise trajectory
as for sine modulation. More detailed discussion on the be-
havior of the global structures follows in Sec. V.

We should particularly emphasize that in contrast to the
regime of small couplingSec. Il B), in the general case the
population dynamics is quite sensitive to the initial phase
¢. In Fig. 4, we have shown the population evolution for
several values ofp in the range[0,7/2]. The population
evolution wheng is in the range[ #/2,7] looks similar,
although it is not completely the same. Moreover, it is clear
from Egs.(2) that the population evolution fap is the same
(up to a shift in the time scaleas for o+kw
(k=0,£1,%+2,...).Figure 4 shows that the population his-
tory is nearly the same in the range=@=<0.45r and then
rapidly changes ag approachesr/2. This is because the
case of arbitrarye can be viewed as cosine modulation
(¢=0) but with some preexcitation in the interjat ¢,0],

i.e., as cosine modulation with the system being initiddly
t=0) in a coherent superposition of states rather than in a
single state. This “preexcitation” is strongest if the laser
field is turned on near the crossing where the populations
change most significantly, that is wher~= /2. We should
also emphasize that for any+ 7/2 there are two global
structures that ultimately degenerate into one ot /2.
This can be easily seen from the expression

4p(1-p)(1—2p) 1—2|0¢COS
1-P N 1—2p =7
P(1—py)

—F COS, ,

p(l—p) ¢

which gives the splitting between the two global structures
for arbitrary ¢. It can be found in a similar way to the deri-
vations for¢=0 and¢= /2 in Appendix B. The transition



55 POPULATION DYNAMICS AND PHASE EFECTS IN ... 4423

C. Excited-state population at the nodes

1.0
For cosine modulation(¢=0) the excited-state popula-
0.5 tion at the nodesot=7/2,37/2,57/2, ... is
0 ¢=0.50n
1.0 m 1 1-2p B
os Po—o[ (2N+1) 2}— 3 oioe cos{(2N+1)2}
g 1.8- (N=0,1,2,...) (30
§ 0.5
a while for sine modulatio(¢=7/2) it is
Q? 0 (p=l0.451t
[
g P N+ 1) T =sidl 2N+ 1) 2| (N=01.2
5 05 o=mi2| ( )| =sim| ( V7| (N=012,..).
:‘;; 0 ¢=040r (31
H 1.0
These results can be derived in a similar manner as(£6s.
05 (21), (26), and(27). Thus, the excited-state populations at the
0 9=025x crossings lie on jusbnesinusoid for cosine modulation and
on another sinusoid for sine modulation. These sinusoids are
less noticeable compared to the global structures that com-
prise the antinodes because at the crossings the excited-state
population “jumps” up or down and the crossing points lie

0 5 100 15 20 25 30 nearly in the middle of these jumps.
ot (units of w) Finally, we should stress that all results derived in this
section apply not only for the sinusoidal modulati@ but

FIG. 4. The excited-state population evolution fw=3 and  for any kind of periodic detuning modulatiomith a period
Al/w=33 and several values af (denoted on the figurgsThe  of 27, provided the detuning is symmetric {0,77] and
dashed curves fop=0 are the global structur¢g3) and (24). antisymmetric in 0,27]. Of course, the particular values of

p and P depend on the specific shape of the modulation. In
probability p, and the dynamic phase, are defined simi- the next section, we derive analytic approximationspf@nd
larly to Eq. (13) but for the interval[0,¢]. Evidently, the P for the sinusoidal modulatio(®), which is the most natu-
splitting vanishes only forp,=p and 7,=7, ie., for ral one. Nonetheless, the methods used by us can easily be
@=m/2, except in some incidental cases. applied to other modulations too.

It is readily seen that in the limit of small coupling
(< w), and for the specific case & (t)=A cowwt [Eq.
(2)], the global structure€23), (24), and(28) reduce to the
weak coupling resul(5). Consider, for example, the case of We have developed two analytic approaches for the de-
cosine modulation ¢=0). For weak excitation we have termination of the parametepandP. The first is based on
p<1l, P<1, and the two global structurg23) and (24) the finite Landau-Zener modgl5] and the second is based
coalesce into oneG,_o(wt)~ sif(Bwt/2m). To estimate on the original LZ mode[1].

B=arccos(t2P)~2\/P , we use perturbation theory to

IV. ANALYTIC DETERMINATION OF p AND P

find A. Approach based on thefinite Landau-Zener model
. 2 2 We begin with the approach based on fimte LZ model
i 2w . ) . - .
pm‘ __QJ’ gl (Alw) sinotq¢ :{_JO(A/U)) , and the calculation op. We separate the time evolution
— 2w 20 within a quarter-period from the crossing to the adjacent an-

(29 tinode into two parts: from the crossing to a certain tifne
and fromT to the antinode, withT being a free matching
with the help of Eg. (9.1.18 of Ref. [16]. Hence, parameter. In the interval from the crossingTipthe detun-
B~(mQlw)Io(Alw), which leads to G,_o(wt) ing A(t) is almost linear; thus, we calculate the evolution
~ sin[3Jo(A/w)Qt], which is exactly Eq.(5) for ¢=0. matrix by using the half-crossing finite LZ modEl5] in
Thus, the global structures, which in general comprise onlyrder to account for nonadiabatic transitions. In the interval
the values of the excited-state population at the antinodefstom T to the antinode we assume that the evolution is adia-
give the correct excited-state population at &y the limit ~ batic and we use the adiabatic-following soluti@ppendix
of weak excitation{)<w, irrespective of the value dA. A). The details of the derivation are given in Appendix C.
Finally, we should point out that Eq&0)—(28) are exact. The total evolution matrix for the quarter perigerhich in
Related approximate results have been reported in[R&f.  our approach is ndt) but ratherU™™; see Appendix C and
for the specific case of cosine modulatidi(t)=A coswt,in  Eqg. (C1)] is a product of the adiabatic and the finite-LZ
the limit A>Q, w. matrices and is given by the squared modulus of the off-
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diagonal element. The evolution matrix that gives the other

probability P is M*UU'M. The approximate expressions
obtained forp andP are
p~3[1—cosy co —sinysin® cog ¢+ 2¢,9], (32
Q
P~sirtx siff(¢+2¢y0) (33 =)
= i
with F-
= 0 /
cosy=e "2 (0=y=m/2), (34) T Lof
g - 3
0 2 o5t
@Eﬁ(rr/Z):arctanK (0=O0<m7/2), (35 s \
= AN
-:o: 0 . . .
(a)=arg (1—i 2/2)+3+a—2 1 (36) 5 O | | 10}
$la)= @ 4" 2172 ' A i
5 05T ~
1 72 §
bad= bad 0.7/2) = 5 f VO2+A? cofwtdt &
0
VOZ+A?
= — —E(co®), (37
2w
where E(k) is the complete elliptic integral of the second 0 4 8 12 16
kind [16] and a=Q/{2Aw. The Landau-Zener phase ole

¢(a) is equal torr/4 at =0 and monotonically decreases

to zero asy—. In the derivation we have made two further £, 5. The parametep, representing the quarter-period transi-
approximations. We have replaced the Landau-Zener adigpn probability from an antinode to a crossing, plotted as a function
batic phasep ; (C6) (i.e., for a linear detuningaccumulated  of the dimensionless rati6)/« for several values of the ratio
from the crossing tol' with the actual adiabatic phasg,y  A/w (denoted on the figurgsThe solid curves show the exact
accumulated in the same interval. Moreover, we have reaumerical results, the short-dashed curves show the analytic ap-
placed the angle%, ;(wT) of the rotation, which connects proximation(32) (which coincide with the solid curves almost ev-
the diabatic and the adiabatic representations for the finiterywhere except in the top two figujemnd the long-dashed curves
LZ model at the matching tim&, by the angled(wT) (8)  show the adiabatic solutiof38).

having the same role in the actual mog@l. These Changes’ .formula (33) for P . The purely adiabatic solution(88) and

(A2) rather than in the diabatic orf@1), simplify the results Z?r?zoirte ea\l/se(: gl\;]eerr]é Feo)z?euItdgviglgglda(f?n%riyﬁrya?eccgg?rt]e
and also eliminate the dependence on the matching Time yw P

It is readily seen by setting cgs0, siny=1, and¢=0 small.
that Egs.(32) and (33) have the correct adiabatic limits B. Approach based on theoriginal Landau-Zener model
(Q2>Aw) derived when Eq(11) is applied in the corre-

sponding interval§0,m/2] and[ — m/2,m/2], namely, We have also determingal and P by using theoriginal

LZ modelinstead of the finite LZ model. This cannot be done

1 Q directly for a quarter periodfor p) and a half periodfor
Pad™ 5~ —=5— C0S2baq, (38 P) because there is no complete level crossing but only half
2 2J0%+A crossings in these time intervals. Instead, we have deter-
—sir?2 mined p and P indirectly by considering the evolution be-
Paq~SIT2¢ag. (39 tween two successive antinodes as described in Appendix D.

We have assumed that the evolution is purely adiabatic
throughout except at the crossing where instantaneous nona-
diabatic LZ transitions take place. Quite unexpectedly, the
results are given again by Eq&2) and(33).

Another useful check of the validity of our results can be
carried out in the limit of weak excitatiof) <w, where we
have already calculated the value Bf perturbatively, Eq.
(29). In this limit, the condition of validity of Eqs(32) and
(33) require A>w [cf. condition (40) below]. For _ _
Q<w<A, we have sify~m0%(2Aw), ~ul4, C. Discussion
da~Al2w, and thus, our equation (33) gives The fact that both approaches lead to the same results is a
P~[7Q?% (2Aw)]si(Aw+ml4). This is indeed the correct little surprising given that their conditions of validity are
limit obtained from EQq.(29) for A>w by using the Bessel supposed to be different. In tHimite LZ approach(with the
function asymptoticg7). assumption for the moment that the matching point is in the

In Fig. 5, we compare formulé32) for p with the exact middle of the quarter-period intervah T = 7/4), the validity
values derived numerically. In Fig. 6, we do the same withconditions are
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the transition time in the diabatic bagi$) is t.;~Q/(Aw)
[18], and this leads to the conditidd/A<1. Thus, the con-
ditions of validity of the original LZ approach seem to be

(Qw)’>Alw>Qlo>1, (41)

05F A\ ] which are obviously much more restrictive thé0). For
instance, the original LZ method is not expected to be valid
for Q/w>A/w>1 and forAl w>(Q/w)?>1, while it actu-

ally is. The fact that the original LZ method produces the
correct result even where it is not supposed to work, i.e., that
the actual conditions of validity are much more relaxed than
the “apparent” conditiong41), is related to the nature of the
Landau-Zener model. One of the reasons is that the transition
time in the adiabatic basigvhere the matching of the LZ
solution to the adiabatic solution is actually madeay be
shorter thari. ; in fact the value}/(Aw), which is the width

of the nonadiabatic coupling (see Appendix A gives only

an upper limit for the transition time; i.e., the condition
Q/A<1 is too strong. This time is really shorter, which is
related to the fact that the original LZ model produces the
correct leading term of the finite LZ asymptotics in the adia-
batic basigA2). On the other hand, the requirement for adia-
batic evolution throughout the interval between the crossings
is also too strong because the condition for small transition
time implies to a great extent that the nonadiabatic transi-

FIG. 6. The parameteP, representing the half-period transition tlONS are localized around the crossings anyway. The full
probability between two successive crossings, plotted as a functiofliscussion of this interesting issue, however, lies outside the
of the dimensionless rati€)/» for several values of the ratio Scope of the present paper.

Alw (denoted on the figurgsThe solid curves show the exact
numerical results, the short-dashed curves show the analytic ap-
proximation(33) (which almost coincide with the solid curyesnd

Half-Period Transition Probability P

V. TYPES OF POPULATION DYNAMICS

the long-dashed curves show the adiabatic solutdsh The notion of the global structures developed in Sec. Il
and the relevant parametrization in termspoand P allow
Q%+ (7Al4)?*>2Aw, us to find various distinctive cases of population dynamics,

which are discussed below.

(20°+A?)%%=>20Aw.

. . 1.
The former ensures the validity of the asymptotic expansions A. Population swapping (p=
used in the finite LZ model while the latter ensures the adia- When p=3, the global structure$23), (24), and (28)
batic evolution. These conditions generally require thatdegenerate into horizontal straight lines. For cosine mod-
Q/w and/orA/ w should be large, which can conveniently be ulation ~ (¢=0) we have P,_o(2N7)=0 and
written as P,-ol (2N+1)m]=1, while for sine modulation ¢= 7/2)

we obtainP(p:W,z(Nw):%. Hence, foro=0 we expect the
Q2+ A?> 02 (40)  appearance of a regime ebmplete population swapping
the population being entirely either in the ground st
As Figs. 5 and 6 suggest, the conditig¥0) should be both wt=2N) or in the excited statffor wt=(2N+1)7]. The
necessary and sufficient for the validity 82) and (33). curves in the parameter plan€f{w,A/») on whichp=13,
Obviously, the finite LZ approach can only fail whél o can be found from our analytic approximati¢82), which
andA/w are both small, as is also confirmed by Figs. 5 andeads to the nonlinear equation
6.
In the original LZ approach we have assumed that the

evolution is purely adiabatic between the crossings while at COSp+2¢had~— %A 1! (42
each crossing instantaneous nonadiabatic LZ transitions take Qve -1
place. The restrictions 0A/w and Q/w that follow from
these assumptions are much more stringent compared to cowhich can easily be solved numerically. It is possible to de-
dition (40). For instance, the adiabaticity between the crosstive a simple approximate solution in the adiabatic regime
ings requires thaf)?>Aw while the instantaneous transi- (22>Aw). Then the right-hand side of E¢2) is approxi-
tions impose a very small LZ transition timg, well within mately zero, and als@~0, ¢ i~ (7ldw)[z—A%l4z+ - - -]
a half period: i.e.t.<m/w. For nearly adiabatic excitation, with z=+/Q?+AZ2. After some simple algebra we find
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Q/o

FIG. 7. The exact curves in the parameter plafiéd,A/ w) on

which p= % obtained by numerical integration of Eq%). We have
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curves in the parameter plan€{w,A/w) on whichp=3,
obtained by numerical integration of Eqg&l). We have
found that they practically coincide with those derived from
Eqg. (42) (not shown on the figuje We have also checked
that in the adiabatic regim@oughly above the dashed cujve
the p= 3 curves are well approximated by the curves defined
in Eq. (43).

We must stress that the conditiqr= 3 is necessary and
sufficient for population swapping to occur. In fact, cases of
approximate population swapping have been shown in Figs.
1 and 2 of Ref[14] in which the ratioA/w has been chosen
to satisfy the condition]y(A/w)=0. The present analysis
shows that the conditiody(A/w)=0 is only important for
small coupling(Sec. Il B). For instance, for the parameters in
Fig. 2 of Ref.[14], Alw=](10=30.63%6 ... andQ/w=8,
we havep~0.51915, which indeed is very close fie= 3. In
Fig. 8@, the population evolution is shown for
Alw=jg15~30.63%6 ... andQ)/w=8 (the same parameters

found that they practically coincide with those derived from Eq.from Fig. 2 of Ref[14]), with ¢=0. Almost complete popu-

(420 (not shown on the figupe The dashed

curve

lation swapping is realized. In Fig(l®, we show the popu-

[(Q/w)?=2Alw] gives an idea of the boundary between the re-lation evolution forA/w=j,1,=30.634% . .. [the condition

gions where the evolution is adiabat@above and where the evo-

lution is nonadiabati¢below).

VQ/0)?+ (Al w)’~ %[n+ Vn?+ A%/ w?]

(n=1,3,5,...:0%>Aw). (43

This equation defines a family of infinite number of curves
labeled by the odd inder. In Fig. 7, we present the exact

1.01
081
067

Excited-State Population

0 2 4 6 8 10 12
oz (units of «)

FIG. 8. The excited-state population evolution {0 and(a)
Alw=jp1~30.63%6... [the tenth zero of Jy(A/w)] and
Q/w=8; (b) Alw=]y10=30.63% ... and)/w=4.81398(where
p~0.192641P~0.5); (c) Alw=]1¢=29.048 . . . [the ninth zero
of J;(Alw)] and Q/w=8.96149(wherep~0.5).

Jo(A/w) =0 is again fulfilled but with Q/w=4.81398(then
p~0.192641P~0.5). A rather different behavior is ob-
served, the excited-state population being almost zero for
every fourth half period and aroufdor the other three half
periods. This specific case is further discussed in Sec. V C.
Hence, Fig. &) shows that the conditiod,(A/w)=0 does

not necessarily ensure population swapping. In Fg),&he
population evolution is shown fob/w=j; ¢=29.0468 ...

[the ninth zero of);(A/w) whereJy(A/ w) has an extremum
rather than a zefjcand )/ w=8.96149(thenp~0.5). Figure
8(c) exhibits almost perfect population swapping despite the
fact that the conditionly(A/w)=0 is significantly violated.
Thus, Fig. 8 demonstrates clearly that it is the condition

10f e=r/2
08}
0.6
0.4]

0.2r

Excited-State Population

101
0.8
0.67
04r
027

Excited-State Population

ot (units of )

FIG. 9. Cases of incomplete population swappifgy ¢=0)
and superpositional trappingor ¢=/2). The parameters are
Q/w=12Al 0w=202.1261(thereP~0,p~0.23901).
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viewpoint the conclusion deduced in Sec. Il C from the adia-

| batic solution and illustrated in Fig. 3.
05M
op sl B. Incomplete population swapping and superpositional
1.0f T trapping (P=0)
o5l AN W NN W W W Another interesting case arises whBr=0. ThenB8=0
VAR ANV ARV AR VA RAR VAN and according to Eqg20), (21), (26), and (27), we have
0 L B=mwS . ‘ P¢:0(2N7T) — 0’ P¢:0[(2N+ 1)77.] — 4p(1_ p), and
1.0F Juney e ' ] P, =2(N7)=p. Hence, for cosine modulation the excited-

state population jumps successively from 0 f@(4— p) and
vice versa. Since g(1—p)<1 for p#3, the population
swapping is incompleteFor sine modulation the excited-
state population stays aroumdli.e., we encounter a case of
approximatesuperpositional trappingUnlike the case of
population trapping considered in Sec. Il B, where the popu-
lation is trapped in @inglediabatic state, here the population
is trapped in a cohererstuperpositionof states, namely, in
the statey1—p|1)+/p|2), up to an unimportant common
AN phase factor. Cases of incomplete population swapffiorg
Sl Za¥l B SV B ZaVE LA RS ¢=0) and superpositional trappirifpr ¢ = 7/2) are shown

. in Fig. 9. According to our analytic approximati@B3), the
conditionP=0 is met when sinf+2¢,)~0. We have veri-
fied that this is in very good agreement with the exact nu-

ot (units of w) merical calculations. Finally, when bofh=0 andp= 3, the
population swapping is complete, as it should be fer 3
FIG. 10. Examples of completely periodic evolution for according to Sec. V A.

Alw=24 and several values &/w: 3.99018, 3.77660, 3.62346,
3.50735, and 3.41581, chosen in such a way that
B~ ml4,w/5,7/6,7/7, and 7/8, respectively. The dashed curves
show the global structurg@3) and (24). As Eq.(21) suggests and When g=arccos(t-2P) is a rational multiple of,
the figure demonstrates, f@=m/s with s odd, the excited-state B=rm/s (r,s integery, the excited-state population
population equals unity at thh, (3s)th, (5s)th, etc., antinodes and P ,—o(2N7) [Eq. (20)] vanishes exactly at every $pth an-

Excited-State Population
<o
wn

oK e L |
0 8 16 24 32

C. Completely periodic evolution

the system is completely inverted there. tinode. Thus, the initial conditions are restored, which im-
plies that the population evolution is exactly the same in the

p= 3 that is responsible for population swapping rather tharintervals [0,2s7],[ 2s7,4sm], . ... The population swap-

Jo(A/w)=0. ping regime in subsection V Bwhen P=0 and hence

Finally, we note that as seen from E®8), in the adia- [B=0) represents the simplest example of such evolution. In
batic regimd (Q/w)?>Alw] p tends toj for A>Q. Infact,  Fig. 10, we show examples of completely periodic evolution
this property is a consequence of the asymmetry of the twofor A/w=24 and several values &}/w, chosen in such a
level problem in the intervdl0,7/2] [19] . The appearance way that B8~ m/4,7/5,7/6,7/7, and 7/8, respectively. As
of population swapping in this case confirms from anotherEq. (21) suggests and the figure demonstrates,derm/s

1 _q)l=1t/2 '

FIG. 11. Examples of completely periodic
evolution with small periods when 8
~7l3 (P~3),B~ml2 (P~3), and B~2m/3
(P~%. The ratio A/o=200 everywhere and
O/ w=10.47732(the two figures on the left-hand
side, /w=12.02304 (the two figures in the
middle), andQ}/w=13.66601(the two figures on
the right-hand side These cases more closely re-
semble the regime of population swapping.

Excited-State Population

0 5 16 15 0 5 10 15 0 5 10 15

ot (units of ) ot (units of r) of (units of )
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twice up” (top middle figurg, “once down, three times up”
(bottom middle figurg “twice down, once up” (top right
figure), “once down, twice up” (bottom right figure. We
particularly emphasize the bottom figure in the middle
(¢=0,P=1), which shows superpositional trapping around
the value of5 for three half periods and trapping in the
ground state for the fourth half period, a case earlier seen in
Fig. 8b). In Fig. 12, we show the curves in the parameter
plane /w,Al/w) on whichP=1. They resemble those for
p=3 in Fig. 7, but are twice as dense as follows from Egs.
(32) and(33). One can derive an approximation to tRe=

1 curves similar to thafEq. (43)] for the p=13 curves.

Q/w

D. Stepwise evolution

Alo

As we pointed out in Sec. lll, the implication from the
FIG. 12. The exact curves in the parameter plafiéd, A/ w) existence of only one global structure for sine modulation is
on which P=3, found by numerical integration of Eq¢l). The  thatif the jumps at the crossings are small enough, the global
dashed curv§(Q/w)?=2A/w] gives an idea of the boundary be- excitation history is astepwisetrajectory. For cosine modu-
tween the regions where the evolution is adiabadbovg and Ilation, the global evolution depends on the st@ff) between
where the evolution is nonadiabaticelow). the two global structures. If this shift is large enough, then
the evolution involves alternativepward and downward
with s odd, the excited-state population equals unity at thgumps as in Figs. 4 and 10. It is readily seen that for
sth, (3s)th, (5s)th, etc. antinodes and the system is com-P=4p(1—p) the shift (25 vanishes and the evolution

pletely inverted there. should be a stepwise trajectofif the “jumps” at the cross-

In Fig. 11, we show examples of completely periodic evo-ings are small enoughas for sine modulation. Such an ex-
lution for smaller periods when B~mu/3 (P~3), ample is shown in Fig. 13.
B=~ml2 (P~3), and B~2m/3 (P~32). These cases more
closely resemble the regime of population swapping. We en- VI. CONCLUSIONS
counter some curious cases of population evolution: “twice ) )
down, once middle, twice up(top left figure, “once down, We have presented an analytic study of the population

twice middle, once up’(bottom left figure, “twice down, dynamics of a nondissipative two-state system interacting
with an external field and subjected to periodic level cross-
ings. We have used a new evolution matrix approach to cal-

= ' ' culate the excited-state population at the crossifiye

a 1.0 o=n/2 .

2 nodes$ and at the antinodes. The results depend on only two
:_; 0.8} parameters: the transition probabilipyfor a quarter period

§ 06 from a crossing to an antinode and the transition probability
o P for a half period between two successive crossings. We
g 0.4 have found that the values of the excited-state population at
‘?, oal the antinodes form globdbross structures. The results are
5 generally valid for any modulation with a period ofrZsuch

s or that the detuning is symmetric in the interf@l] and an-

tisymmetric in[0,27]. We have been mainly concerned with
the sinusoidal modulatio(®), which is the most natural one.
We have concluded that the global structures and the popu-
lation dynamics as a whole are very sensitive to the initial
phasee of the frequency-modulated field. Particular atten-
tion has been paid to the casgs 0 (cosine modulationand
o= /2 (sine modulatiop which lead to the most extreme
differences in the population dynamics. We have calculated
the parameterp and P by using two approaches based on
. , . ‘ ‘ , the original LZ model and the finite LZ model, which turn
0 4 8 12 16 20 24 out to lead to the same results, E(32) and(33). The notion
: of the global structures and the relevant parametrization in
ot (units of «) i . L
terms ofp and P have allowed us to find various distinctive
FIG. 13. The excited-state population evolution for-0 and ~ Cases of population dynamics, such as population swapping,
@=m/2 in the case ofA/w=32 and2/w=1.2007. The condition completely periodic evolution, superpositional trapping, and
P=4p(1-p) is fulfilled almost exactly for these parameters and Stepwise evolution. Finally, we note that physical systems
stepwise evolution is realized not only for sine modulation €xist where it should be possible to observe these phenom-
(¢=m/2) but also for cosine modulatiorp&0). ena. It has already been suggested that, for example, the Yb

Excited-State Population
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atom could be used in conjunction with frequency modulated
light [14,20, and it may also prove possible to manipulate
the discrete optical levels in a resonator to show the same

phenomen421].
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APPENDIX A: ADIABATIC-FOLLOWING SOLUTION

The transformation

e D2 0

c(t)= b(t),

0 elD(0/2

where D(t)=[{A(t')dt’, casts Egs(1) into their Schie
dinger representation

d 1

—-A(t) Q
I& (H= >

Q A(t)}b(t). (A1)

The time-dependent rotatids(t) = R(39(wt))a(t) with
cosy  siny

Rv=|_ siny cosy

transforms Eqs(Al) into the adiabatic representation

—Qp —id

i 9 Qg

d 1
i—a= -

i 5 a, (A2)

whered and() are defined by Eq¢8) and(9). The condi-
tion for adiabatic evolution i$9|<Qq and if it is fulfilled

APPENDIX B: GLOBAL STRUCTURES

We wish to calculate the evolution matrices for E(ds.in
the intervals[0,2N7], [0,(2N+1)7], [— #/2,2N#], and
[—/2,(2N+1)7]. Since the elements of anyx2 unitary
matrix U with delU=1 obey the relationdJ,;=U%, and
U.,=— U3, we will only give two elements of each matrix
below. In addition to the relationd4)—(17), we will use the
following identity valid for any unitary matrix22]

{ Ull U12 N
_11* *
12 11
) sinNB SinNB
COQ\|B+I |mU11W 12W
B sinNg silNg |’
— * [ —— _. —
12°ging CONB—i ImU; sing

(B1)

where cog=ReJ ;. We will need the evolution matrices
for the intervals[0,27] and [#,37]. According to Egs.
(14)—(17) they are given by

U(2m,00=U"To3U*UTo3U,
U7, )= 03U o3UUTo3U* 03= 03[ U(27,0)]* o3.

In terms of the parameters &f defined by Eq.(13) and
P=4p(1—p)sirty, the matrix elements ofJ(2,0) and

then the evolution matrix in the adiabatic basis is nearlyy(3,) read

diagonal. The adiabatic-following solution
a(t) = Ui{ wt, wtg)a(ty) with
ei(ba({wto,wt) 0
Uad ot, wtg) = 0 e idadoto.ot) | (A3)

Uqy(27,00=U%(37,m)=1—2P+4ip(1—p)sin2y,
(B2

Uyf27,0)=U (37, 7)=—2i(1-2p)JP. (B3

where ¢ wto,wt) is the adiabatic phase defined by Eq.Due to Eq. (17), for the interval [0,2N7] we have
(12) and acquired between timés andt. The adiabatic so- U(2N,0)=[U(27,0)]N and by using Eqs(B1), (B2), and

lution in the actual (bare, diabatic basis is (B3) we obtain
b(t) =U2{ wt,wto)b(ty), where the evolution matrix is
given by SinNg
U11(2N7-r,0):cos\l,8+4ip(1—p)sinZnW, (B4)
UL { ot,wtg) =R(H wt)2)U3{ wt, wte) RT[ ) wty)/2]
u v ) SinNg
= _ ¢ ol (Ad) Ui 2Nm0)=~2i(1-2p) P27 (BS)
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where cog=1-2P. Likewise, for the interval
[0,(2N+1)7] we use that U[(2N+1)7,0]
=U[(2N+ 1), w]U(7,0)=[U(37,7)No3UTo3U and we

find
cos(

2p N 1
V1-P

U, [(2N+1)7,0]= .

B,  (B6)

D N. V. VITANOV 55
Uf (2N+1)7,0] Vap(1-p)—P 5<N+1 B
,0]=——F—==co >
! i Ji-p 2
o 1
—i sin N+§ B. (B7)
By using U(2N,—7/2)=U(2N=,0)UT and U[(2N

+ 1), — 7/2]=U[(2N+1)7,0]UT, we further obtain with
the help of Eqs(B4)—(B7)

el(¢—n/2 1 _ 1 _
U13[2Nw,—w/2]=m( Vap(l—-p)—P cos(N+§ B+i \/Ecos(NvLE B+2p sinNgB } (B8)
el(n=012 1
Ui 2N, — 7/2]=— NE P)H\/B SinNB+2p cos<N+ E)'B +iv4p(l-p)—P sinNﬁ], (B9)
p [—
gl(¢—ml2 { 1) \/_ 1)
2 —7l2]= ——{ —-p)— = i =|B—2p si
Uy (2N+1) 7, — 7/2] Zm[ 4p(1—-p)—P co N+2 B+i Pcos(N+2 B psm(N+1),B“,
(B10)
gl (n=0)12

Uy (2N+1) 7, — /2] =

|

APPENDIX C: CALCULATION OF p AND P BY USING
THE FINITE LANDAU-ZENER MODEL

1
—2 —p(l—P) 2p cos(N+§),8

For the sake of convenience, we choose to depivand
P by working with a detuningA (t)=A sinwt and with the
two-level equations in their Schdinger representatio@1)
in order to use directly the recent results for the finite
Landau-Zener moddl15], which assumes a linear crossing

att=0 with a positive slope. It can easily be shown that the

evolution matrix in the time intervdl0,7/2] is UTM, where
U is the quarter-period evolution matrix for cosine modula-
tion (13) and

eiA/Zw 0
M= 0 e*iA/Za) . (Cl)
Thus, the transition probability is exactly

[(U™M),42=|U,42=p. Furthermore, for the time interval
[0,7] the evolution matrix iM*UU'M and hence, the tran-
sitton  probability is given by [(M*UUTM),?
=|(UUT)1J?=P.

We begin with the calculation gf. We separate the time
evolution in[0,7/2] into two parts:[0,wT] and[ T, w/2],
whereT is a free matching parameter{QoT<<7/2). In the
interval [0,wT], i.e., near the crossing where
A(t)=A sinwt is almost linear, we calculate the evolution
matrix by using the half-crossing finite LZ modgl5] in

-\JP sin(N+1),8}—i\/4p(1—p)—P sin(N+1),8]. (B11)

use the adiabatic-following solutiofppendix A). The ex-
act finite LZ evolution matrix in the Schdinger representa-
tion (A1) is given by[15]

X y
UR A(7,0)= Sy x| (C2)
2—ia2/4 1 a,2 )
XITF(E—'Z)[DWZQ(T\/EG'”/4)
ar

+Dj 212 725 4],

2—ia2/4 2

. o .
¢ ”’4F( 1-i 7) [~ Dzl my2e '™

(04
+ D 212 TV2€% 4],

where r=TVAw/2 and a=Q/\2Aw while D,(z) is the
parabolic cylinder function23]. These matrix elements are
well approximated by using the so-called strong-coupling as-
ymptotics ofD ,(z) [15]; the final expressions are

™

x~ e[ sin(92/2) sinx/2)e™' ¢+ cos 9/2) cos x/2)],
(C3

y~e'“q[sin( 9 ,/2) cog x/2)e ' ¢—cog ¥ /2) sin(x/2)],
(CH

order to account for nonadiabatic transitions. In the interval
[wT, /2] we assume that the evolution is adiabatic and wewith



55 POPULATION DYNAMICS AND PHASE EFECTS IN ... 4431

E=p+2¢.7, (CH lasting fromt— — o to t— + 0 and a linear detuning passing
through the resonance &t 0. This cannot be done directly
where¢ is the Landau-Zener phasg6), ¢, ; is the adiabatic  for a quarter periodfor p) and a half periodfor P) as in

phase in the finite LZ model, Appendix C because there is no complete level crossing but
only half crossings in these time intervals. Instead, one can
bLr= ffmdr’ determinep andP indirectly. The parametgy can be found
0 by deriving the transition probability from a given antinode

to the next antinode, which, according to E@1) with

2
T a1 I N=0, is equal to #(1—p); we choose to do this in the
A Fatt 2 In a(T+ Ttal), (€Y interval [ — 7/2,7/2] with sine modulationA(t) =A sinwt.
Then, the parametd? can be found from the transition prob-
and ability from a given lower(or uppej antinode to the next
2 o? a o? lower (_or uppej antinod_e, which is equal toI2I(1—2_p)2,
U= dLz— —+ —In=+argl| = —i _) according to Eq.(20) with N=1; we choose for this the
4 22 2 4 interval [—#/2,37/2] with  sine  modulation,

) A(t)=A sinwt, again. We assume that the evolution is
a n ™ purely adiabatic throughout except at the crossings where
4 4’ instantaneous nonadiabatic LZ transitions take place. It is

convenient to work in the adiabatic interaction representation

2 a? a

o
tanﬁLz=;= AT 0= z=7/2), d ]
2 gid®
cogy=e " (0=y=mu/2). 1
) ) . . 0 ——{9(wt)e*2i‘/’aff°"”t)

For the interval[ T, w/2] we use the adiabatic-following 2
solution (Appendix A). By multiplying the adiabatic evolu- =l 1. d(t)
tion matrix (A4)—(A6) for the interval[ wT,w/2] and the Eﬂ(wt)ez“ﬁa&o"“‘) 0

finite LZ matrix (C2)—(C4) for the interval[ 0,0 T] we find
(D1)
UTM~ U8 /2,0 T)UR ,(wT,0)

- % obtained from the adiabatic Scliinger representatio(A2)
~ ux—uvy uy+ox (C7) with the transformation

—ury* —v*x  U*x*—v*y
a(t) = Uif t,0)d(1),

and, hence,
p~|uy+ux*|2 whereU3(wt,0) is defined by Eq(A3). It is this represen-
tation (D1) where the evolution-matrix phases in the original
~3[1—cosy cos® —siny sin® cog ¢+2¢49], LZ model are definedin any other representation they di-

(C9) verge. Furthermore, in the adiabatic limit the probability
amplitudesd(t) do not change and thus the adiabatic evolu-
where ®@=9(m/2)=arctan)/A). In the derivation of Eq. tion matrix is the unity matrix.
(C8), we have assumed tha ,~ 9 and ¢ ,~ ¢qatt=T. In this model, the evolution matrix in the interval
These assumptions simplify the result, eliminate the deper-— 7/2,7/2] is given by
dence on the matching poift, and compensate to some

extent the inaccuracy introduced by the difference between U2 12)~ U8 V1—p z€e'* VPLz
; i = i w2, — )~ = _isl
the time dependence of the actual detunin@)=A sinwt Lz . /_pLZ /—1_pLZe ib

and the linear LZ detuning.

We now turn to the calculation ofP=|(UUT),2. _ o, o
Since for the time interva[0,] the evolution matrix in With piz=€" "' =cosy, a=Q/\2Aw and ¢ is given by
the Schidinger representation (A1) is M*UUT™M  EG. (36). The evolution matrix for the actugbarg ampli-

— (M*)2(UTM)T(UTM), we find from Eq.(C7) that tudesh(t) is
P~ sirfy sirf(¢+2¢,0), (C9) UP(/2,— w/2)~R()(w/2)[2) U3 7/2,0 UL,
with the same assumptions as in the derivatiom of X (Ua(0,— m/2))* RT()( — 7/2)/2).
APPENDIX D: CALCULATION OF p AND P BY USING From here we find

THE ORIGINAL LANDAU-ZENER MODEL
. . o Ap(1-p)=|URy(ml2,— ml2)|?
We have also determingal and P by using the original
Landau-Zener model, which assumes a constant coupling ~1—[cosy co +siny sin® cog ¢+ 2¢,9 1%,
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where® =39(m/2) and ¢ = ¢.(0,7/2), which leads to the 4p(1_2p)2:|U?2(377/2,_ wl2)|?
same resul{C8) as from using the finite LZ model.
To find P we need the evolution matrix for the time in- ~4(1—2p)? sirfy sif(p+2¢.0

terval[ — 7/2,37/2]; it is

UP(3m/2,— w12) =M (UP(7/2,— m/2)) TUP(7/2,— wI2)M*. _ , o
and we obtain again the same req@®) as from the finite

The transition probability in this interval is LZ model in Appendix C.
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