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Population dynamics and phase effects in periodic level crossings
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We present an analytic study of the population dynamics of a two-state system interacting with an external
field and subjected to periodic level crossings. We apply an evolution matrix approach to calculate the excited-
state population at the crossings~the nodes! and at the antinodes. The results are expressed in terms of only two
parameters: the transition probabilityp for a quarter period from a crossing to an antinode, and the transition
probabilityP for a half period between two successive crossings. We find that the values of the excited-state
population at the antinodes can form global~gross! structures. We show that these structures and the population
dynamics as a whole are very sensitive to the initial phasew of the frequency-modulated field, particularly in
the limitsw50 ~cosine modulation! andw5p/2 ~sine modulation!. We calculate the parametersp andP by
using two analytic approaches: one based on the original Landau-Zener model, and the other based on the finite
Landau-Zener model. Both approaches unexpectedly lead to the same results. The notion of the global struc-
tures and the relevant parametrization in terms ofp and P allow us to find various distinctive cases of
population dynamics, such as population swapping, completely periodic evolution, superpositional trapping,
and stepwise evolution.@S1050-2947~97!06806-6#

PACS number~s!: 32.80.Bx, 33.80.Be, 42.50.2p
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I. INTRODUCTION

The problem of a two-state system coupled to an exte
time-dependent field can be met in many areas in phys
such as magnetic resonance@1–3#, laser-atom interactions
@4#, atomic collisions@5#, solid-state physics@6#, in chemis-
try @7# and even in biology@8#. Particular attention in the
literature has been paid to the problems of a level cross
@1#, noncrossing@2#, adiabatic evolution and nonadiabat
transitions. It is, for instance, well known that in the ad
batic regime, a level crossing leads to a large transition pr
ability while the absence of a crossing leads to no transitio
Less obvious is the population dynamics of a two-state s
tem whose interaction with an external time-dependent fi
leads to repeated and periodic level crossings that prod
multiple interference effects.

Periodic level crossings may arise in a number of pr
lems, e.g., two-level atoms interacting with frequenc
modulated laser light, transitions in a double-well poten
due to an external harmonic field, atoms traveling in perio
structures, ions in traps, and mode dynamics in optical c
ties. The problem has been a subject of considerable inte
in recent years, particularly in studies on transitions in
double-well potential in solid-state physics@9–11#, in quan-
tum transport analysis@12# and in optical physics@13,14#.
Among the results, we will mention an interesting effe
called coherent destruction of tunnelingin double-well po-
tential studies @9,10#, dynamic localization in transport
analysis@12#, andpopulation trappingin laser-atom physics
@14#. It consists of the suppression of transitions and ta
place when the ratio between the modulation amplitudeA
and the modulation frequencyv is equal to a zero of the
Bessel functionJ0(z) with the proviso that the modulatio
frequencyv is much larger than the couplingV. Attention
has also been paid to the effect of dissipation on the pop
tion dynamics by using numerical methods@11,13,14# and
551050-2947/97/55~6!/4418~15!/$10.00
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simple approximate analytic models in the limit of stron
dissipation@11,13#. In this latter case, a simplification arise
from the loss of coherence between the crossings.

In this paper, we study analytically the population dyna
ics of a two-state system subjected to periodic level cross
by an external field in the absence of dissipation, that is
the fully coherent limit. To be specific we will use the qua
tum optical terminology appropriate for a two-state ato
coupled to frequency-modulated light. We develop anevolu-
tion matrix approachto periodic two-state systems that is
useful alternative to the standard Floquet theory. The evo
tion matrix approach enables us to identifygross~or global!
structuresin the time evolution of the system. These stru
tures are formed from the values of the excited-state pop
tion at the antinodes, and result in features of the evolut
on a short time scale~substructures! being repeated at regula
intervals on a long time scale. Our results generalize
contain as particular cases some known results, such a
perturbative limit, and the adiabatic solution. We derive t
conditions for new, exotic, types of time evolution an
clarify the conditions for some cases discussed earlier. F
thermore, we establish the relationship between the perio
problem and the Landau-Zener model. We also demonst
that the global structures and the population dynamics a
whole are very sensitive to theinitial phase w of the
frequency-modulated field, particularly in the casesw50
andw5p/2.

This paper is organized as follows. In Sec. II, we intr
duce the model and give the approximate solutions in t
limiting cases: that of small coupling and in the adiaba
limit. In Sec. III, we present the evolution matrix approac
which provides the values of the excited-state population
the crossings~the nodes! and at the antinodes in terms o
only two parameters: the transition probabilityp for a quar-
ter period from a crossing to an antinode, and the transi
probabilityP for a half period between two successive cro
4418 © 1997 The American Physical Society



e

a
el
o
m
is
h

s
e

h
n
s
n

n

tim
e

d
re
he
-
a-
th
e
u

lly

is
g
oss-
g

he

dis-

es
wn
s

55 4419POPULATION DYNAMICS AND PHASE EFECTS IN . . .
ings. This leads to a description of the global structures m
tioned above. In Sec. IV, we calculate the parametersp and
P by using two approaches based on the original Land
Zener ~LZ! model @1# and the finite Landau-Zener mod
@15#. In Sec. V, we apply the results to find various types
population dynamics, including population swapping, co
pletely periodic evolution, superpositional trapping, stepw
evolution, and others. Finally, in Sec. VI, we present t
conclusions.

II. DEFINITION OF THE PROBLEM
AND LIMITING CASES

A. Definition of the problem

The time evolution of the probability amplitude
c(t)5„c1(t),c2(t)…

T of a coherently driven nondissipativ
two-level system is governed by the Schro¨dinger equation,
which in the interaction representation has the form

i
d

dt
c~ t !5F 0

1

2
V~ t !e2 iD ~ t !

1

2
V~ t !eiD ~ t ! 0

G c~ t !, ~1!

where the rotating-wave approximation~RWA! has been
made andD(t)5*0

t D(t8)dt8. We assume that the~on-
resonance! Rabi frequencyV(t) and the detuningD(t) are
given by

V~ t !5H 0, vt,2w

V, vt>2w,
~2!

D~ t !5A cos~vt !,

that is, the laser field is turned on at timet052w/v and kept
constant while the detuning has a sinusoidal behavior, t
leading to repeated and periodic crossings of the resona
as shown in Fig. 1. The problem is equivalent to and lead
the same results as the model with a coupling turned o
t050 and detuningD(t)5A cos(vt2w), which is also
shown in Fig. 1, but the definition~2! leads to simpler deri-
vations. We suppose that the system is initially in its grou
state,

c1~2w/v!51, c2~2w/v!50, ~3!

and we are interested in the excited-state population at
t, Pw(vt)5uc2(t)u2. The problem is characterized by thre
parameters with the dimension of frequencyV, A, andv.
Insofar as the populations are dimensionless, they must
pend on the ratios of these frequencies. Among the th
possible ratios only two are independent and we choose t
to beA/v andV/v. Furthermore, we will use the dimen
sionless timevt in the evolution matrices and the popul
tions throughout the paper. In other words, we choose
modulation frequencyv to determine the frequency and tim
scales of our problem. Simple solutions exist in two partic
lar extreme cases: that ofsmall coupling(V/v!1) and in
theadiabatic limit(V2@Av). These cases are schematica
shown in Fig. 2 and we will consider them below.
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FIG. 1. ~a! The model~2! studied in this paper. The laser field
turned on at timet052w/v and kept constant while the detunin
has a sinusoidal behavior, leading to repeated and periodic cr
ings of the resonance.~b! The equivalent problem of a couplin
turned on att050 and detuningD(t)5A cos(vt2w).

FIG. 2. Schematic representation of the region of validity of t
second rotating-wave approximation~small coupling,V/v!1)
whose boundaries are shown by the dashed line and which is
cussed in Sec. II B, and the region of validity of theadiabatic
solution @(V/v)2@A/v# presented in Sec. II C, whose boundari
are depicted by the solid curve. Note that the regions sho
@V/v,1 and (V/v)2.A/v# are larger than the actual region
@V/v!1 and (V/v)2@A/v #.
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4420 55B. M. GARRAWAY AND N. V. VITANOV
B. Small coupling „V/v!1…

This case has been well studied and understood in the
few years by means of the Floquet formalism@9,11,12,14#.
We summarize it here for the sake of completeness an
order to emphasize later the differences between its feat
and those in the other regimes. SinceD(t)
5*0

t D(t8)dt85(A/v) sin(vt), we can expand the exponen
in Eq. ~1! in terms of Bessel functions by using the relati
@16#

eiz sing5 (
n52`

`

eingJn~z!.

Thus we obtain

1

2
VeiD ~ t !5

1

2
V (

n52`

`

einvtJn~A/v!. ~4!

Whenv@V, only the nonoscillating term withn50 in the
sum contributes significantly to the population evolution.
neglecting all other terms~which is equivalent to asecond
rotating-wave approximation!, one finds that the excited
state population is given by
e

ot

fo

e

st

in
es

Pw~vt !' sin2F V

2v
J0~A/v!~vt1w!G1O~V/v!

~V!v!. ~5!

This result is valid for any modulation amplitudeA. Equa-
tion ~5! suggests that ifA/v is equal to one of the zeroes o
J0(A/v) @denoted usually byj 0,k (k51,2,3,. . . )#, then the
excited-state population is approximately zero. This eff
has been calledcoherent destruction of tunnelingin studies
on tunneling in a double-well potential@9#, dynamic local-
ization in quantum transport theory@12#, and population
trapping in optical physics@14#. Moreover, we have to stres
that the phasew doesnot affect substantially the populatio
evolution and, as Eq.~5! shows, it only shifts the time scale

Evidently, this effect is strictly valid in the second RW
only. ForA/v5 j 0,k , we can estimate the excited-state pop
lation by keeping the terms with oddn561,63, . . . in Eq.
~4! and neglecting those with evenn. Then, since
J2n(z)5(21)nJn(z), the sum in Eq.~4! is purely imagi-
nary. Equations~1! are easily solved and we find
Pw~vt !' sin2H V

v (
m50

`
J2m11~ j 0,k!

2m11
@cos~2m11!vt2cos~2m11!w#J ~V!v andA/v5 j 0,k!. ~6!
he
ed

-
ter-
. In
tem
tor
e is
ces-
eld
ch
of
Obviously,Pw(vt) is small due toV!v and it oscillates
between 0 and its maximum value, which is of ord
O(V2/v2). Note that forA/vÞ j 0,k , the solution~5! oscil-
lates between 0 and 1. WhenA/v5 j 0,k is large, Eq.~6!
should be a good approximation because, as the asympt
@16#

Jn~z!;A2/~pz! cosS z2
1

2
pn2

1

4
p D ~n fixed,uzu→`!

~7!

shows, the zeros ofJ2m(z) are close to the zeros ofJ0(z) and
hence,J2m( j 0,k)'0. Although rather simple, formula~6! has
not, apparently, appeared in the literature so far.

C. Adiabatic limit „V2@Av…

The adiabatic evolution is realized when the system
lows one of the eigenstates~adiabatic states! of the Hamil-

tonian. This takes place when the nonadiabatic coupling1
2q̇

is much smaller than the eigenvalue splitting1
2V0 ~Appendix

A!, i.e., uq̇u!V0, where

tanq5
V

D
~0<q<p!, ~8!

V05AV21D2. ~9!

The adiabatic condition in our problem is least well satisfi
at the crossings (D50), where it requires
r

ics

l-

d

V2@Av. ~10!

The adiabatic solution is, of course, well known. For t
reader’s convenience, it is given in Appendix A. Provid
the population is in the ground state at timet0, the excited-
state population at timet in the adiabatic limit is

Pw
ad~vt !'

1

2
2

D~ t !D~ t0!

2V0~ t !V0~ t0!

2
V~ t !V~ t0!

2V0~ t !V0~ t0!
cos2fad~vt,vt0!, ~11!

where

fad~vt0 ,vt !5
1

2Et0
t

V0~ t8!dt8 ~12!

is the adiabatic phase acquired between timest0 and t. It is
clear from Eq.~11! that the population evolution is charac
terized by two time scales. There is a fast time scale de
mined by the last term that generates rapid oscillations
the Bloch vector representation of a two-state state sys
this is caused by the rapid precession of the Bloch vec
about a pseudomagnetic field vector. The slow time scal
determined by the second term, which causes slow pre
sion. In the Bloch vector picture, the pseudomagnetic fi
vector slowly moves about, carrying the precessing Blo
vector with it. The ensuing modulation of any projection



-
.
o
re
s

t

s

ite

i
fo
t
n
e
ss

io
e
m
o
e
e
s

.

It
s of
n-

tion

for

n

s

n
-

-

trix

e

at

on

55 4421POPULATION DYNAMICS AND PHASE EFECTS IN . . .
the Bloch vector~such as populations! corresponds to ele
ments of theglobal structuresintroduced in the next section

It is worthwhile pointing out that in contrast to the case
small coupling, considered in Sec. II B, in the adiabatic
gime the initial phasew can alter the population dynamic
significantly becauseD(t0) is different. For example, if
w50, the initial value of the detuningD(t050)5A is maxi-
mal and the precession amplitude is maximal too, bu
w5p/2, we haveD(t052w/v)50 and there is no slow
precession@from the second term in Eq.~11!#. On the other
hand, for cosine modulation (w50) andA@V @the condi-
tion ~10! can still be satisfied if bothA/v and V/v are
large#, then near the antinodes (D'A) the third term in~11!
is much smaller than the second one, which approache1

2.
Hence, depending on the sign ofD(t), the population around
the antinodes resides either in the ground or in the exc
state almost completely. This is the regime ofpopulation
swapping, which will be discussed later on. Such a case
shown in Fig. 3. Note that this effect cannot take place
sine modulation (w5p/2). Finally, we should point out tha
as Eq.~11! shows, and in agreement with earlier conclusio
@17#, adiabatic evolution and a level crossing do not nec
sarily lead to a diabatic transition probability of unity, unle
the ratioD/V diverges at the initial and the final times.

For 1,V2/v2,A/v, neither the Floquet analysis from
Sec. II B nor the adiabatic solution apply. In the next sect
we develop a completely different approach to treat the g
eral case. Following the discussion of the adiabatic regi
we will separate the population evolution into two parts,
in other words, we will distinguish two time scales. Th
local behavior~the short time scale! can be deduced from th
knowledge compiled on two-level systems, which sugge
that the biggest changes in the populations~‘‘jumps’’ ! must

FIG. 3. A case of almost perfect adiabatic evoluti
(V/v520,A/v550). Upper figure,w5p/2; lower figure,w50.
The adiabatic solution~11! ~not shown! coincides almost com-
pletely with the exact numerical results.
f
-

if

d

s
r

s
s-

n
n-
e,
r

ts

occur around the crossings~the nodes! while between them
~around the antinodes! one is to expect Rabi-like oscillations
The global structure~exhibited on a longer time scale! is a
feature that will be discussed in more detail below.
emerges when we consider the curves on which the value
the populations at the antinodes lie. We will be mainly co
cerned with the two limiting cases,w50 andw5p/2, as
they lead to the most extreme differences in the popula
evolution.

III. EVOLUTION MATRIX APPROACH AND GLOBAL
STRUCTURES

A. Evolution matrix approach

The approach we choose to treat the global structures
w50 ~cosine modulation! and w5p/2 ~sine modulation!
consists of several steps:~i! we separate the entire evolutio
into intervals of lengthp/2 ~quarter periods!; ~ii ! we express
the evolution matrix for any quarter-period interval in term
of the evolution matrixU(p/2,0) for the interval@0,p/2#;
~iii ! we find the evolution matrix for the entire evolutio
from vt0 to theNth node or antinode by matrix multiplica
tion of the evolution matrices for the preceding intervals.

By definition, c(t)5U(vt,vt0)c(t0). Let us denote the
basic evolution matrix in the interval@0,p/2# by
U[U(p/2,0). Since it is a unitary matrix, it can be param
etrized by

U[U~p/2,0!5FA12pei ~h1z!/2 Ape2 i ~h2z!/2

2Apei ~h2z!/2 A12pe2 i ~h1z!/2G ,
~13!

wherep is the transition probability in@0,p/2# while h and
z are dynamical phases. In order to find the evolution ma
for any interval in terms ofU we need the following rela-
tions, which can readily be deduced from Eqs.~1!:

U~0,2p/2!5UT, ~14!

U~p,p/2!5s3U
†s3 , ~15!

U~3p/2,p!5s3U*s3 , ~16!

U~w212p,w112p!5U~w2 ,w1!, ~17!

wheres3 is the Pauli matrix

s35F1 0

0 21G .
For example, we will need the transition probability in th
interval @2p/2,p/2#, which is given by
P[uU12(p/2,2p/2)u2. Using relation~14! we find

U~p/2,2p/2!5UUT. ~18!

In terms of the parameters ofU @see Eq.~13!#, P is given by

P54p~12p! sin2h. ~19!

It is possible to express the values of the populations
the antinodesvt5Np and at the crossingsvt5(N1 1

2)p in
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4422 55B. M. GARRAWAY AND N. V. VITANOV
terms of the transition probabilitiesp and P only. The
evolution-matrix elements at these points are derived in
pendix B for cosine (w50) and sine (w5p/2) modulation.
Given the initial conditions~3!, the excited-state populatio
is equal to the squared modulus of the off-diagonal elem
of the corresponding evolution matrix. The values of t
excited-state population at the antinodes form the glo
structures.

B. Excited-state population at the antinodes: global structures

For cosine modulation(w50), the excited-state popula
tion at the even~top! antinodesvt50,2p,4p, . . . is @cf. Eq.
~B5!#

Pw50~2Np!5
~122p!2

12P
sin2~Nb! ~N50,1,2, . . .!

~20!

while at the odd~bottom! antinodesvt5p,3p,5p, . . . it is
@cf. Eq. ~B7!#

Pw50@~2N11!p#512
~122p!2

12P
cos2F SN1

1

2Db G
~N50,1,2, . . .!, ~21!

where

cosb5122P ~0<b<p!. ~22!

The pointsPw50(2Np) (N50,1,2,. . . ) form an ‘‘even’’
global structure Gw50

e (vt) and the points
Pw50@(2N11)p# (N50,1,2,. . . ) form another ‘‘odd’’
global structure Gw50

o (vt). By replacing 2Np by vt in Eq.
~20! and (2N11)p by vt in Eq. ~21! we obtain the equa
tions for these global structures

Gw50
e ~vt !5

~122p!2

12P
sin2S b

2p
vt D , ~23!

Gw50
o ~vt !512

~122p!2

12P
cos2S b

2p
vt D . ~24!

Therefore, for cosine modulation, there aretwo global struc-
tures, which are twoin-phase sinusoids with periods o
2p2/b shifted with respect to each other by the~constant!
splitting

Gw50
o ~vt !2Gw50

e ~vt !512
~122p!2

12P
>0. ~25!

Note that the upper structureGw50
o (vt) comprises the bot-

tom ~odd! antinodes.
For sine modulation(w5p/2), the excited-state popula

tion at the top antinodes 0,2p,4p, . . . is @cf. Eq. ~B9!#

Pw5p/2~2Np!5
1

2
2

122p

2A12P
cosF S 2N1

1

2Db G
~N50,1,2, . . .!, ~26!
-

nt

al

while the excited-state population at the bottom antino
p,3p,5p, . . . is @cf. Eq. ~B11!#

Pw5p/2@~2N11!p#5
1

2
2

122p

2A12P
cosF S 2N1

3

2Db G
~N50,1,2, . . .!. ~27!

By replacing 2Np byvt in Eq. ~26! and (2N11)p byvt in
Eq. ~27! we conclude that for sine modulation, there is on
one global structure comprising the values of the excite
state population at both the top and the bottom antinod
This gross structure is defined by

Gw5p/2~vt !5
1

2
2

122p

2A12P
cosF S vt

p
1
1

2Db G ~28!

and its period is 2p2/b, the same as the period of the glob
structures for cosine modulation. It can be shown that thi
the period of the global structures for anyw.

The implication from the above results is that if the jum
at the crossings are small enough, the global excitation
tory for sine modulation is astepwisetrajectory. For cosine
modulation, the global evolution is more complicated an
depending on the splitting~25!, can either consist of alterna
tive upward and downward jumpsor be a stepwise trajector
as for sine modulation. More detailed discussion on the
havior of the global structures follows in Sec. V.

We should particularly emphasize that in contrast to
regime of small coupling~Sec. II B!, in the general case th
population dynamics is quite sensitive to the initial pha
w. In Fig. 4, we have shown the population evolution f
several values ofw in the range@0,p/2#. The population
evolution whenw is in the range@p/2,p# looks similar,
although it is not completely the same. Moreover, it is cle
from Eqs.~2! that the population evolution forw is the same
~up to a shift in the time scale! as for w1kp
(k50,61,62, . . . ).Figure 4 shows that the population hi
tory is nearly the same in the range 0<w<0.45p and then
rapidly changes asw approachesp/2. This is because the
case of arbitraryw can be viewed as cosine modulatio
(w50) but with some preexcitation in the interval@2w,0#,
i.e., as cosine modulation with the system being initially~at
t50) in a coherent superposition of states rather than i
single state. This ‘‘preexcitation’’ is strongest if the las
field is turned on near the crossing where the populati
change most significantly, that is whenw'p/2. We should
also emphasize that for anywÞp/2 there are two globa
structures that ultimately degenerate into one forw5p/2.
This can be easily seen from the expression

4p~12p!~122p!

12P
coshF122pw

122p
cosh

2Apw~12pw!

p~12p!
coshwG ,

which gives the splitting between the two global structu
for arbitraryw. It can be found in a similar way to the der
vations forw50 andw5p/2 in Appendix B. The transition
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55 4423POPULATION DYNAMICS AND PHASE EFECTS IN . . .
probability pw and the dynamic phasehw are defined simi-
larly to Eq. ~13! but for the interval@0,w#. Evidently, the
splitting vanishes only forpw5p and hw5h, i.e., for
w5p/2, except in some incidental cases.

It is readily seen that in the limit of small couplin
(V!v), and for the specific case ofD(t)5A cosvt @Eq.
~2!#, the global structures~23!, ~24!, and ~28! reduce to the
weak coupling result~5!. Consider, for example, the case
cosine modulation (w50). For weak excitation we hav
p!1, P!1, and the two global structures~23! and ~24!
coalesce into one,Gw50(vt)' sin2(bvt/2p). To estimate
b5arccos(122P)'2AP , we use perturbation theory t
find

P'U2 i

2
VE

2p/2v

p/2v

ei ~A/v! sinvtdtU25FpV

2v
J0~A/v!G2,

~29!

with the help of Eq. ~9.1.18! of Ref. @16#. Hence,
b'(pV/v)J0(A/v), which leads to Gw50(vt)
' sin2@ 12J0(A/v)Vt], which is exactly Eq.~5! for w50.
Thus, the global structures, which in general comprise o
the values of the excited-state population at the antino
give the correct excited-state population at anyt in the limit
of weak excitation,V!v, irrespective of the value ofA.

Finally, we should point out that Eqs.~20!–~28! are exact.
Related approximate results have been reported in Ref.@11#
for the specific case of cosine modulation,D(t)5A cosvt, in
the limit A@V,v.

FIG. 4. The excited-state population evolution forV/v53 and
A/v533 and several values ofw ~denoted on the figures!. The
dashed curves forw50 are the global structures~23! and ~24!.
ly
s,

C. Excited-state population at the nodes

For cosine modulation(w50) the excited-state popula
tion at the nodesvt5p/2,3p/2,5p/2, . . . is

Pw50F ~2N11!
p

2 G5
1

2
2

122p

2A12P
cosF ~2N11!

b

2G
~N50,1,2, . . .! ~30!

while for sine modulation(w5p/2) it is

Pw5p/2F ~2N11!
p

2 G5sin2F ~2N11!
b

4G ~N50,1,2, . . .!.

~31!

These results can be derived in a similar manner as Eqs.~20!,
~21!, ~26!, and~27!. Thus, the excited-state populations at t
crossings lie on justonesinusoid for cosine modulation an
on another sinusoid for sine modulation. These sinusoids
less noticeable compared to the global structures that c
prise the antinodes because at the crossings the excited
population ‘‘jumps’’ up or down and the crossing points l
nearly in the middle of these jumps.

Finally, we should stress that all results derived in th
section apply not only for the sinusoidal modulation~2! but
for any kind of periodic detuning modulationwith a period
of 2p, provided the detuning is symmetric in@0,p# and
antisymmetric in@0,2p#. Of course, the particular values o
p andP depend on the specific shape of the modulation.
the next section, we derive analytic approximations forp and
P for the sinusoidal modulation~2!, which is the most natu-
ral one. Nonetheless, the methods used by us can easi
applied to other modulations too.

IV. ANALYTIC DETERMINATION OF p AND P

We have developed two analytic approaches for the
termination of the parametersp andP. The first is based on
the finite Landau-Zener model@15# and the second is base
on the original LZ model@1#.

A. Approach based on thefinite Landau-Zener model

We begin with the approach based on thefinite LZ model
and the calculation ofp. We separate the time evolutio
within a quarter-period from the crossing to the adjacent
tinode into two parts: from the crossing to a certain timeT,
and fromT to the antinode, withT being a free matching
parameter. In the interval from the crossing toT, the detun-
ing D(t) is almost linear; thus, we calculate the evolutio
matrix by using the half-crossing finite LZ model@15# in
order to account for nonadiabatic transitions. In the inter
from T to the antinode we assume that the evolution is ad
batic and we use the adiabatic-following solution~Appendix
A!. The details of the derivation are given in Appendix
The total evolution matrix for the quarter period@which in
our approach is notU but ratherUTM ; see Appendix C and
Eq. ~C1!# is a product of the adiabatic and the finite-L
matrices andp is given by the squared modulus of the of
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diagonal element. The evolution matrix that gives the ot
probability P is M*UUTM . The approximate expression
obtained forp andP are

p' 1
2 @12cosx cosQ2sinxsinQ cos~f12fad!#, ~32!

P'sin2x sin2~f12fad! ~33!

with

cosx5e2pa2/2 ~0<x<p/2!, ~34!

Q[q~p/2!5arctan
V

A
~0<Q<p/2!, ~35!

f~a!5argG~12 ia2/2!1
p

4
1

a2

2 S lna2

2
21D , ~36!

fad[fad~0,p/2!5
1

2E0
p/2v

AV21A2 cos2vtdt

5
AV21A2

2v
E~cosQ!, ~37!

whereE(k) is the complete elliptic integral of the secon
kind @16# and a5V/A2Av. The Landau-Zener phas
f(a) is equal top/4 at a50 and monotonically decrease
to zero asa→`. In the derivation we have made two furth
approximations. We have replaced the Landau-Zener a
batic phasefLZ ~C6! ~i.e., for a linear detuning! accumulated
from the crossing toT with the actual adiabatic phasefad
accumulated in the same interval. Moreover, we have
placed the angleqLZ(vT) of the rotation, which connect
the diabatic and the adiabatic representations for the fi
LZ model at the matching timeT, by the angleq(vT) ~8!
having the same role in the actual model~2!. These changes
which actually correspond to matching in the adiabatic ba
~A2! rather than in the diabatic one~A1!, simplify the results
and also eliminate the dependence on the matching timeT.

It is readily seen by setting cosx50, sinx51, andf50
that Eqs. ~32! and ~33! have the correct adiabatic limit
(V2@Av) derived when Eq.~11! is applied in the corre-
sponding intervals@0,p/2# and @2p/2,p/2#, namely,

pad'
1

2
2

V

2AV21A2
cos2fad, ~38!

Pad'sin22fad. ~39!

Another useful check of the validity of our results can
carried out in the limit of weak excitation,V!v, where we
have already calculated the value ofP perturbatively, Eq.
~29!. In this limit, the condition of validity of Eqs.~32! and
~33! require A@v @cf. condition ~40! below#. For
V!v!A, we have sin2x'pV2/(2Av), f'p/4,
fad'A/2v, and thus, our equation ~33! gives
P'@pV2/(2Av)#sin2(A/v1p/4). This is indeed the correc
limit obtained from Eq.~29! for A@v by using the Besse
function asymptotics~7!.

In Fig. 5, we compare formula~32! for p with the exact
values derived numerically. In Fig. 6, we do the same w
r

ia-

-

te

is

h

formula ~33! for P . The purely adiabatic solutions~38! and
~39! are also given. Formulas~32! and~33! are very accurate
almost everywhere except whenV/v and A/v are both
small.

B. Approach based on theoriginal Landau-Zener model

We have also determinedp andP by using theoriginal
LZ modelinstead of the finite LZ model. This cannot be do
directly for a quarter period~for p) and a half period~for
P) because there is no complete level crossing but only
crossings in these time intervals. Instead, we have de
mined p andP indirectly by considering the evolution be
tween two successive antinodes as described in Appendi
We have assumed that the evolution is purely adiab
throughout except at the crossing where instantaneous n
diabatic LZ transitions take place. Quite unexpectedly,
results are given again by Eqs.~32! and ~33!.

C. Discussion

The fact that both approaches lead to the same results
little surprising given that their conditions of validity ar
supposed to be different. In thefinite LZapproach~with the
assumption for the moment that the matching point is in
middle of the quarter-period interval,vT5p/4), the validity
conditions are

FIG. 5. The parameterp, representing the quarter-period trans
tion probability from an antinode to a crossing, plotted as a funct
of the dimensionless ratioV/v for several values of the ratio
A/v ~denoted on the figures!. The solid curves show the exac
numerical results, the short-dashed curves show the analytic
proximation~32! ~which coincide with the solid curves almost ev
erywhere except in the top two figures! and the long-dashed curve
show the adiabatic solution~38!.
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V21~pA/4!2@2Av,

~2V21A2!3/2@2VAv.

The former ensures the validity of the asymptotic expansi
used in the finite LZ model while the latter ensures the ad
batic evolution. These conditions generally require t
V/v and/orA/v should be large, which can conveniently b
written as

V21A2@v2. ~40!

As Figs. 5 and 6 suggest, the condition~40! should be both
necessary and sufficient for the validity of~32! and ~33!.
Obviously, the finite LZ approach can only fail whenV/v
andA/v are both small, as is also confirmed by Figs. 5 a
6.

In the original LZ approach we have assumed that t
evolution is purely adiabatic between the crossings while
each crossing instantaneous nonadiabatic LZ transitions
place. The restrictions onA/v and V/v that follow from
these assumptions are much more stringent compared to
dition ~40!. For instance, the adiabaticity between the cro
ings requires thatV2@Av while the instantaneous trans
tions impose a very small LZ transition timetc , well within
a half period: i.e.,tc!p/v. For nearly adiabatic excitation

FIG. 6. The parameterP, representing the half-period transitio
probability between two successive crossings, plotted as a func
of the dimensionless ratioV/v for several values of the ratio
A/v ~denoted on the figures!. The solid curves show the exac
numerical results, the short-dashed curves show the analytic
proximation~33! ~which almost coincide with the solid curves! and
the long-dashed curves show the adiabatic solution~39!.
s
-
t

d

at
ke

on-
-

the transition time in the diabatic basis~1! is tc'V/(Av)
@18#, and this leads to the conditionV/A!1. Thus, the con-
ditions of validity of the original LZ approach seem to be

~V/v!2@A/v@V/v@1, ~41!

which are obviously much more restrictive than~40!. For
instance, the original LZ method is not expected to be va
for V/v.A/v@1 and forA/v.(V/v)2@1, while it actu-
ally is. The fact that the original LZ method produces t
correct result even where it is not supposed to work, i.e.,
the actual conditions of validity are much more relaxed th
the ‘‘apparent’’ conditions~41!, is related to the nature of th
Landau-Zener model. One of the reasons is that the trans
time in the adiabatic basis~where the matching of the LZ
solution to the adiabatic solution is actually made! may be
shorter thantc ; in fact the valueV/(Av), which is the width

of the nonadiabatic couplingq̇ ~see Appendix A!, gives only
an upper limit for the transition time; i.e., the condition
V/A!1 is too strong. This time is really shorter, which
related to the fact that the original LZ model produces
correct leading term of the finite LZ asymptotics in the ad
batic basis~A2!. On the other hand, the requirement for ad
batic evolution throughout the interval between the crossi
is also too strong because the condition for small transit
time implies to a great extent that the nonadiabatic tran
tions are localized around the crossings anyway. The
discussion of this interesting issue, however, lies outside
scope of the present paper.

V. TYPES OF POPULATION DYNAMICS

The notion of the global structures developed in Sec.
and the relevant parametrization in terms ofp andP allow
us to find various distinctive cases of population dynami
which are discussed below.

A. Population swapping „p5 1
2…

When p5 1
2, the global structures~23!, ~24!, and ~28!

degenerate into horizontal straight lines. For cosine m
ulation (w50) we have Pw50(2Np)50 and
Pw50@(2N11)p#51, while for sine modulation (w5p/2)
we obtainPw5p/2(Np)5 1

2. Hence, forw50 we expect the
appearance of a regime ofcomplete population swapping,
the population being entirely either in the ground state~for
vt52Np) or in the excited state@for vt5(2N11)p#. The
curves in the parameter plane (V/v,A/v) on which p5 1

2,
can be found from our analytic approximation~32!, which
leads to the nonlinear equation

cos~f12fad!'2
A

VAepV2/2Av21
, ~42!

which can easily be solved numerically. It is possible to d
rive a simple approximate solution in the adiabatic regi
(V2@Av). Then the right-hand side of Eq.~42! is approxi-
mately zero, and alsof'0, fad'(p/4v)@z2A2/4z1•••#
with z5AV21A2. After some simple algebra we find

on

p-
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A~V/v!21~A/v!2'
1

2
@n1An21A2/v2#

~n51,3,5,. . . ;V2@Av!. ~43!

This equation defines a family of infinite number of curv
labeled by the odd indexn. In Fig. 7, we present the exac

FIG. 7. The exact curves in the parameter plane (V/v,A/v) on
which p5

1
2, obtained by numerical integration of Eqs.~1!. We have

found that they practically coincide with those derived from E
~42! ~not shown on the figure!. The dashed curve
@(V/v)252A/v# gives an idea of the boundary between the
gions where the evolution is adiabatic~above! and where the evo-
lution is nonadiabatic~below!.

FIG. 8. The excited-state population evolution forw50 and~a!
A/v5 j 0,10530.6346 . . . @the tenth zero of J0(A/v)# and
V/v58; ~b! A/v5 j 0,10530.6346 . . . andV/v54.81398~where
p'0.192641,P'0.5); ~c! A/v5 j 1,9529.0468 . . . @the ninth zero
of J1(A/v)# andV/v58.96149~wherep'0.5).
curves in the parameter plane (V/v,A/v) on which p5 1
2,

obtained by numerical integration of Eqs.~1!. We have
found that they practically coincide with those derived fro
Eq. ~42! ~not shown on the figure!. We have also checked
that in the adiabatic regime~roughly above the dashed curve!
thep5 1

2 curves are well approximated by the curves defin
in Eq. ~43!.

We must stress that the conditionp5 1
2 is necessary and

sufficient for population swapping to occur. In fact, cases
approximate population swapping have been shown in F
1 and 2 of Ref.@14# in which the ratioA/v has been chosen
to satisfy the conditionJ0(A/v)50. The present analysi
shows that the conditionJ0(A/v)50 is only important for
small coupling~Sec. II B!. For instance, for the parameters
Fig. 2 of Ref.@14#, A/v5 j 0,10530.6346 . . . andV/v58,
we havep'0.51915, which indeed is very close top5 1

2. In
Fig. 8~a!, the population evolution is shown fo
A/v5 j 0,10530.6346 . . . andV/v58 ~the same parameter
from Fig. 2 of Ref.@14#!, with w50. Almost complete popu-
lation swapping is realized. In Fig. 8~b!, we show the popu-
lation evolution forA/v5 j 0,10530.6346 . . . @the condition
J0(A/v)50 is again fulfilled# but withV/v54.81398~then
p'0.192641,P'0.5). A rather different behavior is ob
served, the excited-state population being almost zero
every fourth half period and around23 for the other three half
periods. This specific case is further discussed in Sec. V
Hence, Fig. 8~b! shows that the conditionJ0(A/v)50 does
not necessarily ensure population swapping. In Fig. 8~c!, the
population evolution is shown forA/v5 j 1,9529.0468 . . .
@the ninth zero ofJ1(A/v) whereJ0(A/v) has an extremum
rather than a zero# andV/v58.96149~thenp'0.5). Figure
8~c! exhibits almost perfect population swapping despite
fact that the conditionJ0(A/v)50 is significantly violated.
Thus, Fig. 8 demonstrates clearly that it is the condit

.

-

FIG. 9. Cases of incomplete population swapping~for w50)
and superpositional trapping~for w5p/2). The parameters are
V/v512,A/v5202.1261~thereP'0,p'0.23901).
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p5 1
2 that is responsible for population swapping rather th

J0(A/v)50.
Finally, we note that as seen from Eq.~38!, in the adia-

batic regime@(V/v)2@A/v# p tends to12 for A@V. In fact,
this property is a consequence of the asymmetry of the t
level problem in the interval@0,p/2# @19# . The appearance
of population swapping in this case confirms from anot

FIG. 10. Examples of completely periodic evolution f
A/v524 and several values ofV/v: 3.99018, 3.77660, 3.62346
3.50735, and 3.41581, chosen in such a way t
b'p/4,p/5,p/6,p/7, and p/8, respectively. The dashed curve
show the global structures~23! and ~24!. As Eq. ~21! suggests and
the figure demonstrates, forb5p/s with s odd, the excited-state
population equals unity at thesth, ~3s!th, ~5s)th, etc., antinodes and
the system is completely inverted there.
n

o-

r

viewpoint the conclusion deduced in Sec. II C from the ad
batic solution and illustrated in Fig. 3.

B. Incomplete population swapping and superpositional
trapping „P50…

Another interesting case arises whenP50. Thenb50
and according to Eqs.~20!, ~21!, ~26!, and ~27!, we have
Pw50(2Np)50, Pw50@(2N11)p#54p(12p), and
Pw5p/2(Np)5p. Hence, for cosine modulation the excite
state population jumps successively from 0 to 4p(12p) and
vice versa. Since 4p(12p),1 for pÞ 1

2, the population
swapping is incomplete. For sine modulation the excited
state population stays aroundp; i.e., we encounter a case o
approximatesuperpositional trapping. Unlike the case of
population trapping considered in Sec. II B, where the po
lation is trapped in asinglediabatic state, here the populatio
is trapped in a coherentsuperpositionof states, namely, in
the stateA12pu1&1Apu2&, up to an unimportant common
phase factor. Cases of incomplete population swapping~for
w50) and superpositional trapping~for w5p/2) are shown
in Fig. 9. According to our analytic approximation~33!, the
conditionP50 is met when sin(f12fa)'0. We have veri-
fied that this is in very good agreement with the exact n

merical calculations. Finally, when bothP50 andp5 1
2 , the

population swapping is complete, as it should be forp5 1
2

according to Sec. V A.

C. Completely periodic evolution

When b[arccos(122P) is a rational multiple ofp,
b5rp/s (r ,s integers!, the excited-state populatio
Pw50(2Np) @Eq. ~20!# vanishes exactly at every (2s)th an-
tinode. Thus, the initial conditions are restored, which i
plies that the population evolution is exactly the same in
intervals @0,2sp#,@2sp,4sp#, . . . . The population swap-
ping regime in subsection V B~when P50 and hence
b50) represents the simplest example of such evolution
Fig. 10, we show examples of completely periodic evoluti
for A/v524 and several values ofV/v, chosen in such a
way that b'p/4,p/5,p/6,p/7, andp/8, respectively. As
Eq. ~21! suggests and the figure demonstrates, forb5p/s

t

c

-

FIG. 11. Examples of completely periodi
evolution with small periods when b
'p/3 (P' 1

4),b'p/2 (P' 1
2), and b'2p/3

(P' 3
4). The ratio A/v5200 everywhere and

V/v510.47732~the two figures on the left-hand
side!, V/v512.02304 ~the two figures in the
middle!, andV/v513.66601~the two figures on
the right-hand side!. These cases more closely re
semble the regime of population swapping.
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4428 55B. M. GARRAWAY AND N. V. VITANOV
with s odd, the excited-state population equals unity at
sth, (3s)th, (5s)th, etc. antinodes and the system is co
pletely inverted there.

In Fig. 11, we show examples of completely periodic ev
lution for smaller periods when b'p/3 (P' 1

4),
b'p/2 (P' 1

2), and b'2p/3 (P' 3
4). These cases mor

closely resemble the regime of population swapping. We
counter some curious cases of population evolution: ‘‘tw
down, once middle, twice up’’~top left figure!, ‘‘once down,
twice middle, once up’’~bottom left figure!, ‘‘twice down,

FIG. 12. The exact curves in the parameter plane (V/v,A/v)
on which P5

1
2, found by numerical integration of Eqs.~1!. The

dashed curve@(V/v)252A/v# gives an idea of the boundary be
tween the regions where the evolution is adiabatic~above! and
where the evolution is nonadiabatic~below!.

FIG. 13. The excited-state population evolution forw50 and
w5p/2 in the case ofA/v532 andV/v51.2007. The condition
P54p(12p) is fulfilled almost exactly for these parameters a
stepwise evolution is realized not only for sine modulati
(w5p/2) but also for cosine modulation (w50).
e
-

-

n-
e

twice up’’ ~top middle figure!, ‘‘once down, three times up’’
~bottom middle figure!, ‘‘twice down, once up’’ ~top right
figure!, ‘‘once down, twice up’’ ~bottom right figure!. We
particularly emphasize the bottom figure in the midd
(w50,P5 1

2!, which shows superpositional trapping arou
the value of 23 for three half periods and trapping in th
ground state for the fourth half period, a case earlier see
Fig. 8~b!. In Fig. 12, we show the curves in the parame
plane (V/v,A/v) on whichP5 1

2. They resemble those fo
p5 1

2 in Fig. 7, but are twice as dense as follows from Eq
~32! and ~33!. One can derive an approximation to theP5
1
2 curves similar to that@Eq. ~43!# for the p5 1

2 curves.

D. Stepwise evolution

As we pointed out in Sec. III, the implication from th
existence of only one global structure for sine modulation
that if the jumps at the crossings are small enough, the glo
excitation history is astepwisetrajectory. For cosine modu
lation, the global evolution depends on the shift~25! between
the two global structures. If this shift is large enough, th
the evolution involves alternativeupward and downward
jumps as in Figs. 4 and 10. It is readily seen that f
P54p(12p) the shift ~25! vanishes and the evolutio
should be a stepwise trajectory~if the ‘‘jumps’’ at the cross-
ings are small enough! as for sine modulation. Such an ex
ample is shown in Fig. 13.

VI. CONCLUSIONS

We have presented an analytic study of the populat
dynamics of a nondissipative two-state system interac
with an external field and subjected to periodic level cro
ings. We have used a new evolution matrix approach to
culate the excited-state population at the crossings~the
nodes! and at the antinodes. The results depend on only
parameters: the transition probabilityp for a quarter period
from a crossing to an antinode and the transition probab
P for a half period between two successive crossings.
have found that the values of the excited-state populatio
the antinodes form global~gross! structures. The results ar
generally valid for any modulation with a period of 2p such
that the detuning is symmetric in the interval@0,p# and an-
tisymmetric in@0,2p#. We have been mainly concerned wi
the sinusoidal modulation~2!, which is the most natural one
We have concluded that the global structures and the po
lation dynamics as a whole are very sensitive to the ini
phasew of the frequency-modulated field. Particular atte
tion has been paid to the casesw50 ~cosine modulation! and
w5p/2 ~sine modulation!, which lead to the most extrem
differences in the population dynamics. We have calcula
the parametersp andP by using two approaches based o
the original LZ model and the finite LZ model, which tur
out to lead to the same results, Eqs.~32! and~33!. The notion
of the global structures and the relevant parametrization
terms ofp andP have allowed us to find various distinctiv
cases of population dynamics, such as population swapp
completely periodic evolution, superpositional trapping, a
stepwise evolution. Finally, we note that physical syste
exist where it should be possible to observe these phen
ena. It has already been suggested that, for example, th
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atom could be used in conjunction with frequency modula
light @14,20#, and it may also prove possible to manipula
the discrete optical levels in a resonator to show the sa
phenomena@21#.
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APPENDIX A: ADIABATIC-FOLLOWING SOLUTION

The transformation

c~ t !5Fe2 iD ~ t !/2 0

0 eiD ~ t !/2Gb~ t !,

whereD(t)5*0
t D(t8)dt8, casts Eqs.~1! into their Schro¨-

dinger representation

i
d

dt
b~ t !5

1

2F2D~ t ! V

V D~ t !
Gb~ t !. ~A1!

The time-dependent rotationb(t)5R„ 12q(vt)…a(t) with

R~g!5F cosg sing

2sing cosgG
transforms Eqs.~A1! into the adiabatic representation

i
d

dt
a5

1

2F2V0 2 i q̇

i q̇ V0
Ga, ~A2!

whereq andV0 are defined by Eqs.~8! and~9!. The condi-

tion for adiabatic evolution isuq̇u!V0 and if it is fulfilled
then the evolution matrix in the adiabatic basis is nea
diagonal. The adiabatic-following solution i
a(t)5Uad

a (vt,vt0)a(t0) with

Uad
a ~vt,vt0!5Feifad~vt0 ,vt ! 0

0 e2 ifad~vt0 ,vt !G , ~A3!

wherefad(vt0 ,vt) is the adiabatic phase defined by E
~12! and acquired between timest0 and t. The adiabatic so-
lution in the actual ~bare, diabatic! basis is
b(t)5Uad

b (vt,vt0)b(t0), where the evolution matrix is
given by

Uad
b ~vt,vt0!5R„q~vt !/2…Uad

a ~vt,vt0!R
T@q~vt0!/2#

5F u v

2v* u* G , ~A4!
d

e

e

s
ch

y

.

u5cosfad cos
q2q0

2
1 i sinfad cos

q1q0

2
, ~A5!

v5cosfad sin
q2q0

2
2 i sinfad sin

q1q0

2
, ~A6!

with the short-hand notationq[q(vt), q0[q(vt0), and
fad[fad(vt0 ,vt). The excited-state population isPad5
uvu2 and is given explicitly by Eq.~11!.

APPENDIX B: GLOBAL STRUCTURES

We wish to calculate the evolution matrices for Eqs.~1! in
the intervals@0,2Np#, @0,(2N11)p#, @2p/2,2Np#, and
@2p/2,(2N11)p#. Since the elements of any 232 unitary
matrix U with detU51 obey the relationsU115U22* and
U1252U21* , we will only give two elements of each matri
below. In addition to the relations~14!–~17!, we will use the
following identity valid for any unitary matrix@22#

F U11 U12

2U12* U11*
GN

5F cosNb1 i ImU11

sinNb

sinb
U12

sinNb

sinb

2U12*
sinNb

sinb
cosNb2 i ImU11

sinNb

sinb

G ,
~B1!

where cosb5ReU11. We will need the evolution matrice
for the intervals @0,2p# and @p,3p#. According to Eqs.
~14!–~17! they are given by

U~2p,0!5UTs3U*U
†s3U,

U~3p,p!5s3U
†s3UU

Ts3U*s35s3@U~2p,0!#*s3 .

In terms of the parameters ofU defined by Eq.~13! and
P54p(12p)sin2h, the matrix elements ofU(2p,0) and
U(3p,p) read

U11~2p,0!5U11* ~3p,p!5122P14ip~12p!sin2h,
~B2!

U12~2p,0!5U12~3p,p!522i ~122p!AP. ~B3!

Due to Eq. ~17!, for the interval @0,2Np# we have
U(2Np,0)5@U(2p,0)#N and by using Eqs.~B1!, ~B2!, and
~B3! we obtain

U11~2Np,0!5cosNb14ip~12p!sin2h
sinNb

sinb
, ~B4!

U12~2Np,0!522i ~122p!AP
sinNb

sinb
, ~B5!
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where cosb5122P. Likewise, for the interval
@0,(2N11)p# we use that U@(2N11)p,0#
5U@(2N11)p,p#U(p,0)5@U(3p,p)#Ns3U

†s3U and we
find

U11@~2N11!p,0#5
122p

A12P
cosSN1

1

2Db, ~B6!
ite
g
h

la

y
l
-

e
n

va
w

U12@~2N11!p,0#5
A4p~12p!2P

A12P
cosSN1

1

2Db

2 i sinSN1
1

2Db. ~B7!

By using U(2Np,2p/2)5U(2Np,0)UT and U@(2N
11)p,2p/2]5U@(2N11)p,0#UT, we further obtain with
the help of Eqs.~B4!–~B7!
U11@2Np,2p/2#5
ei ~z2h!/2

2Ap~12P!
HA4p~12p!2P cosSN1

1

2Db1 i FAP cosSN1
1

2Db12p sinNbG J , ~B8!

U12@2Np,2p/2#52
ei ~h2z!/2

2Ap~12P!
H FAP sinNb12p cosSN1

1

2DbG1 iA4p~12p!2P sinNbJ , ~B9!

U11@~2N11!p,2p/2#5
ei ~z2h!/2

2Ap~12P!
HA4p~12p!2P cosSN1

1

2Db1 i FAP cosSN1
1

2Db22p sin~N11!bG J ,
~B10!

U12@~2N11!p,2p/2#5
ei ~h2z!/2

2Ap~12P!
H F2p cosSN1

1

2Db2AP sin~N11!b G2 iA4p~12p!2P sin~N11!bJ . ~B11!
-

e
as-
APPENDIX C: CALCULATION OF p AND P BY USING
THE FINITE LANDAU-ZENER MODEL

For the sake of convenience, we choose to derivep and
P by working with a detuningD(t)5A sinvt and with the
two-level equations in their Schro¨dinger representation~A1!
in order to use directly the recent results for the fin
Landau-Zener model@15#, which assumes a linear crossin
at t50 with a positive slope. It can easily be shown that t
evolution matrix in the time interval@0,p/2# is UTM , where
U is the quarter-period evolution matrix for cosine modu
tion ~13! and

M5FeiA/2v 0

0 e2 iA/2vG . ~C1!

Thus, the transition probability is exactl
u(UTM )12u25uU12u2[p. Furthermore, for the time interva
@0,p# the evolution matrix isM*UUTM and hence, the tran
sition probability is given by u(M*UUTM )12u2
5u(UUT)12u2[P.

We begin with the calculation ofp. We separate the time
evolution in @0,p/2# into two parts:@0,vT# and @vT,p/2#,
whereT is a free matching parameter (0,vT,p/2). In the
interval @0,vT#, i.e., near the crossing wher
D(t)5A sinvt is almost linear, we calculate the evolutio
matrix by using the half-crossing finite LZ model@15# in
order to account for nonadiabatic transitions. In the inter
@vT,p/2# we assume that the evolution is adiabatic and
e

-

l
e

use the adiabatic-following solution~Appendix A!. The ex-
act finite LZ evolution matrix in the Schro¨dinger representa
tion ~A1! is given by@15#

UFLZ
b ~t,0!5F x y

2y* x* G , ~C2!

x5
22 ia2/4

2Ap
GS 122 i

a2

4 D @Dia2/2~tA2e2 ip/4!

1Dia2/2~tA2e3ip/4!#,

y5
22 ia2/4

aAp
eip/4GS 12 i

a2

4 D @2Dia2/2~tA2e2 ip/4!

1Dia2/2~tA2e3ip/4!#,

where t5TAAv/2 and a5V/A2Av while Dn(z) is the
parabolic cylinder function@23#. These matrix elements ar
well approximated by using the so-called strong-coupling
ymptotics ofDn(z) @15#; the final expressions are

x;eim1@sin~qLZ/2! sin~x/2!e2 i j1cos~qLZ/2! cos~x/2!#,

~C3!

y;eim2@sin~qLZ/2! cos~x/2!e2 i j2cos~qLZ/2! sin~x/2!#,

~C4!

with
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j5f12fLZ , ~C5!

wheref is the Landau-Zener phase~36!, fLZ is the adiabatic
phase in the finite LZ model,

fLZ5E
0

t
Aa21t82dt8

5
t

2
At21a21

a2

2
lnF 1a ~t1At21a2!G , ~C6!

and

m15fLZ2
a2

4
1

a2

2
ln

a

2
1argGS 122 i

a2

4 D ,
m25fLZ2

a2

4
1

a2

2
ln

a

2
1argGS 12 i

a2

4 D1
p

4
,

tanqLZ5
a

t
5

V

vAT
~0<qLZ<p/2!,

cosx5e2pa2/2 ~0<x<p/2!.

For the interval@vT,p/2# we use the adiabatic-following
solution ~Appendix A!. By multiplying the adiabatic evolu-
tion matrix ~A4!–~A6! for the interval @vT,p/2# and the
finite LZ matrix ~C2!–~C4! for the interval@0,vT# we find

UTM'Uad
b ~p/2,vT!UFLZ

b ~vT,0!

'F ux2vy* uy1vx*

2u* y*2v* x u* x*2v* yG ~C7!

and, hence,

p'uuy1vx* u2

' 1
2 @12cosx cosQ2sinx sinQ cos~f12fad!#,

~C8!

where Q[q(p/2)5arctan(V/A). In the derivation of Eq.
~C8!, we have assumed thatqLZ'q andfLZ'fad at t5T.
These assumptions simplify the result, eliminate the dep
dence on the matching pointT, and compensate to som
extent the inaccuracy introduced by the difference betw
the time dependence of the actual detuningD(t)5A sinvt
and the linear LZ detuning.

We now turn to the calculation ofP[u(UUT)12u2.
Since for the time interval@0,p# the evolution matrix in
the Schro¨dinger representation ~A1! is M*UUTM
5(M* )2(UTM )T(UTM ), we find from Eq.~C7! that

P' sin2x sin2~f12fad!, ~C9!

with the same assumptions as in the derivation ofp.

APPENDIX D: CALCULATION OF p AND P BY USING
THE ORIGINAL LANDAU-ZENER MODEL

We have also determinedp andP by using the original
Landau-Zener model, which assumes a constant coup
n-

n

ng

lasting fromt→2` to t→1` and a linear detuning passin
through the resonance att50. This cannot be done directl
for a quarter period~for p) and a half period~for P) as in
Appendix C because there is no complete level crossing
only half crossings in these time intervals. Instead, one
determinep andP indirectly. The parameterp can be found
by deriving the transition probability from a given antinod
to the next antinode, which, according to Eq.~21! with
N50, is equal to 4p(12p); we choose to do this in the
interval @2p/2,p/2# with sine modulation,D(t)5A sinvt.
Then, the parameterP can be found from the transition prob
ability from a given lower~or upper! antinode to the next
lower ~or upper! antinode, which is equal to 4P(122p)2,
according to Eq.~20! with N51; we choose for this the
interval @2p/2,3p/2# with sine modulation,
D(t)5A sinvt, again. We assume that the evolution
purely adiabatic throughout except at the crossings wh
instantaneous nonadiabatic LZ transitions take place. I
convenient to work in the adiabatic interaction representa

d

dt
d~ t !

5F 0 2
1

2
q̇~vt !e22ifad~0,vt !

1

2
q̇~vt !e2ifad~0,vt ! 0

G d~ t !

~D1!

obtained from the adiabatic Schro¨dinger representation~A2!
with the transformation

a~ t !5Uad
a ~vt,0!d~ t !,

whereUad
a (vt,0) is defined by Eq.~A3!. It is this represen-

tation ~D1! where the evolution-matrix phases in the origin
LZ model are defined~in any other representation they d
verge!. Furthermore, in the adiabatic limit the probabili
amplitudesd(t) do not change and thus the adiabatic evo
tion matrix is the unity matrix.

In this model, the evolution matrix in the interva
@2p/2,p/2# is given by

Ud~p/2,2p/2!'ULZ
d 5FA12pLZe

if ApLZ
2ApLZ A12pLZe

2 ifG ,
with pLZ5e2pa25cos2x, a5V/A2Av andf is given by
Eq. ~36!. The evolution matrix for the actual~bare! ampli-
tudesb(t) is

Ub~p/2,2p/2!'R„q~p/2!/2…Uad
a ~p/2,0!ULZ

d

3„Uad
a ~0,2p/2!…*RT

„q~2p/2!/2….

From here we find

4p~12p!5uU12
b ~p/2,2p/2!u2

'12@cosx cosQ1sinx sinQ cos~f12fad!#
2,
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whereQ[q(p/2) andfad[fad(0,p/2), which leads to the
same result~C8! as from using the finite LZ model.

To find P we need the evolution matrix for the time in
terval @2p/2,3p/2#; it is

Ub~3p/2,2p/2!5M „Ub~p/2,2p/2!…TUb~p/2,2p/2!M* .

The transition probability in this interval is
n

,
er

P.
.

J.
4P~122p!25uU12
b ~3p/2,2p/2!u2

'4~122p!2 sin2x sin2~f12fad!

and we obtain again the same result~C9! as from the finite
LZ model in Appendix C.
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