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Solitary-wave solutions to nonlinear Schralinger equations
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We examine the solitary-wave behavior of eigenstate solutions to various nonlineadiBgeroequations
(NLSE’s) in an arbitrary number of dimensions and with a general potential. These eigenstate solutions are the
only wave functions that can rigorously preserve their shape. We show that solitary-wave motion is only
possible if the nonlinearity is decoupled from the absolute position of the wave packet and if the potential in
the moving frame differs by at most a linear term from that for the eigenstate problem. If these conditions are
satisfied then the motion is along the fully classical trajectory, although the nonlinear term may introduce an
additional acceleration. We comment on the implications of these results to the study of the behavior of
Bose-Einstein condensed atoms in harmonic trapping potentials, for which the relevant NLSE is the Gross-
Pitaevskii equation. Numerical simulations are presented for harmonic and anharmonic potentials in one
dimension to illustrate our resultgS1050-294{@7)05006-3

PACS numbeps): 03.75.Fi, 42.65.Tg, 42.81.Dp

I. INTRODUCTION tial. This work was extended by de Mouri0], who treated
a general NLSE and concluded that the existence and shape
The recent observations of Bose-Einstein condensationf the solitons is not affected by an external potential, a
(BEO) in inhomogeneous dilute alkali gases with positive result that conflicts with this work. In a more recent paper de
scattering lengthgl,2] have intensified theoretical efforts to Moura[11] extended his treatment by considering the possi-
predict the properties of this macroscopic quantum-ility of “breathing modes” in which the width of the wave
mechanical system. The starting point for such predictions ipacket can change with time but the fundamental shape does
usually the Gross-PitaevskiGP) equation with a harmonic not. Some results from this later work are also inconsistent
trapping potential. This is a cubic nonlinear Safirger  with our analysis. The case of solitons of the CNLSE with
equation(CNLSE) and is presumed to be valid for a dilute tjme-dependent linear and harmonic potentials has been thor-
gas fia®<1, wheren is the average density aralis the oughly dealt with by Nogami and Toyani&2].
s-wave scattering lengjtat zero temperature where quantum || these treatments have been restricted to one dimen-

and thermal fluctuations can be neglecf8f For a discus- sion, however, and with the exception of Ref&,8,13, the

s!on_of the sol_utions to t.his quation_see R%S] and ,the propagating wave was an eigenstate of the NLSE in free
citations therein. There is particular interest in applying the

h h . f ; hich will | kspace(i.e., all the potentials were externpalWe extend this
#o(re%%/vteol tfeztr:ﬁ)étsg;ng?g%; %xz)r(r?slrelmp?rnot;’e\r/\{ielg tr\llgt doe? work by considering rectilinear motion in an arbitrary num-
: S L . ber of dimensions for general potentials and by allowing a
pend on the nonlinear term describing particle interacjions .~ " .
the response to external perturbations, and methods of mﬁ‘_’me—mde_pendent parF of .the potent|-all to affect the shape of
nipulating the condensate. As part of this work we have bee € solution. By conS|der|ng the validity O.f our method we
studying some of the features of condensate motion on@re able to show that only elgenstgte solutions to the relevant
would expect from the GP equation. NLSE can propagaFe as exact sqlltary waves anq the_n qnly
In this paper, however, we take a wider perspective andvhen the nonllr)earlty. and po'Fer)tlaIs satisfy cer_taln criteria.
consider the motion of eigenstates of various nonlineaflthough our primary interest is in the GP equation relevant
Schrainger equation§NLSE’s) with arbitrary potentiald.  to BEC, our analysis applies to a wide variety of NLSE's.
We are interested in finding solutions that propagate withou¥vVe present numerical simulations in one dimension to illus-
change of shape, i.e., solitary waves. Some features of thigate and confirm the arguments presented. We do not con-
problem have already been examined by a number of othegider the possibility that the wave might change its shape
authors. Chen and Liu, for example, considered the case oftamporarily only to reform at a later stage of its evolution.
linear[6] and quadrati¢7] potential for the CNLSE for op- An example of this for the case of a soliton incident on a
tical solitons propagating in inhomogeneous media. Nassasotential step can be found in R¢L.3].
[8] used stochastic mechanics to solve the logarithmic non- The shape of a wave is determined by its modulus, so our
linear Schrdinger equation with a time-dependent forcedmethod involves decomposing the wave function into a
harmonic-oscillator potential, while Hasg®] considered modulus and phase and insisting that the modulus should
NLSE’s with a variety of nonlinearities and a linear poten-only depend on time via a change in its mean position. This
method is essentially the same as that of Réb-{12] and
the work of Husimi[14] and Kernel{15], who both treated
*Permanent address: Physics Department, University of Otagdhe linear case in some detail. Much of our work mirrors that

Dunedin, New Zealand. of de Mourg[11], although we do not consider the possibility
For applications to BEC, an eigenstate represents a condensed breathing modes and draw somewhat wider conclusions
assembly of trapped atoms. for solutions of fixed width.
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[l. SOLITARY-WAVE SOLUTIONS be of most interest since this is usually the state formed in an
evaporative cooling experiment. It is perhaps worth mention-
ing that excited-state solutions can look like dark solitary

waves on a finite backgroud6] since at each node there is

For simplicity we start with the one-dimensional NLSE in
reduced units

P YA a kink in the density profiléfor example, consider the first
iﬂz _p?—xﬁ_ V(X)) +WW . (1)  excited state for a harmonic potential and cubic nonlinearity,

which vanishes at the origin by virtue of its odd payity
These solitary waves correspond to a synchronous motion of
the kink and the finite background. Our method cannot deal
with possible solitary waves that consist of the motion of a
kink relative to a finite background as in this case the overall
shape is not exactly preserved. The motion of a kink relative
to an infinite background is included in our analysis, how-
ever, since this motion is indistinguishable from the synchro-
nous motion described by E¢B).

We substitute the expression f&f,.,(x,t) into Eq. (1)

This equation describes a field of particles of massvhere
the unit of time is 1o and that of length is/A/2mw, with
fiw some convenient energy scale in the probleng., the
level spacing for a harmonic potentidlW is the nonlinear
potential term and in applications to BEC is given By
«|W|2. This form for W gives the GP equation mentioned
above.

We decomposeV(x,t) into two parts, writing it as
V(x) +P(x,t), and in what follows we shall refer td(x) as and change variables from{x,t} to {q,t}, where

the "fixed potential” and toP(x,t) as the “external poten- o_, _y (t)"and is the coordinate that determines the inter-
tial. Th|s procedyre is convenient but arbltar.y_ since only .1 structure of the solitary wave. This gives

V(x,t) is well defined. However, all decompositions lead to

the same physics and we can transform between them very

simply as shown in the Appendix. The purpose of the de-d¢(d) 39S

composition is to allow for the possibility that the shape of a o E‘ﬁ(q)

solitary wave may be affected by the presence of a time- ()

independent potential and it will usually be obvious fromthe  _ | _

physical situation which decomposition is most appropriate. _[ dq2 V(@) bq)+Wh(a) 6¢(q)]

We assume that an eigenstate solutioh(x,t)=

d(x)e ' to the fixed potential problem has already been _{ i&_qu&(q) +i iscﬁ(q)_ a_S)Z(b(q)}
found so thaig(x) satisfies dq dqg 9q° aq
d2e(x) +AV(g+Xo,%0) ¢(Q)+P(q+Xo,t) (), 4

€¢(X):—W—+V(X)¢(X)+W¢(X), 2

where AV(g+Xg,Xg) = AV(X,Xp)=V(X) —V(q), the q de-
where e is the energy in units ofiw. This equation deter- rivatives are evaluated at constardind thet derivatives at
mines the shape of our solitary waves. The question arises @®nstantx. We have assumed th&l¢ has exactly the same
to whether further solitary waves exist whose shape is nofunctional form in theq variable as in the variable, i.e. that
determined by an equation of this form, but we show in theit depends only on the internal coordinate of the wave func-
Appendix that the structure of all solitary waves is deter-tion. In fact, this represents the requirement on the nonlin-
mined by Eq.(2) for some choice o¥/(x). We now look for  earity for solitary wave motion to be possible and is dis-

a solution to the full potential of the form cussed in more detail in Sec. Ill. We note at this stage,
St however, that the GP equation describing BEC is indeed of
W enl X,1) =W g g(X—Xo (1), 1)e!S*Y this form.
— h(x—xo(1))e~ teiSx), 3) The term in curly brackets in E¢4) vanishes as a result

of Eq. (2). We now writep=pe'?, wherep and () are real
functions ofqg, and separate E@4) into real and imaginary

h t) is the time-d dent shift in th iti f th . :
wherexg(t) is the time-dependent shift in the position o eparts, which(for p0) are, respectively,

wave function, i.e.xo(t) = w(t) — po, Wwhereu(t) is (X)new

and uo is the mean of the solution to Eq2), i.e.,

wo=Jx|#|?dx. This new wave function corresponds to dS dxpdQ S dQ 2

propagation of the original solution without change of shape ot ar dq_ 2% dq + (%) +AV(g+Xo,%o)

if and only if S(x,t) is real. We shall see that requiring

S(x,t) to be real leads to a consistency condition which si- +P(g+Xop,t), )

multaneously determines the time dependencgy(f) and

restricts the potentialg(x) and P(x,t) and the nonlinearity 2

W that allow such solutions. p % d_p: 2pd_p a_S+p2‘9_§
Although the theory we will develop applies to any solu- dt dq dq dq dq

tion of Eq. (2), in applications to BEC the ground state will

The imaginary part can be integrated immediately to give

Note the factor of 2 in the scale of length, which occasionally
makes results appear unfamiliar at an intermediate stage of the cal- IS _ 1dx

o 2
culation. g 2 dt +A(t)/p~. 7



4340 S. A. MORGAN, R. J. BALLAGH, AND K. BURNETT 55

For localized solutions we must sa{t)=0 to give a finite The classical equation of motion, in these units, for a
energy and particle curreft?7]. Thus Eq.(7) becomes particle (considered to be localized at the mean of the wave
function) in the given fixed and external potentials is
S S 1dxg ® .
aq ox 2 dt’ 1d%n_ (9

Integrating again gives
where the factor of 1/2 is an artifact of our scaling of the
S(x,t) = E d_XOXJr B(t), 9) o_riginal Sch'r'«ﬂinger e_quati(_)n. In order to compare the clas-

2 dt sical equation of motion with Eq12) we note that

whereB(t) is an(as yet undetermingdunction of time. AV(X,Xg)=V(X) = V(X—Xq(t)) (14
If we now substitute Eq(8) into the real parfEq. (5)] and
convert back to the coordinate description we obtain and therefore that
2 avia] (G| (g
== - — —AV(X,Xg) =|=—=V(X) —|==V(q)
=T dt) AV(X,X0) = P(x,1). (10) X AV(X.Xo LT .. \dg (9 o
(15

This is an energy equation, the terms on the right-hand side

being, respectively, the additional kinetic energy due to thelhus Eq.(12) can be identified as the classical equation of
center-of-mass motion and the change in the potential energyiotion, provided that the final term of Eq15) is zero,
due to both the displacement in the fixed potential and th&hich will be the case as long as a Taylor expansion of

applied external potential. Integration of H40) gives V(x) about the mean position of the fixed eigenstate contains
no linear contribution. Classically, this term would have to

dxg\ 2 be zero for a stationary solution, but this is not the case in
S(x,t)= - j Z(H) dt—f [AV(X,x0) +P(x,1)]dt quantum mechanic&onsider, for example, a particle in an
infinite potential well with a tilted bageThe effect of this
+C(x), (1) termis to add an acceleration to the motion and although this

. o ] ] will usually be of little importance in the application of the
whereC(x) is atlme—lndepend_ent “constant” of integration. theory to atoms trapped near a potential minimum, it can be
We now have two expressions f&x,t) in the form of  introduced by certain nonlinearities as discussed in Sec. Ill.
Egs.(9) and(11), which must be consistent with each other  \ye should also confirm that E@12) is consistent with
if solitary wave motion is to be possible. The condition this ghrenfest’s theorem, which gives the usual quantum equa-
imposes is most simply obtained by taking the partial derivation of motion for the mean of a localized wave packet. If
tive of Eq. (8) with respect ta (noting thatx, depends only v js a function(rather than an operafothen we obtain the
ont) and the partial derivative of Eq10) with respect to  fg|lowing equation of motion for the mean of a wave packet:
x and equating the results. This gives the equation of motion
1d%u I[V(X)+P(x,1)] oW
(12 2 dt* < ox > < X

1d% 1d°%u > (16)

> W_ E W S &[AV(X,XO)‘F P(X,t)],
which is valid for any localized wave packet regardless of
where u is the mean of the solitary waJesee beneath Eq. whether or not it maintains its shagsee Ref.[18] for a
(3)]. Since the left-hand sid@.HS) depends only ot then,  general derivation or Ref9] for a discussion relevant to
if the wave function is to propagate without change of shapeNLSE’s). In general the nonlinear term does contribute to the
the right-hand sidéRHS) must also depend only dnHence  equation of motion, although it vanishes for solutions with
the quantity[ AV(x,xo) + P(x,t)] must be at most a linear good parity (as is the case in the study of BEGFor an
function of x.* This is the condition on the potentials for eigenstate of the fixed potential NLSE, however, the solution
solitary wave motion to exist and is the central result of thisis stationary so that we must have-(dV(x)/dx)
paper. The physical content of this restriction is discussed ir=({ W/ dx). If the wave function then propagates as a soli-
Sec. II# tary wave, the nonlinear contribution is unchanged so that
the equation of motion is

of Egs.(9) and(11) shows thaC(x) = 5(dx,/dt)x. This leads to a 2 dtZ2 IX (17

possible motion since in this caé(adxoldt) is independent of time.

“This restriction on the potentials is in contradiction to the resultwith AV(X,X,) defined as before. This result is identical to
of Ref. [10] since in that paper the author does not consider théEq. (12) since for the solitary wave motion to be possible
consistency of his equations. It is also in contradiction to the statef AV(X,Xg) + P(X,t)] must be at most a linear function of
ment in Ref[11] that no solitary wave exists in a harmonic poten- X. If the final term in Eq(15) is zero, then the motion of the
tial. In that case the reason is that no allowance is made for thenean is identical to the classical motion whereas Ehrenfest’s
possibility that the shape of the wave may be affected by the potheorem usually results in a pseudoclassical motion since
tential. (aVI1ax) #(dVIdx)xy in general. We illustrate the distinction

3If [AV(X,Xo) + P(x,t)] does not depend on then a comparison 1d%u <3[AV(X7X0) + P(X,t)]>
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between these two motions numerically later in the paper fothey will of course affect how the shape changes with time

a solution that does not maintain its shape.

IIl. GENERAL NONLINEARITIES AND PHYSICAL
INTERPRETATION

should such motion not be possible. As a consequence of
this, we see that for a harmonic trapping potentilmore
drastic perturbation than shakirige., randomly displacing
the minimun) is required to provide a good indication of the

presence or absence of a condengfteexample, one could

In Eq. (4) we assumed thalV has exactly the same func- try “squeezing” the condensate by rapidly varying the trap
tional form in theq variable as in thex variable, which  frequency, thereby setting up excitatidr9]).
means that it depends only on the internal coordinate of the We should stress that we have assumed the existence of
wave function. This will be true for any function @f and  eigenstate solutions to the fixed potential problem in our
alax since dldx=d/9q and ¢ takes the new argumemt  analysis. Our results are only valid, therefore, if the combi-
when the wave function is shiftetlV may even be an opera- nation of nonlinearity and fixed potential allows such solu-
tor as in the derivative nonlinear Schiinger equation for tions. An example of the restriction this imposes can be
whichWee (p| ¢|2+ | #|2p), wherep is the momentum opera- found in the case of no fixed potentiélee spack where the
tor [19]. However, nonlinearities that depend explicitly on Nonlinearity must be negativeepresenting attractive inter-
the variablex (i.e., other than througlhp) have to be ex- actions if the energy functional is to have local minima.
cluded since there is then a coupling between the external
and internal motions. An example of such a nonlinearity is
W x?| 4|2, If nonlinearities of this form are preseand
assuming they are realthen they will lead to an additional
¢-dependent term in Eq5). This certainly will not be a
linear function ofx and hence(given a sensible external

IV. EXTENSION TO HIGHER DIMENSIONS

The above physical argument suggests that our results are
not restricted to one dimension provided that motion along
one axis does not affect the dependence of the potential on
the other coordinates. To examine this we consider rectilin-

potentia) it will be impossible for Eqs(5) and (6) to be ear motion in a space of arbitrary dimension and single out
consistent. Thus the only nonlinearities that allow solitary . pa . y . 9 X
Qex axis as the axis of interest, denoting the other coordi-

wave motion are those that are independent of the absoluf t b W " th tential
position of the wave packet. nates y it e write € potental —as

A further effect of the nonlinearity in some cases is tOV(X)ny(iyiE]HU(X,{?/i}) +dP(;]<,{yi},t). errle Vy iS. any”
produce a constant acceleration term which is absent frorfinction o t_e{yi}_ only and theU potential contains a
the classical equation of motidihis is the final term in Eq. Cross terms _|nvoIV|ng<_. P is again the tme-de_pendent ex-
(15)]. An example of this may be found if we consider aternal potential. Equation®) and(6) are respectively modi-

harmonic fixed potential and a nonlinearity of the foun fied to

oc|W |24 (9l 9x)|¥|*. This nonlinearity does not have good 5

parity and as a result the mean of an eigenstate is not at _ ‘9_84_ % @ :2‘9_8 & + (&_S)

the minimum of the harmonic potential. The finaltermin Eq.  dt  dt dq9 99 dq 1dq

(15) is thus nonzero and the solitary wave solution oscillates 9S 90 PISE:
at the trap frequency about, rather than about the trap +2 [ __+(_) }
minimum. We see, therefore, that although the nonlinear T LY dyi |9y

term does not appear explicitly in the equation of motion, it
may have an implicit effect on the evolution of the solitary
wave. +P(a+xo.{yi} 1), (18)

The restrictions on the potentials and the form of the non-
linearity have a simple physical interpretation. An eigenstate JS IS
solution is the result of a precise balance between the kinetic, 2 a( p2—> a( pz—)

: : . S . 1dxy dp aq ay;

potential and nonlinear terms in the Sathrgyer equation. If - S A + 2 ) (19)
the nonlinear term depends only on internal coordinates, then 2 dt Jq Jq i i
its contribution is entirely unaffected by a displacement of
the eigenstate. The change in the potential experienced by The quantityAU in Eq. (18) has a similar definition to
the wave packet is then exactly the termAV. Notice thatV,({y;}) does not appear in these equations
[AV(X,X0) + P(x,t)], which appears in the equation of mo- and it may thus be any function of the coordinates including
tion. If this is linear inx it corresponds to a spatially uniform an anharmonic one. Integration of E@.8) will give S at
force which accelerates all parts of the wave packet in théeast the phase dependence{gy} that appears idU (un-
same way and hence does not cause any deformation. If thessP is chosen to cancel thislt seems unlikely, therefore,
wave packet represents a condensate so| thlatis propor-  that the solution can be consistent with E&9). In the spe-
tional to the particle density, then a linear potential corre-cial case that)=0 andP is independent ofy;}, however,
sponds to a uniform acceleration of these particles. Hence e can takeS to be dependent only oxandt. In this case
does not affect their separation and so their interactieeis  the full potential contains no cross terms involvirg(al-
resented by the nonlinear teyare unchanged and we would though there may be cross terms in fyg} in V,) and the
expect the wave function to maintain its shape. We see,
therefore, that nonlinear terms that depend only on the inter-—
nal coordinate of the wave function play no role in determin- SAV(x,x,) is linear inx for a harmonic potentialsee later dis-
ing whether or not solitary wave motion is possible, althoughcussion.

+AV(q,%0) +AU(g+Xg,X0,1Yi})
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problem reduces to that considered in the one-dimensione o2 . . . . , - ;
case. This confirms what we would expect physically, but at
first sight may appear a little strange since we may creatt
cross terms in the potential by rotating our coordinates. It o1sf
should be remembered, however, that we chose to look alon %0'14_
the x axis for propagation without change of shape. It ap- 2
pears, therefore, that solitary wave motion can only exist g912f
along specific axes for which the potential is decoupled from3 |
the other coordinates. A particular case of interest relevant ti s
the experiments in Ref§1,2] is V~ w, (x>+y?) + w,2?, i.e.,
the anisotropic harmonic potential in three dimensibfsr

such a potential we see that there is solitary wave behavior il
thex-y plane and along the axis but not in other directions. %[ ;
0.02+ /
V. APPLICATION TO SIMPLE POTENTIALS ! , L .
-20 -15 -10 -5 0 5 10 15 20

We now illustrate the above discussion by considering Position in oscillator units

some particular fixed potentials.

0.181

o

=3

-3
T

e

Q

&
T

Modulus sq

FIG. 1. Plot of|W|? for the propagation of the ground state with
C,=20 in a harmonic fixed potential. The profiles are shown at
intervals of/5 with the far right profile at=0 and the far left one

In this caseAV is zero and there is only a solitary-wave att=.
solution forP(x,t) = f(t)x, i.e., if there is a constant external
force across the wave packet. This contradicts the result gfiously so that\V+ P(x,t) is linear and so obtain solutions
Ref. [10]. The existence of an eigenstate solution requireshat propagate without change of shape. This will only be the
that the nonlinear term be negative, as mentioned above. Th&se, however, for very particular choicesR{ix,t), tailored
equation of motion is to given initial conditions, and is unlikely to be realizable
experimentally unless one can control the strength of various
different polynomial potentials independently and rapidly.

A. Constant potential

2x

— 2= _2f(1) (20)
dt? '

. . VI. NUMERICAL RESULTS
If f(t)=0 the solution has a constant velocity and the term

C(x) in Eq. (11) must be nonzero. We present numerical results for harmonic and anhar-
monic fixed potentials in one dimension for a nonlinear term
B. Quadratic potential of the form W= C,|¥|?, which gives the GP equation rel-

o . . evant to the study of BEC.
This is a case of particular importance for the study of

BEC in dilute gases. Eigenstate solutions exist for both posi-
tive and negative nonlinearities. If we take the energy scale
as the level spacing of the harmonic oscillator, tR&x) = 1. P(x,t)=0
X2 andAV(X,Xg) = 3(2X—Xg) Xo. SinceAV is linear inx we
now have solutions withP(x,t) either linear or zero. The
case of zero external potential allows for solutions in which
the wave packet oscillates freely in the harmonic potentia
(for example, the initial state might be displaced from the
minimum), although in practice this would be achieved by 1 1
displacing the trap using a linear external potential. The __ = ; = 2a

equation of motion foP(x,t)=f(t)x is St == 5 poxsin(t) + g uosin(2L), 22

A. Harmonic potential

In this case the solution to Eqg.(21) is
u(t) = uocost+6). We consider the case thét=0, which
Forresponds to a stationary initial state displaced in the fixed
potential. Equatior{11) gives a phase factor of

d?xo +xg= —26(1) 21) which is the expression derived for the ground state in the
dez o ’ linear case in Refl18]. The predicted motion has been ob-
served for the ground and first excited states v@th= 20,
which is the usual forced harmonic-oscillator equation. and for the second excited state with;=8 and the ground
state withC,,=—5. The phase dependence was that pre-
C. Anharmonic potentials dicted in Eq.(22) to within 102 rad for the first pair and to

within 102 rad for the second pair. Figure 1 shows a plot of

In this caseAV contains higher powers of than linear the ground state propagation with(t=0)~5.

ones and folP(x,t) =0 there are no solitary-wave solutions.
It is possible, however, to choose the external potential judi-
P P J 2. P(x,t)= —cog2t)x
The solution to Eq(21) for a wave packet initially at rest
®The work reported if2] used a modified potential, but we be- and centered on the origin jg(t) =3[ cos¢)—cos(2)]. The
lieve that more recent work involves a potential of this form. phase dependence from H4l) is
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Evolution time in oscillator units Evolution time in oscillator units
FIG. 2. Plot of the mean position of the ground state with  FIG. 3. Plot of the mean position of the displaced ground state
C,=20 in a harmonic fixed potential, subject to an external poten-of the anharmonic potential in the text and nonlinea@fy=5. The

tial P(x,t)=—cos(2)x. The crosses are numerical points and thecrosses are numerical points, the dotted line is the fully classical
full line is the classical prediction. prediction, and the full line is the prediction of Ehrenfest’s theorem.

3 1 _ _ Thus, if we choos®(x,t) = — Aux3+ 3Au?x?— Au3x, then
S(x,t) = — 7gt+ zX[2sin2t) —sin()] Eq. (12) leads 'Fodz,u,/dt2+,u=0, which givesu ~ cos() for
an initially stationary wave packet. We togk(t=0)~2, as
1 1 ) 5 for the simulation above. Equatidf0) for S/t is the same
+ | Sin(t) + 5sin(2t) —sin(3t) + gsin(4t) |. as for the case of a harmonic potential witx,t)=0, ex-
cept for an additional contribution gAu* on the RHS. The
(23 phase prediction is therefore the same as in(Eg). with an
. . _ _ _additional term of&Aud[ 3t+sin(2)+isin(4)]. The wave
The profile used in the simulation was a ground state Withy,ion does maintain its shape, as expected, and the phase
Cri=20. Figure 2. IS a pIo.t of its mean position a}nd that of satisfies the theoretical prediction to within 0.03 rad. Unfor-
the classical prediction. It is clear that the motion is along the nately, this accuracy is insufficient to test the additional
classical trajectory, as expected. The shape is well preserveq - < tarm given above, except for the linear contribution
and the phase prediction of E(J3) is satisfied to an accu- which is significant near the end of the simulation

3
racy of order 10~ rad. (t=4r). Figure 4 shows a plot of the mean position of the
wave packet, proving that it does indeed follow the fully
B. Anharmonic potential classical trajectory.

We consider an anharmonic fixed potential of the form
V(x) =A(3x*) + 3x2, with A= 55 and two different external
potentials.

~

1. P(x,t)=0

The initial wave function was the ground state of the
above anharmonic potential witG,=5, displaced in the
potential tou(t=0)~2. In this case the wave function does
not maintain its shape as it evolves, although the changes al
not dramatiooccurring at the 10% levebwing to the small
anharmonicity. Figure 3 shows a plot of the mean position of
the wave packet as a function of time together with the fully
classical prediction and the Ehrenfest prediction. It is clear =
that the motion is governed by Ehrenfest's equation and is _ |
not exactly classical.

ean position of wave function in oscillator units
(=]
T

—1F

- L L L L L
. o] 2 4 8 8 10 12 14
2. Forced motion Evolution time in oscillator units

For the above potential we have that .
FIG. 4. Plot of the mean position of the ground state of an

s 3 - - L 5 anharmonic potential and nonlineariBy, =5 subject to an external
AV=Aux>— 3 Aux+ (AM + u)X— sl (1+Au?). force. The crosses are numerical points and the bold line is the fully
(29 classical prediction.
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VIl. CONCLUSION potential asV(x,t)=V(x)+P(x,t), and introducing the
We have shown that the shapes of exact solitary waves cﬁenter-of-tmassf cg)o;dlnatﬁﬁ;hxo. AS t_)etfore, this I(;a_?ds to
the time-dependent NLSE are given by the eigenstate sol WO €quations Tor2 torwhich the consistency condition 1S
tions of a time-independent NLSE for some fixed potential. 1 d?x, d 1d%
These eigenstate solutions can only propagate as solitary > d2 = da ——d—2+V(q)+W
waves provided the nonlinearity does not depend explicitly t . pdq
on the absolute position of the wave packet and if the change 9
in the potential experienced by the wave packet as it moves - 5[AV(X,XO)+ P(x,t)]. (A3)

is a linear function of position. If solitary waves do exist then

their motion is generally exactly classical, although thereqpe AV(x,xo) is defined as in the main text by
may be an additional acceleration for certain nonlinearitiesv(x):V(q);AV(X x,) and we have assumed tha is

We have shown that for free space or for a harmonic fixedang|ationally invariant as required for a solitary wavehe

potential, any eigenstate behaves as a solitary wave Whepyiration on the possible solitary waves is provided by the
subject either to no external force or to one that is indepeng, .t that the LHS of this equation is a function of time only
dent of position. Such motion is not possible for more gen- .4 <q the same must be true of the RHS if we are to satisfy

eral fixed potentials without carefully chosen external forces,o NI SE. EquatiofA3) therefore determines both the mo-
In applications of the theory to BEC, it is the form of the 5, and the shapes of any possible solitary wave.

potentials that determines the existence of solitary-wave so- \ow the term in curly brackets in E¢A3) depends only
lutions rather than the nonlinearity. This indicates that shake, e andq, so it may be written a&(p,q). However, for a

ing a harmoniq trgp contair)ing a condensa_te is not a goo olitary wavep itself depends only oqg so thatF is really a
method of confirming the existence of a nonlinear mteractlonfunctiOn ofq alone. If we write it asF (p,q) = e— G(q) we
term and other perturbationsuch as squeezing perhaps obtain the equatioﬁs '
will be required. The analysis also shows that a condensate
in a harmonic trap will be stable with respect to fluctuations d?p
in the position of the minimum, as these are equivalent to ep=— d—qz+[V(Q)+G(Q)]P+Wp, (A4)
imposing a temporally fluctuating external linear potential.
Finally, it is clear that one can manipulate such a condensatel d2x P
without affecting its internal properties, by applying a linear — —20: — —[AV(X,Xg) + AG(X,Xq) + P(X,t) —G(x)]
potential 2 dt IX ' ' ’ ’

' (A5)
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the numerical simulations. The eigenstate solutions discussed in the main text corre-
spond to the cas&=0. If G is nontrivial, then we can
APPENDIX: POSSIBLE SHAPES OF SOLITARY WAVES define new  potentials Ve, (x)=V(x)+G(x) and

Prew(X:t) = P(x,t) = G(x), whose sum is stilV(x,t). Using
In this appendix we address the problem of what deterthese new potentials, Eq&A4) and (A5) become
mines the shape of a solitary wave and in particular we con- )
sider whether there exist solitary-wave solutions to NLSE's dp
whose shapes are not determined by @g. As in the main P4 +[Viead)1p+Wp, (AB)
text, we start with the time-dependent NLSE in reduced units

A G Ld%_ 7 Ay +Pren(Xt A7
== S VDT W (A1) 270~ ox A VedXX0) P D] (AT)

where AV (X, Xg) = AV(X,Xq) + AG(X,Xg). Equation(A6)

a§hows that for any solitary wavg,is a solution to the eigen-
state problem of Eq(2) for the particular decomposition
where V(X)=V,e(X). Thus a solution withG#0 can be

We will consider the case that the nonlinear potentiais a
function rather than an operator and furthermore that it is re
(which is required for the Hamiltonian to be Hermitjaend
time independent(other than through its dependence on mapped 1o one witis = 0.

). A solution to this equation that rigorously preserves its The above mapping shows that any decomposition

shape must have a modulus that depends on time only via i ; :
translation. We can therefore write a prospective solitary\?(x't)_V(X)JrP(X’t) will lead to the same physics. Of

wave as

W (x,1)=p(x—xq(t))e'?, (A2) "If we do not make this assumption then E45) will contain an
extra term of the formAW on the RHS. Since this depends ¥nit
wherep and() are real functions and substitute this directly will not be a linear function of position and cannot be canceled by
into Eq. (Al). We proceed as in the main text by separatingphysically reasonable forms of the potentiédee the comment in
the result into real and imaginary parts, decomposing th&ec. lli).
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course, in a given physical situation some decomposition¥(x,t)® (except possibly a linear contributipand the shape
will be more appropriate than others; for example, if oneof the solution corresponds to an eigenstate of the NLSE in
is describing an inhomogeneous condensate, thW¢r)  that fixed potential. Thus we see that the only allowed rigor-
should clearly be the trap potential. The simplest decompoous solitary-wave solutions to EGA1) are eigenstates of
sition will usually correspond t&=0 since if we have a some “fixed” potential NLSE and thus our method in the
description in whichG is nontrivial then we can see from main text is quite general.

Eq. (A5) that it must be canceled by a time-independent

contribution toP(x,t) if we are to have a solitary wave.

The same physics would be described more simply by rede-—

fining the potentials such th&=0. In this description the  ®This follows from Eq.(A7) and the fact that\Ve./(X,Xo) Will
fixed potential contains all the time-independent part ofdepend on time.
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