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Solitary-wave solutions to nonlinear Schro¨dinger equations

S. A. Morgan, R. J. Ballagh,* and K. Burnett
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

~Received 5 June 1996; revised manuscript received 18 February 1997!

We examine the solitary-wave behavior of eigenstate solutions to various nonlinear Schro¨dinger equations
~NLSE’s! in an arbitrary number of dimensions and with a general potential. These eigenstate solutions are the
only wave functions that can rigorously preserve their shape. We show that solitary-wave motion is only
possible if the nonlinearity is decoupled from the absolute position of the wave packet and if the potential in
the moving frame differs by at most a linear term from that for the eigenstate problem. If these conditions are
satisfied then the motion is along the fully classical trajectory, although the nonlinear term may introduce an
additional acceleration. We comment on the implications of these results to the study of the behavior of
Bose-Einstein condensed atoms in harmonic trapping potentials, for which the relevant NLSE is the Gross-
Pitaevskii equation. Numerical simulations are presented for harmonic and anharmonic potentials in one
dimension to illustrate our results.@S1050-2947~97!05006-3#

PACS number~s!: 03.75.Fi, 42.65.Tg, 42.81.Dp
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I. INTRODUCTION

The recent observations of Bose-Einstein condensa
~BEC! in inhomogeneous dilute alkali gases with positi
scattering lengths@1,2# have intensified theoretical efforts t
predict the properties of this macroscopic quantu
mechanical system. The starting point for such prediction
usually the Gross-Pitaevskii~GP! equation with a harmonic
trapping potential. This is a cubic nonlinear Schro¨dinger
equation~CNLSE! and is presumed to be valid for a dilu
gas (na3!1, wheren is the average density anda is the
s-wave scattering length! at zero temperature where quantu
and thermal fluctuations can be neglected@3#. For a discus-
sion of the solutions to this equation see Refs.@4,5# and the
citations therein. There is particular interest in applying
theory to the next generation of experiments, which will lo
for novel features of BEC~for example, properties that de
pend on the nonlinear term describing particle interaction!,
the response to external perturbations, and methods of
nipulating the condensate. As part of this work we have b
studying some of the features of condensate motion
would expect from the GP equation.

In this paper, however, we take a wider perspective
consider the motion of eigenstates of various nonlin
Schrödinger equations~NLSE’s! with arbitrary potentials.1

We are interested in finding solutions that propagate with
change of shape, i.e., solitary waves. Some features of
problem have already been examined by a number of o
authors. Chen and Liu, for example, considered the case
linear @6# and quadratic@7# potential for the CNLSE for op-
tical solitons propagating in inhomogeneous media. Nas
@8# used stochastic mechanics to solve the logarithmic n
linear Schro¨dinger equation with a time-dependent forc
harmonic-oscillator potential, while Hasse@9# considered
NLSE’s with a variety of nonlinearities and a linear pote

*Permanent address: Physics Department, University of Ot
Dunedin, New Zealand.
1For applications to BEC, an eigenstate represents a conde

assembly of trapped atoms.
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tial. This work was extended by de Moura@10#, who treated
a general NLSE and concluded that the existence and s
of the solitons is not affected by an external potential
result that conflicts with this work. In a more recent paper
Moura @11# extended his treatment by considering the pos
bility of ‘‘breathing modes’’ in which the width of the wave
packet can change with time but the fundamental shape d
not. Some results from this later work are also inconsist
with our analysis. The case of solitons of the CNLSE w
time-dependent linear and harmonic potentials has been t
oughly dealt with by Nogami and Toyama@12#.

All these treatments have been restricted to one dim
sion, however, and with the exception of Refs.@7,8,12#, the
propagating wave was an eigenstate of the NLSE in f
space~i.e., all the potentials were external!. We extend this
work by considering rectilinear motion in an arbitrary num
ber of dimensions for general potentials and by allowing
time-independent part of the potential to affect the shape
the solution. By considering the validity of our method w
are able to show that only eigenstate solutions to the rele
NLSE can propagate as exact solitary waves and then
when the nonlinearity and potentials satisfy certain crite
Although our primary interest is in the GP equation releva
to BEC, our analysis applies to a wide variety of NLSE
We present numerical simulations in one dimension to ill
trate and confirm the arguments presented. We do not c
sider the possibility that the wave might change its sha
temporarily only to reform at a later stage of its evolutio
An example of this for the case of a soliton incident on
potential step can be found in Ref.@13#.

The shape of a wave is determined by its modulus, so
method involves decomposing the wave function into
modulus and phase and insisting that the modulus sho
only depend on time via a change in its mean position. T
method is essentially the same as that of Refs.@6#–@12# and
the work of Husimi@14# and Kerner@15#, who both treated
the linear case in some detail. Much of our work mirrors th
of de Moura@11#, although we do not consider the possibili
of breathing modes and draw somewhat wider conclusi
for solutions of fixed width.
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II. SOLITARY-WAVE SOLUTIONS

For simplicity we start with the one-dimensional NLSE
reduced units

i
]C

]t
52

]2C

]x2
1V~x,t !C1WC . ~1!

This equation describes a field of particles of massm, where
the unit of time is 1/v and that of length isA\/2mv, with
\v some convenient energy scale in the problem~e.g., the
level spacing for a harmonic potential!.2 W is the nonlinear
potential term and in applications to BEC is given byW
}uCu2. This form forW gives the GP equation mentione
above.

We decomposeV(x,t) into two parts, writing it as
V(x)1P(x,t), and in what follows we shall refer toV(x) as
the ‘‘fixed potential’’ and toP(x,t) as the ‘‘external poten-
tial.’’ This procedure is convenient but arbitary since on
V(x,t) is well defined. However, all decompositions lead
the same physics and we can transform between them
simply as shown in the Appendix. The purpose of the
composition is to allow for the possibility that the shape o
solitary wave may be affected by the presence of a tim
independent potential and it will usually be obvious from t
physical situation which decomposition is most appropria

We assume that an eigenstate solutionC(x,t)5
f(x)e2 i et to the fixed potential problem has already be
found so thatf(x) satisfies

ef~x!52
d2f~x!

dx2
1V~x!f~x!1Wf~x!, ~2!

wheree is the energy in units of\v. This equation deter-
mines the shape of our solitary waves. The question arise
to whether further solitary waves exist whose shape is
determined by an equation of this form, but we show in
Appendix that the structure of all solitary waves is det
mined by Eq.~2! for some choice ofV(x). We now look for
a solution to the full potential of the form

Cnew~x,t !5Cold„x2x0~ t !,t…e
iS~x,t !

5f„x2x0~ t !…e
2 i eteiS~x,t !, ~3!

wherex0(t) is the time-dependent shift in the position of th
wave function, i.e.,x0(t)5m(t)2m0, wherem(t) is ^x&new
and m0 is the mean of the solution to Eq.~2!, i.e.,
m05*xufu2dx. This new wave function corresponds
propagation of the original solution without change of sha
if and only if S(x,t) is real. We shall see that requirin
S(x,t) to be real leads to a consistency condition which
multaneously determines the time dependence ofx0(t) and
restricts the potentialsV(x) andP(x,t) and the nonlinearity
W that allow such solutions.

Although the theory we will develop applies to any sol
tion of Eq. ~2!, in applications to BEC the ground state w

2Note the factor of 2 in the scale of length, which occasiona
makes results appear unfamiliar at an intermediate stage of the
culation.
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be of most interest since this is usually the state formed in
evaporative cooling experiment. It is perhaps worth menti
ing that excited-state solutions can look like dark solita
waves on a finite background@16# since at each node there
a kink in the density profile~for example, consider the firs
excited state for a harmonic potential and cubic nonlinear
which vanishes at the origin by virtue of its odd parity!.
These solitary waves correspond to a synchronous motio
the kink and the finite background. Our method cannot d
with possible solitary waves that consist of the motion o
kink relative to a finite background as in this case the ove
shape is not exactly preserved. The motion of a kink relat
to an infinite background is included in our analysis, ho
ever, since this motion is indistinguishable from the synch
nous motion described by Eq.~3!.

We substitute the expression forCnew(x,t) into Eq. ~1!
and change variables from$x,t% to $q,t%, where
q5x2x0(t) and is the coordinate that determines the int
nal structure of the solitary wave. This gives

i
]f~q!

]t
2

]S

]t
f~q!

5H 2
d2f~q!

dq2
1V~q!f~q!1Wf~q!2ef~q!J

2F2i ]S

]q

df~q!

dq
1 i

]2S

]q2
f~q!2S ]S

]qD
2

f~q!G
1DV~q1x0 ,x0!f~q!1P~q1x0 ,t !f~q!, ~4!

whereDV(q1x0 ,x0)5DV(x,x0)[V(x)2V(q), the q de-
rivatives are evaluated at constantt and thet derivatives at
constantx. We have assumed thatW has exactly the same
functional form in theq variable as in thex variable, i.e. that
it depends only on the internal coordinate of the wave fu
tion. In fact, this represents the requirement on the non
earity for solitary wave motion to be possible and is d
cussed in more detail in Sec. III. We note at this sta
however, that the GP equation describing BEC is indeed
this form.

The term in curly brackets in Eq.~4! vanishes as a resu
of Eq. ~2!. We now writef5reiV, wherer andV are real
functions ofq, and separate Eq.~4! into real and imaginary
parts, which~for rÞ0) are, respectively,

2
]S

]t
1
dx0
dt

dV

dq
52

]S

]q

dV

dq
1S ]S

]qD
2

1DV~q1x0 ,x0!

1P~q1x0 ,t !, ~5!

r
dx0
dt

dr

dq
52r

dr

dq

]S

]q
1r2

]2S

]q2

The imaginary part can be integrated immediately to give

]S

]q
5
1

2

dx0
dt

1A~ t !/r2. ~7!al-
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For localized solutions we must setA(t)50 to give a finite
energy and particle current@17#. Thus Eq.~7! becomes

]S

]q
5

]S

]x
5
1

2

dx0
dt

. ~8!

Integrating again gives

S~x,t !5
1

2

dx0
dt

x1B~ t !, ~9!

whereB(t) is an ~as yet undetermined! function of time.
If we now substitute Eq.~8! into the real part@Eq. ~5!# and

convert back to thex coordinate description we obtain

]S

]t
52

1

4S dx0dt D
2

2DV~x,x0!2P~x,t !. ~10!

This is an energy equation, the terms on the right-hand
being, respectively, the additional kinetic energy due to
center-of-mass motion and the change in the potential en
due to both the displacement in the fixed potential and
applied external potential. Integration of Eq.~10! gives

S~x,t !52E 1

4S dx0dt D
2

dt2E @DV~x,x0!1P~x,t !#dt

1C~x!, ~11!

whereC(x) is a time-independent ‘‘constant’’ of integration
We now have two expressions forS(x,t) in the form of

Eqs.~9! and ~11!, which must be consistent with each oth
if solitary wave motion is to be possible. The condition th
imposes is most simply obtained by taking the partial deri
tive of Eq. ~8! with respect tot ~noting thatx0 depends only
on t) and the partial derivative of Eq.~10! with respect to
x and equating the results. This gives the equation of mo

1

2

d2x0
dt2

5
1

2

d2m

dt2
52

]

]x
@DV~x,x0!1P~x,t !#, ~12!

wherem is the mean of the solitary wave@see beneath Eq
~3!#. Since the left-hand side~LHS! depends only ont then,
if the wave function is to propagate without change of sha
the right-hand side~RHS! must also depend only ont. Hence
the quantity@DV(x,x0)1P(x,t)# must be at most a linea
function of x.3 This is the condition on the potentials fo
solitary wave motion to exist and is the central result of t
paper. The physical content of this restriction is discusse
Sec. III.4

3If @DV(x,x0)1P(x,t)# does not depend onx, then a comparison
of Eqs.~9! and~11! shows thatC(x)5 1

2(dx0 /dt)x. This leads to a
possible motion since in this case12(dx0 /dt) is independent of time.
4This restriction on the potentials is in contradiction to the res

of Ref. @10# since in that paper the author does not consider
consistency of his equations. It is also in contradiction to the st
ment in Ref.@11# that no solitary wave exists in a harmonic pote
tial. In that case the reason is that no allowance is made for
possibility that the shape of the wave may be affected by the
tential.
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The classical equation of motion, in these units, for
particle ~considered to be localized at the mean of the wa
function! in the given fixed and external potentials is

1

2

d2m

dt2
52S ]

]x
@V~x!1P~x,t !# D

x5m

, ~13!

where the factor of 1/2 is an artifact of our scaling of t
original Schro¨dinger equation. In order to compare the cla
sical equation of motion with Eq.~12! we note that

DV~x,x0!5V~x!2V„x2x0~ t !… ~14!

and therefore that

S ]

]x
DV~x,x0! D

x5m

5S ddxV~x! D
x5m

2S d

dq
V~q! D

q5m~0!

.

~15!

Thus Eq.~12! can be identified as the classical equation
motion, provided that the final term of Eq.~15! is zero,
which will be the case as long as a Taylor expansion
V(x) about the mean position of the fixed eigenstate conta
no linear contribution. Classically, this term would have
be zero for a stationary solution, but this is not the case
quantum mechanics~consider, for example, a particle in a
infinite potential well with a tilted base!. The effect of this
term is to add an acceleration to the motion and although
will usually be of little importance in the application of th
theory to atoms trapped near a potential minimum, it can
introduced by certain nonlinearities as discussed in Sec.

We should also confirm that Eq.~12! is consistent with
Ehrenfest’s theorem, which gives the usual quantum eq
tion of motion for the mean of a localized wave packet.
W is a function~rather than an operator! then we obtain the
following equation of motion for the mean of a wave pack

1

2

d2m

dt2
52 K ]@V~x!1P~x,t !#

]x L 2 K ]W

]x L , ~16!

which is valid for any localized wave packet regardless
whether or not it maintains its shape~see Ref.@18# for a
general derivation or Ref.@9# for a discussion relevant to
NLSE’s!. In general the nonlinear term does contribute to
equation of motion, although it vanishes for solutions w
good parity ~as is the case in the study of BEC!. For an
eigenstate of the fixed potential NLSE, however, the solut
is stationary so that we must have2^]V(x)/]x&
5^]W/]x&. If the wave function then propagates as a so
tary wave, the nonlinear contribution is unchanged so t
the equation of motion is

1

2

d2m

dt2
52 K ]@DV~x,x0!1P~x,t !#

]x L , ~17!

with DV(x,x0) defined as before. This result is identical
Eq. ~12! since for the solitary wave motion to be possib
@DV(x,x0)1P(x,t)# must be at most a linear function o
x. If the final term in Eq.~15! is zero, then the motion of the
mean is identical to the classical motion whereas Ehrenfe
theorem usually results in a pseudoclassical motion si
^]V/]x&Þ(]V/]x) ^x& in general. We illustrate the distinctio
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between these two motions numerically later in the paper
a solution that does not maintain its shape.

III. GENERAL NONLINEARITIES AND PHYSICAL
INTERPRETATION

In Eq. ~4! we assumed thatW has exactly the same func
tional form in theq variable as in thex variable, which
means that it depends only on the internal coordinate of
wave function. This will be true for any function off and
]/]x since ]/]x5]/]q and f takes the new argumentq
when the wave function is shifted.W may even be an opera
tor as in the derivative nonlinear Schro¨dinger equation for
whichW}( p̂ufu21ufu2p̂), wherep̂ is the momentum opera
tor @19#. However, nonlinearities that depend explicitly o
the variablex ~i.e., other than throughf) have to be ex-
cluded since there is then a coupling between the exte
and internal motions. An example of such a nonlinearity
W}x2ufu2. If nonlinearities of this form are present~and
assuming they are real!, then they will lead to an additiona
f-dependent term in Eq.~5!. This certainly will not be a
linear function of x and hence~given a sensible externa
potential! it will be impossible for Eqs.~5! and ~6! to be
consistent. Thus the only nonlinearities that allow solita
wave motion are those that are independent of the abso
position of the wave packet.

A further effect of the nonlinearity in some cases is
produce a constant acceleration term which is absent f
the classical equation of motion@this is the final term in Eq.
~15!#. An example of this may be found if we consider
harmonic fixed potential and a nonlinearity of the formW
}uCu21(]/]x)uCu2. This nonlinearity does not have goo
parity and as a result the meanm0 of an eigenstate is not a
the minimum of the harmonic potential. The final term in E
~15! is thus nonzero and the solitary wave solution oscilla
at the trap frequency aboutm0 rather than about the tra
minimum. We see, therefore, that although the nonlin
term does not appear explicitly in the equation of motion
may have an implicit effect on the evolution of the solita
wave.

The restrictions on the potentials and the form of the n
linearity have a simple physical interpretation. An eigenst
solution is the result of a precise balance between the kin
potential and nonlinear terms in the Schro¨dinger equation. If
the nonlinear term depends only on internal coordinates, t
its contribution is entirely unaffected by a displacement
the eigenstate. The change in the potential experience
the wave packet is then exactly the ter
@DV(x,x0)1P(x,t)#, which appears in the equation of mo
tion. If this is linear inx it corresponds to a spatially uniform
force which accelerates all parts of the wave packet in
same way and hence does not cause any deformation. I
wave packet represents a condensate so thatufu2 is propor-
tional to the particle density, then a linear potential cor
sponds to a uniform acceleration of these particles. Henc
does not affect their separation and so their interactions~rep-
resented by the nonlinear term! are unchanged and we wou
expect the wave function to maintain its shape. We s
therefore, that nonlinear terms that depend only on the in
nal coordinate of the wave function play no role in determ
ing whether or not solitary wave motion is possible, althou
r
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they will of course affect how the shape changes with ti
should such motion not be possible. As a consequenc
this, we see that for a harmonic trapping potential5 a more
drastic perturbation than shaking~i.e., randomly displacing
the minimum! is required to provide a good indication of th
presence or absence of a condensate~for example, one could
try ‘‘squeezing’’ the condensate by rapidly varying the tr
frequency, thereby setting up excitations@20#!.

We should stress that we have assumed the existenc
eigenstate solutions to the fixed potential problem in o
analysis. Our results are only valid, therefore, if the com
nation of nonlinearity and fixed potential allows such so
tions. An example of the restriction this imposes can
found in the case of no fixed potential~free space!, where the
nonlinearity must be negative~representing attractive inter
actions! if the energy functional is to have local minima.

IV. EXTENSION TO HIGHER DIMENSIONS

The above physical argument suggests that our results
not restricted to one dimension provided that motion alo
one axis does not affect the dependence of the potentia
the other coordinates. To examine this we consider recti
ear motion in a space of arbitrary dimension and single
the x axis as the axis of interest, denoting the other coor
nates by $yi%. We write the potential as
V(x)1Vy($yi%)1U(x,$yi%)1P(x,$yi%,t). Here Vy is any
function of the $yi% only and theU potential contains all
cross terms involvingx. P is again the time-dependent ex
ternal potential. Equations~5! and~6! are respectively modi-
fied to

2
]S

]t
1
dx0
dt

]V

]q
52

]S

]q

]V

]q
1S ]S

]qD
2

1(
i

F2 ]S

]yi

]V

]yi
1S ]S

]yi
D 2G

1DV~q,x0!1DU~q1x0 ,x0 ,$yi%!

1P~q1x0 ,$yi%,t !, ~18!

1

2

dx0
dt

]r2

]q
5

]S r2
]S

]qD
]q

1(
i

]S r2
]S

]yi
D

]yi
. ~19!

The quantityDU in Eq. ~18! has a similar definition to
DV. Notice thatVy($yi%) does not appear in these equatio
and it may thus be any function of the coordinates includ
an anharmonic one. Integration of Eq.~18! will give S at
least the phase dependence on$yi% that appears inDU ~un-
lessP is chosen to cancel this!. It seems unlikely, therefore
that the solution can be consistent with Eq.~19!. In the spe-
cial case thatU50 andP is independent of$yi%, however,
we can takeS to be dependent only onx and t. In this case
the full potential contains no cross terms involvingx ~al-
though there may be cross terms in the$yi% in Vy) and the

5DV(x,x0) is linear in x for a harmonic potential~see later dis-
cussion!.
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problem reduces to that considered in the one-dimensi
case. This confirms what we would expect physically, bu
first sight may appear a little strange since we may cre
cross terms in the potential by rotating our coordinates
should be remembered, however, that we chose to look a
the x axis for propagation without change of shape. It a
pears, therefore, that solitary wave motion can only e
along specific axes for which the potential is decoupled fr
the other coordinates. A particular case of interest relevan
the experiments in Refs.@1,2# is V;v'(x

21y2)1vzz
2, i.e.,

the anisotropic harmonic potential in three dimensions.6 For
such a potential we see that there is solitary wave behavio
thex-y plane and along thez axis but not in other directions

V. APPLICATION TO SIMPLE POTENTIALS

We now illustrate the above discussion by consider
some particular fixed potentials.

A. Constant potential

In this caseDV is zero and there is only a solitary-wav
solution forP(x,t)5 f (t)x, i.e., if there is a constant extern
force across the wave packet. This contradicts the resu
Ref. @10#. The existence of an eigenstate solution requi
that the nonlinear term be negative, as mentioned above.
equation of motion is

d2x0
dt2

522 f ~ t !. ~20!

If f (t)50 the solution has a constant velocity and the te
C(x) in Eq. ~11! must be nonzero.

B. Quadratic potential

This is a case of particular importance for the study
BEC in dilute gases. Eigenstate solutions exist for both p
tive and negative nonlinearities. If we take the energy sc
as the level spacing of the harmonic oscillator, thenV(x)5
1
4x

2 andDV(x,x0)5
1
4(2x2x0)x0. SinceDV is linear inx we

now have solutions withP(x,t) either linear or zero. The
case of zero external potential allows for solutions in wh
the wave packet oscillates freely in the harmonic poten
~for example, the initial state might be displaced from t
minimum!, although in practice this would be achieved
displacing the trap using a linear external potential. T
equation of motion forP(x,t)5 f (t)x is

d2x0
dt2

1x0522 f ~ t !, ~21!

which is the usual forced harmonic-oscillator equation.

C. Anharmonic potentials

In this caseDV contains higher powers ofx than linear
ones and forP(x,t)50 there are no solitary-wave solution
It is possible, however, to choose the external potential ju

6The work reported in@2# used a modified potential, but we be
lieve that more recent work involves a potential of this form.
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ciously so thatDV1P(x,t) is linear and so obtain solution
that propagate without change of shape. This will only be
case, however, for very particular choices ofP(x,t), tailored
to given initial conditions, and is unlikely to be realizab
experimentally unless one can control the strength of vari
different polynomial potentials independently and rapidly

VI. NUMERICAL RESULTS

We present numerical results for harmonic and anh
monic fixed potentials in one dimension for a nonlinear te
of the formW5CnluCu2, which gives the GP equation re
evant to the study of BEC.

A. Harmonic potential

1. P„x,t…50

In this case the solution to Eq. ~21! is
m(t)5m0cos(t1u). We consider the case thatu50, which
corresponds to a stationary initial state displaced in the fi
potential. Equation~11! gives a phase factor of

S~x,t !52
1

2
m0xsin~ t !1

1

8
m0
2sin~2t !, ~22!

which is the expression derived for the ground state in
linear case in Ref.@18#. The predicted motion has been o
served for the ground and first excited states withCnl520,
and for the second excited state withCnl58 and the ground
state withCnl525. The phase dependence was that p
dicted in Eq.~22! to within 1023 rad for the first pair and to
within 1022 rad for the second pair. Figure 1 shows a plot
the ground state propagation withm(t50)'5.

2. P„x,t…52cos„2t…x

The solution to Eq.~21! for a wave packet initially at res
and centered on the origin ism(t)5 2

3@cos(t)2cos(2t)#. The
phase dependence from Eq.~11! is

FIG. 1. Plot ofuCu2 for the propagation of the ground state wi
Cnl520 in a harmonic fixed potential. The profiles are shown
intervals ofp/5 with the far right profile att50 and the far left one
at t5p.
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S~x,t !52
3

18
t1

1

3
x@2sin~2t !2sin~ t !#

1
1

9Fsin~ t !1
1

2
sin~2t !2sin~3t !1

5

8
sin~4t !G .

~23!

The profile used in the simulation was a ground state w
Cnl520. Figure 2 is a plot of its mean position and that
the classical prediction. It is clear that the motion is along
classical trajectory, as expected. The shape is well prese
and the phase prediction of Eq.~23! is satisfied to an accu
racy of order 1023 rad.

B. Anharmonic potential

We consider an anharmonic fixed potential of the fo
V(x)5A( 14x

4)1 1
4x

2, with A5 1
200 and two different externa

potentials.

1. P„x,t…50

The initial wave function was the ground state of t
above anharmonic potential withCnl55, displaced in the
potential tom(t50)'2. In this case the wave function doe
not maintain its shape as it evolves, although the changes
not dramatic~occurring at the 10% level! owing to the small
anharmonicity. Figure 3 shows a plot of the mean position
the wave packet as a function of time together with the fu
classical prediction and the Ehrenfest prediction. It is cl
that the motion is governed by Ehrenfest’s equation an
not exactly classical.

2. Forced motion

For the above potential we have that

DV5Amx32 3
2 Am2x21~Am31 1

2 m!x2 1
4 m2~11Am2!.

~24!

FIG. 2. Plot of the mean position of the ground state w
Cnl520 in a harmonic fixed potential, subject to an external pot
tial P(x,t)52cos(2t)x. The crosses are numerical points and t
full line is the classical prediction.
h
f
e
ed

re

f

r
is

Thus, if we chooseP(x,t)52Amx31 3
2Am2x22Am3x, then

Eq. ~12! leads tod2m/dt21m50, which givesm;cos(t) for
an initially stationary wave packet. We tookm(t50)'2, as
for the simulation above. Equation~10! for ]S/]t is the same
as for the case of a harmonic potential withP(x,t)50, ex-
cept for an additional contribution of14Am4 on the RHS. The
phase prediction is therefore the same as in Eq.~22! with an
additional term of 116Am0

4@ 3
2t1sin(2t)1 1

8sin(4t)]. The wave
function does maintain its shape, as expected, and the p
satisfies the theoretical prediction to within 0.03 rad. Unf
tunately, this accuracy is insufficient to test the addition
phase term given above, except for the linear contribut
which is significant near the end of the simulatio
(t54p). Figure 4 shows a plot of the mean position of t
wave packet, proving that it does indeed follow the fu
classical trajectory.

-
FIG. 3. Plot of the mean position of the displaced ground st

of the anharmonic potential in the text and nonlinearityCnl55. The
crosses are numerical points, the dotted line is the fully class
prediction, and the full line is the prediction of Ehrenfest’s theore

FIG. 4. Plot of the mean position of the ground state of
anharmonic potential and nonlinearityCnl55 subject to an externa
force. The crosses are numerical points and the bold line is the f
classical prediction.
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VII. CONCLUSION

We have shown that the shapes of exact solitary wave
the time-dependent NLSE are given by the eigenstate s
tions of a time-independent NLSE for some fixed potent
These eigenstate solutions can only propagate as sol
waves provided the nonlinearity does not depend explic
on the absolute position of the wave packet and if the cha
in the potential experienced by the wave packet as it mo
is a linear function of position. If solitary waves do exist th
their motion is generally exactly classical, although the
may be an additional acceleration for certain nonlinearit
We have shown that for free space or for a harmonic fix
potential, any eigenstate behaves as a solitary wave w
subject either to no external force or to one that is indep
dent of position. Such motion is not possible for more ge
eral fixed potentials without carefully chosen external forc

In applications of the theory to BEC, it is the form of th
potentials that determines the existence of solitary-wave
lutions rather than the nonlinearity. This indicates that sh
ing a harmonic trap containing a condensate is not a g
method of confirming the existence of a nonlinear interact
term and other perturbations~such as squeezing perhap!
will be required. The analysis also shows that a conden
in a harmonic trap will be stable with respect to fluctuatio
in the position of the minimum, as these are equivalen
imposing a temporally fluctuating external linear potenti
Finally, it is clear that one can manipulate such a conden
without affecting its internal properties, by applying a line
potential.
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APPENDIX: POSSIBLE SHAPES OF SOLITARY WAVES

In this appendix we address the problem of what de
mines the shape of a solitary wave and in particular we c
sider whether there exist solitary-wave solutions to NLS
whose shapes are not determined by Eq.~2!. As in the main
text, we start with the time-dependent NLSE in reduced u

i
]C

]t
52

]2C

]x2
1V~x,t !C1WC . ~A1!

We will consider the case that the nonlinear potentialW is a
function rather than an operator and furthermore that it is
~which is required for the Hamiltonian to be Hermitian! and
time independent~other than through its dependence
C). A solution to this equation that rigorously preserves
shape must have a modulus that depends on time only v
translation. We can therefore write a prospective solit
wave as

C~x,t !5r„x2x0~ t !…e
iV, ~A2!

wherer andV are real functions and substitute this direc
into Eq. ~A1!. We proceed as in the main text by separat
the result into real and imaginary parts, decomposing
of
u-
l.
ry
y
e
s

e
s.
d
en
-
-
.

o-
-
d
n

te
s
o
.
te
r

s
n

r-
n-
s

ts

al

s
a
y

g
e

potential asV(x,t)5V(x)1P(x,t), and introducing the
center-of-mass coordinateq5x2x0. As before, this leads to
two equations forV for which the consistency condition is

1

2

d2x0
dt2

52
d

dqH 2
1

r

d2r

dq2
1V~q!1WJ

2
]

]x
@DV~x,x0!1P~x,t !#. ~A3!

Here DV(x,x0) is defined as in the main text b
V(x)5V(q)1DV(x,x0) and we have assumed thatW is
translationally invariant as required for a solitary wave.7 The
limitation on the possible solitary waves is provided by t
fact that the LHS of this equation is a function of time on
and so the same must be true of the RHS if we are to sa
the NLSE. Equation~A3! therefore determines both the mo
tion and the shapes of any possible solitary wave.

Now the term in curly brackets in Eq.~A3! depends only
on e andq, so it may be written asF(r,q). However, for a
solitary waver itself depends only onq so thatF is really a
function of q alone. If we write it asF(r,q)5e2G(q) we
obtain the equations

er52
d2r

dq2
1@V~q!1G~q!#r1Wr, ~A4!

1

2

d2x0
dt2

52
]

]x
@DV~x,x0!1DG~x,x0!1P~x,t !2G~x!#,

~A5!

whereDG(x,x0) is defined analogously toDV(x,x0). The
first of these equations determines the shape of the sol
wave and the second gives its equation of motion and
validity condition since the LHS again depends ont only.
The eigenstate solutions discussed in the main text co
spond to the caseG50. If G is nontrivial, then we can
define new potentials Vnew(x)5V(x)1G(x) and
Pnew(x,t)5P(x,t)2G(x), whose sum is stillV(x,t). Using
these new potentials, Eqs.~A4! and ~A5! become

er52
d2r

dq2
1@Vnew~q!#r1Wr, ~A6!

1

2

d2x0
dt2

52
]

]x
@DVnew~x,x0!1Pnew~x,t !#, ~A7!

whereDVnew(x,x0)5DV(x,x0)1DG(x,x0). Equation~A6!
shows that for any solitary wave,r is a solution to the eigen
state problem of Eq.~2! for the particular decomposition
whereV(x)5Vnew(x). Thus a solution withGÞ0 can be
mapped to one withG50.

The above mapping shows that any decomposit
V(x,t)5V(x)1P(x,t) will lead to the same physics. O

7If we do not make this assumption then Eq.~A5! will contain an
extra term of the formDW on the RHS. Since this depends onC it
will not be a linear function of position and cannot be canceled
physically reasonable forms of the potentials~see the comment in
Sec. III!.
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course, in a given physical situation some decompositi
will be more appropriate than others; for example, if o
is describing an inhomogeneous condensate, thenV(x)
should clearly be the trap potential. The simplest decom
sition will usually correspond toG50 since if we have a
description in whichG is nontrivial then we can see from
Eq. ~A5! that it must be canceled by a time-independ
contribution toP(x,t) if we are to have a solitary wave
The same physics would be described more simply by re
fining the potentials such thatG50. In this description the
fixed potential contains all the time-independent part
an

n,

rd
ys
v.

n

s

o-

t

e-

f

V(x,t)8 ~except possibly a linear contribution! and the shape
of the solution corresponds to an eigenstate of the NLSE
that fixed potential. Thus we see that the only allowed rig
ous solitary-wave solutions to Eq.~A1! are eigenstates o
some ‘‘fixed’’ potential NLSE and thus our method in th
main text is quite general.

8This follows from Eq.~A7! and the fact thatDVnew(x,x0) will
depend on time.
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