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Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential
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We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential,
including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent
oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact
guantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum
collapse and revival sequen¢&1050-294@7)01406-9

PACS numbe(s): 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.20.De

I. INTRODUCTION theory of the nonlinear directional couplgr4], and also in
the relative phase between two superfluids or superconduct-
The recent experimental observation of Bose-Einsteirors [15]. The time for a complete collapse and revival de-
condensationBEC) in dilute systems of trapped neutral at- pends very strongly on the number of particles in the con-
oms[1-5] opens a new context for studying the quantumdensate, becoming longer as the particle number is increased.
mechanics of mesoscopic systems. In particular, atomi@bservation of quantum tunneling in this system may be
BECs can be expected to display a variety of quantum intere@sier to observe than other condensed sysfé6is or the
ference phenomena, and Javanaif@rand Grossmann and nonl!near d|rect|.onal coupldr4], due to the small dissipa-
Holthaus[7] have previously suggested the possibility of tion in atom optical contexts. .
condensate tunneling between two adjacent atomic traps. |he remainder of this paper is organized as follows. In
This tunneling, resulting in oscillatory exchange of the atoms>€C. || we present our basic model, in particular, the two-
between the traps, is analogous to the Josephson ¢fect mode approximation for the quantum dynamics of coupled
for neutral atoms, in which the exchange arises from th&ondensates. Here we also discuss the limits of validity of
relative phase between the macroscopic wave function in th€ model. Section Il gives a discussion of the mean-field
two traps. These authors did not, however, take account gyolution of the quantum.problem, showing that tunneling is
the many-body hard-sphere interactions between the atom$uPPressed beyond a critical atom number, and the full quan-
We consider the case of an atomic BEC formed in atum problem is addressed in Sec. IV where we show that the
double-well potential with well separated minima, Whereme_an-field_ solution is modulated by a serie; of collapges a_nd
each potential well represents an atomic trap. Using théevivals. Finally, our summary and conclusions are given in
mean-field factorization assumption, together with a two-Sec. V.
mode approximation, we find an analytic solution to the
Gross-Pitaevskii equatiof®] including many-body interac- Il. BASIC MODEL
tions. If the condensate is initially localized in one well, it
can oscillate between the wells by quantum tunnelB\d].
However, due to the nonlinearity arising from particle inter- Our model system is a symmetric double-well single-
actions, this oscillation is suppressed when the number gbarticle potentiaV(r) with minima atr, andr,, and with no
atoms in the condensate exceeds a critical value. This supess of generality we s&f(r; ;) =0. We assume the potential
pression of the tunneling corresponds to the self-trappings such that the two lowest states are closely spaced and well
transition previously studied in the discrete self-trappingseparated from higher levels of the potential, and that many-
equation[10—12, and also corresponds to switching action particle interactions do not significantly change this situa-
in the nonlinear directional coupler of nonlinear opti@8].  tion. This assumption permits a two-mode approximation to
We also calculate the full guantum dynamics and show thathe many-body description of the system. To proceed we
the oscillations arising in the mean-field approximation areexpand the potential around each minimum as
modulated by a collapse and revival sequence. Collapse and -
revivals have also been studied in the context of the quantum vV(nN=vA(r-rp+-.., j=12 (1)

A. Two-mode approximation

Wherev(z)(r—rj) is the parabolic approximation to the po-
*Permanent address: Optical Sciences Center, University of Aritential in the vicinity of each minimum. We now define the
zona, Tucson, AZ 85721. state ug(r) as the normalized single-particle ground-state
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mode of the local potentiaV/@(r), with energyE,, and  elements such ad)p/2)f d3|u;(r)|?|uy(r)|?, which are of
define the local mode solutions of the individual wells order e> compared to the self-phase modulation matrix ele-
uy o(r)=uo(r—ry,). These local modes are not exactly or- mentfi«x, and should therefore be consistently neglected to
thogonal, but we may write first order.

The Hamiltonian(7) has the form of that for the discrete
self-trapping equatiofiL0,11], and has previously been stud-
ied in the context of the quantum dimigr2], as a model for
anharmonic oscillations in small molecules, and also in the
Heree is the overlap between the modes of opposite wells. lfcontext of the nonlinear optical directional couplas,14).
the position uncertainty in the statg(r) is much less than Here we explore the consequences of this model for atomic
the separation of the minima of the global potent¥df),  BEC in a double-well potential. In the limit of negligible
then e<1, and first-order perturbation theory, withas an many-body interactions,x— 0, the Ham||ton|ar(7) reduces

expansion parameter, will suffice. In first-order perturbationyo that previously employed to study condensate tunneling
theory the modes are determined to oré®&rwhich ignores [6,7].

inter-well coupling, in which case the local modes may be

treated as orthogonal. The energy eigenstates of the global

double-well potential may then be approximated as the sym-

metric (+) and asymmetric{) combinations We can illustrate the general features of the double-well
system by considering a potential of the form

fd3rur(r)uk(r)=5jk+s(1—5jk), ik=12. (2

B. Model double-well system

~i -+ 2
U (1)~ Lus(n) = ux()], 3 V(r):b(xz_ zd_b) %mwg(yzﬂz), ®

with corresponding eigenvalués. =E,*R, and ) ) )
where the interwell coupling occurs along and w; is the

. ~ trap frequency in the/-z plane. This potential has elliptic
R:f dr ug (NIV(N) =V (r=ry)]uy(r). @ fixed points atr,=+qoX, ,=—0oX, whereg3=d/2b, at
which the linearized motion is harmonic with frequency

The tunneling frequenc{) between the two minima is then , = (4d/m)¥2 Thus, settingw,=w, for simplicity, we
given by the energy level splitting of these two lowest statesghggse
Q=2R/%. The matrix elemenR, which is of ordere!, de-
scribes the coupling between the local modes. - 1

The many-body Hamiltonian describing atomic BEC in a V@(r)= Emwg(x2+y2+ z%). (9)
potential is[17]

R K2 R Ugn rnsn n We will fix wq by fixing d and consider variations af,
H(t):j d3r ﬁV¢T~V¢+V+ 7¢T¢T¢¢ , (5 only. This is equivalent to varying the height of the barrier
D separating the two wells aB=dq(2). It is convenient to
wherem is the atomic mass,J,=4w7%%a/m measures the scale the length in units of the position uncertainty in a har-
strength of the two-body interaction, armdis the s-wave ~ monic oscillator ground state,= VA, whereAzzh/meO.
scattering lengthy/(r,t) and/'(rt) are the Heisenberg pic- 1Ne barrier height is then given ty=(%wo/8)(do/A). For
ture field operators which annihilate and create atoms at pc Suitable choice ob, only two energy eigenstates lie be-
sitionr, and normal ordering has been used. In the two-mod&€ath the barrier. The local mode of each well is then given
approximation we expand the field operators in terms of thdY
I(_Jcal modes qnd introduce the Heisenberg picture annihila- aa
tion and creation operators " (r)z(i) o= OC+y2+ 24
0 2mA '

(10
cj(t):f d3r uk () g(r,t) (6)

These states are simply Gaussian, which enables all integrals
to be performed explicitly. For example, the tunneling fre-

ch=s 0 ini
so that[ c;,c,]= Jj« to ordere”. Then retaining terms up to quencyQ may be evaluated as

ordere, the many-body Hamiltonian reduces to the following

two-mode approximation: 9Rw
2

£ T D

Ha(t)=Eq(clc; +cley) + T(Clcg+ cicy)

fr o s and the effective mode volume is given By;=8(mwA)%2
+hk[(cq)ci+(cy)C5], (7)

where k=U /2% Vg, and Vi = [d3r|ug(r)|* is the effec- C. Limits of validity

tive mode volume of each well. Here we have retained only The two-mode approximation is valid when many-body
self-phase modulation arising from self-interaction withininteractions produce only small modifications of the ground-
each well since the cross-interaction terms involve matrixstate properties of the individual potentials. This is true when
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A% N|Uy) db; iQ
=—ps : (12 =
2mrg Vet dt 2

ﬁ(l)o

Using Veg~872%3 for this case, we obtain the following The number of atoms in thgh well is given by
condition on the number of atoms:

r Nj()=(¥n(t)cfc;|¥n(t)=Nlb()|?, (18
0

N< la| - (13 and this provides the link between the coupled-mode ampli-
tudes and the expectation values of the quantum problem.
Taking typical numbers of;=1 um, anda=5 nm, yields The coupled-mode equatioi$7) have an exact solution
N<200. Thus the two-mode approximation is valid for small[10]. For the case that aM atoms are initially localized in
number of atoms compared to current experiments wittwell 1, N;(0)=N]|b,(0)|>=N, the number of atoms in well
N=10*-10° [1-5]. If we consider a larger trap, say 1 varies intime as

ro=10 um, then the theory is valid for a few hundred atoms,

and this is the case we consider here. In the following sec- N 512

tions we shall show that the condensate tunneling discussed Nai(t)= §[1+cn(Qt|N NS, (19)
in Refs.[6,7] is strongly modified by many-body interactions

even for such low numbers of atoms. with Ny (t)+N,(t)=N. Here cng|m) is a Jacobi elliptic

We remark that the approximations employed here are if,n.tion, andN, is the critical number of atoms given by
contrast to the Thomas-Fermi approximatid8,19 which

is appropriate to current experiments wikh=10°—1C°. In Q
the Thomas-Fermi approximation the many-body interac- Ne=—. (20)
tions dominate over the kinetic energy, and as a result the K

properties of the ground state are strongly modified with re-

spect to the linear ones. In this case the two-mode aproximd=0" N<N¢ this solution exhibits complete and periodic os-

K(N2/N§) which depends on the number of atoms, where
K(m) is a complete elliptic integral of the first kind. For
N<N., cn becomes cos, and the oscillations are precisely
Before proceeding to the full quantum analysis of thelike those in the Josephson effdé-8|. As the number of
Hamiltonian(7), we first consider the mean-field approxima- atoms is increased the oscillation period increases, until at
tion. For this we employ the Hartree approximat{@®] for =~ N=N_ the period is infinite. This marks a bifurcation in the
a fixed number of atomN, and write the atomic state vector nonlinear system and at this point the system asymptotically
as evolves to equal number of atoni/2 in each well. For
N>N, the period of oscillation reduces again but the ex-
1 . N change between the wells is no longer complete. That is, the
|WN(t)= —“ d3 on(r,t)g'(r,00| |0), (14  coherent tunneling oscillations are inhibited at high numbers
YNY of atoms, and this is the analog of the self-trapping transition
) . ) [10] for the double-well BEC. Note that this result arises
where |0) is the vacuum. The self-consistent nonlineareyen for a fixed number of aton, and does not therefore
Schralinger equation or Gross-Pitaevskii equation for therely on coherence between different number states. It does,
condensate wave functiofiy(r,t) follows from the Schre  however, require there to be a well defined relative phase
dinger equationi7|W(t))=H(0)|¥y(t)), and is given by between the amplitudes, , of the two potential wells.
[9,20,2] The choice of initial conditions depends on the conden-
sate state. In a typical case one might expect that there would
. ddn 2 ) ) be equal numbers of atoms in each of the wells, and thus the
ih—==| =5 VAV +NUg[dnl* |- (15 many-body ground state would reflect the fundamental sym-
metry of the potential. This would mean that the quantity

For a particular choice of the global potenti&r), Eq. (15) (Ib2|?=[b4]?) would initially be ZEr0. Howzever, as the total
can be solved numerically for a given initial condition. In NUmber of atoms is conservedb|*+|by?) =1, we must
particular, this equation allows simulations of condensatd'@ve
tunneling to be performed without the limitations imposed
by the two-mode approximation.

In the two-mode approximation we use the local modes
described above and write

IIl. MEAN-FIELD APPROXIMATION

biby=se it (21)
1M2 2 ’

_ whered is the relative phase between the amplitudesnd
on(r,t)y=e B[ (t)uy(r)+by(t)ux(r)].  (16) b,, respectively. The condensate may thus be regarded as
having a well defined phase between the two potential wells.
Then, to first order ine we obtain the coupled-mode equa- According to the usual notion of spontaneous symmetry
tions breaking[22-24] this phase is randomly selected for a given
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realization of the system, and if averaged over many realiza- 0.50
tions would yield a zero contribution from the phase depen-
dent term in the ensemble.

To investigate the consequences of spontaneous symme-
try breaking for the semiclassical dynamics, it will be con- 0.30 |
venient to define the three real variables

the condensate, whil&, is the atomic number difference " |

between the two single-particle energy eigenstates of the , | \
double-well system. I5,=0 we must haveSy=%SIn0 and han A R ,L AR SARITY LEHERINt T
S,= 3cosh. If the mean momentum of the condensate is ini- 050, L R T
tially zero, #=0 andS,(0)=1/2. Such an initial condition is 00 200 fime 400

a stationary point of the dynamics, as is easily seen if we

write the equations of motion in terms of the real variables FIG. 1. Mean-field solutions for the occupation difference

(i
| o
1 I i \ o
S=5 (|ba]?—b4]?), (22 | | \ ! \ II
2 ot0 [ | ] \ / | |
i x [’| | / \ 1‘1 f ‘1 /
=—=(b*b,—c.c), 23 @ | | P ‘ |
S=—5(bib,—c.c) (23 . / \ |
-0.10 | | \ Lo b
1 * ; " l{ ’ | | ! ]\ i
5z=§(b1 b,+c.c). (24 i ! .l ], \l \\ I | !
I i | ; | | }I U
In Sec. IV we will show thatS, is the mean momentum of -0.30 ,‘ 1\l ( ‘\ ‘ ( \ ! |
\ ‘ ’f

‘\

defined above: (S)=(]by|?—|b,|?)/2 versus time in units of the inverse tunneling
. period. The solid line is fokN/Q=0.9, and the dashed line is for
S=-QS,, (25 xkN/Q =2, the critical value being fokN/Q=1.
S,=0S,—4kNSS,, (26) L1
. J=5(cieacicy), (29
S,=4kNSS, . (27
. - . . A
These equations indicate a linear precession aroundthe Jyzz(c;cl—c’{cz), (30)
axis at rate(), and a nonlinear precession around exis

at a rate 4NS,. It is easily seen tha{+S;+S.=1/4 is a S _
constant of the motion, which corresponds to conservation of "€ Casimir invariant is easily seen to be
particle number.

In Fig. 1 we show the mean-field solutions for the quan- ay
tity (S,)=3(|b,|2—|b4|?) which represents the occupation )=
difference of the two wells: The solid line is for
«N/Q1=0.9, and complete oscillations between the wells isThjs is analogous to an angular momentum model with total
observedwe scale time in units of the tunneling period so angular momentum given by=N/2.
thatQ)=1 in all the figureg In contrast, the dashed curve is
for kN/Q2=2, and the coherent oscillations are no longer
complete. This corresponds to the discrete self-trapping ide
tified in Ref.[10].

N
—+1

N
2\2

. (3D

The operatorf]Z corresponds to the particle occupation
number difference between the single-particle energy eigen-
Ltates. For example, the maximal weight eigenstatg,
corresponds to all the particles occupying the highest single-
particle energy eigenstaté,(x). The operatod, gives the
particle number difference between the localized states
A. Quantum model (uq,u,) of each well. In fact, for the one dimensional case,
the position operator in the field representation is

IV. QUANTUM DYNAMICS

Within the two-mode approximation we can obtain an ex-
act solution to the full quantum problem in order to assess >
the effect of quantum fluctuations on the predictions of the X—s ﬂjx_ (32)
Gross-Pitaevskii equation. The total number operator N

N=clc,+clc, is a constant of motion and we thus set it _ . - .

equal to the total number of atoris We now define three Thus the maximal and minimal weight eigenstates,ofor-

operators, which obey S@) commutation relations, by respond to the localization of all the particles in one well or
the other. The interpretation d]‘y is crucial for an under-

28) standing of tunneling. In one dimension, the field represen-

1
ATt t
Ja=75 (€162t C20), tation of the single-particle momentum operaith(d/dx) is
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hQ . 6000
i (33

p_> B 5000
Thus the operatoi]y represents the condensate momentum. 0oy
The two-mode Hamiltonia7) may be written 3000}

2000

H,=%Q0J3,+2%k32, (34) £

1000

where we neglected constant energy shifts which depend on
the total numbeiN. This Hamiltonian describes linear pre-

cession around the axis at the tunneling frequency and a 1000}

nonlinear precession around tkeaxis at a rate determined

by the value ofx component of angular momentum. It is

interesting to note that EG34) looks similar to the nonlinear ~3000; - s - = - 0

top models considered by Haak25]. This Hamiltonian is m
symmetric under rotations ofr about thez axis. Such a _ )
FIG. 2. Plot of the energy spectrum in the two-mode approxi-

transformation corresponds jQH —J, which in view of the mation with ./ x =50 andN= 100.
interpretation of], discussed above corresponds to the parity

symmetry of the double-well potential. Thus all eigenstates, . . .
y y b g he integerm labeling the sequence of eigenstates. As the

belong to one of two parity classes corresponding to the '[W(B . . ; .
eigengalues of this trgnsfgrmation P g ratio of ()/ k increases, Fig. 3, the doubly degenerate eigen-

states oﬁﬁ begin to dominate and the energies increase qua-
B. Energy eigenstates dratically with the integem labeling the eiger)s_tates.
) ) . The most natural set of states which exhibit spontaneous
The semiclassical solution suggests thatfbsmall the  proken symmetry for this system are the angular momentum

f'_rSt term in Eq.(34) domlnates,_ in which case the energy coherent statel26] defined in terms of thd, eigenstates by
eigenstates are close to tNe+ 1 eigenstates af,. The con-

densate state will be near the minimum weight state

~2000f .

l[i,—j),. This state is of course just the single-particle j 2j v2 o me

ground state of the double-well potential, and thus the den- |a)= > | g lim), (36)

sity function of the condensate will be symmetric as ex- me—j \m+j]  (1+]al)

pected. In this case the dynamics is dominated by a preces-

sion around the axis. If the system then starts with broken _

symmetry so that with a=e '?tan(#/2). For these states we have that
. (30 =(N/2)sindgcosp, (J,)=(N/2)sinbsing, and (J,)=(N/
(Jy)=N§#0 (35  2)cow. These states have a binomial, rather than Poisson,

distribution of particle number over the two single-particle

(which corresponds to a nonzero momentum $fgieeces- energy eigenstates of the potential. These states were re-
sion around thez axis will cause(jx) to oscillate at fre- cently used by Wonget al. [27] to test aspects of broken
quency(). This means that the condensate accumulates firstymmetry. As previously for a condensate of zero momen-
in one well then the other at a frequency determined by théum we would haved=0.
single-particle tunneling frequendy. This is analogous to
the general case for superfluidity when spontaneous symme-
try breaking gives the condensate a phase and a nonzer:
momentum 22].

On the other hand, for largé we expect the system to be
dominated by the second nonlinear term in the Hamiltonian. 500

This suggests that the eigenstates of the Hamiltonian are

close to the eigenstatesfbﬁ. The ground state, and thus the I.IE.I 3000]

condensate state, is close to the zero weight stdg,, with
all other states being doubly degenerate. Note that this state  2000r
corresponds to an equal number of particles in each of the

6000

5000

localized states in each well and thus will also have a sym-  t00or
metric density function. Some results on the spectrum of this | |
model were presented in R¢fl2]. Ot
In Figs. 2 and 3 we calculate the eigenvalues of the
Hamiltonian for different values of the rati@/«, and total ~1000; 20 20 % 80 100 120
m

particle numbem. In Fig. 2 the ratio is large and the low
IAy|ng part of the spectrum is dominated by the eigenstates of £ 3. plot of the energy spectrum in the two-mode approxi-
J,, with a characteristic linear increase of the energy withmation withQ)/«x=1 andN= 100.
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01 | Iv 1
| 100.0
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03 H i FIG. 5. Plot of the quantum mean value dynamicsSgfor an
| intial state |j,—j)y, below threshold. The solid curve is for
N=100, the dashed curve is fdf=400 with 2 =1.0, kN=2.0.
05 . . l particle tunneling period so that in these urdits=1. In Fig.
o0 100.0 200.0 300.0 400.0 4 we plot the mean value &, versus time for an initial state

time lj,— )y for the casec=0.9. For short times the quantum and
mean-field dynamics are similar, with the same oscillation
frequency. However, the oscillations of the quantum mean
decay due to the intrinsic quantum fluctuations in the initial
condition. That is, although the total particle number is fixed
the number of atoms in each individual well are not and must
be considered fluctuating quantiti€23]. More interesting,
We now determine the quantum dynamics of this modehowever, is the revival of the oscillation that occurs at later
and contrast the results with the semiclassical results. Thgmes. This is entirely due to the discrete spectrum of the
Heisenberg equations of motion are many-body Hamiltoniafi12,14. The revival is rather irregu-
. lar in the below threshold case in Fig. 4 when compared with
d_3<_ _ Q8 37) the above threshold case, Fig. 5. In both cases increasing the
dt Sy number of atomd\ while keepingxN fixed increases the
collapse and revival time. Thus it is clear that the mean-field
déy factorization approximation will be valid for sufficiently long
dt

FIG. 4. Plot of the quantum mean value dynamicﬁASpfor an
intial state |j,—j),, below threshold. The solid curve is for
N=100, the dashed curve is fof=400 with=1.0, k<N=0.9.

C. Quantum results

=085,-2kN(§5+5S)), (38)  time scales iiN is large enough.
To observe this result it would be necessary to prepare the

déz o condensate in a maximal eigenstateJof that is, entirely
WZZKN(SYSX‘F SS)), (39 localized in one well or the other. To observe the collapse
and revival one would need to monitor the initially unoccu-

where we have defined the scaled, or intensive, many—bod&eied well. This could be done using off-resonant light scat-

operators b)fSa=3a/N. If we now consider the equations of Ior|ng[28—3(], which is dependent on the particle density, so

. ) ng as the probe laser could be focused down to distinguish
motion for the mean values and factorize all product aver,

; ! . a single well.
ages, we can define an equivalent mean-field model. The 9

resulting equations are equivalent to Edq&7) with the
identification <Sx>:%(|b2|2_|b1|2): (Sy>=—(i/2)(b’1°b2 V. SUMMARY AND CONCLUSIONS

—b3b1), (S)=3(biby+b;b3). In summary, we have investigated the tunneling of a neu-
To obtain the quantum dynamics, we represent the tWotrg| atom Bose-Einstein condensate in a double-well poten-
mode Hamiltonian Eq(34) in the eigenbasis of,, and ex-  tjal, and have shown that many-body interactions lead to
pand the states in the same basis. The time evolution caignificant effects even for small numbers of atoms. In par-
then be found by integrating the Schiger equation in this ticylar, using mean-field theory we found that beyond a criti-
basis. In Figs. 4 and 5 we plot the mean valuéca| atom number the quantum tunneling is suppressed, analo-
(I«(t)/N) =S, for the initial statdj,—j),, corresponding to gous to the self-trapping transition. Using a full quantum
a state localized in one well, and equivalent to that used fotheory in the two-mode approximation we showed that the

the mean-field solutions shown in Fig. 1. mean-field solution is modulated by a quantum collapse and
We take two casedfN=100, N=400, with kN above revival sequence.
and below the critical or threshold case wikiN=(). For The single-particle tunneling frequency will depend on

convenience we normalize the time in units of the singlethe details of how the double well is constructed. In fact in
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the experiment of Daviest al. [3] something like a double bottoms of the double wells to fluctuate in energy. This will

well was formed by using an off-resonant optical dipoletend to cause localization of the condensate in one well or
force to perturb a magnetic-rf trap. Suppose that the harthe other. However, due to the considerable isolation of
monic frequency at the bottom of the trap were of the ordeatomic condensates from their environments we expect that
of 1 kHz. In the case of sodium this results in this problem will be not as serious for these systems as it has

A=1.4x10"*2m? In the experiment of Daviest al, UgiS  been for other many-particle tunneling systems such as Jo-
approximately 1.&1075° Jm?®. This gives a value for sephson tunneling.

k=53 s L. If we use the expression for the tunneling fre-

guency given in Eq(11), then the maximum value d® is

37_% of the harmonic frequency at the bottom pf the wells. If ACKNOWLEDGMENTS

this harmonic frequency is 1 kHz, then the critical number of

atoms isN.~7, a rather small number. Thus in a realistic ~We wish to thank R. Glauber, M. Collett, J. Ralph, J.

experiment it is likely that the single-particle tunneling will Garrison, and R. Hulet for useful discussions. This work was
be strongly suppressed by the atomic interactions. Furthesupported in part by The Marsden Fund of the Royal Society
more it is known that quantum tunneling is very sensitive toof New Zealand, and E.M.W. was partially supported by the
noise, being rapidly suppressed for even small noise sourcedoint Services Optical Program. G.J.M. would like to thank
For example, small fluctuations in the potential can cause thé. Breslin for helping with the numerical calculations.

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,[16] C. D. Tesche, Ann(N.Y.) Acad. Sci.480, 36 (1986.

and E. A. Cornell, Scienc269, 198(1995. [17] See, for exampleBose-Einstein Condensatioadited by A.
[2] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Griffin, D. W. Snoke, and S. StringafCambridge University
Phys. Rev. Lett75, 1687(1995. Press, Cambridge, England, 1995

[3] K. B. Davies, M.-O. Mewes, M. R. Andrews, N. J. van Druten, [18] G. Baym and C. J. Pethick, Phys. Rev. L&, 6 (1996.
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. [19] M. Edwards, R. J. Dodd, C. W. Clark, P. A. Ruprecht, and K.
75, 3969(1995. Burnett, Phys. Rev. A3, 1950(1996.
[4] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, [20] B. Yoon and J. W. Negele, Phys. Rev.18, 1451(1977).
D. S. Durfee, and W. Ketterle, Phys. Rev. L&ft, 416(1996. [21] P. A. Ruprecht, M. J. Holland, K. Burnett, and M. Edwards,
[5] J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman, and E. Phys. Rev. A51, 4704(1995.

A. Cornell, Phys. Rev. Letfr7, 4984(1996. [22] P. W. Anderson, Rev. Mod. Phy38, 298 (1966.
[6] J. Javanainen, Phys. Rev. Leif7, 3164(1986. [23] P. W. AndersonBasic Notions of Condensed Matter Physics
[7] S. Grossmann and M. Holthaus, Z. Naturforsch. TeBG\323 (Addison-Wesley, Reading, MA, 1984
(1995. [24] K. Huang, Statistical Mechanicg$John Wiley and Sons, New
[8] B. D. Josephson, Phys. LeftA, 251 (1962. York, 1987.
[9] E. M. Lifshitz and L. P. PitaevskiiStatistical Physics, Part 2 [25] F. Haake, Quantum Signatures of ChadSpringer, Berlin,
(Pergamon Press, Oxford, 1989p. 85—118. 1991).
[10] J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, Physicd®  [26] F. T. Arrechi, E. Courtens, R. Gilmore, and H. Thomas, Phys.
318(1985. Rev. A6, 2211(1972.
[11] A.C. Scott and J.C. Eilbeck, Phys. Lett. 149 60 (1986. [27] T. Wong, M. J. Collett, S. M Tan, D. F. Walls, and E. M.
[12] L. Bernstein, J. C. Eilbeck, and A. C. Scott, Nonlinear&y Wright, Report No. cond-mat/9611101.
293(1990. [28] J. Javanainen, Phys. Rev. LetR, 2375(1994).
[13] S. M. Jensen, IEEE J. Quantum Electr@i-18, 1580(1982. [29] L. You, M. Lewenstein, and J. Cooper, Phys. Rev.58
[14] A. Chefles and S. M. Barnett, J. Mod. OgB, 709 (1996. R3565(1994).

[15] F. Sols, Physica B94-196 1389(1994. [30] R. Graham and D. F. Wallls, Phys. Rev. L&, 1774(1996.



