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Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential
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We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential,
including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent
oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact
quantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum
collapse and revival sequence.@S1050-2947~97!01406-6#
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I. INTRODUCTION

The recent experimental observation of Bose-Einst
condensation~BEC! in dilute systems of trapped neutral a
oms @1–5# opens a new context for studying the quantu
mechanics of mesoscopic systems. In particular, ato
BECs can be expected to display a variety of quantum in
ference phenomena, and Javanainen@6# and Grossmann an
Holthaus @7# have previously suggested the possibility
condensate tunneling between two adjacent atomic tr
This tunneling, resulting in oscillatory exchange of the ato
between the traps, is analogous to the Josephson effec@8#
for neutral atoms, in which the exchange arises from
relative phase between the macroscopic wave function in
two traps. These authors did not, however, take accoun
the many-body hard-sphere interactions between the ato

We consider the case of an atomic BEC formed in
double-well potential with well separated minima, whe
each potential well represents an atomic trap. Using
mean-field factorization assumption, together with a tw
mode approximation, we find an analytic solution to t
Gross-Pitaevskii equation@9# including many-body interac
tions. If the condensate is initially localized in one well,
can oscillate between the wells by quantum tunneling@6,7#.
However, due to the nonlinearity arising from particle inte
actions, this oscillation is suppressed when the numbe
atoms in the condensate exceeds a critical value. This
pression of the tunneling corresponds to the self-trapp
transition previously studied in the discrete self-trapp
equation@10–12#, and also corresponds to switching acti
in the nonlinear directional coupler of nonlinear optics@13#.
We also calculate the full quantum dynamics and show
the oscillations arising in the mean-field approximation
modulated by a collapse and revival sequence. Collapse
revivals have also been studied in the context of the quan
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theory of the nonlinear directional coupler@14#, and also in
the relative phase between two superfluids or supercond
ors @15#. The time for a complete collapse and revival d
pends very strongly on the number of particles in the c
densate, becoming longer as the particle number is increa
Observation of quantum tunneling in this system may
easier to observe than other condensed systems@16#, or the
nonlinear directional coupler@14#, due to the small dissipa
tion in atom optical contexts.

The remainder of this paper is organized as follows.
Sec. II we present our basic model, in particular, the tw
mode approximation for the quantum dynamics of coup
condensates. Here we also discuss the limits of validity
the model. Section III gives a discussion of the mean-fi
solution of the quantum problem, showing that tunneling
suppressed beyond a critical atom number, and the full qu
tum problem is addressed in Sec. IV where we show that
mean-field solution is modulated by a series of collapses
revivals. Finally, our summary and conclusions are given
Sec. V.

II. BASIC MODEL

A. Two-mode approximation

Our model system is a symmetric double-well sing
particle potentialV(r ) with minima atr1 andr2, and with no
loss of generality we setV(r1,2)50. We assume the potentia
is such that the two lowest states are closely spaced and
separated from higher levels of the potential, and that ma
particle interactions do not significantly change this situ
tion. This assumption permits a two-mode approximation
the many-body description of the system. To proceed
expand the potential around each minimum as

V~r !5Ṽ~2!~r2r j !1•••, j51,2 ~1!

whereṼ(2)(r2r j ) is the parabolic approximation to the po
tential in the vicinity of each minimum. We now define th
state u0(r ) as the normalized single-particle ground-sta
i-
4318 © 1997 The American Physical Society
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55 4319QUANTUM DYNAMICS OF AN ATOMIC BOSE-EINSTEIN . . .
mode of the local potentialṼ(2)(r ), with energyE0, and
define the local mode solutions of the individual we
u1,2(r )5u0(r2r1,2). These local modes are not exactly o
thogonal, but we may write

E d3r uj* ~r !uk~r !5d jk1e~12d jk!, j ,k51,2. ~2!

Heree is the overlap between the modes of opposite wells
the position uncertainty in the stateu0(r ) is much less than
the separation of the minima of the global potentialV(r ),
then e!1, and first-order perturbation theory, withe as an
expansion parameter, will suffice. In first-order perturbat
theory the modes are determined to ordere0, which ignores
inter-well coupling, in which case the local modes may
treated as orthogonal. The energy eigenstates of the gl
double-well potential may then be approximated as the s
metric ~1! and asymmetric (2) combinations

u6~r !'
1

A2
@u1~r !6u2~r !#, ~3!

with corresponding eigenvaluesE65E06R, and

R5E d3r u1* ~r !@V~r !2Ṽ~2!~r2r1!#u2~r !. ~4!

The tunneling frequencyV between the two minima is the
given by the energy level splitting of these two lowest stat
V52R/\. The matrix elementR, which is of ordere1, de-
scribes the coupling between the local modes.

The many-body Hamiltonian describing atomic BEC in
potential is@17#

Ĥ~ t !5E d3r F \2

2m
¹ĉ†

•¹ĉ1V1
U0

2
ĉ†ĉ†ĉĉ G , ~5!

wherem is the atomic mass,U054p\2a/m measures the
strength of the two-body interaction, anda is the s-wave
scattering length,ĉ(r ,t) andĉ†(r ,t) are the Heisenberg pic
ture field operators which annihilate and create atoms at
sition r , and normal ordering has been used. In the two-m
approximation we expand the field operators in terms of
local modes and introduce the Heisenberg picture annih
tion and creation operators

cj~ t !5E d3r uj* ~r !ĉ~r ,t ! ~6!

so that@cj ,ck
†#5d jk to ordere0. Then retaining terms up to

ordere, the many-body Hamiltonian reduces to the followin
two-mode approximation:

Ĥ2~ t !5E0~c1
†c11c2

†c2!1
\V

2
~c1c2

†1c1
†c2!

1\k@~c1
†!2c1

21~c2
†!2c2

2#, ~7!

wherek5U0/2\Veff , andVeff
215*d3r uu0(r )u4 is the effec-

tive mode volume of each well. Here we have retained o
self-phase modulation arising from self-interaction with
each well since the cross-interaction terms involve ma
If
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elements such as (U0/2)*d
3r uu1(r )u2uu2(r )u2, which are of

order e2 compared to the self-phase modulation matrix e
ment\k, and should therefore be consistently neglected
first order.

The Hamiltonian~7! has the form of that for the discret
self-trapping equation@10,11#, and has previously been stud
ied in the context of the quantum dimer@12#, as a model for
anharmonic oscillations in small molecules, and also in
context of the nonlinear optical directional coupler@13,14#.
Here we explore the consequences of this model for ato
BEC in a double-well potential. In the limit of negligible
many-body interactions,\k→0, the Hamiltonian~7! reduces
to that previously employed to study condensate tunne
@6,7#.

B. Model double-well system

We can illustrate the general features of the double-w
system by considering a potential of the form

V~r !5bS x22 d

2bD
2

1
1

2
mv t

2~y21z2!, ~8!

where the interwell coupling occurs alongx, andv t is the
trap frequency in they-z plane. This potential has elliptic
fixed points atr151q0x, r252q0x, whereq0

25d/2b, at
which the linearized motion is harmonic with frequen
v05(4d/m)1/2. Thus, settingv t5v0 for simplicity, we
choose

Ṽ~2!~r !5
1

2
mv0

2~x21y21z2!. ~9!

We will fix v0 by fixing d and consider variations ofq0
only. This is equivalent to varying the height of the barri
D separating the two wells asD5dq0

2. It is convenient to
scale the length in units of the position uncertainty in a h
monic oscillator ground stater 05AD, whereD5\/2mv0.
The barrier height is then given byD5(\v0/8)(q0

2/D). For
a suitable choice ofD, only two energy eigenstates lie be
neath the barrier. The local mode of each well is then giv
by

u0~r !5S 1

2pD D 3/4e2~x21y21z2!/4D. ~10!

These states are simply Gaussian, which enables all integ
to be performed explicitly. For example, the tunneling fr
quencyV may be evaluated as

V5
q0
2v0

2D
e2q0

2/2D, ~11!

and the effective mode volume is given byVeff58(pD)3/2.

C. Limits of validity

The two-mode approximation is valid when many-bo
interactions produce only small modifications of the groun
state properties of the individual potentials. This is true wh
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\v05
\2

2mr0
2 @

NuU0u
Veff

. ~12!

Using Veff'8p3/2r 0
3 for this case, we obtain the following

condition on the number of atoms:

N!
r 0
uau

. ~13!

Taking typical numbers ofr 051 mm, anda55 nm, yields
N!200. Thus the two-mode approximation is valid for sm
number of atoms compared to current experiments w
N51032106 @1–5#. If we consider a larger trap, sa
r 0510mm, then the theory is valid for a few hundred atom
and this is the case we consider here. In the following s
tions we shall show that the condensate tunneling discu
in Refs.@6,7# is strongly modified by many-body interaction
even for such low numbers of atoms.

We remark that the approximations employed here ar
contrast to the Thomas-Fermi approximation@18,19# which
is appropriate to current experiments withN51032106. In
the Thomas-Fermi approximation the many-body inter
tions dominate over the kinetic energy, and as a result
properties of the ground state are strongly modified with
spect to the linear ones. In this case the two-mode aproxi
tion employed here is not applicable.

III. MEAN-FIELD APPROXIMATION

Before proceeding to the full quantum analysis of t
Hamiltonian~7!, we first consider the mean-field approxim
tion. For this we employ the Hartree approximation@20# for
a fixed number of atomsN, and write the atomic state vecto
as

uCN~ t !&5
1

AN!
F E d3r fN~r ,t !ĉ†~r ,0!GNu0&, ~14!

where u0& is the vacuum. The self-consistent nonline
Schrödinger equation or Gross-Pitaevskii equation for t
condensate wave functionfN(r ,t) follows from the Schro¨-
dinger equationi\uĊN(t)&5Ĥ(0)uCN(t)&, and is given by
@9,20,21#

i\
]fN

]t
5F2

\2

2m
¹21V~r !1NU0ufNu2GfN . ~15!

For a particular choice of the global potentialV(r ), Eq. ~15!
can be solved numerically for a given initial condition.
particular, this equation allows simulations of condens
tunneling to be performed without the limitations impos
by the two-mode approximation.

In the two-mode approximation we use the local mod
described above and write

fN~r ,t !5e2 iE0t/\@b1~ t !u1~r !1b2~ t !u2~r !#. ~16!

Then, to first order ine we obtain the coupled-mode equ
tions
l
h

,
c-
ed

in

-
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e

s

dbj
dt

52
iV

2
b32 j22ikNubj u2bj . ~17!

The number of atoms in thej th well is given by

Nj~ t !5^CN~ t !uĉ j
†ĉ j uCN~ t !&5Nubj~ t !u2, ~18!

and this provides the link between the coupled-mode am
tudes and the expectation values of the quantum problem

The coupled-mode equations~17! have an exact solution
@10#. For the case that allN atoms are initially localized in
well 1, N1(0)5Nub1(0)u25N, the number of atoms in wel
1 varies in time as

N1~ t !5
N

2
@11cn~VtuN2/Nc

2!#, ~19!

with N1(t)1N2(t)5N. Here cn(fum) is a Jacobi elliptic
function, andNc is the critical number of atoms given by

Nc5
V

k
. ~20!

For N,Nc this solution exhibits complete and periodic o
cillations between the two condensates with a per
K(N2/Nc

2) which depends on the number of atoms, whe
K(m) is a complete elliptic integral of the first kind. Fo
N!Nc , cn becomes cos, and the oscillations are precis
like those in the Josephson effect@6–8#. As the number of
atoms is increased the oscillation period increases, unt
N5Nc the period is infinite. This marks a bifurcation in th
nonlinear system and at this point the system asymptotic
evolves to equal number of atomsN/2 in each well. For
N.Nc the period of oscillation reduces again but the e
change between the wells is no longer complete. That is,
coherent tunneling oscillations are inhibited at high numb
of atoms, and this is the analog of the self-trapping transit
@10# for the double-well BEC. Note that this result aris
even for a fixed number of atomsN, and does not therefore
rely on coherence between different number states. It d
however, require there to be a well defined relative ph
between the amplitudesb1,2 of the two potential wells.

The choice of initial conditions depends on the conde
sate state. In a typical case one might expect that there w
be equal numbers of atoms in each of the wells, and thus
many-body ground state would reflect the fundamental sy
metry of the potential. This would mean that the quant
(ub2u22ub1u2) would initially be zero. However, as the tota
number of atoms is conserved (ub2u21ub1u2)51, we must
have

b1* b25
1

2
e2 iu, ~21!

whereu is the relative phase between the amplitudesb1 and
b2, respectively. The condensate may thus be regarde
having a well defined phase between the two potential we
According to the usual notion of spontaneous symme
breaking@22–24# this phase is randomly selected for a giv
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55 4321QUANTUM DYNAMICS OF AN ATOMIC BOSE-EINSTEIN . . .
realization of the system, and if averaged over many real
tions would yield a zero contribution from the phase dep
dent term in the ensemble.

To investigate the consequences of spontaneous sym
try breaking for the semiclassical dynamics, it will be co
venient to define the three real variables

Sx5
1

2
~ ub2u22ub1u2!, ~22!

Sy52
i

2
~b1* b22c.c.!, ~23!

Sz5
1

2
~b1* b21c.c.!. ~24!

In Sec. IV we will show thatSy is the mean momentum o
the condensate, whileSz is the atomic number differenc
between the two single-particle energy eigenstates of
double-well system. IfSx50 we must haveSy5

1
2sinu and

Sz5
1
2cosu. If the mean momentum of the condensate is i

tially zero,u50 andSz(0)51/2. Such an initial condition is
a stationary point of the dynamics, as is easily seen if
write the equations of motion in terms of the real variab
defined above:

Ṡx52VSy , ~25!

Ṡy5VSx24kNSxSz , ~26!

Ṡz54kNSxSy . ~27!

These equations indicate a linear precession around thSz
axis at rateV, and a nonlinear precession around theSx axis
at a rate 4kNSx . It is easily seen thatSx

21Sy
21Sz

251/4 is a
constant of the motion, which corresponds to conservatio
particle number.

In Fig. 1 we show the mean-field solutions for the qua
tity ^Sx&5 1

2(ub2u22ub1u2) which represents the occupatio
difference of the two wells: The solid line is fo
kN/V50.9, and complete oscillations between the wells
observed~we scale time in units of the tunneling period
thatV51 in all the figures!. In contrast, the dashed curve
for kN/V52, and the coherent oscillations are no long
complete. This corresponds to the discrete self-trapping id
tified in Ref. @10#.

IV. QUANTUM DYNAMICS

A. Quantum model

Within the two-mode approximation we can obtain an e
act solution to the full quantum problem in order to ass
the effect of quantum fluctuations on the predictions of
Gross-Pitaevskii equation. The total number opera
N̂5c1

†c11c2
†c2 is a constant of motion and we thus set

equal to the total number of atomsN. We now define three
operators, which obey SU~2! commutation relations, by

Ĵz5
1

2
~c1

†c21c2
†c1!, ~28!
a-
-

e-
-

e

-

e
s

of

-

s

r
n-

-
s
e
r

Ĵx5
1

2
~c2

†c22c1
†c1!, ~29!

Ĵy5
i

2
~c2

†c12c1
†c2!. ~30!

The Casimir invariant is easily seen to be

Ĵ25
N̂

2
S N̂
2

11D . ~31!

This is analogous to an angular momentum model with to
angular momentum given byj5N/2.

The operatorĴz corresponds to the particle occupatio
number difference between the single-particle energy eig
states. For example, the maximal weight eigenstateu j , j &z
corresponds to all the particles occupying the highest sin
particle energy eigenstate,c2(x). The operatorĴx gives the
particle number difference between the localized sta
(u1 ,u2) of each well. In fact, for the one dimensional cas
the position operator in the field representation is

x̂→
2q0
N
Ĵx . ~32!

Thus the maximal and minimal weight eigenstates ofĴx cor-
respond to the localization of all the particles in one well
the other. The interpretation ofĴy is crucial for an under-
standing of tunneling. In one dimension, the field repres
tation of the single-particle momentum operatori\(d/dx) is

FIG. 1. Mean-field solutions for the occupation differen
^Sx&5(ub2u22ub1u2)/2 versus time in units of the inverse tunnelin
period. The solid line is forkN/V50.9, and the dashed line is fo
kN/V52, the critical value being forkN/V51.
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p̂→2
\V

q0v0
Ĵy . ~33!

Thus the operatorĴy represents the condensate momentu
The two-mode Hamiltonian~7! may be written

Ĥ25\V Ĵz12\k Ĵx
2 , ~34!

where we neglected constant energy shifts which depen
the total numberN. This Hamiltonian describes linear pre
cession around thez axis at the tunneling frequency and
nonlinear precession around thex axis at a rate determine
by the value ofx component of angular momentum. It
interesting to note that Eq.~34! looks similar to the nonlinea
top models considered by Haake@25#. This Hamiltonian is
symmetric under rotations ofp about thez axis. Such a
transformation corresponds toĴx→2 Ĵx which in view of the
interpretation ofĴx discussed above corresponds to the pa
symmetry of the double-well potential. Thus all eigensta
belong to one of two parity classes corresponding to the
eigenvalues of this transformation.

B. Energy eigenstates

The semiclassical solution suggests that forN small the
first term in Eq.~34! dominates, in which case the energ
eigenstates are close to theN11 eigenstates ofĴz . The con-
densate state will be near the minimum weight st
u j ,2 j &z . This state is of course just the single-partic
ground state of the double-well potential, and thus the d
sity function of the condensate will be symmetric as e
pected. In this case the dynamics is dominated by a pre
sion around thez axis. If the system then starts with broke
symmetry so that

^Ĵy&5NSyÞ0 ~35!

~which corresponds to a nonzero momentum state!, preces-
sion around thez axis will cause^Ĵx& to oscillate at fre-
quencyV. This means that the condensate accumulates
in one well then the other at a frequency determined by
single-particle tunneling frequencyV. This is analogous to
the general case for superfluidity when spontaneous sym
try breaking gives the condensate a phase and a non
momentum@22#.

On the other hand, for largeN we expect the system to b
dominated by the second nonlinear term in the Hamiltoni
This suggests that the eigenstates of the Hamiltonian
close to the eigenstates ofĴx

2 . The ground state, and thus th
condensate state, is close to the zero weight stateu j ,0&x , with
all other states being doubly degenerate. Note that this s
corresponds to an equal number of particles in each of
localized states in each well and thus will also have a sy
metric density function. Some results on the spectrum of
model were presented in Ref.@12#.

In Figs. 2 and 3 we calculate the eigenvalues of
Hamiltonian for different values of the ratioV/k, and total
particle numberN. In Fig. 2 the ratio is large and the low
lying part of the spectrum is dominated by the eigenstate
Ĵz , with a characteristic linear increase of the energy w
.

on

y
s
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e

n-
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st
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e-
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.
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-
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e
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the integerm labeling the sequence of eigenstates. As
ratio of V/k increases, Fig. 3, the doubly degenerate eig
states ofĴx

2 begin to dominate and the energies increase q
dratically with the integerm labeling the eigenstates.

The most natural set of states which exhibit spontane
broken symmetry for this system are the angular momen
coherent states@26# defined in terms of theĴz eigenstates by

ua&5 (
m52 j

j S 2 j

m1 j D
1/2 am1 j

~11uau2! j
u j ,m&, ~36!

with a5e2 iftan(u/2). For these states we have th

^ Ĵx&5(N/2)sinucosf, ^Ĵy&5(N/2)sinusinf, and ^Ĵz&5(N/
2)cosu. These states have a binomial, rather than Poiss
distribution of particle number over the two single-partic
energy eigenstates of the potential. These states were
cently used by Wonget al. @27# to test aspects of broke
symmetry. As previously for a condensate of zero mom
tum we would haveu50.

FIG. 2. Plot of the energy spectrum in the two-mode appro
mation withV/k550 andN5100.

FIG. 3. Plot of the energy spectrum in the two-mode appro
mation withV/k51 andN5100.
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C. Quantum results

We now determine the quantum dynamics of this mo
and contrast the results with the semiclassical results.
Heisenberg equations of motion are

dŜx
dt

52VŜy , ~37!

dŜy
dt

5VŜx22kN~ŜzŜx1ŜxŜz!, ~38!

dŜz
dt

52kN~ŜyŜx1ŜxŜy!, ~39!

where we have defined the scaled, or intensive, many-b
operators byŜa5 Ĵa /N. If we now consider the equations o
motion for the mean values and factorize all product av
ages, we can define an equivalent mean-field model.
resulting equations are equivalent to Eqs.~17! with the
identification ^Sx&5 1

2(ub2u22ub1u2), ^Sy&52( i /2)(b1* b2
2b2* b1), ^Sz&5 1

2(b1* b21b1b2* ).
To obtain the quantum dynamics, we represent the t

mode Hamiltonian Eq.~34! in the eigenbasis ofJz , and ex-
pand the states in the same basis. The time evolution
then be found by integrating the Schro¨dinger equation in this
basis. In Figs. 4 and 5 we plot the mean val

^Ĵx(t)/N&5Sx for the initial stateu j ,2 j &x , corresponding to
a state localized in one well, and equivalent to that used
the mean-field solutions shown in Fig. 1.

We take two cases,N5100, N5400, with kN above
and below the critical or threshold case withkN5V. For
convenience we normalize the time in units of the sing

FIG. 4. Plot of the quantum mean value dynamics ofŜx for an
intial state u j ,2 j &x , below threshold. The solid curve is fo
N5100, the dashed curve is forN5400 withV51.0,kN50.9.
l
he

dy

r-
he

-

an

r

-

particle tunneling period so that in these unitsV51. In Fig.
4 we plot the mean value ofSx versus time for an initial state
u j ,2 j &x for the casek50.9. For short times the quantum an
mean-field dynamics are similar, with the same oscillat
frequency. However, the oscillations of the quantum me
decay due to the intrinsic quantum fluctuations in the init
condition. That is, although the total particle number is fix
the number of atoms in each individual well are not and m
be considered fluctuating quantities@23#. More interesting,
however, is the revival of the oscillation that occurs at la
times. This is entirely due to the discrete spectrum of
many-body Hamiltonian@12,14#. The revival is rather irregu-
lar in the below threshold case in Fig. 4 when compared w
the above threshold case, Fig. 5. In both cases increasing
number of atomsN while keepingkN fixed increases the
collapse and revival time. Thus it is clear that the mean-fi
factorization approximation will be valid for sufficiently lon
time scales ifN is large enough.

To observe this result it would be necessary to prepare
condensate in a maximal eigenstate ofĴx , that is, entirely
localized in one well or the other. To observe the collap
and revival one would need to monitor the initially unocc
pied well. This could be done using off-resonant light sc
tering@28–30#, which is dependent on the particle density,
long as the probe laser could be focused down to distingu
a single well.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the tunneling of a n
tral atom Bose-Einstein condensate in a double-well pot
tial, and have shown that many-body interactions lead
significant effects even for small numbers of atoms. In p
ticular, using mean-field theory we found that beyond a cr
cal atom number the quantum tunneling is suppressed, an
gous to the self-trapping transition. Using a full quantu
theory in the two-mode approximation we showed that
mean-field solution is modulated by a quantum collapse
revival sequence.

The single-particle tunneling frequency will depend
the details of how the double well is constructed. In fact

FIG. 5. Plot of the quantum mean value dynamics ofŜx for an
intial state u j ,2 j &x , below threshold. The solid curve is fo
N5100, the dashed curve is forN5400 withV51.0,kN52.0.
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the experiment of Davieset al. @3# something like a double
well was formed by using an off-resonant optical dipo
force to perturb a magnetic-rf trap. Suppose that the h
monic frequency at the bottom of the trap were of the or
of 1 kHz. In the case of sodium this results
D51.4310212 m2. In the experiment of Davieset al., U0 is
approximately 1.8310250 J m3. This gives a value for
k553 s21. If we use the expression for the tunneling fr
quency given in Eq.~11!, then the maximum value ofV is
37% of the harmonic frequency at the bottom of the wells
this harmonic frequency is 1 kHz, then the critical number
atoms isNc'7, a rather small number. Thus in a realis
experiment it is likely that the single-particle tunneling w
be strongly suppressed by the atomic interactions. Furt
more it is known that quantum tunneling is very sensitive
noise, being rapidly suppressed for even small noise sou
For example, small fluctuations in the potential can cause
an

et

n,
tt.

n,

E

r-
r

f
f

r-

es.
e

bottoms of the double wells to fluctuate in energy. This w
tend to cause localization of the condensate in one wel
the other. However, due to the considerable isolation
atomic condensates from their environments we expect
this problem will be not as serious for these systems as it
been for other many-particle tunneling systems such as
sephson tunneling.
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