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Quantum-classical correspondence via Liouville dynamics.
Il. Correspondence for chaotic Hamiltonian systems
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We prove quantum-classical correspondence for bound conservative classically chaotic Hamiltonian sys-
tems. In particular, quantum Liouville spectral projection operators and spectral densities, and hence classical
dynamics, are shown to approach their classical analogs ih-th@ limit. Correspondence is shown to occur
via the elimination of essential singularities. In addition, applications to matrix elements of observables in
chaotic systems are discussg81050-294{@6)05212-2

PACS numbds): 03.65—w

[. INTRODUCTION [10,11], where we rigorously demonstrated that a nonchaotic
guantum map dynamics can completely recover a fully cha-
The validity of quantum mechanics as a description of theptic classical dynamics in the limfii—0.

macroscopic world is contingent upon the reduction of the The Liouville picture affords a means of gaining insight
laws of quantum mechanics to Newton’s laws in the limitinto the connections between quantum and classical mechan-
where the characteristic actions of a system are large wits [3,12,13, and is a natural framework for studies of cor-
respect to Planck’s constafit]. Thus, diagonal and off- respondence. As outlined in the preceding pahenceforth
diagonal matrix elements must reduce to their classical and&ferred to as papej [5] the essential ingredients for Liou-
logs and quantum dynamics must reproduce the predictiond!lé dynamics are eigenstates and eigenvalues of the Liou-
of classical mechanics ds—0. Despite the fundamental im- Y'"e operators in both m_echamcs. In p_arthular,.the dyna.m|cs
portance of quantum-classical correspondence it has onl completely characterized by the Liouville eigenfunctions

been satisfactorily demonstratg?-5] in the very restrictive nd elge_n\_/r_allues_ or th‘? spe_ctral projectors once the CI"?‘SS of
case of reqular svstems. i.e. svstems that classicall osse%”sowed initial distributions is specified. Here we consider

9 y o 1€, 3y y P correspondence in chaotic systems from this Liouville per-
as many constants of the motion as degrees of freedom. Irg— ective

deed some authors have suggested that bound quantum syS—qanyum  Liouville eigenfunctions for conservative

tems with a discrete quantum spectrum and a chaotic classiyamiitonian systems whose classical analogs are chaotic
cal analog may violate the correspondence princiiie  (ake the formn)(m| where|n) are eigenstates of the Hamil-
These doubts about the validity of the correspondence PNy nian. i e. I:||n>= E,|n). These distributions are eigenfunc-
ciple for chaotic systems stem from the difficulty of recon- tions ’of the com nlete set of operatofs?/ where L
ciling the quasiperiodic nature of bound state quantum dy- ;[ﬁ 1is the uzntum Liouvillepo ot ,r nd whefé
namics with the chaotic nature of classical dynamics for the 2% . > q - perato .a ) € .

[H, 1. is the Hermitian energy operator in the Liouville

1
same Hamiltonian. The issue of correspondence for quantum 2
systems whose classical analogs exhibﬁt chaosgular gys- r[:T)llcture[S]._Tha}t is, they_are solutions of both the time inde-
tems is thus of great interest. pendent Liouville equation

Verification of correspondence should be distinguished
from the development of semiclassical approximation meth-
ods. While semiclassical theories provide a natural startingynerex , .= (E,—E,)/%, and of the energy eigenequation
point for an exploration of the classical limit their existence '
does not guarantee correspondence. For example, semiclas- 7,:[|n><m|:En,m|n><m|y 2
sical theories for regular systems preceded the development
of modern quantum mechani€g], but an understanding of with E, n=(E,+Ep)/2.
correspondence for regular systems has only recently been Consistent with von Neumann’s criteria for quantum er-
achieved 2,3,5. By comparison, attempts to develop semi- godicity [14], we deal with quantum systems with a chaotic
classical quantization rules for chaotic systems have hadlassical analo15,1¢ for which the spectrum of energies
some succed$8], whereas the correspondence limit remainsE, is nondegenerate. For such systems the stajés| are
largely unexplored9]. In this paper we demonstrate that the specified by the integers and m, or equivalently by the
existing semiclassical theories of quantum dynamics for clasfrequency \, ., and energyE, ,,. Since the distributions
sically chaotic systems are sufficiently well developed to al{n){m| govern the quantum dynami¢5] an understanding
low us to show that such systems do in fact approach theiof their h—0 limit, or of their Wigner representation
proper correspondence limits as Planck’s constant app, . (X),
proaches zero. This completes the Liouville correspondence
program outlined in the preceding papés], and signifi-
cantly extends the results of our study of quantum maps

LIny(m| =Xy, o/ n)(m, (1)

p‘r’{m(x)zh‘s’zj dv ePVi(q—vi2n)(m|g+V/2), (3)
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would seem essential for verification of correspondencethe Schrdinger equation. That is,(njm)=4,, and
[Herex=(p,q) wherep are the momenta angl are the co- =,|n)(n|=1. From these states we construct distributions
ordinates| However, as shown below, the relevant objectsp, ,=|n)(m|, which are a basis in the Hilbert space associ-
for the study of correspondence in chaotic systems are thated with solutions of the von Neumann equation. It is natu-
qguantum spectral projection operatpts], which are of the ral to assign a Dirac notation to these basis states, i.e.,
form p)™* (o) pi m(X) in the Wigner representation. That is, R

we demonstrate that for irregular systems these quantum In,m)=pym. (6)

Liouville spectral projection operators approach classical .
spectral projection operato’ of the same frequency and A complete orthonormal b_asjg) of Schralinger states then
energy ah—0, i.e., that yields a complete set of Liouville statés,m). One can now

easily deduce that the dual space is spanned by the linear
Phn(Xo) () —dE Ye (X,X) (4  functionals

—_Tnt .
and (n'm|_Tr{pn,m } (7)
by requiring that 0, m|k,!) = &, k. Note that the normal-
ization of the states|n,m) has been chosen so that
(5) [n,m)(n,m| is a projection operator. Completeness implies

Here the distributions¢ and Yg , are the stationary and that

nonstationary Liouville spectral projection operators of clas-

sical dynamicg5], discussed in paper I. We also show that 2 [n,m)(n,m|=1. (8

the spectrum of the quantum Liouville operator goes to that n.m

of the classical operator &0 and that the correspondence The spectral decomposition of the Liouville operator then

emerges smoothly via the elimination of essential singulari-takes 'E)he form P P

ties. Proof of Egs(4) and (5), plus proof of the correspon-

dence of the Liouville spectra, suffices to prove quantum- R

classical correspondence in chaotic systems. L=2 Nn.mln,m)(n,m|. (©)]
Note  that, unlike  their quantum  analogs nm

Prm(Xo) P m(X), the nonstationary chaotic classical spectral

projection operatoré(En L\, g, Cannot be written as a prod-

uct of Liouville eigenfunctions but rather consist of a sum of, .<"in the Liouville picture, in the same way tHab(n| are

products of Liouville eigenfunctionsee papenl Hence EQ.  he spectral projection operators in the traditional Hamil-
(5) suggests, as discussed below, that the individual nonsta- -

tionary quantum Liouville eigenfunctions) ,(x) for quan- ?inan plctute;ArPEria[y superoperators of the fof@, 1.
tum systems with chaotic classical analogs do not have welfl-€-» [O. 1:p=0pxp0O), of interest below, can be ex-
defined correspondence limits. This situation is quitepanded on thén,m) states as
different from that of the integrable case discussed in paper | . .
and necessitates the introduction of new tools to prove cor- [0, ].= > |nm)(n,m|[O, ].|k,D)(kI|, (10
respondence. nmk|

This paper is organized as follows: Section Il introduces a . _ .
useful Dirac notation to simplify our formal manipulations, Where _ the  superoperator “matrix  elements” are
and the proof of Eqs(4) and (5) is expressed in this Dirac (N.M[[O, ]-|K,1)=0p 8 m* O my k-
form. Section Il proves correspondence for both the Liou- Physical statefp) are defined as
ville spectral projectors and the Liouville eigenvalues. This _gon
treatment ignores higher-order corrections relating to scars, lp)=h"%p, 1D
which are treated in Sec. IV. The proof of correspondence . .
allows us to consider the classical limit of operator matrixVith corresponding kets
elements, which is discussed in Sec. V. Section VI provides
a summary.

Pam(Xo)Pam(X)—dE d\ Ye \ (X;X0) (n#m).

The  Hermitian  operators [19]  |n,m)(n,m|
=pn.mTr{p! -} are obviously the spectral projection opera-

(pl=h"S2Te{p" -} =h~92Tr(p.}, (12

with the latter equality due to the fact that=p. Equations

[l. A DIRAC FORMULATION OF LIOUVILLE DYNAMICS (11) and (12), which define the physical states, differ from
Egs.(6) and(7), which define the basis states by a factor of
clumsiness of the associated density matrix notation. In thig S.lz’ which |s_|ntrodu_cre]dhso tf;1at f[hel quasmrt;bablll;[]y distri-
section we introduce a useful Dirac notation that simplifies dytlons_ aSSQCIate(:] with the physical states have the correct
manipulations considerabljig]. We will also employ a limensions in a phase-space representation, i.e., inverse ac-
Dirac notation for the classical Liouville dynamics in order tion to a povx_/er equal to the numbeerf_degrees of freedom.
to maintain symmetry between the quantum and classicalVe also assign stat¢a) to operatorsA (i.e., operators op-
formulations. erating on the Hilbert space spanned Hn)) _via

Let |n) be a complete, orthonormal set of basis states fotA) =h’A and (A|=h*?Tr{A"-}. The expectation of\ is
the quantum Hilbert space associated with the solutions ahen given by p|A)=(A|p)* =Tr{pA}.

The effectiveness of the Liouville picture is limited by the



In this notation the von Neumanfguantum Liouvillg
equation[20] is

P .
Silp(0)=—iL[p(D)), (13

and the Wigner-Weyl representatid@1,22] of a statep
takes the form

(xlp)=h"*2Tr{h~2A(x)p}, (14
where
A(x)zh*SJ’ du dv ellv:(P=P)+u-(a-Q)a, (15)
Thus, employing Eq(11), we identify
(x|=Tr{h~52A(x)-}=h~S2TH{AT(x)-},  (16)

where the second equality is due to the fact théx) is
Hermitian. The particular form of the corresponding ket
[23,24 is determined by demanding that|x’') = §(x—x’).
Thus, here

[X)=h~2A(x), (17

where Q(lx’)=h‘5Tr{&(x)A(x’)}= 8(x—x"). Since|x) and

(x| span the Hilbert space and its dual space, they satisfy the

closure relation

f dx |x)(x|=1. (18
Definitions (16) and (17) in conjunction with Eqs(11) and
(12) guarantee that the probability densitiegd) have the
correct dimensions. Other phase-space representafions
which (x| and|x) may be quite dissimildy and a general

transformation theory between them is provided elsewhere

[26].
Consider then the Liouville spectral decompositjde.,
Egs.(1) and(2)] for a chaotic quantum system in the Dirac

notation. As eigenfunctions daf and# the |n,m) satisfy
I:|n,m)=)\n,m|n,m), (19
and
ﬂ|n,m)= En,m/n,m). (20)

In the Wigner-Weyl representation Egd.9) and (20) be-
come

n,m) (21

(X|L]n,m)=L(x)(x|n,m) =X m(X
and

(X HIn,m)=HO)(X[n,m)=Epm(xIn,m), (22

whereL (X) = (2i/A)H(X)sin(ko/2) is the quantum Liouville
operator, and{(x) =H(x)cod7%a/2} is the energy operator.
Here o=0"/9x Jo~/dx is the Poisson bracket, i.e.,
AX)oB(x)={A,B}, and J=(° ' is  the
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(2sx 2s)-dimensional symplectic matrix27]. Expanding
H(x) in powers of h shows that the classical analog of
H(x) is the energy functiorH(x), and thatL.(x) is the
correspondence limit df (x).

Consider now the classical case. The classical analog of a
phase-space representation is a choice of canonical variables
for a classical distributiorp.. Thus we denote the phase-
space representation pf by p.(x)=(X|p.).

The classical Liouville spectral decomposition, and the
properties of the eigendistributions discussed in padéi |
are readily restated using the Dirac notation. Associating
stateg E) with the classical distributionsg(x), which span
the point spectrum, and statds \,1) with the classical dis-
tributionSp'E’A(x), which span the continuous spectrum, the
full set of equations for the spectral decomposition becomes

(E'|[E)=68(E'—E), (23
(E'|E,\,1)=0, (24)
(E'NVIEN D=6 8(E'—E)S(N'—N\), (25

fo dE |E)(E|+fO dEJ‘:d)\El |E.N D (E =1,

(26)
e tE)=|E), @)

and
e LA E N ) =e MENI). 28

Here the line through the integral in E(6) indicates that
the point spectrum eigenvalue=0 has been remove@ee

paper ). Two further equations relate to the second constant
of the motion, a classical energy operatdy:
Hc|E)=E|[E) (29
and
H END=E|EN,]). (30

In the phase-space representation parametrized Hyese
equations become

(X[ Hc|E)=H(x)(X|E) =E(X|E) (31)

and

(X|HJEN,D=HX)(X|[EN,DH=E(X|E,\,1). (32

A complete set of stationary and nonstationary classical
Liouville eigenfunctions pe(X)=(x|E) and
p'va(x)=(x|E,)\,I), were introduced in paper | where the
integer | labels the infinite degeneracy of the continuous
spectrum[16]. In addition, spectral projection operators
Ye(x;xo) and Yg,(x;X,) were introduced; these are
the phase-space representations of the classical
operators S(E—H.)=|E)(E| and &(E—H.)o(A—L,)
=3|E, N D (EN 1| Specifically,
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S(E—H(X0))S(E—H(X))

(XIE)(E[xo) =Yg(X;X0) =
f dx’' 8(E—H(x"))

= pe(X)pg (Xo) (33

and
1 * -
2 ENDENIx0)=Ye(XiX0) = 5 - 3E-H(X) Ldt'e‘“ B =X(x,~t'N=2 pEr(X0)pEA(X), (39

whereX(x,—t") is the phase-space point from whiglemerges over a timg.
In terms of these eigenfunctions the spectral decompodikgn(26)] takes the form

f “dE pE(xo)pe(x)+ f dejﬁdx > ol (ko) n (X) = (X~ Xo) (35
0 0 |
or
fwdE YE(x;x0)+fde d\ Y\ (XX0) = 8(X—Xp). (36)
0 0

Thus, the evolution of any initial distributiop(x,0) can be written, in quantum mechanics, as an expansion:

p(x,t)=; Con pY{n(X)Jrn;m Com pr”,m(X)e’”“vmtIJ dxop(Xo,0) 2 pﬁﬁ(Xo)pﬁn(X)+n§m P (Xo) pi (X)€@~ Annt

37
and in classical mechanics as
pox,t) = J dE Cepe(x)+ f dEFdA 2 cent peA(0E™
= f dxop(%o,0) f dE pg(Xo)pe(X)+ J dEF-dA 2 pE(xo)pEA ()™
=f dxop(Xo,0) de YE(x;xo)Jrf dE+dNY g\ (Xx0)e™ M. (39

Equations(37) and (38) make clear that a demonstration of correspondence for the spectral projection operators and their
eigenvalues is sufficient to establish correspondence for the dynamics, i.ep(Xht— p°(x,t) ash—0. That is, formally
establishing correspondence requires demonstrating

|n,n)(n,n|—>dE |En)(En| (39)
and
[nm)(n,m|—dE d\ X [EnmAnm)(EnmXnmll (40)
or
(x[n,n)(n,n|X0) = pp n(Xo) pyy n(X)—dE YEn(X;Xo)=dE(X|En)(En|Xo) (41)
and

(xIn,m)(n,m[xo) = pytn(Xo) P m(X) —dE d\ Ye  \ (X;Xo)=dE d\ 2| (X[ Enm:AnmsD(EnmiAnmil[X0), (42
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with the infinitesimalsdE andd\ to be determined. These _
limits are proven in Sec. Il A. W(X;E,6)~5E(E—H(X))+§j: W XE €), (46)

!l CORRESPONDENCE and thus, by employing Edq43), that

Consider then the correspondence limit, i.e., the limit of
the quantum Liouville dynamics as—0, with the h—0 (x|n,n)~ weh™525 (E,,— H(X))
limit taken before thelT—« limit [9,28]. This order,h—0
first, is consistent with the actual physics in which one first
chooses a particular system and then propagates it for long
times. Technically, this is achieved by first broadening the
system energy by some amoustt-h/T,,, (thus restricting i . 1
the dynamics to finite timeand taking theh— 0 limit with Here Wi, is of the order h® . smaller_ than - the
e fixed. The broadening can then be chosen infinitesimal, 9(En—H(x)) term, and hen_ce vgmshe_s rapidly hsfo' .
e—(AE) (where (AE) is the average spacing between These scar terms, neglected in this section, are considered in
neighboring energy levelallowing for long time dynamics. Sec. IV. . .
Here T, is the period of the shortest periodic orbit. Neglecting the scar terms gives

The physical significance of correspondence under these
limits is clear. A transition from quantum to classical behav-  (X|n,n)~h~5?meS(E,~H(x))~ me(X|En)/(AE)?,
ior will be observed in the dynamics of a physical system as (48)
h— 0 provided thata) the apparatus with which we observe
its dynamics has a fixed, classically small but quantum mewhere (x|En)=pEn(x):5(En—H(x))/[fdx’&(En—H(x’))
chanically large, energy resolution, and tifat we do not (see paper)land wherg AEY=h®/[dx' S(E—H(x")) is the
observe its dynamics beyond the recurrence time given amverage adjacent energy-level spacing. Therefore
proximately byh/(AE).

+meh™ 92> WL (x.E,,€). (47)
]

]1/2

(xInn)(n,n|xg) ~ (m€)*(X|En) (EnlX0) (AE).  (49)
A. Correspondence for spectral projection operators

Here we examine the correspondence limits of the speccorrespondence for the stationary eigenstifes (41)] then
tral projection operators,n)(n,n| and|n,m)(n,m|. We fo-  results if we take the limitme—(AE) and note that
cus attention on the nonstationary case. The stationary ca¢AE)—dE.
[Eqg. (41)] has already been obtained by Berry and Voros The proof of Eq.(42) follows in a similar fashion from
[4,29,30, but we work through this case to demonstrate thethe following important relationshifproven in Appendix A
consistency of our approach. In the latter case consider Bebetween stationary and nonstationary quantum Liouville
ry’s formula[4,30,3] eigenfunctiong32]:

lim mreW(X;E,,, €)= J dq’ePam(q—q’/2ln)(n|q+q’/2) (x|n,m)(n,m[xo)

e—0

=h*2 (x|n,n) (43 :hfsf du dy e~ 1(p—Po)Vihigi(a—dg)-u/h

for finite €, in order to investigate the semiclassical form of

the stationary Liouville eigendistributionx|n,n) in the X ((p+u/2,q+Vv/2)|n,n)(m,m[(po—u/2,qo—V/2))
Wigner representation. Her@é/(x;E,e) is the Lorentzian ~
weighted sum of Wigner functions over a widéhabout an :h—SJ dy ei<x—xO>-J-y/ﬁ.(X+ y/2|n,n)
energyE, i.e.,
X (m,m|xg—y/2). (50

W(x;E,e)Ef dg’e P 9"M(q+q' 12 6(E—H)|q—q'/2),
(44) Here the tilde denotes the transpdaecolumn vectorof the
row vectory. Substituting Eq(43) into Eq. (50) gives

where
L (x[n,m)(n,m|x,)
S0 E—H)=——Im———— ) -
T E—H+ie = lim h_2s7726162J dy /(X0 Jy/h
1 €1,60—0
:ﬁ ﬂcdt gl E-H)thg—eltl/h (45) XWX+ YI2:Er € WH (Xo—YI2:Ern €5) 51)

For quantum systems with chaotic classical analogs, Berrif the energy eigenvaluds, andE,, are both nondegenerate,
[30] has shown, for smalh and smalle, that (where ~ the case for a chaotic system. In the limit of smglle, we
denotes the form in the limit obtain
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(x|n,m)(n,m|xo)~h*25w26152f dy el(x~%o)3y/h W(x;E,e)~5E(E—H(x))=h*1J dt glE-HWIhg=elt/h
XW(x+Yy/2;E,,€1) (53
XW* (Xo=Y/2;Em, €2), (52)
which is amenable to semiclassical analysis. as we did in the stationary case. Substituting E&f) into
As a first approximation we neglect the scar correction€Eq. (52), followed by a simple change of variablgs-hy,
and employ yields

() (mx0)~ ey | dy €270, (B = HOGCHhYI2)5, (En—H K0 hyi2)

7T2€ € . ~
- —hzl—z f dy dt,dtye ettt ealtal/tg2mi0x0) 3V ey fi [ E, — H(x+ hy/2) |t, 1}

Xexpi[En—H(xg—hy/2)]t, /#}. (54
Note, at this stage, the presence of essential singularities in each of the highly oscillatory phase-factors

expli[E,—H(x+hy/2)]t, /#} and expi[E,—H(xq—hy/2)]t, /#}.
We now leth—0 with €, €, fixed. Expanding the displaced Hamiltonian functions in &) in powers ofh:

h dH(x) _ h| oH(x) _
H(x+hy/2)~H(x)+§ ™ -y~H(x)—§ o J|-J-y, (55)
h dH(X) h|dH(xo) ~
HOG=hy2)~H(Xo) = 5 =5 =y ~H (o) + 51— J}Jy (56)

and substituting these expressions into &d) gives

2
(x|n,m)(n,m|xg) ~ %f dy dt,dt,eciltaliigealtalin gilEn=HOOt /i i Eq HO)tp

><exp{ 2i

The factore™ <ulil/fe=<ltl/n gyarantees that the integrand is zero for all but short times sifltel/% > 24r|ty|/ T, and
&|to| /> 27|to|/ Tmin, SO that we can use the short time approximation:

dH(X)

Xo

Jtzlz) } - -y] . (57)

(x— aH(X)Jtllz)—(xo—

JH(X)
X(X,—t1/2)~X— Jt1/2, (58)
oX
dH(Xo)
X’(Xo,_tz/Z)""XO_ Jt2/2 (59)
9o

Using these results in E@57) gives

2
(xinm) (. mixg) ~ T ;lezf dy dt,dt,e~ <ltiligealtalit gl En—HO0]t /gl [Em—HO)Itz /1

Xexp{2mi[ X(X, —t1/2) = X' (Xg, —t2/2)]- -}

7T2€162

=

J dtldtze—el\tl\/he— ez|t2\/ﬁei[En—H(x)]tl/ﬁei[Em—H(xO)]tz/ﬁﬁ(x(X, —1,/2) = X' (X, — 112)).
(60)
Noting that Eq.(60) is identically zero unlesg andx, are on the same trajectory and using the fact that the Hamiltonian is

time independent allows us to repladéx) by H(xg) in the exponential. Next we perform a canonical transformatien,
time translatioh to put Eqg.(60) in the form
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7T26162 . .
(x|n,m)(n,m|xo)~ TJ dt,dt,e” e1ltal/h = ealtol/h gl [En—H(Xo)]ty /7 @i [Em—H(x)]to /% 5(Xo— X(X, — (t;—t,)/2))

2
_m i'?e?j At dtge <tltol/f g ealto—2t' 1A gl [Eq—HOxo)lto /il EmHO to =211t s X(x, —t')), (1)

where we have changed variablestte- (t;—t,)/2 andty=t;. Note thate™ <uld/"~Q unlessty~0 so that we can replace
e~ clto= 2"l py e=2¢lt'l/h jn Eq. (61). Defining o= €,/2 ande’ =2, we obtain

22 ’
(X|n’m)(n,m|xo)~ %f dtldtoe—zfo‘tollﬁe—5’|t’|/hei[En—H(X0)]t0/ﬁei[Em—H(Xo)](to—Zt')/ﬁ5(XO_X(X,_tl)). (62)

Using identity(45) in reverse then yields two equivalent forms:

2 ’

T €QE€ M f ’
(Xln,m)(n,mlxo)~TO&O(En,m—H(Xo))f dt'e” <t 1/hem 2MEn—HUOI A 5, — X (x, ")) (63
and
772606, 1 a—€ [t/ |[1haiNg mt’ ’
(xn,m)(n,mfxo)~ —=— 3¢ (Enm—H(Xp) | dt'e et §(xo—X(X,—t")). (64)

Note that Eq.(64) no longer exhibits the essential singu- limits we must take to achieve the T limit
larities present in Eq(54). This is due to the expansions in ey/#A,e'/fi—0 are ey, me’ —(AE). The relation between
Egs. (55) and(56) through which the essential singularities the ¢,/7%,€'/A— 0 limit and theT 4 limit is explicit in a
are eliminated. We found that the same mechanism, i.eformula proven by Kay33]:
elimination of essential singularities, was responsible for
correspondence in chaotic mappings of the t¢f.

We now take the limit T—o,” that is, we let ) . o 2(T2
lim e’/ﬁfdt’e’f“‘ ~=I|m—f dt’-. (65

eolt,e'Ih—0. Note thate; and e’ essentially define a cut- T) 1

off in time beyond which the semiclassical approximations €'/h—0 T

break down. The commonly adopted cutoff time is the den-

sity of states timely~h/(AE). Since ourt’ is symmetric We consider the correspondence limit of E64) for the

about zero, propagation to Ty, implies that case ofn#m, as well as forn=m. Consider firstn#m.
—Tyaf2<t’<Tyd2. To achieve this we let' T2 —1 or,  Performing the limits as outlined above and making use of
substituting Tgs~h/(AE), we'—(AE). Thus the precise Eq.(65) we obtain

. Teg € 1€ |t |1 ging it '
(x[n,m)(n,m|xg)=lim 7550(En,m—H(Xo)) lim > dt'e e'*nmt §(xg— X(x,—1"))
€/h—0 e'1h—0
; T€o B 2 (T2 ! @iy mt’ '
= Ilim 7550(En,m—H(Xo))|lm$ dt’e'*nmt 5(xg—X(x,—1t"))
€0 /h—0 Tl J=TR2
H T€o di (= I ailgmt’ '
= lim 7550(En,m_H(XO))ZE dt'e'*nmt 5(xo— X(x,—t")),
Eo/ﬁHo —®

1 (=
=dE di 5(En,m—H(x0))ﬂf_ dt’ e’ §(xg— X(x,—t')). (66)
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Here we have interpreted the limit of Tto bedA/27 and is not a simple product of Liouville eigenfunctions, but
meg=(AE)~dE. To see that this is correct recall that we rather a sum of products. Thus E(4) implies that the
have taken the limit asre’ —(AE), which corresponds to correspondence limit of a product of nonstationary quantum
letting T— Tg4s. The inverse of the density of states time canLiouville eigenfunctions is a sum of products of nonstation-
be roughly interpreted as the average nearest-neighbor Lioay classical Liouville eigenfunctions, due to the degeneracy

ville frequency divided by #. The average nearest-neighbor of the classical states.
Liouville frequency{AE)/# can evidently be interpreted as

d\. Given Eq.(34) we have B. Correspondence for the Liouville spectrum
lim (x|n,m)(n,m|xo)=dE d\ YE (X:Xo), In addItIO!’l to the I|m|t relations for the spectral prOJectlo_n
h—0 nm operators discussed in Sec. lll A, correspondence requires

(67)  that the quantum spectrum reduces to its classical analog in
theh—0 limit. Since the classical Liouville spectrum is con-
hence proving correspondence. tinuous we examine spectral densities, rather than individual
Note that in establishing E¢67) we have also shown that Liouville eigenvalues. The quantum Liouville operator
individual quantum Liouville eigenstatesx|6,m), with  §(A—L) can be expanded on the Liouville eigenbasis as
n#m, do not have correspondence limits when the classical
system is chaotic. We may also infer the reason: individual
states k|n,m), n#m, possess essential singularities that
cancel in the product x{n,m)(n,m|x;) to give a well-
defined correspondence limit. The traceD(\) of S(\—L), is the quantum Liouville spec-
Consider now the case wheme=m in Eq. (64). Using Eq.  tral density, i.e.,
(65) and the fact that the classical dynamics is ergodic, we
can replace the time average by a phase average and rewrite

S(n—L)=2> |n,m)(n,m|8(A—L)|n,m)(n,m|. (72

the integral in Eq(64) as D(N)=Tr [5(7\—|:)]=§q (n,m|8(\ —L)|n,m)
lim e /ﬁf dt’e™ ' 11 5(xg— X(x,—t")) = (,M6A—Nym|n,m=2 SA—Xym.
€' Ih—0 n,m nm
2 (T2 (73
= lim —J' dt’ 8(xg—X(x,—t"))
T J -T2 With a view toward investigating the classical limit we
note that we can rewrite the first equality of E§3) b
S(E—H(x0)) qually of BG= by

=2j dxq 5(Xo— X(x,—t")) inserting the identitys(A —L) = (27) "1fdt &*~Lt as
f dx’' S(E—H(x"))

D(\)= f dt e€M(n,mle” 'L‘|n m). (74
SE—H(x)) n m 27
. (689
fdx’&(E—H(x’)) But, inserting the closure relatiofl8), and noting that
L|x)=L(x)|x), gives
Substituting this expression into E@§4) and again interpret- R
ing mep~(AE)~dE we obtain[Eq. (41)] the desired corre- (n,m|e*i“|n,m):f dx (n,m|x)e" "t ®(x|n,m).
spondence:
(79
J]'Lno (xIn.n)(n.nlx) =dE Ye (XiXo). (69 It follows that Eq.(74) can be rewritten in the form
; 1 .
Since D(N)=D, f dt e'“f dx (n,m|x)e” - ®(x|n,m)
n,m
Y e(X;X0) = pg (o) pe(x) = (X|E) (E[Xo), (70)
—- INt
Eq. (70) implies that a product of stationary quantum Liou- 277f_oodt € j dx dxo %1 (nmfx) (xoln,m)
ville eigenfunctions goes to a product of stationary classical L
Liouville eigenfunctions. However, this is not the case for X e~ 5(x = Xo)
the nonstationary projectors. That is, 1
=>—| dt e'“f dx dxod(x—Xg)e "=Mts(x—xg),
Ye  (X;Xg) = I (Xo) P (X
e 0) 2| PE,x( 0)pE,)\( ) (76)
= ENDEN %) (71) where we have usel,, ,(n,m|x)(Xo|n,m) = 8(x—xo). For-

mally expandingL(x) in powers of Planck’s constant and
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taking the h—O0 limit, gives L(x)—L.(x), where o 1 (~ it
L.(x)=iH (x) o is the classical Liouville operator. It follows De(Eosh) = 5(A)+ﬁj,mdt € jH(X)=EOdX
that ash—0
X O(X(X,—t)—X). (81

Here D.(Eq;\) is the classical Liouville density of states
[34,35 on the energy surfadd(x) = E,. Note that the factor
S(X(x,—t)—x) in Eq. (81) is nonzero only for pointx that

1 (= . .
D()\)HEL dt e'“J dx dxg 8(x—Xg)e et

X 8(X—Xo) lie on periodic orbits of periodt. Thus the integral
1 (e fH(X):Eodx O(X(x,—t)—x) can be written as a sum over
Hﬂf dt ei“f dx dxy S(X—Xg) periodic orbits[34], giving [25,34]
1« Ti{(Ep)cogAT;(E
X 8(X(X,—t) =Xo) D(Eg:N)=86(\)+ —>, i(Eo)COA T (Eo)] (82

7T kjlde{M;(Eq)—1]] '

1 (> .

*ﬁf_mdt emf dx 6(X(x, —t) = X). (77 whereT; is the period of periodic orbit, k; is its winding
number, M; is its (2s—2)X(2s—2)-dimensional stability
matrix, and the sum is over positive traversals of the periodic

But orbits.
To show Eq. (800 we employ Gutzwiller's formula

d(E)=d(E)+dys{E) for the density of states, in E¢79).

1 (= )
5 dt e'“J’ dx 8(X(x,—t)—X) Here d(E)=(AE) ! is the average density of states, and
T) - . . . .
dosd E) is an oscillatory correction given by the formula
= J'o dEf,wd)\O 6(}\—7\0)f dx Ye (X;x)=D¢(N), dosc(E)NEj: di)sc,(E)! 83)
(78)
where
whereD(\) is the classical Liouville spectral densit25]. _ T:(E) co§S:(E)/A+y:]
Thus, in a formal sense we have correspondence, i.e., d(E)~ k] 7 ' =3 (84
D(A\)—D¢(\), in theh—0 limit. However, the proof is un- j7 |de(M;(E)—1)]

satisfactory because the classical spectrum is highly dege
erate and this limit is not well defined, i.®.(\)=o. This
arises from the fact that the classical Liouville spectrum i
infinitely degenerate due to its stability with respect to varia-
tions with energy{25,34. In addition, this formal proof pro-

vides little insight into the way that the spectra approach one The Gutzwiller formula for the density of states is not
another. generally convergent, but can be made so by broadening

This problem can be bypassed by considering the LioudVer energy{39]. That is, we replacel(E) by the energy

: . e - dened density d, (E)=Z2,Q,(E-E,) where
ville spectral density for energies in a classically small, butbroa © noe n .
quantum mechanically large, energy interval Q,(X)=1u for — ul2<x<pu/2 and is zero otherwise. Note

Eo— e/2<E<E,+ €/2. That is, we define that lim,_,oQ ,(x)= _5(x). The energy broad_ening modifi_es
the standard Gutzwiller expansion by damping out contribu-
tions from very long periodic orbits.

rI]—|ere Si(E) is the action of the periodic orbif and
SYi= O w2, whereg; is the Maslov index of the orbit36—
38]. The sum in Eq(83) is over positive traversals of the
periodic orbits.

We rewrite Eq.(79) in the form
DEoN)= X SN m) q
EO—E/ZSEn'msEOJre/z , Eotel2
nm DEg;N)= lim hf dE d,(E+%N/2)
Ept+el2 u—(AE) Ep—el2
=ﬁJ dE d(E+AN2)d(E—AN/2),
Eo—el2 ( d( ) xXd,(E-%N2) (85

(79) in order to employ the energy broaden@td hence conver-
gent[40]) form of Gutzwiller's formula. The correspondence
whered(E)=3,8(E—E,). Then, as shown below, expres- limit is now h—0, followed bye,u—(AE) [41].

sion (79) has a well-defined classical limit, i.e., We now separate the Liouville densiy(Eq;\) into its
diagonal and off-diagonal parts. Since the system is chaotic

o we assume that it exhibits level repulsion, i.e., that the prob-
lim lim D ((Eq; M) =Dc(Eo;N) (80 anility of two neighboring energy levels exhibiting an acci-
€0n=0 dental degeneracy is zero. It therefore follows that the only
contribution to the Liouville spectrum at=0 is from the
with diagonal f=m) terms,
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Eg+el2
imD (Eg:\)~ lim hJ P UdE S QL (E+AN2—E)Q (E—hN2-Ey), (86)
A—0 u—(AE) Eq—e€/2 n

so that we can rewrite Eq485) in the limit h—0 (i.e., hA—0 for all \) in the form

Eg+el2
D.(Eg:\)~ lim ﬁf P UdE D) QL (E+AN2—E)Q(E-hN2-E,)
n

u—(AE)y JEo—el2
Ept+el2
+ lim ﬁj dE[dM(E+ﬁ)\/Z)dM(E—ﬁ)\IZ)—de(E)]. (87
/_L—}(AE) E07€/2
Note that agu—(AE)
; Q (E+AaN2—Ep)Q ,(E-AN2-E,)— 6(AN)d(E) (88
and so the first term in Eq487) becomes
Eq+el2 1 (Eotel2
lim hf dE >, Q(E+AN2—E,)Q,(E-AN2—E,)~hed(hN)— dE d(E). (89
u—(AE)y JEo—el2 n €JEy—el2

If we choosee~h/T,,, whereT,,, is the period of the shortest periodic orbit of enekyy then

— 1 (Eg+tel2
d(Eg)~ —f dE d(E) (90
€ Eqg—el2
and so we may write Eq87) in the form
J— Egtel2
D(Eg;\)=#feS(AN)d(Eg)+ lim hf dE [dM(E+ﬁ)\/2)dM(E—h)\/2)—di(E)]. (91
u—(AE) JEo—el2
Eptel2

Now we assume that,,(E) ~d_(E)+doscM(E), with (1/e) [
(91) we obtain

EO—eIZdE tosc.(E)~0, and substituting this expression into Eq.

N J— Eq+el2
D(Eg;N)~#%ed(AN)d(Eg)+hed(Eg)—#  lim fo dE de(E)
u—(AE) Eo—e€l2

Eq+e€l2
+ lim ﬁf * dE Goscu(E+7AN2)dosc (E=7AN/2). (92
u—(AE) JEo—el2

The form of the energy broadened density is now introduced. In partipt®r

4,(E)~d(E)+ > 1B SndTi(E)/2h]

T kyh[defM(E)—1]]

04 S{(E)/h+ 'yj]~d_(E)+; A, i(E)cog S;(E)/fi+ ], (93

where

T,(E) sind uT;(E)/24]

A, (E)=
wi(B) kjrfi | def M, (E)—1]]

and sinck) =sin(x)/x is the damping function.
With dgsc,(E)~Z;A, j(E)cog S(E)/fi+ ] the last term of Eq(92) can be written as

(99
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Egt+el2 Egt+el2
f JE dysou(E+4iN2)dosg(E— NI~ f dE A, (E+ANI2A, j(E-N/2)
Eqg—e€l2 i Eq—e€/2

X cO§ S(E+AN2)/fi+ y;]cog S (E—hiN2)/h+ y;]

Egtel2
N% I dE A, j(E+AN2)A, j (E—FiN/2)

Now let h—0, followed by €, u—(AE). Observing that) ,(E—E;)Q ,(E—Ey)~Q ,(E—E;) 8, m/u if w is sufficiently
small (a consequence of level repuls)pif follows that d#(E)2~dM(E)/,u. Taking u—(AE) we see that

Eptel2 Egt+el2 I
f dE di(E)~f dE d(E)/{AE)~ed ¥ Ey). (96)
Eq—el2 Eq—e€/2

Substituting this result back into E¢R2) we obtain the result that

J— Eg+el2
D.(Eg:\)~fes(EN)d(Eg)+ lim hf " UE doge(E+AN2)dose (E—NI2). 97)

u—(AE) JEo—el2

It remains to evaluate Eq95), a complicated procedure outlined in Appendix B. Then taking the limié-agAE), and
substituting the contributions from Eq810), (B12), (B16), and(B22) into Eq.(95) and substituting Eq95) back into Eq.
(97) gives the result

Tj(Eo)co{ Sj(Eo-i-)\ﬁ/Z);Sj(Eo_ﬁ)\/z)
| ) ™ s—14iz/h
D(Eg;N) 5()\)"‘77; kj|de(Mj(Eo)—|)| +O(hs™tel#h), ©8)

Fors=2, we thus see that 25

wi ‘E,e)~ —————
N =y

—ETJ' Ih

o N 1o Ti(Eg)cogATi(Ep)]
fim m D (Eoih) = 00+ 22 3 Tdef, (Eo)—1]

=D¢(Eg:N). (99

X cod[Sj— & [I(M;—)/(M;+1)]-El/h

' o + )q}hflfm dt e €ltiigif(E-H)t- 12ax/\x3h
That is, the quantum Liouville spectrum properly approaches —

the classical Liouville spectrum ds— 0. Note that Eq(99)

emerges from Eq98) via elimination of essential singulari- (100
ties.

IV. SCAR CORRECTIONS Here the variableg are the 26— 1) coordinates of the sur-

In the last section we began with E2) and utilized face of section transverse to the periodic orbit, and
Berry’s formula[Eq. (46)] for W(x;E, €), neglected scar cor- x/A\X=|VV(q)|?/m+ (p-V)2V(q)/m?. The derivation of Eq.
rections, and arrived at a proof of Eqd) and (5), i.e., the (100 is given by Berry[30] although he does not write it out
correspondence rules discussed above. We now consider thgplicitly.
corrections to these limits, which arise due to the scars from Let h—0 with e>h/T,,,. (For convenience we drop the
the periodic orbits. _ j subscripts orM;, S;, y;, andT;.) Note that thet® term

Consider first the following formula fow. . (x;E,€), the  in the time integral of Eq(100) can be neglected because
scar contribution toV(x;E, €) from periodic orbitj: only short times count for smali. Thus
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. 23 _ Vde(Q)| .. . =
j . _ —€Tlh _ g e+|rrsgrﬂ/4 eiIZ<Q~Z/a_>5 7). 104)
Wecal X E, €) —|de(M+I)|e coq[S(E)—&:[J [am ]V (2) (104
><(M—I)/(M+I)]-E]/ﬁ+ v} S(E—H(X)) This formula, when applied to the exponent in E01),
gives
- " S(E—H(x))
= e "5 (E—H(x
Vlde(M +1)| eiig'[J(M*I)/(MJrI)]-§/ﬁ_>eti(r(h/2)sfl1 / de(M+1) 58
X [@ISE) =& [3M=DIM+1)] £Vin+ 7y detM-—1) (109

+e HISEZELMDIMED] VR + A, (here o= msgr{J(M —1)/(M +1)]/4). Substituting into Eq.

(10p (10D gives

Consider now factors such & ¢ MM=D/I(MFTD]- &% iy the ohs-1
h—0 limit. Note that the integral WL (XE,e)~ —— e <Ticod S(E) /% +
scaﬁ |de(M—|)| qs( ) 7}
+iz-Q-Zla
f dz e~ (2) (102 X SLE—H(X)) (&%), (10
[where z=(z, ... zy) and Q is an (NXN)-dimensional  ich is the classical limit obtained by Berfg0].

matrix independent of] in the limit «—0 can be evaluated

. . To obtain the scar corrections to the Liouville spectral
by the stationary phase to give

projectors we insert Eq46) into Eq.(52) and use Eq(106)

i3 [am]N? s for the scar term. There are two types of corrections of the
f dze '=™? “f(Z)~ﬁf(0)e*'”Sg : forms: “8_(E—H)Xx scar” and “scarx scar.” The latter
|det Q)| (103 are of much higher order ih and are neglected. The correc-

tion terms to Eq(54) due to periodic orbits of period@ and
This suggests the existence of a distributional identity energyE, are then

2m%e e,h57?
VldetM —1)]

Xexp{i[E,—H(x+hy/2)]t, /h}exp{i[E,,— H(xo—hy/2) |t /A}. (107

Sp.m(X;Xo) = e "icod S(E,) /7 + y} f dy dt,dt,e iltilitg=eltallh g7 (x=x0)- I Y5 £ x + hy/2))

We neglecth corrections tog; i.e., we assume thaf(x+hy/2)~&(x). This can be justified as followqa) expanding
&(x+hy/2) to first order inh and using the fact tha{(M —1)/(M +1) is symmetrid30], and Eq.(105), allows us to show that

J ~_
S(&(x+hyl2))~ 6(§(X))cos{ ZW[ya—i LIM=DI(M+1)]- &, (108

and (b) noting that the right-hand side of E¢LO8) is zero unless(x)~0, and that the argument of the cosine factor is
proportional to&(x) allows us to replace the cosine factor by unity.
Using the short-time expansions of E¢S8) and (59) and doing the integrals over andv gives

27m2e e,h2
VIde(M —1)|

X exp{i[ Epm— H(Xo) Tta /A (X (X, — t1/2) — X' (Xg, — 12/2)). (109

Snm(X;X0) = e 1Thcod S(E,) /T + v} S(£(X)) f dt,dt,e ctltule=eltelfexfi[E,— H(X)]t, /A}

Changing variables tt' = (t;—t,)/2 andty=t; and definingey=€,/2 ande’ =2¢, as in Sec. lll A we obtain

S, m(x;x0)~mo—we—fOT’ﬁcos{S(En)/my}a (E, = HOO)S(E0)) lim e’/ﬁfdt’e—f’“"’ﬁ
' 2\/|dE(M_|)| 0 ' €'lh—0
XexpliNymt'}o(Xg—X(x,—t")). (110

For the stationary case=m we interchange limits via Eq65) to obtain
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s ) (AE)?
X;Xg)= ———
X0 = ]

The other cross term, due to periodic orbits of endfgy gives a similar contributioss,, ,(X,;X), and so the overall correction
to Eq. (54) with n=m, due to the periodic orbits, isee also Berry30])

e~ 0Tcog S(Ey)/f + ¥} S(Eq—H(X) S(E,— H(X)) S(&(X)). (111

AE)?
Sn.n(X;Xo) + Sn n(Xo :><)~2j M;e(—,\jj_me‘fon "cog Sj(En)/fi + i} S(En—H(X0)) S(En— H(X)[ 8(£(X))+ 8(£(Xo))].
(112
This result may be rewritten in terms of the distributions
. k:
YEo(xi%o) = 7 8(E~H(x0) S(E—H(x))8(§()), (113
j

which we defined in paper[b] and which are stationary spectral projectors with uniform density on the periodic orbits. Using
Eq. (113, Eq. (112 becomes

. . TJ<AE>2 — €T 1% i . j .
Sn,n(X.Xo)+Sn,n(Xo,X):2 h |de’(M-—I)|e 01" coq S/ (En)/fi+ i [ YE, o(XiX0) +YE o(X0iX)]. (1149
j j

This result shows that the scar corrections to the limi-as0 of the spectral projectors corresponding to stationary states are
comprised of weighted sums over the stationary classical projectors, which have uniform density on the classical periodic
orbits. For the nonstationary caset m, again interchanging limits via E465) and considering only points on the periodic

orbit, it follows that the integral in Eq110 can be written as

1 sin{(2K+ 1)\ mr/2} 2f¢/z

H ’ 1a—€'|t'|1h i)\n,mt’ _
lim f/ﬁfdte e o= X(x, 2K+l SMhgmrl2) 7

€' lh—0

dt’ e nmt’ 5(xg— X (X, —t")).

(115

—t’))=lim

k— oo

—17/2

(Here 7=T, /k;.) Since it can be readily shown that

i 1 si{(2k+1)Ny 72} (1 if Ngm=2wl/7 for leZ
M2%k+1 " sinAom2 |0

k— o0

otherwise

it follows that there are scar corrections only for the nonstationary distributions whose frequency matches an integer multiple
of the frequency of one of the periodic orbits. When this condition is met the scar correction to the nonstationary spectral
projector 1, m|x)(Xo|Nn,m) is obtained from Eqs(110 and (115 as

Sh m(X;X )~Me’fomc05{5(E Y+ Y6, (E —H(x))5(§(x))lfﬂ2 dt’ e nmt’ 5(xg—X(x, —t'))
n,m{X; Xg |de‘(M—I)| n Y59e\Enm P 0 ) .

(116

Similar correctionsSy, o(Xo;X) arise from periodic orbits of
energyE,,, i.e., S, m(X;Xo) is given by Eq.(116) with E,
replaced byE,,.

product is generally zero far#m. The same considerations
hold for the scar terns, (x;Xo) with periodic orbits of
energyE,,. Thus, scar corrections to the nonstationary Liou-

Consider now these nonstationary corrections in more deyille eigenfunctions are typically negligible in the semiclas-

tail. The scar contributiofEq. (116)] involves the following
product of factors
5e0(En,m_ H(X))5(§(X)) (117)

The variablesf(x) are effectively zero on a local family of
periodic orbits with energies close i, and periods close to

: 25—1
T. The distributions(£(x)) is thus zero except on this local Make corrections of orddr=""e

sical limit. Only periodic orbits of period
Tj/kj=2mlIN, m, I €Z, contribute and of these only the
ones with energye, or E, close toE, ,, make a nonzero
contribution.

Thus, we see that the stationary and nonstationary contri-
butions of periodic orbitdEqgs. (114 and (116)] at most
~€Th which vanish in the

family. If the energyE, , lies outside of the neighborhood in correspondence limith(—0 followed by me—(AE)). Fur-
energy of the local family then the product of delta functionsthermore, in the classical limit these corrections are only
[Eq. (117)] will be everywhere zero. As a consequence thesupported on the measure zero set of periodic orbits.
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V. CORRESPONDENCE: APPLICATIONS TO MATRIX R
ELEMENTS K(n|AJm)[?= f dx dxg A™* (x)(X|n,m)(n,m|xg) A% (Xo).
The results obtained above allow us to systematize and (119

extend previous results on the classical limiting forms of'We focus on the correspondence limit of matrix elements for

matrix elements of quantum observables. With our normalobservablesi with a well-defined classical analog, i.e., for
ization of the quantum Liouville eigenfunctions, matrix ele- A"(X)—A(x) whereA(x) is the classical analog.

ments satisfy the following relationship: Consider first that Eqs.119), (34), and (42) imply that
(n#m)
A i A 2 (AE) (= 7 alhnmt’ ,
<n|A|m)=h‘5’2f dx P! (X)A%(x). (118 leol<n|Alm>| =5 | dretnmt (AOAM ),
(120

As a consequence we may relate matrix elements of obserWthere(A(0)A(t"))g  denotes the microcanonical average
ables to the spectral projection operators via the expressionf A(x,0)A(x,t") at an energyE, ,,. Noting that

fldt'e”n’m“ (AOA))e,  =2m(A)E  S(\nm)+ f:dt'e“n-m" ([A)—(A)e, TIAM)—(A)e, De,

(121)
= | averant’ (A0 -(A)e, AT (A, D, (122

if Ay m#0, it follows that
i (A= [ aveert (A©) (Ae, JIAT) (A, D, (123

for the nonstationary case. This result is essentially in agreement with the predictions of Feingold and3Pefegir result
differs from Eq.(123) insofaras they are missing a factorfof !, and they left the energl, , unspecified.
The arguments leading to E(L23) can be readily generalized to the case of mixed operators with the result that

i A A <AE> ” I aihg mt’ ’
rI1|m0(m|A|n>(n|B|m)=Tjocdt enm ([A(0)—(A)e, J[B(t)—=(B)e, De, - (124

This important result establishes a connection between the ) 1 (72 )
Liouville spectrum of classical time correlation functions and (A)ko=— dt” A(X(x!,t")) (127
guantum matrix elements for chaotic systems. Tid = nif2
The case ohi=m also results from Eq119 and Eq.(41) )
to give the well-known results: is the average of\ over the periodic orbif andx! is a point
. on the periodic orbit, while corrections to E(L25 are of
lim (n[AIn)[?=(A)E , the form
h—0
. - (129
lim ¢n|Aln)(n|B|n)=(A)e, (Be, > UG8 enincogs B+ )
h—0 ] th\/lde(MJ_|)|
Scar corrections to the off-diagonal matrix elements are X[<A>EH<B>jEn,o+<B>En<A>jEn,o]- (128

negligible. Scar corrections for the stationary case

A 2
KnlAlm)f* are of the form Comparing Eq(123 to Eqg.(126) it is readily apparent that

2T (AE) squared off-diagonal matrix elements for a chaotic system
! e €T/t are of the same order of magnitude as the fluctuations in the
T kihy|de(M;—1)] squared diagonal matrix elements, i®(hs"!). This con-
, firms an early conjecture by PechuKdsl].
X cogS(En)/fi+yi} (A, (At o (126 Finally, we compare the chaotic case to the well-known

[3,45] classical limit for matrix elements of individual matrix
where elements for integrable systems, i.e.,
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- 1 _ . .
lim (n|A|m)= —SJ’ de A(l,,,0)e'"m-¢ h*ZSJ du dv dq'dq” e (PPo)-V/hgi(a—do)-ulh
he0 (2) :
(129 X l(P+u2)-a'Ihgi(po=u "It g4 yj2— ' 12| )
The most significant difference is that EG29), which holds sinla+v/2+a'/2 —v/2—a"/2lm
for both the stationary and nonstationary integrable cases, (nla q'/2)(do q"/2m)
gives a classical limit for individual matrix elements whereas ~ X{m|qgo—Vv/2+q"/2). (A1)

the chaotic results allow classical limits only for products ofP forming the i | :
matrix elementdEqgs. (123, (124), and (125]. This is a erlorming the Integral ovar gives

direct consequence of the fact that,, has a classical limit
for regular systems but not for chaotic systems. h sf dv dq’'dq”s(q—do+q'/12—q"/2)
VI. SUMMARY X @~ 1(P=Po) VIhigip-a'/higipo-a"/h

Correspondence for chaotic quantum systems has been X{q+Vv/2—q’'/2|n){(n|q+Vv/2+q'/2)
considered from the viewpoint of distribution dynamics in . .
the Wigner-Weyl representation of quantum mechanics. The X(Qo—Vv/2—q"I2|m)(m|qo—V/2+q"/2). (A2)
connections between quantum and classical dynamics haywgow doing the integral oveq” gives
been clarified through the formulation of the correspondence
problem in terms of Liouville spectral projection operators.h_SZSf dv dg eiP-(~V+ahgipo- (20-20-v—a')/
Our demonstration of correspondence for these objects and
for the Liouville spectrum shows that quantum dynamics is , ,
capable of reproducing chaotic classical dynamics in the X(q=(=v+a2nmlg+(-v+a)/2)
h—0 limit. The mechanism of correspondence here, as in X{Qo+(20o—29—Vv—q’)/2lm)
our studies of chaotic mappings, appears to be the elimina-
tion of essential singularities. Corrections arising from peri-  X{nldo—(2do—29q—v—0q')/2). (A3)
odic orbits were also considered with the result that Statio”Changing variables tov'=—v+q’, and v'=2g,—2q
ary quantum spectral projection operators have corrections iﬂv—q’ gives a Jacobian determi,nant of absolute value

the form of weighted sums of stationary classical projectors; ;5. Inserting the definitions ofx(n,m) we immediately
on periodic orbits. Scar corrections for the nonstationanyptain the right-hand side of E¢50).

Liouville spectral projection operators were found to be neg-

ligible. Applications of our correspondence results to matrix APPENDIX B:

elements revealed connections between the matrix elements i o

of quantum observables and the spectrum of classical time Here we systematically evaluate each of the contributions
correlation functions. The corrections to the diagonal matrix® Ed- (95), in accord with the correspondence linit-0,
elements due to periodic orbits were shown to be of the sam& h/Trin, followed by E_’_<AE>- We assume thaf;(E)
order of magnitude irh as the square of the off-diagonal @nd M;(E) vary slowly with energy, i.e.T;(Ex#A\/2)

matrix elements. ~T;(E) andM;(E=%AN2)~M;(E) for smallh, and note,
as a consequence, that the amplitudes are also slowly
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We thus define the slowly varying amplitudes
APPENDIX A

We prove identity(50) by showing that the right-hand
side can be reduced to the left. To begin we substitute th&he integrals to be evaluatdéq. (95)] therefore take the
definitions of &|n,n) into the right-hand side to obtain form

Eotel2 S{(E+#AN2) =S (E—AN/2)
f dE Bj jr(E)CO

+yizyi|, B4
By el2 A Yi=Yi (B4

and we must consider three separate cases.
Case 1 We begin by considering the integrals for which the actions add. Here, because we are summing over positive
traversals,
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d
JELSI(E+AN2) + S (E~AN2)]=T)(E+AN2)+ Tj{(E~Fi/2)>0 (B5)

and so there are no stationary phase points in the intéyale/2<E<E,+ €/2. It can be show46] that integrals of the
form [2dz f(z)e'*@/* with f(z) slowly varying and¢’(z)+0 for ze[a,b], can be approximated by

b , il f(b) . f(a) |
dz f(z e"f’(z)/hN__ ,_el(f)(b)/ﬁ_ : eldz(a)/ﬁ B6
J oz 1 10 5@ (B9
in the limit thath— 0. Application of Eq.(B6) to the integral
Eq+el2 SJ(E+ﬁ)\/2)+S]/(E_h)\/2)
f dE B; ;/(E)co +yjt (B7)
Eq—el2 )
gives
Eg+el2 S{(E+AN2)+S; (E—iN/2)
f dE BJ jr(E)CO +yj+7j’
Eo—el2 h
T,(Egt €/2) + T,/ (Eg+ €/2)° h N
j 0o € )+Tj/(E0 6/2) f

Taking the limit ase—(AE), B; j/(Eq* €/2)~B; ;/(Eo) and T;(Eo* €/2)~T;(Eo), so that we can rewrite E4B8) in the
form

Eotel2 S{(E+#AN2)+S;/(E—AN/2)
f /sz Bj’jr(E)CO 4 +7j+yj’

Eg—e

2/B; /(E S(Eg+AN2)+S  (Eg— N2
1. (Eo) ns{ i(Eo )+ 5 (Eo ) Sin{[T;(Eg)+ T (Eq) e/} ~2¢B; ;1 (Eo)

~ c +yi+ vy
T;(Eo)+T;/(Eo) A YiTYi

><co{SJ(EOer‘/Z)+Si’(E°_m\/2) +y+ Yy
7 l I

Further simplifications show that these contributions take the form

Egt 2 S{(E+#HN/2) + S, (E-hN/2)
Eg—el2
Sj(Eg+7%N2)+ S/ (Eg—#iN2)
~2(AE)B; ;(Eq)co - ity |- (B10)

Now consider the terms in E§B4) involving a difference of actions.
Case 2 Of the terms withj#j’, some will have stationary phase points in the inteBgt e/2<E<Ej+ €/2, and others
will not. For those terms that do not have stationary phase points,

Eq+el2 S{(E+\/2)—S;(E—AN/2)
f dE Bj’jr(E)CO 7 +’yj—’yjr
Ep—e€l2

2ﬁBH,(E0) ~ {SJ(EO—H’L)\/Z)—Sj,(EO—ﬁ)\/Z) SN (T (Eq)— T (Eq))elh ]~ 2€B; -(Eq)
j i’ Nk

-~ (6{0) —|— L — oy
T,(Eo)—T;(Eo) A YTy
5{sj(E(me\/z)—sj,(EO—m\/z)

X Cco

% +y;= v |SING[T;(Eo) — Tj(Eo) e/ fi}, (B11)

as one can easily show by applying EB6). In the limit ase—(AE) we find that
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Eo+el2 S{(E+#AN2) =S (E-AN/2)
f /2dE B]"]'/(E)CO % +7J_7J'

Eg—e

S/(Eg+#iN2)— S, (Eq— hiN/2)
i

Consider those terms that do have stationary phase poilsSe[Ey—e/2,Eq+e/2]. We define
$(E)=S,(E+%N/2)—S;(E-%N/2). Expanding ¢(E) about the stationary phase poirE’' gives ¢(E)~ #(E’)
+1¢"(E")(E—E")2. Now consider that

E0+6/2 ) . , EO+E/2 = 2
f dE B, ;/(E)e'?E/~B, . (E")e'¥E >’ﬁf dE ¢ (EN(E-ED%2h (B13)
Ep—€l2 ' ' Ep—€l2

This approximation resembles the stationary phase approxim@@mexcept that we have retained the original limits on the
remaining integral instead of replacing them tye. Evaluation of the remaining integral in EL45) then yields[47]

fEOH/Z i L ih i $(E )
e, e C B (B) 2\ grEn i (B

_i " E/ _i " Er
x[erf \/%(E(ﬁe/Z—E’) —erf \/%(EO— e/2—E’)H. (B14)
In the limit ase—(AE) we obtain
Egtel2 ) : ’ Cner "2
J' dE Bj’j/(E)el¢(E)/h~<AE>Bj'j,(E/)e|¢(E )/he|¢ (E")(Eg—E")“/2h (815)
Ep—e€l2
or
Byt ef2 S{(E+#M2)—S; (E—#i)/2)
fE /sz Bj’j/(E)CO 7 +’yj—’yj/ ~<AE>B]’J/(E,)COQ®), (816)
0~ €

where® = ¢(E')/h+ ¢"(E')(Eq—E')?/2h + Y~ Vjr-

Case 3 Finally, we consider the terms in E(B4) wherej=|’. First note that there are no true stationary phase points, i.e.,
T{(E+AN2)—T;(E-AN2)#0  for N#0. Second, note that the action S;(E) changes by
Si(Eo+ €/2)—S;(Eq— €/2)=AS;(Eo) ~Tj(Ep) € over the intervalEy— e/2<E<E;+ €/2. Since e~h/Ty, it follows that
AS{(Eo)/h~27T{(Eg)/Tmin. In general T;(Eg)>Ty, and so S/ changes dramatically over the interval
Eo—e/l2<E<Ep+e€/2. Similarly, A[S;(Eq+#AN/2)—S(Eq—AN2)|Ih~27[T{(Eq+AaN2)—T;(Eq—#aN2)]/Tyn, and
since evenT;(Eq+AN/2)—T;(Eq—%\/2)|>T, in general, it follows that the phase of the cosine factor will oscillate many
times over the intervaE,—e/2<E<Eq+¢€/2. By contrast, over the interva,—hk;/2T;(Eq) <SE<Eq+hk/2T;(Ey),
A[S;(EotaN2)—S|(Eq—hN2)]/h~27K;[ T{(Eq+AaN2)—T;(Eq—2N2)]/T;(Eyp). In general  [T;(Eo+#AN/2)
—Tj(Eo—#iN/2)|/T{(Eg)<1 for h small and so the phase is effectively stationary over the small interval
Eo—hkj/2T;(Eo) SE<Eq+hkj/2T;(Ey) aboutE,, and we will therefore break the integral into three parts:

Eg+el2 S{(E+\/2)—S(E—%N2)
f dE B;;(E)co =
Eq—el2 ' h

Eo+hk;/2T;(E) Eo—hk;j/2T;(Eg)
J dE +J dE

Eq—el2

Eo—hk;j/2T;(Eg)

Eo+el2 S|(E+AN2)—S(E—AN2)
+j dE| B;;(E)co .

Eq+ hk;j/2T(Eq) h
(B17)
The first term can be approximated via
Eo+hk;/2T{(Eq) S(E+AN2)—S(E—AN2 kihB; i(E S (Ep+#AaN2)—S;(Eq—7#iN/2
fo 170 OdE Bj‘j(E)CO{ ]( ) ]( ))~ j ],]( O)C{ J( 0 ) ]( 0 ))’
Eo— hk;/2T{(E) h Tj(Eo) h
(B18)

while the other two terms can be evaluafdé] via Eq. (B6) to give
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JEo—hkj/ZTj(EO)

Si(E+ ﬁ)\/2)—Sj(E—h)\/2))
Eq—el2

dE B]-,J-(E)cos( 7

21B; (Eq) Si(Eo+%N/2) = S;(Eg—fiN/2)
T{(Eg+AN2)—T;(Eq—HiN/2)~ h

x sin{[ e/2+ hk;/2T;(Eq) [ T;(Eo+ AN/2) — T;(Eg—AN2)1/H}, (B19)

and

Eg+el2 S|(E+AN2)—S(E—AN2)
f dE B;;(E)co
Eq+hk;/2T;(Eq) h

21B; ;(Eq) S(Eq+#iM/2)— S(Eo—hN/2)
T T,(Eot hiN2) T (Eg— i) ° %

X sin{[ e/2—hk;/2T;(Eo) [ Tj(Eq+AN/2) = T;(Eq— A N/2)]/%}. (B20)
Combined, these last two terms contribute

Si(Eg+%N2) =S, (Eg—#AiN2)|
4€B; ;(Eg)co 5 sind e[ T;(Eq+#/N2)—T;(Eq—#iNI2) 1A}

X cog2mk;[ Tj(Eq+Ah/2) = T;(Eq— Ni/2) 1/ T (Ep)}. (B21)
Therefore, in the limit ag— (AE) the total contribution for case 3 is

Eg+el2 S{(E+#AN2)—S(E—%N2)

Ep—e€l2

 hkiBj(Eo) E(sj(Eoer\/z)—sj(Eo—m\/z))
Tj(Eo) h

S|(Eg+%iN2)— S(Eg—AiN/2)
+4(AE)B| j(Eg)co - )COL{Zij[T]—(EO-i- NI2) = T,(Eg— Mi/2)JIT{(Eo)}.

(B22)

In summary, evaluation of the three types of integrals in [@§) in the correspondence limit, yields the contributions of
Egs.(B10), (B12), (B16) and(B22), which combined make a total contribution of the form

hijj,j(EO)h S(SJ-(Eo—i-)\h/2)—SJ-(EO—fi)\/Z) s—1izfh
T,(Eo) C 7 +0O(h%> ~e'?'"), (B23)
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