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Quantum-classical correspondence via Liouville dynamics.
II. Correspondence for chaotic Hamiltonian systems

Joshua Wilkie and Paul Brumer
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

~Received 14 June 1996!

We prove quantum-classical correspondence for bound conservative classically chaotic Hamiltonian sys-
tems. In particular, quantum Liouville spectral projection operators and spectral densities, and hence classical
dynamics, are shown to approach their classical analogs in theh→0 limit. Correspondence is shown to occur
via the elimination of essential singularities. In addition, applications to matrix elements of observables in
chaotic systems are discussed.@S1050-2947~96!05212-2#

PACS number~s!: 03.65.2w
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I. INTRODUCTION

The validity of quantum mechanics as a description of
macroscopic world is contingent upon the reduction of
laws of quantum mechanics to Newton’s laws in the lim
where the characteristic actions of a system are large
respect to Planck’s constant@1#. Thus, diagonal and off-
diagonal matrix elements must reduce to their classical a
logs and quantum dynamics must reproduce the predict
of classical mechanics ash→0. Despite the fundamental im
portance of quantum-classical correspondence it has
been satisfactorily demonstrated@2–5# in the very restrictive
case of regular systems, i.e., systems that classically pos
as many constants of the motion as degrees of freedom
deed some authors have suggested that bound quantum
tems with a discrete quantum spectrum and a chaotic cla
cal analog may violate the correspondence principle@6#.
These doubts about the validity of the correspondence p
ciple for chaotic systems stem from the difficulty of reco
ciling the quasiperiodic nature of bound state quantum
namics with the chaotic nature of classical dynamics for
same Hamiltonian. The issue of correspondence for quan
systems whose classical analogs exhibit chaos~irregular sys-
tems! is thus of great interest.

Verification of correspondence should be distinguish
from the development of semiclassical approximation me
ods. While semiclassical theories provide a natural star
point for an exploration of the classical limit their existen
does not guarantee correspondence. For example, sem
sical theories for regular systems preceded the developm
of modern quantum mechanics@7#, but an understanding o
correspondence for regular systems has only recently b
achieved@2,3,5#. By comparison, attempts to develop sem
classical quantization rules for chaotic systems have
some success@8#, whereas the correspondence limit rema
largely unexplored@9#. In this paper we demonstrate that th
existing semiclassical theories of quantum dynamics for c
sically chaotic systems are sufficiently well developed to
low us to show that such systems do in fact approach t
proper correspondence limits as Planck’s constant
proaches zero. This completes the Liouville corresponde
program outlined in the preceding paper@5#, and signifi-
cantly extends the results of our study of quantum m
551050-2947/97/55~1!/43~19!/$10.00
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@10,11#, where we rigorously demonstrated that a nonchao
quantum map dynamics can completely recover a fully c
otic classical dynamics in the limith→0.

The Liouville picture affords a means of gaining insig
into the connections between quantum and classical mec
ics @3,12,13#, and is a natural framework for studies of co
respondence. As outlined in the preceding paper~henceforth
referred to as paper I! @5# the essential ingredients for Liou
ville dynamics are eigenstates and eigenvalues of the L
ville operators in both mechanics. In particular, the dynam
is completely characterized by the Liouville eigenfunctio
and eigenvalues or the spectral projectors once the clas
allowed initial distributions is specified. Here we consid
correspondence in chaotic systems from this Liouville p
spective.

Quantum Liouville eigenfunctions for conservativ
Hamiltonian systems whose classical analogs are cha
take the formun&^mu whereun& are eigenstates of the Hami
tonian, i.e.,Ĥun&5Enun&. These distributions are eigenfunc
tions of the complete set of operatorsL̂,Ĥ where L̂
5 1

2 @Ĥ, # is the quantum Liouville operator and whereĤ
5 1

2 @Ĥ, #1 is the Hermitian energy operator in the Liouvill
picture@5#. That is, they are solutions of both the time ind
pendent Liouville equation

L̂un&^mu5ln,mun&^mu, ~1!

whereln,m5(En2Em)/\, and of the energy eigenequatio

Ĥun&^mu5En,mun&^mu, ~2!

with En,m5(En1Em)/2.
Consistent with von Neumann’s criteria for quantum e

godicity @14#, we deal with quantum systems with a chao
classical analog@15,16# for which the spectrum of energie
En is nondegenerate. For such systems the statesun&^mu are
specified by the integersn andm, or equivalently by the
frequencyln,m and energyEn,m . Since the distributions
un&^mu govern the quantum dynamics@5# an understanding
of their h→0 limit, or of their Wigner representation
rn,m
w (x),

rn,m
w ~x![h2s/2E dv eip•v/\^q2v/2un&^muq1v/2&, ~3!
43 © 1997 The American Physical Society
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44 55JOSHUA WILKIE AND PAUL BRUMER
would seem essential for verification of corresponden
@Herex5(p,q) wherep are the momenta andq are the co-
ordinates.# However, as shown below, the relevant obje
for the study of correspondence in chaotic systems are
quantum spectral projection operators@17#, which are of the
form rn,m

w* (x0)rn,m
w (x) in the Wigner representation. That i

we demonstrate that for irregular systems these quan
Liouville spectral projection operators approach class
spectral projection operatorsY of the same frequency an
energy ash→0, i.e., that

rn,n
w* ~x0!rn,n

w ~x!→dE YEn
~x,x0! ~4!

and

rn,m
w* ~x0!rn,m

w ~x!→dE dl YEn,m ,ln,m
~x;x0! ~nÞm!.

~5!

Here the distributionsYE andYE,l are the stationary and
nonstationary Liouville spectral projection operators of cl
sical dynamics@5#, discussed in paper I. We also show th
the spectrum of the quantum Liouville operator goes to t
of the classical operator ash→0 and that the correspondenc
emerges smoothly via the elimination of essential singul
ties. Proof of Eqs.~4! and ~5!, plus proof of the correspon
dence of the Liouville spectra, suffices to prove quantu
classical correspondence in chaotic systems.

Note that, unlike their quantum analog
rn,m
w* (x0)rn,m

w (x), the nonstationary chaotic classical spect
projection operatorsYEn,m ,ln,m

cannot be written as a prod
uct of Liouville eigenfunctions but rather consist of a sum
products of Liouville eigenfunctions~see paper I!. Hence Eq.
~5! suggests, as discussed below, that the individual non
tionary quantum Liouville eigenfunctionsrn,m

w (x) for quan-
tum systems with chaotic classical analogs do not have w
defined correspondence limits. This situation is qu
different from that of the integrable case discussed in pap
and necessitates the introduction of new tools to prove
respondence.

This paper is organized as follows: Section II introduce
useful Dirac notation to simplify our formal manipulation
and the proof of Eqs.~4! and ~5! is expressed in this Dirac
form. Section III proves correspondence for both the Lio
ville spectral projectors and the Liouville eigenvalues. T
treatment ignores higher-order corrections relating to sc
which are treated in Sec. IV. The proof of corresponde
allows us to consider the classical limit of operator mat
elements, which is discussed in Sec. V. Section VI provi
a summary.

II. A DIRAC FORMULATION OF LIOUVILLE DYNAMICS

The effectiveness of the Liouville picture is limited by th
clumsiness of the associated density matrix notation. In
section we introduce a useful Dirac notation that simplifi
manipulations considerably@18#. We will also employ a
Dirac notation for the classical Liouville dynamics in ord
to maintain symmetry between the quantum and class
formulations.

Let un& be a complete, orthonormal set of basis states
the quantum Hilbert space associated with the solutions
e.
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the Schro¨dinger equation. That is,^num&5dn,m and
(nun&^nu51. From these states we construct distributio
r̂n,m5un&^mu, which are a basis in the Hilbert space asso
ated with solutions of the von Neumann equation. It is na
ral to assign a Dirac notation to these basis states, i.e.,

un,m)[r̂n,m . ~6!

A complete orthonormal basisun& of Schrödinger states then
yields a complete set of Liouville statesun,m). One can now
easily deduce that the dual space is spanned by the li
functionals

~n,mu5Tr$r̂n,m
†
•% ~7!

by requiring that (n,muk,l )5dn,mdk,l . Note that the normal-
ization of the statesun,m) has been chosen so th
un,m)(n,mu is a projection operator. Completeness impli
that

(
n,m

un,m)~n,mu51. ~8!

The spectral decomposition of the Liouville operator th
takes the form

L̂5(
n,m

ln,mun,m)~n,mu. ~9!

The Hermitian operators @19# un,m)(n,mu
5 r̂n,mTr$r̂n,m

†
•% are obviously the spectral projection oper

tors in the Liouville picture, in the same way thatun&^nu are
the spectral projection operators in the traditional Ham
tonian picture. Arbitrary superoperators of the form@Ô, #6

~i.e., @Ô, #6r̂5Ôr̂6 r̂Ô), of interest below, can be ex
panded on theun,m) states as

@Ô, #65 (
n,m,k,l

un,m)~n,mu@Ô, #6uk,l !~k,l u, ~10!

where the superoperator ‘‘matrix elements’’ a
(n,mu@Ô, #6uk,l )5On,kd l ,m6Ol ,mdn,k .

Physical statesur) are defined as

ur)5h2s/2r̂, ~11!

with corresponding kets

~ru5h2s/2Tr$r̂†•%5h2s/2Tr$r̂•%, ~12!

with the latter equality due to the fact thatr̂†5 r̂. Equations
~11! and ~12!, which define the physical states, differ fro
Eqs.~6! and~7!, which define the basis states by a factor
h2s/2, which is introduced so that the quasiprobability dist
butions associated with the physical states have the co
dimensions in a phase-space representation, i.e., invers
tion to a power equal to the number of degrees of freedo
We also assign statesuA) to operatorsÂ ~i.e., operators op-
erating on the Hilbert space spanned byun&) via
uA)5hs/2Â and (Au5hs/2Tr$Â†

•%. The expectation ofÂ is
then given by (ruA)5(Aur)*5Tr$r̂Â%.
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55 45QUANTUM-CLASSICAL . . . . II. . . .
In this notation the von Neumann~quantum Liouville!
equation@20# is

]

]t
ur~ t !…52 i L̂ ur~ t !…, ~13!

and the Wigner-Weyl representation@21,22# of a stater
takes the form

~xur!5h2s/2Tr$h2s/2D̂~x!r̂%, ~14!

where

D̂~x!5h2sE du dv ei [v•~p2p̂!1u•~q2q̂!]/\. ~15!

Thus, employing Eq.~11!, we identify

~xu5Tr$h2s/2D̂~x!•%5h2s/2Tr$D̂†~x!•%, ~16!

where the second equality is due to the fact thatD̂(x) is
Hermitian. The particular form of the corresponding k
@23,24# is determined by demanding that (xux8)5d(x2x8).
Thus, here

ux)5h2s/2D̂~x!, ~17!

where (xux8)5h2sTr$D̂(x)D̂(x8)%5d(x2x8). Sinceux) and
(xu span the Hilbert space and its dual space, they satisfy
closure relation

E dx ux)~xu51. ~18!

Definitions ~16! and ~17! in conjunction with Eqs.~11! and
~12! guarantee that the probability densities (xur) have the
correct dimensions. Other phase-space representation@in
which (xu and ux) may be quite dissimilar#, and a genera
transformation theory between them is provided elsewh
@26#.

Consider then the Liouville spectral decomposition@i.e.,
Eqs.~1! and ~2!# for a chaotic quantum system in the Dira
notation. As eigenfunctions ofL̂ andĤ the un,m) satisfy

L̂un,m)5ln,mun,m), ~19!

and

Ĥun,m)5En,mun,m). ~20!

In the Wigner-Weyl representation Eqs.~19! and ~20! be-
come

~xuL̂un,m!5L~x!~xun,m!5ln,m~xun,m! ~21!

and

~xuĤun,m!5H~x!~xun,m!5En,m~xun,m!, ~22!

whereL(x)5(2i /\)H(x)sin(\s/2) is the quantum Liouville
operator, andH(x)5H(x)cos$\s/2% is the energy operator

Here s5]←/]x J]→/ ]̃x is the Poisson bracket, i.e
A(x)sB(x)5$A,B%, and J5( I

0
0
2I) is the
t

he

re

(2s32s)-dimensional symplectic matrix@27#. Expanding
H(x) in powers of h shows that the classical analog
H(x) is the energy functionH(x), and thatLc(x) is the
correspondence limit ofL(x).

Consider now the classical case. The classical analog
phase-space representation is a choice of canonical varia
for a classical distributionrc . Thus we denote the phase
space representation ofrc by rc(x)5(xurc).

The classical Liouville spectral decomposition, and t
properties of the eigendistributions discussed in paper I@5#
are readily restated using the Dirac notation. Associat
statesuE) with the classical distributionsrE(x), which span
the point spectrum, and statesuE,l,l ) with the classical dis-
tributionsrE,l

l (x), which span the continuous spectrum, t
full set of equations for the spectral decomposition becom

~E8uE!5d~E82E!, ~23!

~E8uE,l,l !50, ~24!

~E8l8,l 8uE,l,l !5d l 8,ld~E82E!d~l82l!, ~25!

E
0

`

dE uE)(Eu1E
0

`

dEE—dl(
l

uE,l,l )~E,l,l u51,

~26!

e2 iL ctuE)5uE), ~27!

and

e2 iL ctuE,l,l )5e2 iltuE,l,l ). ~28!

Here the line through the integral in Eq.~26! indicates that
the point spectrum eigenvaluel50 has been removed~see
paper I!. Two further equations relate to the second const
of the motion, a classical energy operatorHc :

HcuE)5EuE) ~29!

and

HcuE,l,l )5EuE,l,l ). ~30!

In the phase-space representation parametrized byx these
equations become

~xuHcuE!5H~x!~xuE!5E~xuE! ~31!

and

~xuHcuE,l,l !5H~x!~xuE,l,l !5E~xuE,l,l !. ~32!

A complete set of stationary and nonstationary class
Liouville eigenfunctions rE(x)5(xuE) and
rE,l
l (x)5(xuE,l,l ), were introduced in paper I where th
integer l labels the infinite degeneracy of the continuo
spectrum @16#. In addition, spectral projection operato
YE(x;x0) and YE,l(x;x0) were introduced; these ar
the phase-space representations of the class
operators d(E2Hc)5uE)(Eu and d(E2Hc)d(l2Lc)
5( l uE,l,l )(E,l,l u. Specifically,
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~xuE!~Eux0!5YE~x;x0!5
d„E2H~x0!…d„E2H~x!…

E dx8d„E2H~x8!…

5rE~x!rE* ~x0! ~33!

and

(
l

~xuE,l,l !~E,l,l ux0!5YE,l~x;x0!5
1

2p
d„E2H~x0!…E

2`

`

dt8eilt8d„x02X~x,2t8!…5(
l

rE,l
l* ~x0!rE,l

l ~x!, ~34!

whereX(x,2t8) is the phase-space point from whichx emerges over a timet8.
In terms of these eigenfunctions the spectral decomposition@Eq. ~26!# takes the form

E
0

`

dE rE* ~x0!rE~x!1E
0

`

dEE—dl (
l

rE,l
l* ~x0!rE,l

l ~x!5d~x2x0! ~35!

or

E
0

`

dE YE~x;x0!1E
0

`

dEE—dl YE,l~x;x0!5d~x2x0!. ~36!

Thus, the evolution of any initial distributionr(x,0) can be written, in quantum mechanics, as an expansion:

r~x,t !5(
n

cn,n rn,n
w ~x!1 (

nÞm
cn,m rn,m

w ~x!e2 iln,mt5E dx0r~x0,0! F(
n

rn,n
w* ~x0!rn,n

w ~x!1 (
nÞm

rn,m
w* ~x0!rn,m

w ~x!e2 iln,mtG
~37!

and in classical mechanics as

rc~x,t !5E dE cErE~x!1E dEE—dl(
l
cE,l,l rE,l

l ~x!e2 ilt

5E dx0r~x0,0!F E dE rE* ~x0!rE~x!1E dEE—dl(
l

rE,l
l* ~x0!rE,l

l ~x!e2 iltG
5E dx0r~x0,0!F E dE YE~x;x0!1E dEE—dlYE,l~x;x0!e

2 iltG . ~38!

Equations~37! and ~38! make clear that a demonstration of correspondence for the spectral projection operators a
eigenvalues is sufficient to establish correspondence for the dynamics, i.e., thatr(x,t)→rc(x,t) ash→0. That is, formally
establishing correspondence requires demonstrating

un,n)~n,nu→dE uEn!~Enu ~39!

and

un,m)(n,mu→dE dl (
l

uEn,m ,ln,m ,l )~En,m ,ln,m ,l u, ~40!

or

~xun,n!~n,nux0!5rn,n
w* ~x0!rn,n

w ~x!→dE YEn
~x;x0!5dE~xuEn!~Enux0! ~41!

and

~xun,m!~n,mux0!5rn,m
w* ~x0!rn,m

w ~x!→dE dl YEn,m ,ln,m
~x;x0!5dE dl (

l
~xuEn,m ,ln,m ,l !~En,m ,ln,m ,l ux0!, ~42!
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55 47QUANTUM-CLASSICAL . . . . II. . . .
with the infinitesimalsdE anddl to be determined. Thes
limits are proven in Sec. III A.

III. CORRESPONDENCE

Consider then the correspondence limit, i.e., the limit
the quantum Liouville dynamics ash→0, with the h→0
limit taken before theT→` limit @9,28#. This order,h→0
first, is consistent with the actual physics in which one fi
chooses a particular system and then propagates it for
times. Technically, this is achieved by first broadening
system energy by some amounte@h/Tmin ~thus restricting
the dynamics to finite time! and taking theh→0 limit with
e fixed. The broadeninge can then be chosen infinitesima
e→^DE& ~where ^DE& is the average spacing betwee
neighboring energy levels! allowing for long time dynamics.
HereTmin is the period of the shortest periodic orbit.

The physical significance of correspondence under th
limits is clear. A transition from quantum to classical beha
ior will be observed in the dynamics of a physical system
h→0 provided that~a! the apparatus with which we observ
its dynamics has a fixed, classically small but quantum m
chanically large, energy resolution, and that~b! we do not
observe its dynamics beyond the recurrence time given
proximately byh/^DE&.

A. Correspondence for spectral projection operators

Here we examine the correspondence limits of the sp
tral projection operatorsun,n)(n,nu andun,m)(n,mu. We fo-
cus attention on the nonstationary case. The stationary
@Eq. ~41!# has already been obtained by Berry and Vo
@4,29,30#, but we work through this case to demonstrate
consistency of our approach. In the latter case consider
ry’s formula @4,30,31#

lim
e→0

peW~x;En ,e!5E dq8eip•q8/\^q2q8/2un&^nuq1q8/2&

5hs/2 ~xun,n! ~43!

for finite e, in order to investigate the semiclassical form
the stationary Liouville eigendistribution (xun,n) in the
Wigner representation. HereW(x;E,e) is the Lorentzian
weighted sum of Wigner functions over a widthe about an
energyE, i.e.,

W~x;E,e![E dq8e2 ip•q8/\^q1q8/2ude~E2Ĥ !uq2q8/2&,

~44!

where

de~E2Ĥ !52
1

p
Im

1

E2Ĥ1 i e

5
1

hE2`

`

dt ei ~E2Ĥ !t/\e2eutu/\. ~45!

For quantum systems with chaotic classical analogs, B
@30# has shown, for smallh and smalle, that ~where;
denotes the form in the limit!
f

t
ng
e

se
-
s

-

p-

c-

se
s
e
r-

f

ry

W~x;E,e!;de„E2H~x!…1(
j
Wscar

j ~x;E,e!, ~46!

and thus, by employing Eq.~43!, that

~xun,n!;peh2s/2de„En2H~x!…

1peh2s/2(
j
Wscar

j ~x;En ,e!. ~47!

Here Wscar
j is of the order hs21 smaller than the

de„En2H(x)… term, and hence vanishes rapidly ash→0.
These scar terms, neglected in this section, are considere
Sec. IV.

Neglecting the scar terms gives

~xun,n!;h2s/2ped„En2H~x!…;pe~xuEn!/^DE&1/2,
~48!

where ~xuEn!5rEn~x!5d„En2H~x!…/@*dx8d„En2H~x8!…#1/2

~see paper I! and wherê DE&5hs/*dx8d„E2H(x8)… is the
average adjacent energy-level spacing. Therefore

~xun,n!~n,nux0!;~pe!2~xuEn!~Enux0!/^DE&. ~49!

Correspondence for the stationary eigenstates@Eq. ~41!# then
results if we take the limitpe→^DE& and note that
^DE&→dE.

The proof of Eq.~42! follows in a similar fashion from
the following important relationship~proven in Appendix A!
between stationary and nonstationary quantum Liouv
eigenfunctions@32#:

~xun,m!~n,mux0!

5h2sE du dv e2 i ~p2p0!•v/\ei ~q2q0!•u/\

3„~p1u/2,q1v/2!un,n…„m,mu~p02u/2,q02v/2!…

5h2sE dy ei ~x2x0!•J• ỹ/\
•~x1y/2un,n!

3~m,mux02y/2!. ~50!

Here the tilde denotes the transpose~a column vector! of the
row vectory. Substituting Eq.~43! into Eq. ~50! gives

~xun,m!~n,mux0!

5 lim
e1 ,e2→0

h22sp2e1e2E dy ei ~x2x0!•J• ỹ/\

3W~x1y/2;En ,e1!W* ~x02y/2;Em ,e2! ~51!

if the energy eigenvaluesEn andEm are both nondegenerate
the case for a chaotic system. In the limit of smalle1 ,e2 we
obtain
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~xun,m!~n,mux0!;h22sp2e1e2E dy ei ~x2x0!•J• ỹ/\

3W~x1y/2;En ,e1!

3W* ~x02y/2;Em,e2!, ~52!

which is amenable to semiclassical analysis.
As a first approximation we neglect the scar correctio

and employ

s

W~x;E,e!;de„E2H~x!…5h21E
2`

`

dt ei [E2H~x!] t/\e2eutu/\

~53!

as we did in the stationary case. Substituting Eq.~53! into
Eq. ~52!, followed by a simple change of variablesy→hy,
yields
-factors

n is
~xun,m!~n,mux0!;p2e1e2E dy e2p i ~x2x0!•J• ỹde1
„En2H~x1hy/2!…de2

„Em2H~x02hy/2!…

5
p2e1e2
h2 E dy dt1dt2e

2e1ut1u/\e2e2ut2u/\e2p i ~x2x0!•J• ỹexp$ i @En2H~x1hy/2!#t1 /\%

3exp$ i @Em2H~x02hy/2!#t2 /\%. ~54!

Note, at this stage, the presence of essential singularities in each of the highly oscillatory phase
exp$i@En2H(x1hy/2)#t1 /\% and exp$i@Em2H(x02hy/2)#t2 /\%.

We now leth→0 with e1 ,e2 fixed. Expanding the displaced Hamiltonian functions in Eq.~54! in powers ofh:

H~x1hy/2!;H~x!1
h

2

]H~x!

]x
• ỹ;H~x!2

h

2 F]H~x!

]x
JG•J• ỹ, ~55!

H~x02hy/2!;H~x0!2
h

2

]H~x0!

]x0
• ỹ;H~x0!1

h

2 F]H~x0!

]x0
JG•J• ỹ ~56!

and substituting these expressions into Eq.~54! gives

~xun,m!~n,mux0!;
p2e1e2
h2 E dy dt1dt2e

2e1ut1u/\e2e2ut2u/\ei [En2H~x!] t1 /\ei [Em2H~x0!] t2 /\

3expH 2p i F S x2
]H~x!

]x
Jt1/2D2S x02 ]H~x0!

]x0
Jt2/2D G•J• ỹJ . ~57!

The factore2e1ut1u/\e2e2ut2u/\ guarantees that the integrand is zero for all but short times sincee1ut1u/\@2put1u/Tmin and
e2ut2u/\@2put2u/Tmin , so that we can use the short time approximation:

X~x,2t1/2!;x2
]H~x!

]x
•Jt1/2, ~58!

X8~x0 ,2t2/2!;x02
]H~x0!

]x0
•Jt2/2. ~59!

Using these results in Eq.~57! gives

~xun,m!~n,mux0!;
p2e1e2
h2 E dy dt1dt2e

2e1ut1u/\e2e2ut2u/\ei [En2H~x!] t1 /\ei [Em2H~x0!] t2 /\

3exp$2p i @X~x,2t1/2!2X8~x0 ,2t2/2!#•J• ỹ%

5
p2e1e2
h2 E dt1dt2e

2e1ut1u/\e2e2ut2u/\ei [En2H~x!] t1 /\ei [Em2H~x0!] t2 /\d„X~x,2t1/2!2X8~x0 ,2t2/2!….

~60!

Noting that Eq.~60! is identically zero unlessx andx0 are on the same trajectory and using the fact that the Hamiltonia
time independent allows us to replaceH(x) by H(x0) in the exponential. Next we perform a canonical transformation~i.e.,
time translation! to put Eq.~60! in the form
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~xun,m!~n,mux0!;
p2e1e2
h2 E dt1dt2e

2e1ut1u/\e2e2ut2u/\ei [En2H~x0!] t1 /\ei [Em2H~x0!] t2 /\d„x02X~x,2~ t12t2!/2!…

5
p22e1e2

h2 E dt8dt0e
2e1ut0u/\e2e2ut022t8u/\ei [En2H~x0!] t0 /\ei [Em2H~x0!] ~ t022t8!/\d„x02X~x,2t8!…, ~61!

where we have changed variables tot85(t12t2)/2 and t05t1. Note thate2e1ut0u/\;0 unlesst0;0 so that we can replac
e2e2ut022t8u/\ by e22e2ut8u/\ in Eq. ~61!. Defining e05e1/2 ande852e2 we obtain

~xun,m!~n,mux0!;
p22e0e8

h2 E dt8dt0e
22e0ut0u/\e2e8ut8u/\ei [En2H~x0!] t0 /\ei [Em2H~x0!] ~ t022t8!/\d„x02X~x,2t8!…. ~62!

Using identity~45! in reverse then yields two equivalent forms:

~xun,m!~n,mux0!;
p2e0e8

h
de0

„En,m2H~x0!…E dt8e2e8ut8u/\e22i [Em2H~x0!] t8/\d„x02X~x,2t8!… ~63!

and

~xun,m!~n,mux0!;
p2e0e8

h
de0

„En,m2H~x0!…E dt8e2e8ut8u/\eiln,mt8d„x02X~x,2t8!…. ~64!
u-
n
s
i.e
fo

-
n
en

of
Note that Eq.~64! no longer exhibits the essential sing
larities present in Eq.~54!. This is due to the expansions i
Eqs. ~55! and ~56! through which the essential singularitie
are eliminated. We found that the same mechanism,
elimination of essential singularities, was responsible
correspondence in chaotic mappings of the torus@10#.

We now take the limit ‘‘T→`,’’ that is, we let
e0 /\,e8/\→0. Note thate0 ande8 essentially define a cut
off in time beyond which the semiclassical approximatio
break down. The commonly adopted cutoff time is the d
sity of states timeTds;h/^DE&. Since ourt8 is symmetric
about zero, propagation to Tds implies that
2Tds/2<t8<Tds/2. To achieve this we lete8Tds/2\→1 or,
substituting Tds;h/^DE&, pe8→^DE&. Thus the precise
.,
r

s
-

limits we must take to achieve the ‘‘T→` ’’ limit
e0 /\,e8/\→0 arepe0 ,pe8→^DE&. The relation between
thee0 /\,e8/\→0 limit and theTds→` limit is explicit in a
formula proven by Kay@33#:

lim
e8/\→0

e8/\E dt8e2e8ut8u/\
•5 lim

T→`

2

TE2T/2

T/2

dt8•. ~65!

We consider the correspondence limit of Eq.~64! for the
case ofnÞm, as well as forn5m. Consider firstnÞm.
Performing the limits as outlined above and making use
Eq. ~65! we obtain
~xun,m!~n,mux0!5 lim
e0 /\→0

pe0
2

de0
„En,m2H~x0!… lim

e8/\→0

e8

\ E dt8e2e8ut8u/\eiln,mt8d„x02X~x,2t8!…

5 lim
e0 /\→0

pe0
2

de0
„En,m2H~x0!… lim

T→`

2

TE2T/2

T/2

dt8eiln,mt8d„x02X~x,2t8!…

5 lim
e0 /\→0

pe0
2

de0
„En,m2H~x0!…2

dl

2pE2`

`

dt8eiln,mt8d„x02X~x,2t8!…,

5dE dl d„En,m2H~x0!…
1

2pE2`

`

dt8eiln,mt8d„x02X~x,2t8!…. ~66!
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Here we have interpreted the limit of 1/T to bedl/2p and
pe05^DE&'dE. To see that this is correct recall that w
have taken the limit aspe8→^DE&, which corresponds to
letting T→Tds. The inverse of the density of states time c
be roughly interpreted as the average nearest-neighbor L
ville frequency divided by 2p. The average nearest-neighb
Liouville frequency^DE&/\ can evidently be interpreted a
dl. Given Eq.~34! we have

lim
h→0

~xun,m!~n,mux0!5dE dl YEn,m ,ln,m
~x;x0!,

~67!

hence proving correspondence.
Note that in establishing Eq.~67! we have also shown tha

individual quantum Liouville eigenstates (xun,m), with
nÞm, do not have correspondence limits when the class
system is chaotic. We may also infer the reason: individ
states (xun,m), nÞm, possess essential singularities th
cancel in the product (xun,m)(n,mux0) to give a well-
defined correspondence limit.

Consider now the case wheren5m in Eq. ~64!. Using Eq.
~65! and the fact that the classical dynamics is ergodic,
can replace the time average by a phase average and re
the integral in Eq.~64! as

lim
e8/\→0

e8/\E dt8e2e8ut8u/\d„x02X~x,2t8!…

5 lim
T→`

2

TE2T/2

T/2

dt8d„x02X~x,2t8!…

52E dx0
d„E2H~x0!…

E dx8d„E2H~x8!…

d„x02X~x,2t8!…

52
d„E2H~x!…

E dx8d„E2H~x8!…

. ~68!

Substituting this expression into Eq.~64! and again interpret-
ing pe0;^DE&;dE we obtain@Eq. ~41!# the desired corre-
spondence:

lim
h→0

~xun,n!~n,nux0!5dE YEn
~x;x0!. ~69!

Since

YE~x;x0!5rE* ~x0!rE~x!5~xuE!~Eux0!, ~70!

Eq. ~70! implies that a product of stationary quantum Lio
ville eigenfunctions goes to a product of stationary class
Liouville eigenfunctions. However, this is not the case
the nonstationary projectors. That is,

YE,l~x;x0!5(
l

rE,l
l* ~x0!rE,l

l ~x!

5(
l

~xuE,l,l !~E,l,l ux0! ~71!
u-

al
l
t

e
rite

l
r

is not a simple product of Liouville eigenfunctions, b
rather a sum of products. Thus Eq.~34! implies that the
correspondence limit of a product of nonstationary quant
Liouville eigenfunctions is a sum of products of nonstatio
ary classical Liouville eigenfunctions, due to the degener
of the classical states.

B. Correspondence for the Liouville spectrum

In addition to the limit relations for the spectral projectio
operators discussed in Sec. III A, correspondence requ
that the quantum spectrum reduces to its classical analo
theh→0 limit. Since the classical Liouville spectrum is con
tinuous we examine spectral densities, rather than individ
Liouville eigenvalues. The quantum Liouville operat
d(l2L̂) can be expanded on the Liouville eigenbasis as

d~l2L̂ !5(
n,m

un,m)~n,mud~l2L̂ !un,m!~n,mu. ~72!

The traceD(l) of d(l2L̂), is the quantum Liouville spec
tral density, i.e.,

D~l!5Tr @d~l2L̂ !#5(
n,m

„n,mud~l2L̂ !un,m…

5(
n,m

„n,mud~l2ln,m!un,m…5(
n,m

d~l2ln,m!.

~73!

With a view toward investigating the classical limit w
note that we can rewrite the first equality of Eq.~73! by

inserting the identityd(l2L̂)5(2p)21*dt ei (l2L̂)t as

D~l!5(
n,m

1

2pE2`

`

dt eilt~n,mue2 i L̂ tun,m!. ~74!

But, inserting the closure relation~18!, and noting that
L̂ux)5L(x)ux), gives

~n,mue2 i L̂ tun,m!5E dx ~n,mux!e2 iL ~x!t~xun,m!.

~75!

It follows that Eq.~74! can be rewritten in the form

D~l!5(
n,m

1

2pE2`

`

dt eiltE dx ~n,mux!e2 iL ~x!t~xun,m!

5
1

2pE2`

`

dt eiltE dx dx0F(
n,m

~n,mux!~x0un,m!G
3e2 iL ~x!td~x2x0!

5
1

2pE2`

`

dt eiltE dx dx0d~x2x0!e
2 iL ~x!td~x2x0!,

~76!

where we have used(m,n(n,mux)(x0un,m)5d(x2x0). For-
mally expandingL(x) in powers of Planck’s constant an



i.

ge

i
ia

on

ou
u
a

s-

s

r

dic

nd

e

ot
ing

e
s
bu-

-
e

otic
ob-
i-
nly

55 51QUANTUM-CLASSICAL . . . . II. . . .
taking the h→0 limit, gives L(x)→Lc(x), where
Lc(x)5 iH (x)s is the classical Liouville operator. It follows
that ash→0

D~l!→
1

2pE2`

`

dt eiltE dx dx0 d~x2x0!e
2 iL c~x!t

3d~x2x0!

→
1

2pE2`

`

dt eiltE dx dx0 d~x2x0!

3d„X~x,2t !2x0…

→
1

2pE2`

`

dt eiltE dx d„X~x,2t !2x…. ~77!

But

1

2pE2`

`

dt eiltE dx d„X~x,2t !2x…

5E
0

`

dEE
2`

`

dl0 d~l2l0!E dx YE,l~x;x![Dc~l!,

~78!

whereDc(l) is the classical Liouville spectral density@25#.
Thus, in a formal sense we have correspondence,

D(l)→Dc(l), in theh→0 limit. However, the proof is un-
satisfactory because the classical spectrum is highly de
erate and this limit is not well defined, i.e.,Dc(l)5`. This
arises from the fact that the classical Liouville spectrum
infinitely degenerate due to its stability with respect to var
tions with energy@25,34#. In addition, this formal proof pro-
vides little insight into the way that the spectra approach
another.

This problem can be bypassed by considering the Li
ville spectral density for energies in a classically small, b
quantum mechanically large, energy interv
E02e/2<E<E01e/2. That is, we define

De~E0 ;l!5 (
n,m

E02e/2<En,m<E01e/2

d~l2ln,m!

5\E
E02e/2

E01e/2

dE d~E1\l/2!d~E2\l/2!,

~79!

whered(E)5(nd(E2En). Then, as shown below, expre
sion ~79! has a well-defined classical limit, i.e.,

lim
e→0

lim
h→0

De~E0 ;l!5Dc~E0 ;l! ~80!

with
e.,

n-

s
-

e

-
t
l

Dc~E0 ;l!5d~l!1
1

2pE2`

`

dt eiltE
H~x!5E0

dx

3d„X~x,2t !2x…. ~81!

Here Dc(E0 ;l) is the classical Liouville density of state
@34,35# on the energy surfaceH(x)5E0. Note that the factor
d„X(x,2t)2x… in Eq. ~81! is nonzero only for pointsx that
lie on periodic orbits of periodt. Thus the integral
*H(x)5E0

dx d„X(x,2t)2x… can be written as a sum ove
periodic orbits@34#, giving @25,34#

Dc~E0 ;l!5d~l!1
1

p(
j

Tj~E0!cos@lTj~E0!#

kj udet@M j~E0!2I #u
, ~82!

whereTj is the period of periodic orbitj , kj is its winding
number,M j is its (2s22)3(2s22)-dimensional stability
matrix, and the sum is over positive traversals of the perio
orbits.

To show Eq. ~80! we employ Gutzwiller’s formula
d(E)5d̄(E)1dosc(E) for the density of states, in Eq.~79!.
Here d̄(E)5^DE&21 is the average density of states, a
dosc(E) is an oscillatory correction given by the formula

dosc~E!;(
j
dosc
j ~E!, ~83!

where

dosc
j ~E!;

Tj~E!

kjp\

cos@Sj~E!/\1g j #

Audet„M j~E!2I …u
. ~84!

Here Sj (E) is the action of the periodic orbitj and
g j5s jp/2, wheres j is the Maslov index of the orbit@36–
38#. The sum in Eq.~83! is over positive traversals of th
periodic orbits.

The Gutzwiller formula for the density of states is n
generally convergent, but can be made so by broaden
over energy@39#. That is, we replaced(E) by the energy
broadened density dm(E)5(nVm(E2En) where
Vm(x)51/m for 2m/2<x<m/2 and is zero otherwise. Not
that limm→0Vm(x)5d(x). The energy broadening modifie
the standard Gutzwiller expansion by damping out contri
tions from very long periodic orbits.

We rewrite Eq.~79! in the form

De~E0 ;l!5 lim
m→^DE&

\E
E02e/2

E01e/2

dE dm~E1\l/2!

3dm~E2\l/2! ~85!

in order to employ the energy broadened~and hence conver
gent@40#! form of Gutzwiller’s formula. The correspondenc
limit is now h→0, followed bye,m→^DE& @41#.

We now separate the Liouville densityDe(E0 ;l) into its
diagonal and off-diagonal parts. Since the system is cha
we assume that it exhibits level repulsion, i.e., that the pr
ability of two neighboring energy levels exhibiting an acc
dental degeneracy is zero. It therefore follows that the o
contribution to the Liouville spectrum atl50 is from the
diagonal (n5m) terms,
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lim
l→0

De~E0 ;l!; lim
m→^DE&

\E
E02e/2

E01e/2

dE (
n

Vm~E1\l/22En!Vm~E2\l/22En!, ~86!

so that we can rewrite Eq.~85! in the limit h→0 ~i.e., hl→0 for all l) in the form

De~E0 ;l!; lim
m→^DE&

\E
E02e/2

E01e/2

dE (
n

Vm~E1\l/22En!Vm~E2\l/22En!

1 lim
m→^DE&

\E
E02e/2

E01e/2

dE@dm~E1\l/2!dm~E2\l/2!2dm
2 ~E!#. ~87!

Note that asm→^DE&

(
n

Vm~E1\l/22En!Vm~E2\l/22En!→d~\l!d~E! ~88!

and so the first term in Eq.~87! becomes

lim
m→^DE&

\E
E02e/2

E01e/2

dE (
n

Vm~E1\l/22En!Vm~E2\l/22En!;\ed~\l!
1

eEE02e/2

E01e/2

dE d~E!. ~89!

If we choosee;h/Tmin , whereTmin is the period of the shortest periodic orbit of energyE0, then

d̄~E0!;
1

eEE02e/2

E01e/2

dE d~E! ~90!

and so we may write Eq.~87! in the form

De~E0 ;l!5\ed~\l!d̄~E0!1 lim
m→^DE&

\E
E02e/2

E01e/2

dE @dm~E1\l/2!dm~E2\l/2!2dm
2 ~E!#. ~91!

Now we assume thatdm(E);d̄(E)1dosc,m(E), with (1/e)*E02e/2
E01e/2dE dosc,m(E);0, and substituting this expression into E

~91! we obtain

De~E0 ;l!;\ed~\l!d̄~E0!1\ed̄ 2~E0!2\ lim
m→^DE&

E
E02e/2

E01e/2

dE dm
2 ~E!

1 lim
m→^DE&

\E
E02e/2

E01e/2

dE dosc,m~E1\l/2!dosc,m~E2\l/2!. ~92!

The form of the energy broadened density is now introduced. In particular@42#,

dm~E!;d̄~E!1(
j

Tj~E! sinc@mTj~E!/2\#

kjp\Audet@M j~E!2I #u
cos@Sj~E!/\1g j #;d̄~E!1(

j
Am, j~E!cos@Sj~E!/\1g j #, ~93!

where

Am, j~E![
Tj~E! sinc@mTj~E!/2\#

kjp\Audet@M j~E!2I #u
, ~94!

and sinc(x)5sin(x)/x is the damping function.
With dosc,m(E);( jAm, j (E)cos@Sj(E)/\1gj# the last term of Eq.~92! can be written as
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E
E02e/2

E01e/2

dE dosc,m~E1\l/2!dosc,m~E2\l/2!;(
j , j 8

E
E02e/2

E01e/2

dE Am, j~E1\l/2!Am, j 8~E2\l/2!

3cos@Sj~E1\l/2!/\1g j #cos@Sj 8~E2\l/2!/\1g j 8#

;(
j , j 8

E
E02e/2

E01e/2

dE Am, j~E1\l/2!Am, j 8~E2\l/2!

3„cos$@Sj~E1\l/2!2Sj 8~E2\l/2!#/\1g j2g j 8%

1cos$@Sj~E1\l/2!1Sj 8~E2\l/2!#/\1g j1g j 8%…. ~95!

Now let h→0, followed by e,m→^DE&. Observing thatVm(E2En)Vm(E2Em);Vm(E2En)dn,m /m if m is sufficiently
small ~a consequence of level repulsion!, if follows that dm(E)

2;dm(E)/m. Takingm→^DE& we see that

E
E02e/2

E01e/2

dE dm
2 ~E!;E

E02e/2

E01e/2

dE d~E!/^DE&;ed̄ 2~E0!. ~96!

Substituting this result back into Eq.~92! we obtain the result that

De~E0 ;l!;\ed~\l!d̄~E0!1 lim
m→^DE&

\E
E02e/2

E01e/2

dE dosc,m~E1\l/2!dosc,m~E2\l/2!. ~97!

It remains to evaluate Eq.~95!, a complicated procedure outlined in Appendix B. Then taking the limit ase→^DE&, and
substituting the contributions from Eqs.~B10!, ~B12!, ~B16!, and~B22! into Eq. ~95! and substituting Eq.~95! back into Eq.
~97! gives the result

De~E0 ;l!;d~l!1
1

p(
j

Tj~E0!cosSSj~E01l\/2!2Sj~E02\l/2!

\ D
kj udet~M j~E0!2I !u

1O~hs21eiz/\!. ~98!
he

-

-

r
o

-
nd

t

e

e

For s>2, we thus see that

lim
e→0

lim
h→0

De~E0 ;l!5d~l!1
1

p(
j

Tj~E0!cos@lTj~E0!#

kj udet@M j~E0!2I #u

5Dc~E0 ;l!. ~99!

That is, the quantum Liouville spectrum properly approac
the classical Liouville spectrum ash→0. Note that Eq.~99!
emerges from Eq.~98! via elimination of essential singulari
ties.

IV. SCAR CORRECTIONS

In the last section we began with Eq.~52! and utilized
Berry’s formula@Eq. ~46!# forW(x;E,e), neglected scar cor
rections, and arrived at a proof of Eqs.~4! and ~5!, i.e., the
correspondence rules discussed above. We now conside
corrections to these limits, which arise due to the scars fr
the periodic orbits.

Consider first the following formula forWscar
j (x;E,e), the

scar contribution toW(x;E,e) from periodic orbitj :
s

the
m

Wscar
j ~x;E,e!;

2s

Audet~M j1I !u
e2eTj /\

3cos$@Sj2j•@J~M j2I !/~M j1I !#• j̃#/\

1g j%h
21E

2`

`

dt e2eutu/\ei $~E2H !t2 1/24ẋ` ẍt3%/\.

~100!

Here the variablesj are the 2(s21) coordinates of the sur
face of section transverse to the periodic orbit, a
ẋ` ẍ5u¹V(q)u2/m1(p•¹)2V(q)/m2. The derivation of Eq.
~100! is given by Berry@30# although he does not write it ou
explicitly.

Let h→0 with e@h/Tmin . ~For convenience we drop th
j subscripts onM j , Sj , g j , andTj .) Note that thet

3 term
in the time integral of Eq.~100! can be neglected becaus
only short times count for smallh. Thus
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Wscar
j ~x;E,e!;

2s

Audet~M1I !u
e2eT/\cos$@S~E!2j•@J

3~M2I !/~M1I !#• j̃#/\1g%de„E2H~x!…

5
2s

Audet~M1I !u
e2eT/\de„E2H~x!…

3@ei $[S~E!2j•[J~M2I !/~M1I !] • j̃#/\1g%

1e2 i $[S~E!2j•@J~M2I !/~M1I !] • j̃#/\1g%/2.

~101!

Consider now factors such ase6 ij•@J(M2I )/(M1I )] •j/\ in the
h→0 limit. Note that the integral

E dz e6 iz•V• z̃/a f ~z! ~102!

@where z5(z1 , . . . ,zN) and V is an (N3N)-dimensional
matrix independent ofz# in the limit a→0 can be evaluated
by the stationary phase to give

E dz e6 iz•V• z̃/a f ~z!;
@ap#N/2

Audet~V!u
f ~0!e6 ipsgnV/4.

~103!

This suggests the existence of a distributional identity
e7 ipsgnV/4
Audet~V!u
@ap#N/2

e6 iz•V• z̃/a→d~z!. ~104!

This formula, when applied to the exponent in Eq.~101!,
gives

e6 ij•[J~M2I !/~M1I !] • j̃/\→e6 is~h/2!s21AU det~M1I !

det~M2I ! Ud~j!

~105!

„heres5psgn@J(M2I )/(M1I )#/4…. Substituting into Eq.
~101! gives

Wscar
j ~x;E,e!;

2hs21

Audet~M2I !u
e2eT/\cos$S~E!/\1g%

3de„E2H~x!…d„j~x!…, ~106!

which is the classical limit obtained by Berry@30#.
To obtain the scar corrections to the Liouville spect

projectors we insert Eq.~46! into Eq. ~52! and use Eq.~106!
for the scar term. There are two types of corrections of
forms: ‘‘de(E2H)3 scar’’ and ‘‘scar3 scar.’’ The latter
are of much higher order inh and are neglected. The corre
tion terms to Eq.~54! due to periodic orbits of periodT and
energyEn are then
is
Sn,m~x;x0!5
2p2e1e2h

s22

Audet~M2I !u
e2e1T/\cos$S~En!/\1g%E dy dt1dt2e

2e1ut1u/\e2e2ut2u/\e2p i ~x2x0!•J• ỹd„j~x1hy/2!…

3exp$ i @En2H~x1hy/2!#t1 /\%exp$ i @Em2H~x02hy/2!#t2 /\%. ~107!

We neglecth corrections toj; i.e., we assume thatj(x1hy/2);j(x). This can be justified as follows:~a! expanding
j(x1hy/2) to first order inh and using the fact thatJ(M2I )/(M1I ) is symmetric@30#, and Eq.~105!, allows us to show that

d„j~x1hy/2!…;d„j~x!…cosH 2pFy]j

]xG•@J~M2I !/~M1I !#• j̃J , ~108!

and ~b! noting that the right-hand side of Eq.~108! is zero unlessj(x);0, and that the argument of the cosine factor
proportional toj(x) allows us to replace the cosine factor by unity.

Using the short-time expansions of Eqs.~58! and ~59! and doing the integrals overu andv gives

Sn,m~x;x0!5
2p2e1e2h

s22

Audet~M2I !u
e2e1T/\cos$S~En!/\1g%d„j~x!…E dt1dt2e

2e1ut1u/\e2e2ut2u/\exp$ i @En2H~x!#t1 /\%

3exp$ i @Em2H~x0!#t2 /\%d„X~x,2t1/2!2X8~x0 ,2t2/2!…. ~109!

Changing variables tot85(t12t2)/2 andt05t1 and defininge05e1/2 ande852e2 as in Sec. III A we obtain

Sn,m~x;x0!;
pe0h

s21

2Audet~M2I !u
e2e0T/\cos$S~En!/\1g%de0

„En,m2H~x!…d„j~x!… lim
e8/\→0

e8/\E dt8e2e8ut8u/\

3exp$ iln,mt8%d„x02X~x,2t8!…. ~110!

For the stationary casen5m we interchange limits via Eq.~65! to obtain
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Sn,n~x;x0!5
^DE&2

hAudet~M2I !u
e2e0T/\cos$S~En!/\1g%d„En2H~x!…d„En2H~x0!…d„j~x!…. ~111!

The other cross term, due to periodic orbits of energyEm , gives a similar contributionSn,n(x0 ;x), and so the overall correction
to Eq. ~54! with n5m, due to the periodic orbits, is~see also Berry@30#!

Sn,n~x;x0!1Sn,n~x0 ;x!;(
j

^DE&2

hAudet~M j2I !u
e2e0Tj /\cos$Sj~En!/\1g j%d„En2H~x0!…d„En2H~x!…@d„jj~x!…1d„jj~x0!…#.

~112!

This result may be rewritten in terms of the distributions

YE,0
j ~x;x0!5

kj
Tj

d„E2H~x0!…d„E2H~x!…d„jj~x!…, ~113!

which we defined in paper I@5# and which are stationary spectral projectors with uniform density on the periodic orbits. U
Eq. ~113!, Eq. ~112! becomes

Sn,n~x;x0!1Sn,n~x0 ;x!5(
j

Tj^DE&2

kjhAudet~M j2I !u
e2e0Tj /\cos$Sj~En!/\1g j%@YEn,0

j ~x;x0!1YEn,0
j ~x0 ;x!#. ~114!

This result shows that the scar corrections to the limit ash→0 of the spectral projectors corresponding to stationary states
comprised of weighted sums over the stationary classical projectors, which have uniform density on the classical
orbits. For the nonstationary casenÞm, again interchanging limits via Eq.~65! and considering only points on the period
orbit, it follows that the integral in Eq.~110! can be written as

lim
e8/\→0

e8/\E dt8e2e8ut8u/\eiln,mt8d„x02X~x,2t8!…5 lim
k→`

1

2k11

sin$~2k11!ln,mt/2%

sin~ln,mt/2!

2

tE2t/2

t/2

dt8eiln,mt8d„x02X~x,2t8!….

~115!

~Heret5Tj /kj .) Since it can be readily shown that

lim
k→`

1

2k11

sin$~2k11!ln,mt/2%

sin~ln,mt/2!
5H 1 if ln,m52p l /t for lPZ

0 otherwise

it follows that there are scar corrections only for the nonstationary distributions whose frequency matches an integer
of the frequency of one of the periodic orbits. When this condition is met the scar correction to the nonstationary
projector (n,mux)(x0un,m) is obtained from Eqs.~110! and ~115! as

Sn,m~x;x0!;
^DE&hs21

Audet~M2I !u
e2e0T/\cos$S~En!/\1g%de0

„En,m2H~x!…d„j~x!…
1

tE2t/2

t/2

dt8eiln,mt8d„x02X~x,2t8!….

~116!
d
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Similar correctionsSm,n(x0 ;x) arise from periodic orbits of
energyEm , i.e., Sn,m(x;x0) is given by Eq.~116! with En
replaced byEm .

Consider now these nonstationary corrections in more
tail. The scar contribution@Eq. ~116!# involves the following
product of factors

de0
„En,m2H~x!…d„j~x!…. ~117!

The variablesj(x) are effectively zero on a local family o
periodic orbits with energies close toEn and periods close to
T. The distributiond„j(x)… is thus zero except on this loca
family. If the energyEn,m lies outside of the neighborhood i
energy of the local family then the product of delta functio
@Eq. ~117!# will be everywhere zero. As a consequence
e-

e

product is generally zero fornÞm. The same consideration
hold for the scar termSn,m(x;x0) with periodic orbits of
energyEm . Thus, scar corrections to the nonstationary Lio
ville eigenfunctions are typically negligible in the semicla
sical limit. Only periodic orbits of period
Tj /kj52p l /ln,m , lPZ, contribute and of these only th
ones with energyEn or Em close toEn,m make a nonzero
contribution.

Thus, we see that the stationary and nonstationary co
butions of periodic orbits@Eqs. ~114! and ~116!# at most
make corrections of orderh2s21e2eT/\, which vanish in the
correspondence limit (h→0 followed bype→^DE&). Fur-
thermore, in the classical limit these corrections are o
supported on the measure zero set of periodic orbits.
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V. CORRESPONDENCE: APPLICATIONS TO MATRIX
ELEMENTS

The results obtained above allow us to systematize
extend previous results on the classical limiting forms
matrix elements of quantum observables. With our norm
ization of the quantum Liouville eigenfunctions, matrix el
ments satisfy the following relationship:

^nuÂum&5h2s/2E dx rn,m
w ~x!Aw~x!. ~118!

As a consequence we may relate matrix elements of obs
ables to the spectral projection operators via the express
t
nd

ar
s

d
f
l-

rv-
n

z^nuÂum& z25E dx dx0 Aw* ~x!~xun,m!~n,mux0!Aw~x0!.

~119!
We focus on the correspondence limit of matrix elements
observablesÂ with a well-defined classical analog, i.e., fo
Aw(x)→A(x) whereA(x) is the classical analog.

Consider first that Eqs.~119!, ~34!, and ~42! imply that
(nÞm)

lim
h→0

z^nuÂum& z25
^DE&
h E

2`

`

dt8eiln,mt8 ^A~0!A~ t8!&En,m,

~120!
where^A(0)A(t8)&En,m denotes the microcanonical avera

of A(x,0)A(x,t8) at an energyEn,m . Noting that
E
2`

`

dt8eiln,mt8 ^A~0!A~ t8!&En,m52p^A&En,m
2 d~ln,m!1E

2`

`

dt8eiln,mt8 ^@A~0!2^A&En,m#@A~ t8!2^A&En,m#&En,m
~121!

5E
2`

`

dt8eiln,mt8 ^@A~0!2^A&En,m#@A~ t8!2^A&En,m#&En,m, ~122!

if ln,mÞ0, it follows that

lim
h→0

z^nuÂum& z25
^DE&
h E

2`

`

dt8eiln,mt8 ^@A~0!2^A&En,m#@A~ t8!2^A&En,m#&En,m ~123!

for the nonstationary case. This result is essentially in agreement with the predictions of Feingold and Peres@43#. Their result
differs from Eq.~123! insofaras they are missing a factor of\21, and they left the energyEn,m unspecified.

The arguments leading to Eq.~123! can be readily generalized to the case of mixed operators with the result that

lim
h→0

^muÂun&^nuB̂um&5
^DE&
h E

2`

`

dt8eiln,mt8 ^@A~0!2^A&En,m#@B~ t8!2^B&En,m#&En,m. ~124!
t
em
the

wn
x

This important result establishes a connection between
Liouville spectrum of classical time correlation functions a
quantum matrix elements for chaotic systems.

The case ofn5m also results from Eq.~119! and Eq.~41!
to give the well-known results:

lim
h→0

z^nuÂzn&u25^A&En
2 ,

~125!
lim
h→0

^nuÂun&^nuB̂un&5^A&En^B&En.

Scar corrections to the off-diagonal matrix elements
negligible. Scar corrections for the stationary ca
z^nuÂun& z2 are of the form

(
j

2Tj^DE&

kjhAudet~M j2I !u
e2e0Tj /\

3cos$Sj~En!/\1g j% ^A&En ^A&En,0
j , ~126!

where
he

e
e

^A&E,0
j [

1

t j
E

2t j /2

t j /2

dt8 A„X~xj ,t8!… ~127!

is the average ofA over the periodic orbitj andxj is a point
on the periodic orbit, while corrections to Eq.~125! are of
the form

(
j

Tj^DE&

kjhAudet~M j2I !u
e2e0Tj /\cos$Sj~En!/\1g j%

3@^A&En^B&En,0
j 1^B&En^A&En,0

j #. ~128!

Comparing Eq.~123! to Eq. ~126! it is readily apparent tha
squared off-diagonal matrix elements for a chaotic syst
are of the same order of magnitude as the fluctuations in
squared diagonal matrix elements, i.e.,O(hs21). This con-
firms an early conjecture by Pechukas@44#.

Finally, we compare the chaotic case to the well-kno
@3,45# classical limit for matrix elements of individual matri
elements for integrable systems, i.e.,
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lim
h→0

^nuÂum&5
1

~2p!s
E du A~ I n,m ,u!ei ~n2m!•u.

~129!

The most significant difference is that Eq.~129!, which holds
for both the stationary and nonstationary integrable ca
gives a classical limit for individual matrix elements where
the chaotic results allow classical limits only for products
matrix elements@Eqs. ~123!, ~124!, and ~125!#. This is a
direct consequence of the fact thatrn,m has a classical limit
for regular systems but not for chaotic systems.

VI. SUMMARY

Correspondence for chaotic quantum systems has b
considered from the viewpoint of distribution dynamics
the Wigner-Weyl representation of quantum mechanics.
connections between quantum and classical dynamics
been clarified through the formulation of the corresponde
problem in terms of Liouville spectral projection operato
Our demonstration of correspondence for these objects
for the Liouville spectrum shows that quantum dynamics
capable of reproducing chaotic classical dynamics in
h→0 limit. The mechanism of correspondence here, as
our studies of chaotic mappings, appears to be the elim
tion of essential singularities. Corrections arising from pe
odic orbits were also considered with the result that stati
ary quantum spectral projection operators have correction
the form of weighted sums of stationary classical project
on periodic orbits. Scar corrections for the nonstation
Liouville spectral projection operators were found to be n
ligible. Applications of our correspondence results to mat
elements revealed connections between the matrix elem
of quantum observables and the spectrum of classical
correlation functions. The corrections to the diagonal ma
elements due to periodic orbits were shown to be of the s
order of magnitude inh as the square of the off-diagon
matrix elements.

ACKNOWLEDGMENTS

We thank the Natural Sciences and Engineering Rese
Council of Canada for support of this work. P.B. acknow
edges stimulating discussions with Professor J. Ford, G
gia Institute of Technology.

APPENDIX A

We prove identity~50! by showing that the right-hand
side can be reduced to the left. To begin we substitute
definitions of (xun,n) into the right-hand side to obtain
s,
s
f

en

e
ve
e
.
nd
s
e
in
a-
-
-
in
s
y
-
x
nts
e
x
e

ch

r-

e

h22sE du dv dq8dq9 e2 i ~p2p0!•v/\ei ~q2q0!•u/\

3ei ~p1u/2!•q8/\ei ~p02u/2!•q9/\^q1v/22q8/2un&

3^nuq1v/21q8/2&^q02v/22q9/2um&

3^muq02v/21q9/2&. ~A1!

Performing the integral overu gives

h2sE dv dq8dq9d~q2q01q8/22q9/2!

3e2 i ~p2p0!•v/\eip•q8/\eip0•q9/\

3^q1v/22q8/2un&^nuq1v/21q8/2&

3^q02v/22q9/2um&^muq02v/21q9/2&. ~A2!

Now doing the integral overq9 gives

h2s2sE dv dq8eip•~2v1q8!/\e2 ip0•~2q022q2v2q8!/\

3^q2~2v1q8!/2un&^muq1~2v1q8!/2&

3^q01~2q022q2v2q8!/2um&

3^nuq02~2q022q2v2q8!/2&. ~A3!

Changing variables tov852v1q8, and v952q022q
2v2q8 gives a Jacobian determinant of absolute va
1/2s. Inserting the definitions of (xun,m) we immediately
obtain the right-hand side of Eq.~50!.

APPENDIX B:

Here we systematically evaluate each of the contributi
to Eq. ~95!, in accord with the correspondence limith→0,
e@h/Tmin , followed by e→^DE&. We assume thatTj (E)
and M j (E) vary slowly with energy, i.e.,Tj (E6\l/2)
;Tj (E) andM j (E6\l/2);M j (E) for small h, and note,
as a consequence, that the amplitudesAm, j are also slowly
varying, i.e.,

Am, j~E1\l/2!;Am, j~E!, ~B1!

and

Am, j 8~E1\l/2!;Am, j 8~E!. ~B2!

We thus define the slowly varying amplitudes

Bj , j 8~E![Am, j~E!Am, j 8~E!. ~B3!

The integrals to be evaluated@Eq. ~95!# therefore take the
form
positive
E
E02e/2

E01e/2

dE Bj , j 8~E!cosFSj~E1\l/2!6Sj 8~E2\l/2!

\
1g j6g j 8G , ~B4!

and we must consider three separate cases.
Case 1: We begin by considering the integrals for which the actions add. Here, because we are summing over

traversals,
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d

dE
@Sj~E1\l/2!1Sj 8~E2\l/2!#5Tj~E1\l/2!1Tj 8~E2\l/2!.0 ~B5!

and so there are no stationary phase points in the intervalE02e/2<E<E01e/2. It can be shown@46# that integrals of the
form *a

bdz f(z)eif(z)/\, with f (z) slowly varying andf8(z)Þ0 for zP@a,b#, can be approximated by

E
a

b

dz f~z!eif~z!/\;
\

i F f ~b!

f8~b!
eif~b!/\2

f ~a!

f8~a!
eif~a!/\G ~B6!

in the limit thath→0. Application of Eq.~B6! to the integral

E
E02e/2

E01e/2

dE Bj , j 8~E!cosFSj~E1\l/2!1Sj 8~E2\l/2!

\
1g j1g j 8G ~B7!

gives

E
E02e/2

E01e/2

dE Bj , j 8~E!cosFSj~E1\l/2!1Sj 8~E2\l/2!

\
1g j1g j 8G

;\H Bj , j 8~E01e/2!

Tj~E01e/2!1Tj 8~E01e/2!
sinFSj~E01e/21\l/2!1Sj 8~E01e/22\l/2!

\
1g j1g j 8G

2
Bj , j 8~E02e/2!

Tj~E02e/2!1Tj 8~E02e/2!
sinFSj~E02e/21\l/2!1Sj 8~E02e/22\l/2!

\
1g j1g j 8G J . ~B8!

Taking the limit ase→^DE&, Bj , j 8(E06e/2);Bj , j 8(E0) andTj (E06e/2);Tj (E0), so that we can rewrite Eq.~B8! in the
form

E
E02e/2

E01e/2

dE Bj , j 8~E!cosFSj~E1\l/2!1Sj 8~E2\l/2!

\
1g j1g j 8G

;
2\Bj , j 8~E0!

Tj~E0!1Tj 8~E0!
cosFSj~E01\l/2!1Sj 8~E02\l/2!

\
1g j1g j 8Gsin$@Tj~E0!1Tj 8~E0!#e/\%;2eBj , j 8~E0!

3cosFSj~E01\l/2!1Sj 8~E02\l/2!

\
1g j1g j 8Gsinc$@Tj~E0!1Tj 8~E0!#e/\%. ~B9!

Further simplifications show that these contributions take the form

E
E02e/2

E01e/2

dEBj , j 8~E!cosFSj~E1\l/2!1Sj 8~E2\l/2!

\
1g j1g j 8G

;2^DE&Bj , j 8~E0!cosFSj~E01\l/2!1Sj 8~E02\l/2!

\
1g j1g j 8G . ~B10!

Now consider the terms in Eq.~B4! involving a difference of actions.
Case 2: Of the terms withjÞ j 8, some will have stationary phase points in the intervalE02e/2<E<E01e/2, and others

will not. For those terms that do not have stationary phase points,

E
E02e/2

E01e/2

dE Bj , j 8~E!cosFSj~E1l\/2!2Sj 8~E2\l/2!

\
1g j2g j 8G

;
2\Bj , j 8~E0!

Tj~E0!2Tj 8~E0!
cosFSj~E01\l/2!2Sj 8~E02\l/2!

\
1g j2g j 8Gsin@„Tj~E0!2Tj 8~E0!…e/\#;2eBj , j 8~E0!

3cosFSj~E01\l/2!2Sj 8~E02\l/2!

\
1g j2g j 8Gsinc$@Tj~E0!2Tj 8~E0!#e/\%, ~B11!

as one can easily show by applying Eq.~B6!. In the limit ase→^DE& we find that
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E
E02e/2

E01e/2

dE Bj , j 8~E!cosFSj~E1\l/2!2Sj 8~E2\l/2!

\
1g j2g j 8G

;2^DE&Bj , j 8~E0!sinFSj~E01\l/2!2Sj 8~E02\l/2!

\
1g j2g j 8G . ~B12!

Consider those terms that do have stationary phase pointsE8P@E02e/2,E01e/2#. We define
f(E)5Sj (E1\l/2)2Sj 8(E2\l/2). Expanding f(E) about the stationary phase pointE8 gives f(E);f(E8)
1 1

2f9(E8)(E2E8)2. Now consider that

E
E02e/2

E01e/2

dE Bj , j 8~E!eif~E!/\;Bj , j 8~E8!eif~E8!/\E
E02e/2

E01e/2

dE eif9~E8!~E2E8!2/2\. ~B13!

This approximation resembles the stationary phase approximation@46# except that we have retained the original limits on t
remaining integral instead of replacing them by6`. Evaluation of the remaining integral in Eq.~145! then yields@47#

E
E02e/2

E01e/2

dE Bj , j 8~E!eif~E!/\;
1

2
A ih

f9~E8!
Bj , j 8~E8!eif~E8!/\

3H erf FA2 if9~E8!

2\
~E01e/22E8!G2erf FA2 if9~E8!

2\
~E02e/22E8!G J . ~B14!

In the limit ase→^DE& we obtain

E
E02e/2

E01e/2

dE Bj , j 8~E!eif~E!/\;^DE&Bj , j 8~E8!eif~E8!/\eif9~E8!~E02E8!2/2\ ~B15!

or

E
E02e/2

E01e/2

dE Bj , j 8~E!cosFSj~E1\l/2!2Sj 8~E2\l/2!

\
1g j2g j 8G;^DE&Bj , j 8~E8!cos~F!, ~B16!

whereF5f(E8)/\1f9(E8)(E02E8)2/2\1g j2g j 8.
Case 3: Finally, we consider the terms in Eq.~B4! wherej5 j 8. First note that there are no true stationary phase points,

Tj (E1\l/2)2Tj (E2\l/2)Þ0 for lÞ0. Second, note that the action Sj (E) changes by
Sj (E01e/2)2Sj (E02e/2)[DSj (E0);Tj (E0)e over the intervalE02e/2<E<E01e/2. Sincee;h/Tmin it follows that
DSj (E0)/\;2pTj (E0)/Tmin . In general Tj (E0)@Tmin and so S/\ changes dramatically over the interv
E02e/2<E<E01e/2. Similarly, D@Sj (E01\l/2)2Sj (E02\l/2)#/\;2p@Tj (E01\l/2)2Tj (E02\l/2)#/Tmin , and
since evenuTj (E01\l/2)2Tj (E02\l/2)u@Tmin in general, it follows that the phase of the cosine factor will oscillate m
times over the intervalE02e/2<E<E01e/2. By contrast, over the intervalE02hkj /2Tj (E0)<E<E01hkj /2Tj (E0),
D@Sj (E01\l/2)2Sj (E02\l/2)#/\;2pkj@Tj (E01\l/2)2Tj (E02\l/2)#/Tj (E0). In general uTj (E01\l/2)
2Tj (E02\l/2)u/Tj (E0)!1 for h small and so the phase is effectively stationary over the small inte
E02hkj /2Tj (E0)<E<E01hkj /2Tj (E0) aboutE0, and we will therefore break the integral into three parts:

E
E02e/2

E01e/2

dE Bj , j~E!cosSSj~E1l\/2!2Sj~E2\l/2!

\ D 5F E
E02hkj /2Tj ~E0!

E01hkj /2Tj ~E0!

dE 1E
E02e/2

E02hkj /2Tj ~E0!

dE

1E
E01hkj /2Tj ~E0!

E01e/2

dEG Bj , j~E!cosSSj~E1\l/2!2Sj~E2\l/2!

\ D .
~B17!

The first term can be approximated via

E
E02hkj /2Tj ~E0!

E01hkj /2Tj ~E0!

dE Bj , j~E!cosSSj~E1\l/2!2Sj~E2\l/2!

\ D;
kjhBj , j~E0!

Tj~E0!
cosSSj~E01\l/2!2Sj~E02\l/2!

\ D ,
~B18!

while the other two terms can be evaluated@46# via Eq. ~B6! to give
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E
E02e/2

E02hkj /2Tj ~E0!

dE Bj , j~E!cosSSj~E1\l/2!2Sj~E2\l/2!

\ D
;

2\Bj , j~E0!

Tj~E01\l/2!2Tj~E02\l/2!
cosSSj~E01\l/2!2Sj~E02\l/2!

\ D
3sin$@e/21hkj /2Tj~E0!#@Tj~E01\l/2!2Tj~E02\l/2!#/\%, ~B19!

and

E
E01hkj /2Tj ~E0!

E01e/2

dE Bj , j~E!cosSSj~E1\l/2!2Sj~E2\l/2!

\ D
;

2\Bj , j~E0!

Tj~E01\l/2!2Tj~E02\l/2!
cosSSj~E01\l/2!2Sj~E02\l/2!

\ D
3sin$@e/22hkj /2Tj~E0!#@Tj~E01\l/2!2Tj~E02\l/2!#/\%. ~B20!

Combined, these last two terms contribute

4eBj , j~E0!cosSSj~E01\l/2!2Sj~E02\l/2!

\ D sinc$e@Tj~E01\l/2!2Tj~E02\l/2!#/\%

3cos$2pkj@Tj~E01l\/2!2Tj~E02l\/2!#/Tj~E0!%. ~B21!

Therefore, in the limit ase→^DE& the total contribution for case 3 is

E
E02e/2

E01e/2

dE Bj , j~E!cosSSj~E1\l/2!2Sj~E2\l/2!

\ D
;
hkjBj , j~E0!

Tj~E0!
cosSSj~E01\l/2!2Sj~E02\l/2!

\ D
14^DE&Bj , j~E0!cosSSj~E01\l/2!2Sj~E02\l/2!

\ D cos$2pkj@Tj~E01l\/2!2Tj~E02l\/2!#/Tj~E0!%.

~B22!

In summary, evaluation of the three types of integrals in Eq.~95! in the correspondence limit, yields the contributions
Eqs.~B10!, ~B12!, ~B16! and ~B22!, which combined make a total contribution of the form

hkjBj , j~E0!

Tj~E0!
cosSSj~E01l\/2!2Sj~E02\l/2!

\ D1O~hs21eiz/\!. ~B23!
-
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