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Extension of classical trajectory Monte Carlo calculations to ior-Rydberg-atom collisions
in a magnetic field
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Theoretical electron transfer cross sections for 1.3—130 eV/amu singly charged ions colliding with Rydberg
atoms(n=28, m=2) in a magnetic field upat 4 T are presented. Both paramagnetic and diamagnetic inter-
actions are taken into account for the initial state and the collision. Cross sections are calculated within the
classical trajectory Monte Carlo model. A method to create a classical ensemble of electrons in a nonseparable
Hamiltonian allows the initial quantum stationary states to be modeled. The effect of the magnetic field on
electron capture is analyzed in terms of the field-induced alteration of the initial state, as well as the direct
influence on the collision dynamicgS1050-294{@7)09606-4

PACS numbd(ps): 34.60+z, 32.60+i, 34.70+€

. INTRODUCTION ve=n"1 a.u. is the Bohr orbital electron velocjtyAtomic
units are used throughout this paper unless explicitly stated.
One hundred years after the work of Zeenhahthere are
still unresolved problems concerning atomic processes in a Il. THEORETICAL APPROACH
magnetic field. Many of the theoretical efforts are focused on

astrophysical problems involving extremely high magnetic !N Principle one must solve the equations of motion for
fields as can be found around white dwarfsthree interacting bodies, but due to the relative speed of the

(B~1(P—10° T) or neutron stars B~10'—10° T). The ion and target atom and the lightness of the electron com-

main reason for this is that only at such high magnetic fielopared to the "?‘tom.'c nuclei standard approxilmgtmns can be
employed to simplify the system. The projectile ion moves at

strengths is the magnetic energy equal to or greater than the . X ;
Coulomb energy for ground-state atoms. There have beel% constant velqcnya_and the tqrget nuclegs remains ”.‘0“0”'
. . - - 1ess. The Hamiltonian governing the active electron is then
some calculations for ion-atom collisions at such field
strengthg2—5]. In contrast for a typical laboratory field with 1 1 1 1 1
a strength of a few Tesla, the diamagnetic energy becomes H=—p?— —— + =yl + —y?p?, (2.1
comparable to the Coulomb energy if the atoms are excited 2 8
to high Rydberg states, and therefore such a field exerts a o R
nontrivial influence on ion—Rydberg-atom collisions. whereR=Db+ut is the internuclear vectoh is the impact
In this paper we follow up our earlier worf6] with a  parameter, and is the ion velocity in the target frame cho-
more detailed account of the theoretical method as well agen parallel with the magnetic field axis); see Fig. 11, is
numerically calculated cross sections for charge exchange ithe z component of the electron angular momentum.
a magnetic field up to 4 T. For the initial Rydberg state wey=B/(2.3505< 10° T), where B is the magnetic field
choose a principal quantum number28, m=2. In this  strength expressed in Tesla. The magnetic-field terms are
case the ratio of magnetic energy to Coulomb energy is oéxpressed with the Coulomb symmetric gauge with respect
the order 0.1 and thereforeis still a good quantum number, to the target nucleus. We are interested in Itheixing re-
but | is no longer. Thel-mixing region is experimentally gion, where the diamagnetic energ¥p?/8 is small com-
accessible, but presently there are, as far as we know, nmared to the Coulomb binding energlss than 10% and
beam experiments that study this system even though thiserturbation theories are applicable. Figure 2 shows a con-
process is ubiquitous in plasma physics. The numerical retour plot of the potential generated by the target-projectile
sults presented in this paper illuminate the effect of an apsystem. The potential contours in the figure are selected at
plied magnetic field on the ion-atom collision by comparingtypical electron energies during the collision process. Due to
with calculated cross sections for the field-free case. Thehe cylindrical symmetry of the magnetic field the circular
calculations were performed with a CTMClassical trajec- contours of the target Coulomb potential are compressed
tory Monte Carlg method, modified to allow for complica- transverse to the magnetic field.
tions from magnetic field effects. To calculate the cross sections for ion—Rydberg-atom col-
Collision energies of the singly charged ion range bedisions in a magnetic field we use the established CTMC
tween 1.3 and 130 eV/amu, corresponding to reduced velocmethod, modified to allow for the magnetic field. The CTMC
tiesv,=v/v, between 0.2 and & is the collision velocity; method is nonperturbative and explicitly considers all classi-
cal three-body and three-dimensional effects, but does not
account for tunneling or interference. Such three-body sys-
*Present address: Department of Physics, Kansas State Univeems involving highly excited states can be solved quantum
sity, Manhattan, KS 66506. mechanically only with severe approximations, while the
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done by averaging over a great number of randomly chosen
trajectories. This method has been successfully applied to
numerous collision systems, especially systems involving
Rydberg atom$8—10].

The CTMC method consists of three pait¥) the classi-
cal generation of the target electron distributi@®), integra-

e tion of Newton’s equations, an@) the classification of the
various processes after the collision. Due to the applied mag-
netic field steps(1) and (3) require new procedures. The
classical representation of the target atom is the main prob-

lem of the CTMC method11]. The magnetic field distorts
the electron starting distribution and up to now no method
has been published to construct an electron distribution for a
Y Rydberg atom in a magnetic field for themixing region,
which is described by a nonseparable Hamiltonian. To con-
struct a classical microcanonical ensemble of initial-state
electrons, presented in Sec. Il A, we need the energy eigen-
value, a new integral of motion, and the magnetron period
- ; Tmag Calculated in the frame of degenerate perturbation
parallel to thez direction. Also shoyvn is an example ofaa Kepler theory outlined in Secs. Il A1 and Il A 2. The applied mag-
ellipse with the angular momentuin Runge-Lenz vectoA, and  patic field also changes the dynamical properties of the sys-
C=I XA shown SChematica“y. For orientation the dashed lines in'tem, represented by the equation of motions resu'ting from
dicate the major and minor axes. the Hamiltonian(2.1). Finally due to the diamagnetic energy

a new characterization of the exchange and ionization pro-
Newton’s equations for regular three-body systems can beesses is required; see Sec. |l B.
solved numerically to any desired degree of accuracy on
modern computers. The basic principle of the CTMC method
s Fhe validity of a gene_rglized (_:orrespondence principle, We present a method to generate a classical microcanoni-
which states that for sufficiently h'gh quantum numbe_rs thecal ensemble for a quasi-integrable initial-state Hamiltonian:
exact quantum state can be approximated by a classical en-
sembl€g7]. The calculation of the physical observablesy.,
cross section for ionization, exchange, and excitatisn

FIG. 1. Schematic of the ion-atom interaction shown in the col-

lision frame.R is the internuclear vectoh is the classical impact
parameter, and is the projectile velocity. The magnetic field is

A. Initial-state method

Hinit:H0+V' (22)

The termH, represents a zeroth-order Hamiltonian that is
integrable, and/ represents a small perturbation that intro-
duces nonseparability intd;;; . The magnitude o¥ is small
enough that the classical orbits df,;; are still regular, and
thus one can derive approximate constants of motion that
replace constants of the motion fét,. Equation(2.2) is
analyzed first by quantum-mechanical degenerate perturba-
tion theory in order to classify and generate probability dis-
tributions for the new set of stationary eigenstates. Analysis
i . of Eq. (2.2) with classical perturbation theory provides infor-
mation necessary for the actual construction of the initial-
state ensembles, which model the quantum-mechanical prob-
ability distributions as closely as possible.

The discussion of the initial-state method proceeds with
the specific problem whend represents the Rydberg atom
under the linear Zeeman effect, aMlis the diamagnetic
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FIG. 2. Surface plot and corresponding contour plot of the po- 8

tential from the target and projectile nuclei including the diamag- ) )
netic interaction. The target rests at the origin and the projectile is dffowever, this method can be generalized to other systems of

a distancez of 10 000 a.u(atomic unitg with an impact parameter  the form in Eq.(2.2). For the calculations presented here the
of 1500 a.u. The bold contours represent the energy of the initiamagnetic field is at most 4 T, and the initial target state is
electron and the zero energy. The dashed line marks the symmetaxcited to then= 28 manifold. For these parameters the elec-
axes. Spacing of the contours is 0.0001 a.u. tron orbit is a combination of the fast elliptical motion, an
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intermediate cyclotron motion, and a slow oscillationag-  jipse in terms of the constants of the elliptical motiband
netron motion with periodry,4 [6]). Classically, the scaled A

energy e=Ey~?® is —0.96, which characterizes regular

classical dynamicEl2]. Before going on to the details of the F(t)=xo(t)Ale+y,(t)Cl(le), 2.7
classical ensemble generation we summarize the perturbative

theory for a Rydberg atom in a magnetic field, distilled fromwhere

Refs.[13-19. Xo(t)=Q(cot—e), yo(t)=Q(1—e?)Y3%sing,

1. Quantum-mechanical perturbation theory - - o
) . _ C=I1XA, (2.9
To find the target atomic-state characteristics and energy

spectrum a gquantum-mechanical analysis of a Rydberg atothe eccentricitye is the magnitude of the Runge-Lenz vector

in a magnetic field is necessary. ReferentE3,14 give a A, Q is the semimajor axis, and is the Kepler anomaly.
detailed analysis of the diamagnetic Rydberg atom in thezpplying time-dependent perturbation thedfys] gives the

I-mixing regime. Eigenstates are found by diagonalizing theyift of A and i averaged over the elliptical orbit:
diamagnetic potential within a single manifold:

dil Q*y2(4e?*+1 . . 1-¢e* . .
1 a: 8 o2 AZ[AXZ]'FWCZ[CXZ] )
U”,=gyz(nlm|r25in26|nl’m> (2.9
n—|m/—-1 A 32,2 2
dA Q%22 \1—e
=2 1K) e (k1" 2. LA L
g7 go (Ik)ex(kl1"), (2.9 T 8 e

x{(3e2—4AY)C+C,(e22+4AA)}.  (2.10

(1. 0, ¢)=2 (K1) Yin(6, ), (2.6 [Equation(5) of [15] was found to be slightly inaccurate and
hence is rewritten correctly in Eq&.9) and (2.10.] Equa-

wheref andY represent the radial Coulomb functions andt'on (2.9 |mpl!es that, is still a constant of motion, and two
other approximate constants of motion emerge from Egs.

spherical harmonics, respectively. The expansion coefficient; )
(k|I'y give the perturbative eigenstatestf;,, ande, is the (52'9) and(2.10:

respective energy shift. Note that the eigenstates from the |2

diagonalization in Eqg(2.5) are independent of field strength. Q= 1—e?’ (211
The manifold of eigenstates that emerge from the diago-

nalization of Eq.(2.5 split into two types of states. Those A=4e2—5A2, (2.12

corresponding to the lower set of energy eigenvakjedy

convention the maximunk corresponds to the minimum Conservation of, reflects thatH,,; is independent o, and

€,) are localized along the magnetic field. The higher-energypproximate conservation € implies that the path that the
states(lower k) resemble a disk perpendicular to the mag-electron follows at any one instant is approximately follow-
netic field, and their spectrum is akin to an inverted harmonidng an ellipse corresponding to the energyl/(2Q). A is
oscillator; the highest-energy state has a minimum number afally a new quantity arising from the particular form of the
nodes[13,14]. Our task is to approximate the probability diamagnetic potential. Orbits corresponding to negative val-
distributions s/ and energy eigenvalues as closely as ues of A are stretched along the magnetic field as with the

possible by a stationary classical ensemble. high k values from the quantum mechanical perturbation
theory, and positive\ correspond to the low-values, i.e., a
2. Classical perturbation theory disklike distribution perpendicular to the magnetic field.

To find the magnetron period,,, one integrates Egs.
2.9 and(2.10 after some simplification. These two equa-
fons represent six coupled differential equations, but they
can be reduced to two coupled differential equations by tak-
ing advantage of the three new constants of motion as well as

jectories are viewed as primarily elliptical, the exact trajec-the orthogonality of the anqular momentum and Runge-Lenz
tories of Hy in Eqg. (2.3). The diamagnetic potential of Eq. P ge_ y g . g
(2.4 is regarded as a perturbation that causes a slow, oscife¢tor.!-A=0. We reduce to the coupled equations:

semble it is necessary to develop further the classical trea
ment of the diamagnetic Rydberg atom presented §. In
performing the classical perturbation theory the electron tra

Before discussing how to construct the initial-state en—{

latory drift of the angular momentum vectdr and the dA, Qy?

Runge-Lenz vectorA (magnetron motion: “pulsing and at 2 C., (213
wobbling” of the classical ellipse The period of this oscil- ,

lation 7,4is @ key parameter needed for the construction of dC, Q?%y? 5C;

the classical ensemble. dt = 8e2 e+ A el b (2.149

To calculate the drift of the elliptical parameters the effect
of the perturbing potentiaV is averaged over one elliptical Note that for simplicitye still appears in Eq(2.14), but it is
period. As in[15] we write the trajectory of the Kepler el- related toA, throughA. The field strength can be eliminated
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from Egs. (2.13 and (2.14 by going to scaled time 200 _
t'=ty’. For a given eigenstate, g (inau)isfound by = 100] e e ot
integrating Eqs(2.13 and(2.14) with the constants of mo- & o {{/ 77777777777777777777777777777777777777777 T,
tion set tO|Z: m, Q: n2; andA = (6k— |’]2— mz)/n2 [14] £ -100] " ‘S‘\‘%?F;l o /
-200 ! ; - ’L-\ 7‘:7‘;\777:‘“\7 T T T
-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 O 200

3. Generation of the classical ensemble

We present now a detailed method for generating an elec- X laul

tron starting distribution in a magnetic field for the _ ) o
I-mixing region, based on the results of the quantum- FIG. 3. The solid curve represents an ellipse of eccentricity
mechanical and classical perturbation theory. Since none & 0-977 (1=6 andn=28), where the filled circles are equally
the quantum numbens, m, andk, which characterize the spaced in time. The dashed curve displays the corresponding energy
target Rydberg state, are degenerate, no binning is perform&grrected coordinates; the solid line |nd|_cates consiamd « is the_ _
for the corresponding classical constants of mot@n| mean anamoly. The axes shown are in the frame of the original

. N 2! Ili d th I t =0.
and A, because we wish to model the initial state with a°''PS andihe nucieus rests: . Yo
microcanonical ensemble. To produce electron starting dis- 1,
tributions that mimic the quantum ones from E#g.6), one 0|=cos*1|—, (2.19
distributes the initial-state electrons according to a probabil-
ity distribution proportional to 15| along the set of classical
orbits with I,, Q, and A, corresponding to a specific p=cos !
guantum-mechanic&l state. The velocity of the Runge-Lenz
and angular momentumh component is constant as the orbit

precesses abc_)ut the field axis_ due to the D?Famagne_“c impﬁbn the propee component of angular momentum. The sec-

action. Selecting randomly |n[0,271] ﬁspecmes a unique - 5pqg rotatione about the angular momentum vectioffixes

orbit (¢, is dependent om throughA- 1 =0). the z component of the Runge-Lenz vector. The plus or mi-
One strategy would be to distribute the electrons by startp,s in Eq.(2.17 indicates that the sign oA, should be

ing them at the same phase space point and propagate Hamhosen randomly. The final rotation about the space fixed

ton’s equations wittH;,;; for a randomly chosen time This  gxis gives the randomly chosef) angle.

automatically would give a 7| distribution, and avoid the  pye to the perturbing diamagnetic potential the random

necessity of an analytic expression for the electron trajecton|acement of the electrons on a predefined ellipse must be

This method fails, since should be selected between 0 and adjusted. The electrons up until now have distributed along a

the recurrence time, which is infinite as the electron path f”'S{rajectory ofH,, butV introduces, in general, a small varia-

a region of phase space densely. One can, however, divid@n in the energy of the particles. In the case of diamagne-

the trajectory into the elliptical and magnetron motions bytism electrons at larges will experience a boost in energy

selecting the electron coordinate randomly on an unperturbeg,e to thep? potential. This must be corrected in order to

ellipse and evolving the electron accordingHgy; for t ran-  gbtain a microcanonical ensemble. The parameter to adjust is

domly selected i 0,7mag|. This method allows the electron the semimajor axi€, which is directly related to the energy,

to reach any point along its true trajectory, and thus creategnd this can be actuated by either chandinge. We adjust

+—
e sing

), (2.17

and ¢, . The first rotationd, about they axis gives the elec-

the desired microcanonical ensemble. | by
To randomly place the electron using the field-free el-
. . . . e .2 2|2 1 -1/2
lipse, one must first define the ellipse by specifyigand =11+ oo (2.18
r 1-e28 7P ’ :

I. The magnitude of the angular momentum varies as the
electron executes its motion, thus its initial choice is not

o S : wherel, e, andp refer to the uncorrected electron, ards
critical as long ag lies in the range of accessible values for,[he adjusted angular momentum. Having chanigetiie po-
a givenA. Taking (k|I|k) for the initial | value fulfills this ) g ' g P

requirement.l, is fixed, since we are only interested in sition of the electron is recalculated keepm@gA,, |, ¢,
m=2, and as stated earliep; is selected randomly. The and ¢ fixed. Performing this energy correction puts the elec

: tron on a slightly different Kepler ellipse, shifting theco-
magnitudee of the Runge-Lenz vector follows from the re- : . : :
lation for Q in Eq. (2.11), and thez componen, is deter- ordinate and subsequently affecting the diamagnetic energy.

. . ) \ ) Thus the correction must be performed recursively. After ten
mined up to sign withA in Eq. (2.12. Finally, ¢, is found recursions the initial electron energy has a relative error

by orthogonality betweeA and . 1077 of the quantum energy eigenvalue. The effect of the
In practice the electron is randomly placed on an ellipseenergy correction is illustrated in Fig. 3. The energy correc-
oriented in the coordinatey plane with the aphelion on the tjon shown in the figure is an extreme case for a 4-T field,

negativex axis. The size and shape of the ellipse are detersince it is the starting ellipse for the,, state that is greatly
mined byl ande, and the starting point on the ellipse is affected by the magnetic field.

chosen by selecting a mean anomalyin [0,27], which The last step in simulating the microcanonical ensemble,
determines the Kepler anamafythrough[16] as mentioned earlier, is to evolve the electron coordinates
a=¢—e sing. (2.19 according toH;,; for a timet varying randomly between

zero and 7,y We calculater,g, from Egs. (2.9 and
The proper orientation is accomplished by three rotation2.10, for thek states that we wish to examine, namely, the
through the angles minimum and maximunk values for a two-photon excita-



4294 S. BRADENBRINK et al. 55

Z it
i
"‘ ey
%

i

’ o,

| ARG LA

“’ /Il i,
2

‘ A

%
1Y e
Wi
I
i s
5%

%

s

%455
& %

600

z lau]

(d) pp [a.u.] 0 .04—0 .012

FIG. 4. Configuration space distributidteft) and momentum distributiofright) with n=28, m=2 for k5, (uppe) andk,;, (lower).
Quantum-mechanicdhigh resolution grigd and classical ensemble distributidlow resolution grid are shown in cylindrical coordinates;
due to symmetrk,,.x is represented only fa<<0 andp,<0.

tion to n=28. Focusing onm=2 states, one finds that tributions in time and observing that they are stationary
Kmax=24 andk.;,=0, sincek must correspond to an even Within the normal statistical fluctuations.
parity state. The magnetron period scales with the square of Also shown in Fig. 4 is the comparison of the classical
field strength: ensembles with the corresponding quantum probability dis-
tributions. The regions of configuration and momentum
Tmag= 7‘5/ B2, (2.19 space occupied by both the classical and quantum distribu-
tions agree very well. Also the probability amplitudes have
where matching radial dependence in both configuration and mo-
_ . mentum space, aside from the behaviorrfdarger than the
70 '=3.3344<10" (a.u. P), (220  classical turning pointCTP) where the classical distribution
must go to zero. The behavior transverse to the radial direc-
78°0=2.9692<10" (a.u. ). (2.2)  tion is noticeably different. The reason for this goes back to
the correspondence principle, which states that there should
For comparison the orbital period for an=28 electron is be good agreement between classical and quantum mechan-
1.4x 10° a.u.[Note that if the classical perturbation results ics for large quantum numbers. However, the states and
were not known, the period of the oscillations due to thek,,,, displayed in Fig. 4, are likened to the extremal states of
perturbing potentiaV could still be found empirically by a harmonic oscillator and an inverted harmonic oscillator,
numerically evolving a constant of motida from Hy with  respectively[13,14]. Both cases correspond to states with
the Hamilton’s equations foiH;,;, provided thaf H;,;,Q] one transverse mode, so one would not expect the correspon-
#0. Indeed this provides a good criterion for the validity of denence principle to hold exactly. Indeed thelependence
Eq. (2.19.] The resulting normalized distributions far,,,  Of the classical probability distributions are dominated by
andkp,i, in configuration and momentum space are shown irCTP behavior, reflected by two ridges running along the
Fig. 4. The method for generating the microcanonical encaustics. A similar comparison is seen in the distribution of
semble is tested empirically simply by propagating the disd, conjugate to9, seen in Fig. 5. An attempt to minimize the
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B. Integration of Hamilton’s equations
° and final-state classification

After propagating the electron out to its randomly chosen
position, we proceed by integrating Hamilton’s equations of
o motion according to Eq(2.1) with the ion starting ak,. In
performing the integration by a standard Runge-Kutta
method with an adaptive step size the target center is taken
as space fixed and the projectile moves along a straight line
Y trajectory. Both of these simplifications reduce the number

2 6 10 14 18 22 26 and complexity(e.g., motional Stark effedt.8]) of the gov-
Angular Momentum [a.u.] erning equations without introducing a noticeable error in
calculating the total cross sections. After propagating Hamil-
ton’s equations such that the projectile is at an asymptotic
distance g;=1x10° a.u.), a decision procedure determines
° whether the electron remained with the target, has been
. transferred to the projectile, or was ejected to the continuum.

N The number of trajectories is chosen in such a way that the
S statistical error is less than 5%. Other errors, e.g., truncation
& and roundoff errors, were minimized by suitable choice of
the parameters of the integration routine and are less than the
statistical errors.

A collision event is considered “over” when it is no
longer necessary to evolve the particle trajectories under the
S full three-body Hamiltonian Eq(2.1). Asymptotically, the

FIG. 5. Angular-momentum probability distribution fdtma  fina| state of the ion-atom collision is governed by two- and
(uppe andky, (lower). The solid circles connected by the dashed e gy Hamiltonians in the case of excitation or capture,
lines represent the quantum probabilites, while the open diamonds; 1,ree one-body Hamiltonians in the case of ionization. In
?rﬁnﬂeigoégisfggdﬂ,ngtﬁfscsﬂ,%?:;fn;fn;gwf}z?cuuofg;ﬂﬁ lcr’lvl:'f;berpractice we evolve the ion-atom system until the factoriza-
m=2 y 9 q tion into the two- and one-body problems is possible, and

' evaluate the two-body total energy to determine if the two-

body system will break up further, resulting in ionization.

discrepancy between the quantum and classical distributioriBhe end pointz; of the three-body propagation is chosen
was made by enforcing the quantum-mechanicdistribu-  such that for any position of the electron at least one of the
tion from the outset. This, however, resulted in a nonstationCoulomb terms in Eq(2.1) is negligible. Thus the Hamilto-
ary classical ensemble that eventually, not surprisingly, lediansH. t andH p are defined by dropping, respectively,
back to the former classicaldistribution. The effect of the the Coulomb potential from projectile and target nuclei:
difference between the classical and quantum distributions L L L .
\év;ll be d_lscussed after presenting the total cross sections for Hop=—(P—0)2— ——+ —yl,+ —y%? (2.22

pture in Sec. Il 2 IF—R| 2 8

The other part of the initial wave function that one must
model is the incoming plane wave for the projectile ion, for
which we use a standard distributi¢h7]. We briefly de-
scribe its specific application here. The initial condition of
Fhe Prc_)jec_tile in the collision frame is specified by its veloc- interaction energiesl, + and H.p are calculated. At; at
ity v, Its 'mPaCt paramgtgb, and the d|stancep from the least one of these energies is constant in time, and this is
target. The ion velocitys is chosen parallel with the mag- reyealed by simply evaluating the standard deviation of both
netic field (z axis) and lies in thexz plane. To reproduce a tyo-hody energies recorded from the last thousand integra-
uniform flux of monoenergetic incident particles, the impacttjon steps.
parameter of the projectile is chosen randomly by selecting Having decided which two-body Hamiltonian best de-
b? out of the interval[o,brznax], where b. is the impact  scribes the final state, evaluation of its energy allows the
parameter above which no ionization and capture processetassification of the outcome of the ion-atom collision: exci-
occur. b, depends on the target state and the ion velocitytation of the target atom, ionization of the same, or capture
and has to be chosen properly, because whgg is too by the projectile ion. Sincg, is a good quantum number for
large this will result in poor statistics while a smaller value Hg.1, the ionization threshold energy turns out to be
of by Will distort the results. Typical values @,,in our  3¥(|l,/+1,) due to the combined effect of the centrifugal
system are~3500 a.u. The distancg, of the projectile is and diamagnetic potentials. For E&.22) the ¢ motion can-
typically —4x 10* a.u. and guarantees that the cross sectionsot be separateiscussed beloyresulting in an ionization
are independent of starting position, which indicates that thé¢hreshold of zero energy. K 1 is constant and less than
projectile-electron interaction is negligible compared to thes y(|I,|+1,), then the electron remains bound to the target
target-electron interaction at the outset. nucleus. IfH p is constant and less than zero, then the elec-

Probability

R YU

Probability

Angular Momentum [a.u]

andH..t=H,,;, [see Eqs(2.2), (2.3), and(2.4)], where both
are expressed in the target frame. While propagating the
electron trajectory with the full Hamiltonian, the two-body



4296 S. BRADENBRINK et al. 55

tron has been captured by the projectile nucleus. All other

situations lead to ionization. Numerically, N is the total 301
number of trajectories ard the number of events leading to
capture or ionization, the respective cross sections are 2.
N2 2 S
NTot S NTotN . . -
=)
The second term is the standard deviation of the estimated — 0
cross section. § 30
The combination of charge transfer and the presence of g
the external magnetic field leads to a new type of atomic 0 o)
state. The Coulomb symmetric gauge about the target charge 2
center must remain throughout the ion-atom collision, result- 8
ing in anasymmetric gaugtor the electron-projectile system o 107
He.p; see Fig. 2. A coordinate transformation gives the 2
Hamiltonian for the captured electron in the frame of the % 0
rojectile: X 30
p J L:I) kmr’n
1 11 1 o DT e BT
’ =212 ’ 2 12
=S ——+ =9yl + = © 20+
e-P 2p |rr| 272 87P L-C)
L bR+ 02X+ & 4202 2.2 h
+ = +— + = .
5 Yopy+ 77X+ g yb%, (2.29
0 . . "
wherei” =F—R andp’ =p—v. Equation(2.24) is written so 0.0 0.5 1.0 1.5 2.0
that the usual Hamiltonian, for an atom in a magnetic field Reduced Velocity v
r

with the symmetric gauge terms, appears on the upper line,
and the additional terms introducing the asymmetry are writ-
ten on the next line. The off-center paramagnetic interaction FIG. 6. Capture cross sections for the field-free cagepey,
results in the term proportional o}, while the off-center  Kmax (middle), andkp, states(lowen). The upper panel reveals the
diamagnetic interaction pulls on the electron with the Stark- Structure effect,” while the middle and lower panels identify the
like term %ysz' and gives an overall boost in energy of dlrgct influence of the magqetlc field on .the. exchange dynamic. To
142b?. Further study of the interplay of the paramagneticgu'oIe the eye the data are interpolatediid line).
and diamagnetic terms is desirable to understand the struc-
ture of the final electronic state on the neutralized atoms. unperturbed Kepler ellipse and the drift of the elliptical pa-
rameters is negligible. Therefore the initial-state distribution
Il RESULTS can be accomplished by a superpositionl cftates statisti-
' cally weighted according to the desiredlistribution. In the
With the method outlined above, we have calculated thdimiting case of a vanishing magnetic field strength it is pos-
cross sections for charge exchange and ionization for thsible to gain a stationary initial phase-space distribution even
kmnax @nd thek,,, states for a magnetic field strength of al- for the quantum-mechanical distribution. This holds be-
most 0, 2, and 4 T. The results for ionization were previewedtause the negligible field strength causes no change of the
in [6] and are postponed to a later wdilQ]. For the target | expectation value within the time scale considered here;
guantum number ofi=28 under consideration the field of 4 especially no change of the overall distribution from the
T marks the upper boundary of themixing region, because quantum mechanical towards the classical one will occur, as
the diamagnetic energy becomes comparable to the energgen in higher field cases. Utilizing this feature, we have
spacing between adjacent principal quantum numbers. Thgerformed total cross section calculations B0 in which
breakdown of the perturbative regime B4 T is also seen thel distribution of the collision ensemble is identical to the
in the divergence of the true magnetron period from valuegjuantum mechanical and the classicdistribution (cf. Fig.
obtained from Eq(2.19. In contrast there is no lower physi- 5). In spite of the apparent discrepancies of the quantum and
cal limit in the magnetic field strength for the initial-state classical phase-space distributioje$. Fig. 4) the results of
construction with the method explained above, because thigoth sets agree closely, giving further confidence in the clas-
eigenstates are independent of the field strefjgdle Eq. sical approach. A more sensitive quantity, such as a differ-
(2.5)]. But there is a practical limit because the time to reachential cross section, might detect a discrepancy, though.
the initial electron coordinate becomes too large for The results for capture are shown in Fig. 6. Clearly, a
limg—0, as can be seen by the scaling law from &j19. significant change of the capture cross section caused by the
On the other hand the infinitely long magnetron period formagnetic field on can be seen. To further specify the influ-
limg—0 offers an alternative way to construct the electronence of the magnetic field on the collision process, one must
initial-state distribution and to verify the classical approach.distinguish between two effects. First, the applied magnetic
In the quasi-field-free case the electrons are moving on afield changes the target electron starting distributitsge
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FIG. 7. Total capture cross sectiofa for | =m=2 (uppej and FIG. 8. Total capture cross sectiofa for | =m=2 (uppe) and

Kmax States resolved for the contributions from one-swlapthree-  Kmin States resolved for the contributions from one-swiap three-
swap(c), five-swap(d), and=seven-swape) processes. To guide swap(c), and five-swap processéd). To guide the eye the data are
the eye the data are interpolateblid line). interpolated(solid line).

Fig. 4 and, second, the dynamics during the collision arevelocity region. The shift in the cross sections between the
directly affected by the magnetic field. In order to differen-field statesk,,, and ki, can be understood by comparing
tiate between the two, we compare the cross sections fawith the analogous field-free cases. Thel2 andl =2 har-
capture from thé,,,andk,,, states aB~0, 2, and 4 T with monics are the largest components of tkg, and Kmin
thel=2, m=2 state. All states can be produced by a two-states, respectivelysee Fig. %, and the same shift is ob-
photon excitation process where them=2 state is excited served between these field-free cases, which can be under-
in the field-free case. stood by a velocicty matching argument: In the2 case the
The “structure effect,” i.e., the influence of the changed orientation is nearly parallel with the quantization axis
initial electron distribution in the magnetic field becomesdirection for m=2, which indicates that the electron current
apparent if one compares Bt~0 the cross section for a flows perpendicular to the projectile ion path with weak lin-
| =2 state with those fok,.x andkin, (Fig. 6, upper graph  ear momentum components along the collisiah dxis. For
Little difference is seen between=2 andkp,,; this can 1=12, m=2 the orientation points approximately perpen-
easily be understood sinte- 2 provides also the major con- dicular to thez axis, resulting in part of the initial-state elec-
tribution to the quantum-mechanichl,,, state(cf. Fig. 5, tron current running with the incoming ion and thus intro-
lower graph. Both states]=2 andk,,,, are more or less duces strong linear momentum components along the
disk-shaped, orientated parallel to the field direction. In con<collision axis. Thus for thd =12 initial state there is a
trast, the difference betweédr-2 andk,,,, is quite marked; greater possibility for capture at higher velocities. Since the
the curve fork,, is shifted to higherw, and as a conse- exchange cross sections f@f,., (Kmin) and =12, m=2
qguence a third peak at very low;, appears in the viewed (I=m=2), respectively, are rather similiar and thgalues



4298

are the most probable out of the correspondinigstribution,
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over the whole velocity range. There is also a fairly flat

this indicates that the same reasoning is valid for the electrothree-swap curve and a much reduced contribution from five-

capture in a magnetic field. For examplepat1 the colli-

swap processes, while higher-order swaps are negligible in

sion velocity isv =0.036 a.u.; as can be seen from Fig. 4this velocity range, and are therefore not shown in the figure.

(upper right graph p,(kma iS quite intense around this
value, but far out of the range fdt,,;,. Therefore, the con-

We also note that the higher-order swap contributions peak
at a velocity lower than the correspondikg_,, curves. This

is most likely due to the different interaction length of the
kmin State, reflecting the “structure effect.” These shifts also
iar to the one seen when keepinfixed and going from high depend on the order of the swap and the applied magnetic
to low m [20]. field strength, indicating that this is caused by the direct in-
The direct influence of the magnetic field on the chargefluence of the magnetic field on the exchange dynamics. Fur-
exchange dynamics for the,., andk.,, States can be seen ther investigation into the charge-transfer mechanisms
in the middle and lower panel of Fig. 6, respectively, sinceshould prove interesting.
thel composition(structure of the states remains unchanged
in the magnetic field range under consideration. The direct
influence of the magnetic field does not alter the overall
structure of the exchange cross sections with respect to field The initial-state method presented in this paper marks a
strength, but only the amplitude. For both states the exsignificant advance for CTMC calculations. It is now pos-

ditions for charge exchange are most favorablekigy, par-
ticularly atv,=1. This comparison o, andki, is simil-

IV. CONCLUSION

change cross section is decreased,at1 with increasing
magnetic field, while ab,>1.25 Ky,in) andv,>1.5 (Knay
the capture is fairly unaffected by the field strength.

sible to create a classical ensemble that simulates a quantum
state for a Hamiltonian withwo nonseparable degrees of
freedom The method generalizes to initial-state systems that

Analyzing the features of the exchange cross sections isan be analyzed by perturbation theory. Applied to the prob-
more detail, we examine now the peaks found at low impactem of charge transfer in a magnetic field, the new CTMC
velocities. In the field-free case these peaks have been idemethod reveals exchange mechanisms similar to the field-
tified by MacAdam and co-workel®1] as the contribution free electron transfer for ions colliding with Rydberg atoms.
of one swap, three swaps, and higher-order swaps pas- The effect of the magnetic field is twofold: Firstly, in the
sage of the electron through the projectile-target midplanel-mixing regime, high components are mixed into the cor-
to the exchange cross section; the order of swaps charactgesponding field-free=28, | =m=2 state, leading to a set
izes how often the electron passes through the targebf new statek, which concerning their phase space distri-
projectile midplane before it finally stays with the projectile. bution fall apart into a prolate and oblate geometry. Particu-
In Figs. 7 and 8 we present the exchange cross sections faarly in the strongly elongateki,,, state, this introduces high
different magnetic field strengths resolved for the varioudinear momenta parallel to the collision direction while the
swaps. The two top panels in both figures show the “strucdisk-shaped,,, state does not behave much differently from
ture effect” already discussed above: Bt~0 the pure the field-freel=2, m=2 state. Secondly, the field also af-
| =2 state behaves similar to thg,, state, while it is quite fects the dynamics of the electron exchange process, mainly
different from k.. In Fig. 7 every peak in the total ex- reducing its probability, and thus the total cross section. This
change cross sections fky,,, States can be traced back to ais supposedly due to the Lorentz force, which diverts the
specific order of swaps. The width and position of the differ-electron from a Coulomb trajectory. The effect is particularly
ent swap peaks are practically the same forkgll, states, noticeable for thé,,;, State, where a 4-T field causes a cross-
independent of the applied magnetic field. The cross sectiorgection reduction of as much as 50%. In addition, the con-
are seen to decrease as the field increases, especially for ttiution of the various processes classified by the number of
highest-order swap, probably due to the electron path bendwaps exhibits much different behavior for thkg;, capture
ing out of the collision plane as it travels between the twocross sections. Finally we point out that the calculations pre-
nuclei. sented here made possible an analysis of ion—Rydberg-atom

For the k., state (Fig. 8), the one-swap process com- collisions in a magnetic field for an experimentally acces-
prises the main contribution to the total capture cross sectiogible range of parameters.
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