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Extension of classical trajectory Monte Carlo calculations to ion–Rydberg-atom collisions
in a magnetic field

S. Bradenbrink, E. Y. Sidky,* Z. Roller-Lutz, H. Reihl, and H. O. Lutz
Fakultät für Physik, University of Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

~Received 6 January 1997!

Theoretical electron transfer cross sections for 1.3–130 eV/amu singly charged ions colliding with Rydberg
atoms~n528,m52! in a magnetic field up to 4 T are presented. Both paramagnetic and diamagnetic inter-
actions are taken into account for the initial state and the collision. Cross sections are calculated within the
classical trajectory Monte Carlo model. A method to create a classical ensemble of electrons in a nonseparable
Hamiltonian allows the initial quantum stationary states to be modeled. The effect of the magnetic field on
electron capture is analyzed in terms of the field-induced alteration of the initial state, as well as the direct
influence on the collision dynamics.@S1050-2947~97!09606-6#

PACS number~s!: 34.60.1z, 32.60.1i, 34.70.1e
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I. INTRODUCTION

One hundred years after the work of Zeeman@1# there are
still unresolved problems concerning atomic processes
magnetic field. Many of the theoretical efforts are focused
astrophysical problems involving extremely high magne
fields as can be found around white dwa
(B'1022105 T) or neutron stars (B'1072109 T). The
main reason for this is that only at such high magnetic fi
strengths is the magnetic energy equal to or greater than
Coulomb energy for ground-state atoms. There have b
some calculations for ion-atom collisions at such fie
strengths@2–5#. In contrast for a typical laboratory field with
a strength of a few Tesla, the diamagnetic energy beco
comparable to the Coulomb energy if the atoms are exc
to high Rydberg states, and therefore such a field exer
nontrivial influence on ion–Rydberg-atom collisions.

In this paper we follow up our earlier work@6# with a
more detailed account of the theoretical method as wel
numerically calculated cross sections for charge exchang
a magnetic field up to 4 T. For the initial Rydberg state
choose a principal quantum numbern528, m52. In this
case the ratio of magnetic energy to Coulomb energy is
the order 0.1 and thereforen is still a good quantum number
but l is no longer. Thel -mixing region is experimentally
accessible, but presently there are, as far as we know
beam experiments that study this system even though
process is ubiquitous in plasma physics. The numerical
sults presented in this paper illuminate the effect of an
plied magnetic field on the ion-atom collision by compari
with calculated cross sections for the field-free case. T
calculations were performed with a CTMC~classical trajec-
tory Monte Carlo! method, modified to allow for complica
tions from magnetic field effects.

Collision energies of the singly charged ion range b
tween 1.3 and 130 eV/amu, corresponding to reduced ve
ties v r5v/ve between 0.2 and 2~v is the collision velocity;

*Present address: Department of Physics, Kansas State Un
sity, Manhattan, KS 66506.
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ve5n21 a.u. is the Bohr orbital electron velocity!. Atomic
units are used throughout this paper unless explicitly sta

II. THEORETICAL APPROACH

In principle one must solve the equations of motion f
three interacting bodies, but due to the relative speed of
ion and target atom and the lightness of the electron co
pared to the atomic nuclei standard approximations can
employed to simplify the system. The projectile ion moves
a constant velocityvW and the target nucleus remains motio
less. The Hamiltonian governing the active electron is th
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g l z1

1

8
g2r2, ~2.1!

whereRW 5bW 1vW t is the internuclear vector,bW is the impact
parameter, andvW is the ion velocity in the target frame cho
sen parallel with the magnetic field~z axis!; see Fig. 1.l z is
the z component of the electron angular momentu
g5B/(2.35053105 T), where B is the magnetic field
strength expressed in Tesla. The magnetic-field terms
expressed with the Coulomb symmetric gauge with resp
to the target nucleus. We are interested in thel -mixing re-
gion, where the diamagnetic energyg2r2/8 is small com-
pared to the Coulomb binding energy~less than 10%! and
perturbation theories are applicable. Figure 2 shows a c
tour plot of the potential generated by the target-projec
system. The potential contours in the figure are selecte
typical electron energies during the collision process. Due
the cylindrical symmetry of the magnetic field the circul
contours of the target Coulomb potential are compres
transverse to the magnetic field.

To calculate the cross sections for ion–Rydberg-atom c
lisions in a magnetic field we use the established CTM
method, modified to allow for the magnetic field. The CTM
method is nonperturbative and explicitly considers all clas
cal three-body and three-dimensional effects, but does
account for tunneling or interference. Such three-body s
tems involving highly excited states can be solved quant
mechanically only with severe approximations, while t
er-
4290 © 1997 The American Physical Society



b
o
o
le
th
l e

sen
to

ing

ag-
e
rob-

od
or a

on-
ate
en-
iod
ion
g-
ys-
om
y
ro-

oni-
an:

is
o-

that

rba-
is-
sis
r-
ial-
rob-

ith
m

s of
he
is
c-
n

ol

t
s
er

in

po
g
is
r
iti
e

55 4291EXTENSION OF CLASSICAL TRAJECTORY MONTE . . .
Newton’s equations for regular three-body systems can
solved numerically to any desired degree of accuracy
modern computers. The basic principle of the CTMC meth
is the validity of a generalized correspondence princip
which states that for sufficiently high quantum numbers
exact quantum state can be approximated by a classica
semble@7#. The calculation of the physical observables~e.g.,
cross section for ionization, exchange, and excitation! is

FIG. 1. Schematic of the ion-atom interaction shown in the c

lision frame.RW is the internuclear vector,bW is the classical impac
parameter, andvW is the projectile velocity. The magnetic field i
parallel to thez direction. Also shown is an example of a Kepl

ellipse with the angular momentumlW, Runge-Lenz vectorAW , and

CW 5 lW3AW shown schematically. For orientation the dashed lines
dicate the major and minor axes.

FIG. 2. Surface plot and corresponding contour plot of the
tential from the target and projectile nuclei including the diama
netic interaction. The target rests at the origin and the projectile
a distancez of 10 000 a.u.~atomic units! with an impact paramete
of 1500 a.u. The bold contours represent the energy of the in
electron and the zero energy. The dashed line marks the symm
axes. Spacing of the contours is 0.0001 a.u.
e
n
d
,
e
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done by averaging over a great number of randomly cho
trajectories. This method has been successfully applied
numerous collision systems, especially systems involv
Rydberg atoms@8–10#.

The CTMC method consists of three parts:~1! the classi-
cal generation of the target electron distribution,~2! integra-
tion of Newton’s equations, and~3! the classification of the
various processes after the collision. Due to the applied m
netic field steps~1! and ~3! require new procedures. Th
classical representation of the target atom is the main p
lem of the CTMC method@11#. The magnetic field distorts
the electron starting distribution and up to now no meth
has been published to construct an electron distribution f
Rydberg atom in a magnetic field for thel -mixing region,
which is described by a nonseparable Hamiltonian. To c
struct a classical microcanonical ensemble of initial-st
electrons, presented in Sec. II A, we need the energy eig
value, a new integral of motion, and the magnetron per
tmag calculated in the frame of degenerate perturbat
theory outlined in Secs. II A 1 and II A 2. The applied ma
netic field also changes the dynamical properties of the s
tem, represented by the equation of motions resulting fr
the Hamiltonian~2.1!. Finally due to the diamagnetic energ
a new characterization of the exchange and ionization p
cesses is required; see Sec. II B.

A. Initial-state method

We present a method to generate a classical microcan
cal ensemble for a quasi-integrable initial-state Hamiltoni

H init5H01V. ~2.2!

The termH0 represents a zeroth-order Hamiltonian that
integrable, andV represents a small perturbation that intr
duces nonseparability intoH init . The magnitude ofV is small
enough that the classical orbits ofH init are still regular, and
thus one can derive approximate constants of motion
replace constants of the motion forH0 . Equation~2.2! is
analyzed first by quantum-mechanical degenerate pertu
tion theory in order to classify and generate probability d
tributions for the new set of stationary eigenstates. Analy
of Eq. ~2.2! with classical perturbation theory provides info
mation necessary for the actual construction of the init
state ensembles, which model the quantum-mechanical p
ability distributions as closely as possible.

The discussion of the initial-state method proceeds w
the specific problem whereH0 represents the Rydberg ato
under the linear Zeeman effect, andV is the diamagnetic
interaction:

H05
1

2
pW 22

1

urWu
1
1

2
g l z , ~2.3!

V5
1

8
g2r2. ~2.4!

However, this method can be generalized to other system
the form in Eq.~2.2!. For the calculations presented here t
magnetic field is at most 4 T, and the initial target state
excited to then528 manifold. For these parameters the ele
tron orbit is a combination of the fast elliptical motion, a
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4292 55S. BRADENBRINK et al.
intermediate cyclotron motion, and a slow oscillation~mag-
netron motion with periodtmag @6#!. Classically, the scaled
energy e5Eg22/3 is 20.96, which characterizes regula
classical dynamics@12#. Before going on to the details of th
classical ensemble generation we summarize the perturb
theory for a Rydberg atom in a magnetic field, distilled fro
Refs.@13–15#.

1. Quantum-mechanical perturbation theory

To find the target atomic-state characteristics and ene
spectrum a quantum-mechanical analysis of a Rydberg a
in a magnetic field is necessary. References@13,14# give a
detailed analysis of the diamagnetic Rydberg atom in
l -mixing regime. Eigenstates are found by diagonalizing
diamagnetic potential within a singlen manifold:

Ull 85
1

8
g2^nlmur 2sin2uunl8m&

5
1

8
g2 (

k50

n2umu21

^ l uk&ek^ku l 8&, ~2.5!

ck~r ,u,f!5(
l

^ku l & f nl~r !Ylm~u,f!, ~2.6!

where f andY represent the radial Coulomb functions a
spherical harmonics, respectively. The expansion coeffici
^ku l & give the perturbative eigenstates ofH init , andek is the
respective energy shift. Note that the eigenstates from
diagonalization in Eq.~2.5! are independent of field strength

The manifold of eigenstates that emerge from the dia
nalization of Eq.~2.5! split into two types of states. Thos
corresponding to the lower set of energy eigenvaluesek ~by
convention the maximumk corresponds to the minimum
ek! are localized along the magnetic field. The higher-ene
states~lower k! resemble a disk perpendicular to the ma
netic field, and their spectrum is akin to an inverted harmo
oscillator; the highest-energy state has a minimum numbe
nodes@13,14#. Our task is to approximate the probabili
distributionsckck* and energy eigenvaluesek as closely as
possible by a stationary classical ensemble.

2. Classical perturbation theory

Before discussing how to construct the initial-state e
semble it is necessary to develop further the classical tr
ment of the diamagnetic Rydberg atom presented in@15#. In
performing the classical perturbation theory the electron
jectories are viewed as primarily elliptical, the exact traje
tories ofH0 in Eq. ~2.3!. The diamagnetic potential of Eq
~2.4! is regarded as a perturbation that causes a slow, o
latory drift of the angular momentum vectorlW and the
Runge-Lenz vectorAW ~magnetron motion: ‘‘pulsing and
wobbling’’ of the classical ellipse!. The period of this oscil-
lation tmag is a key parameter needed for the construction
the classical ensemble.

To calculate the drift of the elliptical parameters the effe
of the perturbing potentialV is averaged over one elliptica
period. As in@15# we write the trajectory of the Kepler el
ive
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lipse in terms of the constants of the elliptical motionlW and
AW :

rW~ t !5x0~ t !AW /e1y0~ t !CW /~ le!, ~2.7!

where

x0~ t !5Q~cosj2e!, y0~ t !5Q~12e2!1/2sinj,

CW 5 lW3AW , ~2.8!

the eccentricitye is the magnitude of the Runge-Lenz vect
AW , Q is the semimajor axis, andj is the Kepler anomaly.
Applying time-dependent perturbation theory@15# gives the
drift of AW and lW averaged over the elliptical orbit:

d lW

dt
5
Q4g2

8 H 4e211

e2
Az@AW 3 ẑ#1

12e2

l 2e2
Cz@CW 3 ẑ#J ,

~2.9!

dAW

dt
52

Q3/2g2

8

A12e2

le2

3$~3e224Az
2!CW 1Cz~e

2ẑ14AzAW !%. ~2.10!

@Equation~5! of @15# was found to be slightly inaccurate an
hence is rewritten correctly in Eqs.~2.9! and ~2.10!.# Equa-
tion ~2.9! implies thatl z is still a constant of motion, and two
other approximate constants of motion emerge from E
~2.9! and ~2.10!:

Q5
l 2

12e2
, ~2.11!

L54e225Az
2 . ~2.12!

Conservation ofl z reflects thatH init is independent off, and
approximate conservation ofQ implies that the path that the
electron follows at any one instant is approximately follo
ing an ellipse corresponding to the energy21/(2Q). L is
really a new quantity arising from the particular form of th
diamagnetic potential. Orbits corresponding to negative v
ues ofL are stretched along the magnetic field as with
high k values from the quantum mechanical perturbat
theory, and positiveL correspond to the low-k values, i.e., a
disklike distribution perpendicular to the magnetic field.

To find the magnetron periodtmag one integrates Eqs
~2.9! and ~2.10! after some simplification. These two equ
tions represent six coupled differential equations, but th
can be reduced to two coupled differential equations by t
ing advantage of the three new constants of motion as we
the orthogonality of the angular momentum and Runge-L
vector, lW•AW 50. We reduce to the coupled equations:

dAz
dt

52
Qg2

2
Cz , ~2.13!

dCz

dt
5
Q2g2

8e2
AzS e41L2

5Cz
2

n2 D . ~2.14!

Note that for simplicitye still appears in Eq.~2.14!, but it is
related toAz throughL. The field strength can be eliminate
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55 4293EXTENSION OF CLASSICAL TRAJECTORY MONTE . . .
from Eqs. ~2.13! and ~2.14! by going to scaled time
t85tg2. For a given eigenstatek, tmag ~in a.u.! is found by
integrating Eqs.~2.13! and ~2.14! with the constants of mo
tion set tol z5m, Q5n2, andL5(ek2n22m2)/n2 @14#.

3. Generation of the classical ensemble

We present now a detailed method for generating an e
tron starting distribution in a magnetic field for th
l -mixing region, based on the results of the quantu
mechanical and classical perturbation theory. Since non
the quantum numbersn, m, andk, which characterize the
target Rydberg state, are degenerate, no binning is perfor
for the corresponding classical constants of motionQ, l z ,
and L, because we wish to model the initial state with
microcanonical ensemble. To produce electron starting
tributions that mimic the quantum ones from Eq.~2.6!, one
distributes the initial-state electrons according to a proba
ity distribution proportional to 1/uvW u along the set of classica
orbits with l z , Q, and L, corresponding to a specifi
quantum-mechanicalk state. The velocity of the Runge-Len
and angular momentumf component is constant as the orb
precesses about the field axis due to the paramagnetic i
action. Selectingf l randomly in @0,2p# specifies a unique
orbit ~fA is dependent onf l throughAW • lW50!.

One strategy would be to distribute the electrons by st
ing them at the same phase space point and propagate H
ton’s equations withH init for a randomly chosen timet. This
automatically would give a 1/uvW u distribution, and avoid the
necessity of an analytic expression for the electron traject
This method fails, sincet should be selected between 0 a
the recurrence time, which is infinite as the electron path
a region of phase space densely. One can, however, d
the trajectory into the elliptical and magnetron motions
selecting the electron coordinate randomly on an unpertur
ellipse and evolving the electron according toH init for t ran-
domly selected in@0,tmag#. This method allows the electro
to reach any point along its true trajectory, and thus crea
the desired microcanonical ensemble.

To randomly place the electron using the field-free
lipse, one must first define the ellipse by specifyingAW and
lW. The magnitude of the angular momentum varies as
electron executes its motion, thus its initial choice is n
critical as long asl lies in the range of accessible values f
a givenL. Taking ^ku l uk& for the initial l value fulfills this
requirement.l z is fixed, since we are only interested
m52, and as stated earlierf l is selected randomly. The
magnitudee of the Runge-Lenz vector follows from the re
lation forQ in Eq. ~2.11!, and thez componentAz is deter-
mined up to sign withL in Eq. ~2.12!. Finally, fA is found
by orthogonality betweenAW and lW.

In practice the electron is randomly placed on an ellip
oriented in the coordinatexy plane with the aphelion on th
negativex axis. The size and shape of the ellipse are de
mined by l and e, and the starting point on the ellipse
chosen by selecting a mean anomalya in @0,2p#, which
determines the Kepler anamolyj through@16#

a5j2e sinj. ~2.15!

The proper orientation is accomplished by three rotati
through the angles
c-
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u l5cos21
l z
l
, ~2.16!

w5cos21S 6
Az

e sinu l
D , ~2.17!

andf l . The first rotationu l about they axis gives the elec-
tron the properz component of angular momentum. The se
ond rotationw about the angular momentum vectorlW fixes
the z component of the Runge-Lenz vector. The plus or m
nus in Eq. ~2.17! indicates that the sign ofAz should be
chosen randomly. The final rotation about the space fixez
axis gives the randomly chosenf l angle.

Due to the perturbing diamagnetic potential the rand
placement of the electrons on a predefined ellipse mus
adjusted. The electrons up until now have distributed alon
trajectory ofH0 , butV introduces, in general, a small varia
tion in the energy of the particles. In the case of diamag
tism electrons at largerr will experience a boost in energ
due to ther2 potential. This must be corrected in order
obtain a microcanonical ensemble. The parameter to adju
the semimajor axisQ, which is directly related to the energy
and this can be actuated by either changingl or e. We adjust
l by

l 85 l S 11
2l 2

12e2
1

8
g2r2D 21/2

, ~2.18!

wherel , e, andr refer to the uncorrected electron, andl 8 is
the adjusted angular momentum. Having changedl , the po-
sition of the electron is recalculated keepinge, Az , l z , f l ,
andj fixed. Performing this energy correction puts the ele
tron on a slightly different Kepler ellipse, shifting ther co-
ordinate and subsequently affecting the diamagnetic ene
Thus the correction must be performed recursively. After
recursions the initial electron energy has a relative er
1027 of the quantum energy eigenvalue. The effect of t
energy correction is illustrated in Fig. 3. The energy corr
tion shown in the figure is an extreme case for a 4-T fie
since it is the starting ellipse for thekmin state that is greatly
affected by the magnetic field.

The last step in simulating the microcanonical ensemb
as mentioned earlier, is to evolve the electron coordina
according toH init for a time t varying randomly between
zero andtmag. We calculatetmag, from Eqs. ~2.9! and
~2.10!, for thek states that we wish to examine, namely, t
minimum and maximumk values for a two-photon excita

FIG. 3. The solid curve represents an ellipse of eccentric
e50.977 ~l56 and n528!, where the filled circles are equall
spaced in time. The dashed curve displays the corresponding en
corrected coordinates; the solid line indicates constantj anda is the
mean anamoly. The axes shown are in the frame of the orig
ellips, and the nucleus rests atx0 , y050.
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FIG. 4. Configuration space distribution~left! and momentum distribution~right! with n528, m52 for kmax ~upper! andkmin ~lower!.
Quantum-mechanical~high resolution grid! and classical ensemble distribution~low resolution grid! are shown in cylindrical coordinates
due to symmetrykmax is represented only forz,0 andpz,0.
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tion to n528. Focusing onm52 states, one finds tha
kmax524 andkmin50, sincek must correspond to an eve
parity state. The magnetron period scales with the squar
field strength:

tmag5t0
k/B2, ~2.19!

where

t0
k52453.33443107 ~a.u. T2!, ~2.20!

t0
k5052.96923107 ~a.u. T2!. ~2.21!

For comparison the orbital period for ann528 electron is
1.43105 a.u. @Note that if the classical perturbation resu
were not known, the period of the oscillations due to t
perturbing potentialV could still be found empirically by
numerically evolving a constant of motionV from H0 with
the Hamilton’s equations forH init , provided that@H init ,V#
Þ0. Indeed this provides a good criterion for the validity
Eq. ~2.19!.# The resulting normalized distributions forkmax
andkmin in configuration and momentum space are shown
Fig. 4. The method for generating the microcanonical
semble is tested empirically simply by propagating the d
of

e

n
-
-

tributions in time and observing that they are stationa
within the normal statistical fluctuations.

Also shown in Fig. 4 is the comparison of the classic
ensembles with the corresponding quantum probability d
tributions. The regions of configuration and momentu
space occupied by both the classical and quantum distr
tions agree very well. Also the probability amplitudes ha
matching radial dependence in both configuration and m
mentum space, aside from the behavior forr larger than the
classical turning point~CTP! where the classical distribution
must go to zero. The behavior transverse to the radial di
tion is noticeably different. The reason for this goes back
the correspondence principle, which states that there sh
be good agreement between classical and quantum mec
ics for large quantum numbers. However, the stateskmax and
kmin , displayed in Fig. 4, are likened to the extremal states
a harmonic oscillator and an inverted harmonic oscillat
respectively@13,14#. Both cases correspond to states w
one transverse mode, so one would not expect the corres
denence principle to hold exactly. Indeed theu dependence
of the classical probability distributions are dominated
CTP behavior, reflected by two ridges running along t
caustics. A similar comparison is seen in the distribution
l , conjugate tou, seen in Fig. 5. An attempt to minimize th
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55 4295EXTENSION OF CLASSICAL TRAJECTORY MONTE . . .
discrepancy between the quantum and classical distribut
was made by enforcing the quantum-mechanicall distribu-
tion from the outset. This, however, resulted in a nonstati
ary classical ensemble that eventually, not surprisingly,
back to the former classicall distribution. The effect of the
difference between the classical and quantum distributi
will be discussed after presenting the total cross sections
capture in Sec. III.

The other part of the initial wave function that one mu
model is the incoming plane wave for the projectile ion, f
which we use a standard distribution@17#. We briefly de-
scribe its specific application here. The initial condition
the projectile in the collision frame is specified by its velo
ity vW , its impact parameterb, and the distancez0 from the
target. The ion velocityvW is chosen parallel with the mag
netic field ~z axis! and lies in thexz plane. To reproduce a
uniform flux of monoenergetic incident particles, the impa
parameter of the projectile is chosen randomly by selec
b2 out of the interval@0,bmax

2 #, where bmax is the impact
parameter above which no ionization and capture proce
occur.bmax depends on the target state and the ion velo
and has to be chosen properly, because whenbmax is too
large this will result in poor statistics while a smaller val
of bmax will distort the results. Typical values ofbmax in our
system are'3500 a.u. The distancez0 of the projectile is
typically243104 a.u. and guarantees that the cross secti
are independent of starting position, which indicates that
projectile-electron interaction is negligible compared to
target-electron interaction at the outset.

FIG. 5. Angular-momentum probability distribution forkmax
~upper! andkmin ~lower!. The solid circles connected by the dash
lines represent the quantum probabilites, while the open diamo
are the corresponding classical ensemblel distribution. The lower
l limit is defined by the choice of magnetic quantum numb
m52.
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B. Integration of Hamilton’s equations
and final-state classification

After propagating the electron out to its randomly chos
position, we proceed by integrating Hamilton’s equations
motion according to Eq.~2.1! with the ion starting atz0 . In
performing the integration by a standard Runge-Ku
method with an adaptive step size the target center is ta
as space fixed and the projectile moves along a straight
trajectory. Both of these simplifications reduce the num
and complexity~e.g., motional Stark effect@18#! of the gov-
erning equations without introducing a noticeable error
calculating the total cross sections. After propagating Ham
ton’s equations such that the projectile is at an asympt
distance (zf513105 a.u.), a decision procedure determin
whether the electron remained with the target, has b
transferred to the projectile, or was ejected to the continu
The number of trajectories is chosen in such a way that
statistical error is less than 5%. Other errors, e.g., trunca
and roundoff errors, were minimized by suitable choice
the parameters of the integration routine and are less than
statistical errors.

A collision event is considered ‘‘over’’ when it is no
longer necessary to evolve the particle trajectories under
full three-body Hamiltonian Eq.~2.1!. Asymptotically, the
final state of the ion-atom collision is governed by two- a
one-body Hamiltonians in the case of excitation or captu
or three one-body Hamiltonians in the case of ionization.
practice we evolve the ion-atom system until the factori
tion into the two- and one-body problems is possible, a
evaluate the two-body total energy to determine if the tw
body system will break up further, resulting in ionizatio
The end pointzf of the three-body propagation is chose
such that for any position of the electron at least one of
Coulomb terms in Eq.~2.1! is negligible. Thus the Hamilto-
niansHe-T andHe-P are defined by dropping, respectivel
the Coulomb potential from projectile and target nuclei:

He-P5
1

2
~pW 2vW !22

1

urW2RW u
1
1

2
g l z1

1

8
g2r2 ~2.22!

andHe-T5H init , @see Eqs.~2.2!, ~2.3!, and~2.4!#, where both
are expressed in the target frame. While propagating
electron trajectory with the full Hamiltonian, the two-bod
interaction energiesHe-T andHe-P are calculated. Atzf at
least one of these energies is constant in time, and thi
revealed by simply evaluating the standard deviation of b
two-body energies recorded from the last thousand inte
tion steps.

Having decided which two-body Hamiltonian best d
scribes the final state, evaluation of its energy allows
classification of the outcome of the ion-atom collision: ex
tation of the target atom, ionization of the same, or capt
by the projectile ion. Sincel z is a good quantum number fo
He-T , the ionization threshold energy turns out to
1
2g(u l zu1 l z) due to the combined effect of the centrifug
and diamagnetic potentials. For Eq.~2.22! thef motion can-
not be separated~discussed below!, resulting in an ionization
threshold of zero energy. IfHe-T is constant and less tha
1
2g(u l zu1 l z), then the electron remains bound to the targ
nucleus. IfHe-P is constant and less than zero, then the el

ds
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tron has been captured by the projectile nucleus. All ot
situations lead to ionization. Numerically, ifNTot is the total
number of trajectories andN the number of events leading t
capture or ionization, the respective cross sections are

s5
N

NTot
pbmax

2 F16
ANTot

2 1N2

NTotN
G . ~2.23!

The second term is the standard deviation of the estim
cross section.

The combination of charge transfer and the presence
the external magnetic field leads to a new type of atom
state. The Coulomb symmetric gauge about the target ch
center must remain throughout the ion-atom collision, res
ing in anasymmetric gaugefor the electron-projectile system
He-P ; see Fig. 2. A coordinate transformation gives t
Hamiltonian for the captured electron in the frame of t
projectile:

He-P8 5
1

2
pW 822

1

urW8u
1
1

2
g l z81

1

8
g2r82

1
1

2
gbpy81

1

4
g2bx81

1

8
g2b2, ~2.24!

whererW85rW2RW andpW 85pW 2vW . Equation~2.24! is written so
that the usual Hamiltonian, for an atom in a magnetic fi
with the symmetric gauge terms, appears on the upper
and the additional terms introducing the asymmetry are w
ten on the next line. The off-center paramagnetic interac
results in the term proportional topy8 , while the off-center
diamagnetic interaction pulls on the electron with the Sta
like term 1

4g2bx8 and gives an overall boost in energy
1
8g2b2. Further study of the interplay of the paramagne
and diamagnetic terms is desirable to understand the s
ture of the final electronic state on the neutralized atoms

III. RESULTS

With the method outlined above, we have calculated
cross sections for charge exchange and ionization for
kmax and thekmin states for a magnetic field strength of a
most 0, 2, and 4 T. The results for ionization were preview
in @6# and are postponed to a later work@19#. For the target
quantum number ofn528 under consideration the field of
T marks the upper boundary of thel -mixing region, because
the diamagnetic energy becomes comparable to the en
spacing between adjacent principal quantum numbers.
breakdown of the perturbative regime forB.4 T is also seen
in the divergence of the true magnetron period from val
obtained from Eq.~2.19!. In contrast there is no lower phys
cal limit in the magnetic field strength for the initial-sta
construction with the method explained above, because
eigenstates are independent of the field strength@see Eq.
~2.5!#. But there is a practical limit because the time to rea
the initial electron coordinate becomes too large
limB→0, as can be seen by the scaling law from Eq.~2.19!.

On the other hand the infinitely long magnetron period
limB→0 offers an alternative way to construct the electr
initial-state distribution and to verify the classical approa
In the quasi-field-free case the electrons are moving on
r

ed

of
c
ge
t-
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e,
t-
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e
e

d

gy
he

s

he

h
r

r

.
n

unperturbed Kepler ellipse and the drift of the elliptical p
rameters is negligible. Therefore the initial-state distributi
can be accomplished by a superposition ofl states statisti-
cally weighted according to the desiredl distribution. In the
limiting case of a vanishing magnetic field strength it is po
sible to gain a stationary initial phase-space distribution e
for the quantum-mechanicall distribution. This holds be-
cause the negligible field strength causes no change of
l expectation value within the time scale considered he
especially no change of the overall distribution from t
quantum mechanical towards the classical one will occur
seen in higher field cases. Utilizing this feature, we ha
performed total cross section calculations forB'0 in which
the l distribution of the collision ensemble is identical to th
quantum mechanical and the classicall distribution~cf. Fig.
5!. In spite of the apparent discrepancies of the quantum
classical phase-space distributions~cf. Fig. 4! the results of
both sets agree closely, giving further confidence in the c
sical approach. A more sensitive quantity, such as a dif
ential cross section, might detect a discrepancy, though.

The results for capture are shown in Fig. 6. Clearly
significant change of the capture cross section caused by
magnetic field on can be seen. To further specify the in
ence of the magnetic field on the collision process, one m
distinguish between two effects. First, the applied magn
field changes the target electron starting distribution,~see

FIG. 6. Capture cross sections for the field-free case~upper!,
kmax ~middle!, andkmin states~lower!. The upper panel reveals th
‘‘structure effect,’’ while the middle and lower panels identify th
direct influence of the magnetic field on the exchange dynamic.
guide the eye the data are interpolated~solid line!.
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Fig. 4! and, second, the dynamics during the collision
directly affected by the magnetic field. In order to differe
tiate between the two, we compare the cross sections
capture from thekmaxandkmin states atB'0, 2, and 4 T with
the l52, m52 state. All states can be produced by a tw
photon excitation process where thel5m52 state is excited
in the field-free case.

The ‘‘structure effect,’’ i.e., the influence of the chang
initial electron distribution in the magnetic field becom
apparent if one compares atB'0 the cross section for a
l52 state with those forkmax andkmin ~Fig. 6, upper graph!.
Little difference is seen betweenl52 and kmin ; this can
easily be understood sincel52 provides also the major con
tribution to the quantum-mechanicalkmin state ~cf. Fig. 5,
lower graph!. Both states,l52 andkmin , are more or less
disk-shaped, orientated parallel to the field direction. In c
trast, the difference betweenl52 andkmax is quite marked;
the curve forkmax is shifted to higherv r and as a conse
quence a third peak at very lowv r appears in the viewed

FIG. 7. Total capture cross sections~a! for l5m52 ~upper! and
kmax states resolved for the contributions from one-swap~b!, three-
swap~c!, five-swap~d!, and>seven-swap~e! processes. To guide
the eye the data are interpolated~solid line!.
e

or

-

-

velocity region. The shift in the cross sections between
field stateskmax and kmin can be understood by comparin
with the analogous field-free cases. Thel512 andl52 har-
monics are the largest components of thekmax and kmin
states, respectively~see Fig. 5!, and the same shift is ob
served between these field-free cases, which can be un
stood by a velocicty matching argument: In thel52 case the
orientation is nearly parallel with the quantization axis~z
direction! for m52, which indicates that the electron curre
flows perpendicular to the projectile ion path with weak li
ear momentum components along the collision (z) axis. For
l512, m52 the orientation points approximately perpe
dicular to thez axis, resulting in part of the initial-state elec
tron current running with the incoming ion and thus intr
duces strong linear momentum components along
collision axis. Thus for thel512 initial state there is a
greater possibility for capture at higher velocities. Since
exchange cross sections forkmax (kmin) and l512, m52
( l5m52), respectively, are rather similiar and thel values

FIG. 8. Total capture cross sections~a! for l5m52 ~upper! and
kmin states resolved for the contributions from one-swap~b!, three-
swap~c!, and five-swap processes~d!. To guide the eye the data ar
interpolated~solid line!.
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are the most probable out of the correspondingl distribution,
this indicates that the same reasoning is valid for the elec
capture in a magnetic field. For example, atv r51 the colli-
sion velocity isv50.036 a.u.; as can be seen from Fig.
~upper right graph! pz(kmax) is quite intense around thi
value, but far out of the range forkmin . Therefore, the con-
ditions for charge exchange are most favorable forkmax par-
ticularly atv r>1. This comparison ofkmax andkmin is simil-
iar to the one seen when keepingl fixed and going from high
to low m @20#.

The direct influence of the magnetic field on the cha
exchange dynamics for thekmax andkmin states can be see
in the middle and lower panel of Fig. 6, respectively, sin
the l composition~structure! of the states remains unchang
in the magnetic field range under consideration. The dir
influence of the magnetic field does not alter the ove
structure of the exchange cross sections with respect to
strength, but only the amplitude. For both states the
change cross section is decreased atv r,1 with increasing
magnetic field, while atv r.1.25 (kmin) and v r.1.5 (kmax)
the capture is fairly unaffected by the field strength.

Analyzing the features of the exchange cross section
more detail, we examine now the peaks found at low imp
velocities. In the field-free case these peaks have been i
tified by MacAdam and co-workers@21# as the contribution
of one swap, three swaps, and higher-order swaps~i.e., pas-
sage of the electron through the projectile-target midpla!
to the exchange cross section; the order of swaps chara
izes how often the electron passes through the tar
projectile midplane before it finally stays with the projectil
In Figs. 7 and 8 we present the exchange cross section
different magnetic field strengths resolved for the vario
swaps. The two top panels in both figures show the ‘‘str
ture effect’’ already discussed above: AtB'0 the pure
l52 state behaves similar to thekmin state, while it is quite
different from kmax. In Fig. 7 every peak in the total ex
change cross sections forkmax states can be traced back to
specific order of swaps. The width and position of the diff
ent swap peaks are practically the same for allkmax states,
independent of the applied magnetic field. The cross sect
are seen to decrease as the field increases, especially fo
highest-order swap, probably due to the electron path be
ing out of the collision plane as it travels between the t
nuclei.

For the kmin state ~Fig. 8!, the one-swap process com
prises the main contribution to the total capture cross sec
.

n

e

e

ct
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ct
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ns
the
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n

over the whole velocity range. There is also a fairly fl
three-swap curve and a much reduced contribution from fi
swap processes, while higher-order swaps are negligibl
this velocity range, and are therefore not shown in the figu
We also note that the higher-order swap contributions p
at a velocity lower than the correspondingkmax curves. This
is most likely due to the different interaction length of th
kmin state, reflecting the ‘‘structure effect.’’ These shifts al
depend on the order of the swap and the applied magn
field strength, indicating that this is caused by the direct
fluence of the magnetic field on the exchange dynamics. F
ther investigation into the charge-transfer mechanis
should prove interesting.

IV. CONCLUSION

The initial-state method presented in this paper mark
significant advance for CTMC calculations. It is now po
sible to create a classical ensemble that simulates a qua
state for a Hamiltonian withtwo nonseparable degrees o
freedom. The method generalizes to initial-state systems t
can be analyzed by perturbation theory. Applied to the pr
lem of charge transfer in a magnetic field, the new CTM
method reveals exchange mechanisms similar to the fi
free electron transfer for ions colliding with Rydberg atom
The effect of the magnetic field is twofold: Firstly, in th
l -mixing regime, highl components are mixed into the co
responding field-freen528, l5m52 state, leading to a se
of new statesk, which concerning their phase space dist
bution fall apart into a prolate and oblate geometry. Parti
larly in the strongly elongatedkmax state, this introduces high
linear momenta parallel to the collision direction while th
disk-shapedkmin state does not behave much differently fro
the field-freel52, m52 state. Secondly, the field also a
fects the dynamics of the electron exchange process, ma
reducing its probability, and thus the total cross section. T
is supposedly due to the Lorentz force, which diverts
electron from a Coulomb trajectory. The effect is particula
noticeable for thekmin state, where a 4-T field causes a cros
section reduction of as much as 50%. In addition, the c
tribution of the various processes classified by the numbe
swaps exhibits much different behavior for thekmin capture
cross sections. Finally we point out that the calculations p
sented here made possible an analysis of ion–Rydberg-a
collisions in a magnetic field for an experimentally acce
sible range of parameters.
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